Table of Contents

Overview ... 3
Availability Considerations for vCenter Server 6.0. 3
 vCenter Server .. 4
 Platform Services Controller 4
 vCenter Server Components and Their Availability Characteristics 4
vCenter Server High-Availability Solutions and Configurations 5
 VMware vSphere High Availability 5
 Protecting vCenter Server with vSphere HA 5
 Prerequisites .. 5
 Procedure for New Cluster 5
 vSphere HA and vSphere DRS Affinity Rules 6
 Additional vSphere HA Considerations 7
 Watchdog Protection for vCenter Server 7
 VMware vSphere Fault Tolerance 8
 Prerequisites for Using vSphere FT 9
 Configuration Procedure 9
 Third-Party Tools Leveraging the VMware Application Monitoring API 9
 Virtual Machine Guest Operating System Clustering Solutions 10
Summary: vCenter Server 6.0 Availability Options 11
High Availability for the Platform Services Controller 12
 Deployment Modes for vCenter Server and PSC 13
 Local vCenter Server and PSC High Availability 13
 Multisite vCenter Server and PSC Basic Architecture 14
 Multisite vCenter Server and PSC with High Availability 14
Recovery Options .. 15
 VMware vSphere Replication 15
 VMware vSphere Data Protection 15
 Recommendations for Protecting vCenter Server with vSphere Data Protection 16
Conclusion .. 16
References ... 16
Appendix A: Protecting Windows vCenter Server 6.0 17
 with Windows Server Failover Clustering 17
 Step-by-Step Guide .. 17
Additional Recommendations ... 29
About the Authors .. 29
Acknowledgment ... 29
Overview

A correctly architected and highly available solution provides applications with the largest amount of acceptable operational uptime by countering the impact of unplanned downtime. Although downtime can also be planned—for maintenance and patching, for example—the unplanned outages have the greatest effect on production uptime. This paper will discuss the requirements of defining high availability for VMware vCenter Server™ on Microsoft Windows and VMware vCenter™ Server Appliance™, with recommendations and best practices for providing acceptable levels of protection.

Availability Considerations for vCenter Server 6.0

vCenter Server can be a single point of failure in the environment. Many VMware® solutions, such as VMware Horizon® Suite, VMware vRealize™ Automation™, and so on, are layered on top of vCenter Server; its availability impacts the usability of these components. Loss of vCenter Server curtails the ability of these solutions to perform many critical functions such as making changes and creating new virtual machines (VMs).

VMware vCenter comprises multiple components. To provide reliable availability options, an understanding of what these components entail, including dependencies, is required.

Figure 1. vCenter Server 6.0 Components

The primary vCenter components are vCenter Server and the Platform Services Controller (PSC).
vCenter Server

Many of the traditional services have been consolidated into the vCenter Server node. The following are vCenter Server services:

- VMware vCenter core components
- VMware vSphere® Web Client
- VMware vCenter Inventory Service
- VMware vSphere Storage Profile drive storage
- VMware vSphere Auto Deploy™
- VMware vSphere Syslog Collector
- VMware vSphere ESXi™ Network Dump Collector

Platform Services Controller

The PSC supports data and state replication and includes the following set of common infrastructure services that can be used by vCenter Server, VMware vRealize Suite, and other solutions:

- Single sign-on (SSO)
- Licensing
- Certificate authority
- Global permissions
- Other common services

vCenter Server Components and Their Availability Characteristics

- vCenter Server – vCenter Server services that encompass a majority of its functions, excluding those performed by the PSC, are run on a standalone server that can be a single point of failure. Failure of this server causes loss of these vCenter Server services. Greater availability can be achieved by ensuring that these services are monitored and any failure is remediated.
- Database services – vCenter Server depends on database services that can be internal or external to the server. This is also a single point of failure. The database server must be monitored and protected from all types of failures.
- Platform Services Controller – There can be multiple PSC instances. They replicate state information between themselves, so it is not a single point of failure if there is more than one per site.
vCenter Server High-Availability Solutions and Configurations

There are multiple solutions for high availability. Many of these options can be combined to provide different levels of availability. We will look at all available solutions and discuss their configuration, pros and cons, and applicability to vCenter Server.

