

REFERENCE ARCHITECTURE – June 2023 K8ssandra
on VMware Tanzu Kubernetes Grid 2

Running Flink and K8ssandra on VMware

Tanzu Kubernetes Grid 2

R E F E R E N C E A R C H I T E C T U R E | 2

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Contents

Executive Summary 4

Technology Overview 4

VMware Tanzu Kubernetes Grid ...4

Flink ...5

K8ssandra ...5

Monitoring Tools ...5

Solution Configuration 6

Architecture..6

Hardware Resource ..7

Software Resource ...7

Network Configuration ..7

Tanzu Kubernetes Grid Configuration ..7

Creating Workload Clusters ...8

ReadWriteMany File Volume Configuration ..8

Prometheus and Grafana Deployment ...9

Solution Deployment and Validation 12

Flink Deployment ..13

Flink Workload Validation ..13

Application Mode Job ..14
Session Mode Job ..14

Flink JobManager High Availability ...15

HA Configuration ..15
Application HA Test ..16
Session Job HA Test ..16

Flink Scalability with Reactive Mode..17

K8ssandra Deployment ..18

Deploying K8ssandra-Operator ...18
Cassandra Cluster...19

Stream Application Sample Running on Flink and Cassandra ..20

Schema of Destination Cassandra Keyspace Table ...20
Apache Flink Code to Aggregate and Persist Data in Cassandra Keyspace Table21
Job Running ...21

R E F E R E N C E A R C H I T E C T U R E | 3

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Result Verification ...22
Best Practices 24

Conclusion 24

Reference 24

About the Author 24

R E F E R E N C E A R C H I T E C T U R E | 4

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Executive Summary

Many organizations generate vast amounts of data in short intervals from various sources like sensors, user activity, and transactional systems.

There is a growing need to process this streaming data in real-time to gain meaningful insights and make critical business decisions. Stream

computing can help organizations achieve this by instantaneously processing insights, storing them immutably, scaling horizontally, and ensuring

high availability, which enables innovative applications and real-time aligned business outcomes.

Apache Flink is a stream processing framework that helps solve this problem. Flink processes enormous volumes of data in real-time, generating

insights, alerts, and dashboards instantly. Meanwhile, Apache Cassandra is a distributed database that can store large amounts of data and scale

elastically, providing an immutable audit trail. They scale horizontally to handle petabyte workloads and peak throughput demands, with inherent

fault tolerance features.

Deploying and managing these streaming applications at scale can be challenging. Using VMware Tanzu® Kubernetes Grid™ to run and manage