VMware vSphere High Availability

VMware vSphere High Availability (vSphere HA) is the time-tested high-availability solution from VMware that is widely used for production environments. If configured with no single points of failure, it can protect the workloads from hardware failures. In the event of any hardware failure, the protected workload is automatically restarted in the remaining nodes of the cluster. There is an outage for the workload for the duration of the detection of the failure and the restart of the VM and the application. vSphere HA is very easy to set up and manage and is the simplest high-availability solution available for protecting virtual workloads.

Protecting vCenter Server with vSphere HA

VMware recommends leveraging vSphere HA and VMware vSphere Distributed Resource Scheduler™ (vSphere DRS) if licensing permits.

Prerequisites

- Verify that the vCenter Server system and its configuration files reside on shared storage.
- Verify that the hosts are configured to access the shared storage so you can power on the VMs by using different hosts in the cluster.
- Verify that hosts are configured to have access to the VM network.
- Verify that you are using redundant management network connections for vSphere HA. For information about setting up network redundancy, see “Best Practices for Networking.”
- Verify that you have configured hosts with at least two datastores to provide redundancy for vSphere HA datastore heartbeating.
- Connect vSphere Web Client to vCenter Server using an account with cluster administrator permissions.

Procedure for New Cluster

1. In vSphere Web Client, browse to the data center where you want the cluster to reside and click Create a Cluster.
2. Complete the New Cluster Wizard. Do not turn on vSphere HA or vSphere DRS.
3. Click OK to close the wizard and create an empty cluster.
4. Based on your plan for the resources and networking architecture of the cluster, use vSphere Web Client to add hosts to the cluster.
5. Browse to the cluster and enable vSphere HA.
 a. Click the Manage tab and click Settings.
 b. Select vSphere HA and click Edit.
 c. Select Turn On vSphere HA.
6. Select **Host Monitoring**. Enabling **Host Monitoring** enables hosts in the cluster to exchange network heartbeats and enables vSphere HA to take action when it detects failures.

7. Choose a setting for **Virtual Machine Monitoring**. Select **VM Monitoring Only** to restart individual VMs if their heartbeats are not received within a set time. You can also select **VM and Application Monitoring** to enable application monitoring.

8. Click **OK**.

vSphere HA is now turned on and can help reduce downtime for the vCenter Server system during hardware failures. As part of the configuration, enable Host Hardware Monitoring with protection against storage connectivity loss. This will help in situations such as All Paths Down (APD) and PDL (Permanent Device Loss). In the event of a storage failure, the VM is restarted on a healthy host.

vSphere HA and vSphere DRS Affinity Rules

vSphere HA failover can be specified for the following two types of rules:

- VM antiaffinity rules force specified VMs to remain apart during failover actions.
- VM host affinity rules place specified VMs on a particular host or a member of a defined group of hosts during failover actions.

When editing a vSphere DRS affinity rule, select the checkbox or checkboxes that enforce the preferred failover action for vSphere HA.

- vSphere HA is subject to VM antiaffinity rules during failover. If VMs with this rule are placed together, the failover is aborted.
- vSphere HA is subject to VM-to-host affinity rules during failover. vSphere HA attempts to place VMs with this rule on the specified hosts if possible.

vSphere DRS affinity rules help protect vCenter Server and database components by providing appropriate separation between the primary and standby servers and also between multiple PSCs.

Affinity rules can be used to keep the vCenter Server system within a small group of hosts because they can help detect the host location of the system itself in the event of its failure. If the vCenter Server system uses a dedicated external database server, affinity rules can be used to keep them together on the same physical host.
Additional vSphere HA Considerations

- Enable and configure proper admission control for the cluster.
- Set the VM restart priority to High for the VM or VMs that are hosting the vCenter Server system and database.

Figure 2. vSphere HA to Protect vCenter Server Combined with Watchdog for Application Restart

Watchdog Protection for vCenter Server

Watchdog is a process that monitors and protects vCenter Server services. It is available on both the vCenter Server Appliance and the Microsoft Windows-based vCenter Server versions and is enabled by default. If any services fail, Watchdog attempts to restart them. If it cannot restart the service because of a host failure, vSphere HA restarts the VM, running the service on a new host. Watchdog can provide better availability by using vCenter Server processes (PID Watchdog) or the vCenter Server API (API Watchdog). Each vCenter Server process has a separate Watchdog process associated with it. The following is an example with vCenter Server Appliance:

```bash
ps -ef | grep vmware-watchdog
root  7398  1  0  Mar27  00:00:00 /bin/sh /usr/bin/vmware-watchdog -s rhttpproxy -u 30 -q 5
   /usr/sbin/rhttpproxy -r /etc/vmware-rhttpproxy/config.xml -d /etc/vmware-rhttpproxy
root 11187  1  0  Mar27  00:00:00 /bin/sh /usr/bin/vmware-watchdog -s vws -u 30 -q 5
   /usr/lib/vmware-vws/bin/vws.sh
root 12041  1  0  Mar27  00:09:58 /bin/sh /usr/bin/vmware-watchdog -s syslog -u 30 -q 5 -b
   /var/run/rsyslogd.pid /sbin/rsyslogd -o 5 -f /etc/vmware-rsyslog.conf
root 12520  1  0  Mar27  00:09:56 /bin/sh /usr/bin/vmware-watchdog -b
   /storage/db/vpostgres/postmaster.pid -u postgres -s 300 -q 2 -s vmmware-vpostgres su -s /bin/bash vpostgres
root 29201  1  0  Mar27  00:00:00 /bin/sh /usr/bin/vmware-watchdog -a -s vpxd -u 3600 -q 2
   /usr/sbin/vpxd
```
Starting with vSphere 6.x, a Python daemon called API Watchdog checks the status of APIs for the vpxd service. If the APIs are not running, API Watchdog attempts twice to restart the service. If that still does not resolve the issue, API Watchdog then reboots the VM. API Watchdog starts running immediately after deployment of vCenter Server Appliance. On vCenter Server for Windows, however, vCenter Server must be rebooted once before API Watchdog starts working.

VMware vSphere Fault Tolerance

In the event of server failures, VMware vSphere Fault Tolerance (vSphere FT) provides continuous availability for applications with as many as four virtual CPUs. It does so by creating a live shadow instance of a VM that is always up to date with the primary VM. In the event of a hardware outage, vSphere FT automatically triggers failover, ensuring zero downtime and preventing data loss. Like vSphere HA, it protects against hardware failure but completely eliminates downtime with instantaneous cutover and recovery. After failover, vSphere FT automatically creates a new, secondary VM to deliver continuous protection for the application.

vSphere FT offers the following benefits:

- Protects mission-critical, high-performance applications regardless of operating system (OS)
- Provides continuous availability, for zero downtime and zero data loss with infrastructure failures
- Delivers a fully automated response

When virtualizing vCenter Server, technologies such as vSphere FT can help protect the vCenter management server from hardware failures. Compared to vSphere HA, vSphere FT can provide instantaneous protection, but the following limitations must be considered:

- The vCenter Server system is limited to four vCPUs.
- vSphere FT protects against hardware failures but not against application failures.
- vSphere FT cannot reduce downtime for patching-related outages.
- vSphere FT has resource requirements that can create additional overhead.

Because vSphere FT is suitable for workloads with a maximum of four vCPUs and 64GB of memory, it can be used in “tiny” and “small” vCenter Server deployments.

vSphere FT can be turned on through vSphere Web Client.

When vSphere FT is turned on, vCenter Server resets the VM’s memory limit and sets the memory reservation to the memory size of the VM. While vSphere FT remains turned on, memory reservation, size, and limit as well as number of vCPUs and shares cannot be changed. In addition, disks for the VM cannot be added or removed.
Connect vSphere Web Client to vCenter Server using an account with cluster administrator permissions.

Prerequisites for Using vSphere FT

All hosts with vSphere FT enabled require a dedicated 10Gbps low-latency VMkernel interface for vSphere FT logging traffic.

The option to turn on vSphere FT is unavailable (dimmed) if any of these conditions apply:

- The VM resides on a host that does not have a license for the feature.
- The VM resides on a host that is in maintenance mode or standby mode.
- The VM is disconnected or orphaned—that is, its VMX file cannot be accessed.
- The user does not have permission to turn the feature on.

Configuration Procedure

1. In vSphere Web Client, browse to the VM for which you want to turn on vSphere FT.
2. Right-click the VM representing vCenter Server and select Fault Tolerance > Turn On Fault Tolerance.
3. Click Yes.
4. Select a datastore on which to place the secondary VM configuration files. Then click Next.
5. Select a host on which to place the secondary VM. Then click Next.
6. Review your selections and then click Finish.

The specified vCenter Server VM is designated as a primary VM; a secondary VM is established on another host. The primary vCenter Server VM is now fault tolerant.

Third-Party Tools Leveraging the VMware Application Monitoring API

Third-party tools such as Symantec ApplicationHA provide monitoring capabilities for applications running inside VMs. vSphere HA has an API that enables third-party vendors to develop agents that can monitor the health of an application running within the guest OS and inform vSphere HA when a problem is detected. Symantec is an example of a partner to have developed an agent for providing application awareness within a vSphere cluster. Symantec ApplicationHA runs inside the application and is fully integrated with vSphere HA and vCenter Server.

An agent is installed in the VM to monitor the health of the application resources. If a configured application instance or associated services become unavailable, the agent automatically detects it and tries to start the application services for a configurable number of attempts. If the application services fail to start, the agent interprets this as an application failure and reports the status to vSphere HA. vSphere HA can then restart the VM. After the VM restarts, the agent starts the application services and brings the configured resources online on the system.

This solution does not use a standby VM; instead, it restarts the services or, if all else fails, restarts the VM itself. Planned downtimes relating to patching the OS or application are not protected by this solution. The configuration of third-party tools is outside the scope of this document.
Virtual Machine Guest Operating System Clustering Solutions

Several applications use clustering, including stateless applications such as Web servers and applications with built-in recovery features such as database servers. A typical clustering setup includes disks that are shared between nodes. A shared disk is required as a quorum disk. In a cluster of VMs across physical hosts, the shared disk must be on a Fibre Channel (FC) SAN, FCoE, or iSCSI. A private heartbeat network is required between the nodes.

Figure 5 shows two VMs that run clustering software at the OS level with application monitoring and remediation. The VMs share a private heartbeat and a public network connection backed by shared storage.

This solution uses a primary and a standby VM for a particular application being protected. The cluster framework monitors the health of the application resources. If a configured application instance or associated services become unavailable, the cluster services fail over the services to the standby node. Planned downtimes relating to patching the OS are protected by this solution because the application can be failed over to the standby VM during OS patching and the downtime can be minimized.

Windows Server Failover Clustering (WSFC) is one method of guest OS clustering that can be used with the Windows version of vCenter Server 6.0. This method is described in “Appendix A.”
Summary: vCenter Server 6.0 Availability Options

vCenter Server can leverage all the solutions for high availability previously discussed. The actual solutions used depend on customer requirements. Table 1 shows the various solutions, their features, and their cost and complexity ratings. The more solutions that are used, the more expensive and complex they are. The choice should be dictated by minimum customer requirements for vCenter Server availability.

<table>
<thead>
<tr>
<th>HA SOLUTION</th>
<th>VM RESTARTING</th>
<th>APPLICATION MONITORING</th>
<th>FAILOVER TIME</th>
<th>HARDWARE MAINTENANCE DOWNTIME</th>
<th>OS MAINTENANCE DOWNTIME</th>
<th>COST AND COMPLEXITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere HA + Watchdog (WD)</td>
<td>YES</td>
<td>YES</td>
<td>MED</td>
<td>NONE</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>vSphere HA + WD + vSphere FT</td>
<td>YES</td>
<td>YES</td>
<td>NONE</td>
<td>NONE</td>
<td>HIGH</td>
<td>MED</td>
</tr>
<tr>
<td>vSphere HA + Third-Party Monitoring</td>
<td>YES</td>
<td>YES</td>
<td>MED</td>
<td>NONE</td>
<td>HIGH</td>
<td>MED</td>
</tr>
<tr>
<td>Guest Failover Cluster</td>
<td>NO</td>
<td>YES</td>
<td>LOW</td>
<td>MED</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>vSphere HA + Guest Failover Cluster</td>
<td>YES</td>
<td>YES</td>
<td>LOW</td>
<td>NONE</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Table 1. Availability Solutions for vCenter Server and Their Features
High Availability for the Platform Services Controller

Multiple external PSCs can be deployed at a single site serving one or more vCenter Server system. A load balancer is required to front-end the PSC instances. By having more than one PSC instance behind the load balancer, the PSC can be made highly available.

Figure 5. PSC High-Availability Configuration
Deployment Modes for vCenter Server and PSC

Local vCenter Server and PSC High Availability

This model protects the PSC service by having multiple instances of PSCs locally behind a load balancer. Failure of a PSC does not impact the usage of the infrastructure. The PSCs replicate state information between each other and should be separated from one another physically using antiaffinity rules. The clustered vCenter Server systems interact with the PSCs through a load balancer.

![Diagram of Local vCenter Server and PSC High Availability](image-url)

Figure 6. Local vCenter Server and PSC High Availability
Multisite vCenter Server and PSC Basic Architecture

In this configuration, each site is independent, with PSC replication between sites. The vCenter Server system detects site topologies and uses the local PSC under normal circumstances. Users can seamlessly move the vCenter Server systems between PSCs when necessary. This topology enables Enhanced Linked Mode, which is facilitated by the PSC. Enhanced Linked Mode provides for a single point of management for all vCenter Server systems in the same vSphere domain. In vSphere 6.0, the Windows-based and virtual appliance–based vCenter Server systems have the same operational maximums and can belong to the same Linked Mode configuration. The configuration replicates all licenses, global permissions, tags, and roles across all sites.

![Multisite vCenter Server and PSC Basic Architecture](image)

Multisite vCenter Server and PSC with High Availability

The following factors enable this solution to combine high availability at a local site with a multisite configuration:

- Each site is populated with at least two PSCs.
- vCenter Server nodes are individually clustered.

![Multisite vCenter Server and PSC High-Availability Architecture](image)
Recovery Options

The availability options discussed protect vCenter Server from minor disasters. Some disasters are caused by other factors such as data loss, corruption, and so on. There are recovery solutions that protect against these types of failures. The following technologies and best practices provide an acceptable level of vCenter Server recoverability, regardless of whether there is an SLA for vCenter Server specifically or vCenter Server is part of a workload SLA.

VMware vSphere Replication

VMware vSphere Replication™ can replicate VMs within a site or across sites to add another layer of protection. To perform a VM recovery, vSphere Replication requires that vCenter Server and vSphere Web Client be online. Even with this requirement, it might still be possible to utilize vSphere Replication to protect vCenter Server. For example, with multiple vCenter Server systems—one that is still available can be used to recover the failed vCenter Server system—this might be in the same physical location or in a different one.

In this scenario, the VM running vCenter Server will be replicated to a remote site designated as the recovery site. vCenter Server can be recovered in the replicated site and be usable as long as its IP address or subnet is available and reachable in the recovery site.

VMware vSphere Data Protection

VMware vSphere Data Protection™ is a backup-and-recovery solution included with all vSphere 6.0 editions. It is deployed as a virtual appliance and is based on industry-leading EMC® Avamar® technology. vSphere Data Protection is an agentless solution that utilizes VM snapshots to back up and restore entire VMs, individual virtual machine disk (VMDK) files, and individual files inside the VM.

vSphere Data Protection is managed using vSphere Web Client. If vCenter Server and the corresponding vSphere Web Client server go offline, Emergency Restore can be used to restore VMs, including those running vCenter Server components. Emergency Restore enables direct-to-host recovery of a VM without the need for vCenter Server and vSphere Web Client. This makes it useful for backing up vCenter Server components when they are running in one or more VM.

vSphere Data Protection utilizes the Windows Volume Shadow Copy Service (VSS) provider built into VMware Tools™. When an image-level backup of a Windows VM is performed, applications for which a VSS writer is installed—such as Microsoft SQL Server and the Windows file system—are quiesced just before the VM snapshot for the backup job is created. This results in backups that are application-level and file-level consistent. Backups of Linux-based VMs are considered crash consistent.
Recommendations for Protecting vCenter Server with vSphere Data Protection

• Run all vCenter Server components in one or more VMs.
• Verify that DNS is properly configured for all vCenter Server VMs, vSphere hosts, and vSphere Data Protection virtual appliances in the environment. Name resolution must be possible using both the fully qualified domain name (FQDN) and the host or short name, as well as by reverse lookups, for each VM.
• Deploy vSphere Data Protection to the same cluster where vCenter Server is located.
• Create an image-level (entire VM) backup job for all VMs that contain and support vCenter Server components. Having a backup job for only the vCenter Server VMs makes it easy to run a manual backup job, in addition to the scheduled job, before patching or updating vCenter Server components and VMs.
• Schedule the backup job to run daily, with a retention policy of at least 10 days.
• Schedule the backup job for when vCenter Server utilization is typically low.
• Configure a vCenter Server alarm to notify administrators when a protected VM is running on a snapshot. See VMware Knowledge Base article 1018029.
• Configure a vCenter Server alarm to notify administrators when a protected VM requires consolidation. See VMware Knowledge Base article 2061896.
• Configure email notification to provide information on the status of the vSphere Data Protection appliance and its backup jobs.
• Routinely perform “practice restores” to verify the integrity of the backups.

Conclusion

There are multiple high-availability options for VMware vCenter Server 6.0. VMware vSphere High Availability, VMware vSphere Fault Tolerance, and watchdog processes can all be leveraged to protect vCenter Server services. Multiple instances of Platform Services Controllers behind a load balancer provide high availability. Windows Server Failover Clustering (WSFC) can be used to further improve availability and protect a vCenter Server environment. Based on customer requirements, multiple deployment modes can be leveraged for availability in local and multisite configurations.

References

1. Disk Quorum and Clustering Requirement
2. vCenter Deployment and System Requirement
3. WSFC in VMware Environments
4. WSFC Failover Knowledge Base
5. vCenter Installation
6. Database Full Recovery Model for vCenter
7. Troubleshooting Guide for vSphere and vCenter 6.0
8. Creating a Windows Server Cluster
9. vCenter Server High Availability with Windows Server Failover Cluster and DFS
10. Estimating Application Availability in ESXi Clusters
11. VMware High Availability Analysis
12. Supported vCenter High Availability Options
Appendix A: Protecting Windows vCenter Server 6.0 with Windows Server Failover Clustering

The following steps provide guidance on setting up Windows Server Failover Clustering (WSFC) to protect the services of the vCenter Server management node.

Step-by-Step Guide

1. Deploy a Windows VM with one of the following OSs that have been verified to work:
 - Windows Server 2008 R2 Service Pack 2
 - Windows Server 2012 R2

2. Add two raw device mapping (RDM) VMDKs to the VM: The first disk, which acts as a quorum disk, can be very small; the second disk is used for vCenter Server installation.

 VM > Edit Settings > New device > RDM Disk. Make sure that the RDMs are mounted first.
When adding the RDM disks, ensure creation of a separate SCSI controller with the **Bus Sharing** option set to **Physical**. Also ensure that these two disks are independent and persistent, as illustrated in Figure 11.

VM > Edit Settings > New Device > RDM Disk

New SCSI Control > Bus Sharing Option > Physical

Hard Disk 1 (RDM1/Quorum Disk)
- **SCSI Controller**: New SCSI Controller > SCSI (1:0)
- **Compatibility Mode**: Physical
- **Disk Mode**: Independent – Persistent

Hard Disk 2 (RDM2/vCenter Server Disk)
- **SCSI Controller**: New SCSI Controller > SCSI (1:1)
- **Compatibility Mode**: Physical
- **Disk Mode**: Independent – Persistent
3. Power on the VM and format the new disks.

Windows > Server Manager > Storage > Disk Management

- Bring both disks online.
- Convert both disks to MBR because they are much less than 2TB. The other disk formats can create problems when validating the cluster. This will be discussed later. Format the disks and assign the drive letters.
4. Install .net and failover clustering features.

 Windows > Server Manager > Features
5. Install vCenter Server on one of the RDM disks in the guest OS. Select the appropriate RDM disk—this is more than sufficient—while choosing the custom path during vCenter Server installation.

vCenter Server Installation > Select the storage location

6. After successful installation, set **Startup Type** for all vCenter Server services to **Manual**.

Windows > Control Panel > Services
7. Power off the VM.

8. Detach the RDM disks. The disks are not being deleted permanently. As illustrated in Figure 12, do not check the delete from disk option when removing the disks from the VM. Do not delete the RDM VMDK files from the disk.
9. Clone the VM. To make sure that the clone has a unique identity, check the **Customize the operating system** option while cloning. This can be done through the default **SysPrep** file or by checking **Use custom SysPrep answer file** when customizing the guest OS during the clone operation.

See Figure 16: **New Virtual Machine > Select clone options > Customize the operating system** > **New VM Guest Customization Spec**

See Figure 17: **New Virtual Machine > Select clone options > Customize the operating system** > **New VM Guest Customization Spec > Use custom SysPrep answer file**
10. Attach the shared RDM VMDK disks to both VMs.

Attach the shared RDMs again to both VMs. The RDMs are not being added this time because they already have been added and mapped to VM1.

VM > Edit Settings > New device > Existing Hard Disk. Choose the VMDKs corresponding to the RDMs that were added to VM1 during the vCenter Server installation procedure from the VM1 folder.
11. Power on both VMs.

12. Change the host name and IP on the first VM. Preserve the original host name and IP for creating the cluster role.

13. Create a WSFC cluster on the first VM by including both nodes in the cluster.

 Windows > Server Manager > Features > Failover Cluster Manager > Create a cluster

When creating a cluster, follow through all the cluster creation steps. Select the validation of the cluster option while creating it. This ensures that the two-node cluster is ready for high availability. Figure 19 illustrates selecting the nodes while creating the cluster.
Figure 19. Choose the Two Nodes Containing Nodes That Represent vCenter Server for the Cluster

14. Create a cluster role or service. One by one, add all vCenter Server services to it. The first service, which acts as a cluster role or service, is vCenter Server service.

While creating the role or service, assign the preserved IPs and host name to this role.

One by one, add the remainder of vCenter Server services to the created role or service.

Server Manager > Features > Failover Cluster Manager > New Cluster > Configure a Service or Application > Generic Service. One by one, select the remainder of vCenter Server services to add to the newly created cluster role. Figure 20 illustrates adding resources to the role. Figure 21 illustrates how services that have been added are displayed.
Figure 20. Adding Resources to the Cluster Role

Figure 21. Displayed List of Cluster Role Resources After Configuration
15. Verify the failover by powering off vCenter Server VM1, on which the services are currently hosted. After powering off VM1, all services should be up and running on VM2. The expected downtime without any load is approximately 9 minutes.

Figure 22 shows the cluster state after the failover.
Additional Recommendations

1. Network adapter teaming should be used for the public network used by clients to connect with vCenter Server.
2. An antiaffinity rule can be used so both clustered vCenter Server VMs are never on the same host. See VMware Knowledge Base article 1037959.

About the Authors

Mohan Potheri is currently a senior solutions architect at VMware, focusing on VMware vCenter and the virtualization of business-critical applications. He has more than 20 years of experience in IT infrastructure with VMware virtualization, enterprise UNIX, and business-critical applications. Mohan is a CISSP and VMware Certified Design Expert (VCDX#98). He holds master’s degrees in electrical engineering and business administration from the University of Houston. Follow @ITVista on Twitter and on the VMware vSphere Blog.

G. Blair Fritz is the global technical lead for VMware vCenter Server and VMware vCenter Single Sign-On™ at VMware. Blair has been working for VMware Support since 2012, focusing on these products. He specializes in improving VMware vSphere features regarding vCenter Single Sign-On and the Platform Services Controller, certificate management, vSphere High Availability, and vCenter Server in general. Blair also has been involved with high-touch, onsite betas with customers around the globe to collect feedback on the next version of vSphere.

Puneet Gupta is currently a staff engineer with VMware, working as a test architect for VMware vSphere virtualization platform system testing. He has more than 12 years of experience in IT with VMware virtualization products, large-scale enterprise deployments, and business-critical applications. Puneet is a VMware Certified Professional (VCP4, VCP3) and EMC Proven Professional (EMCPA). He holds a bachelor’s degree in computer science and engineering from the University of Rajasthan in India.

Acknowledgment

The authors would like to thank Duncan Epping and Charu Chaubal for their detailed feedback during the review process.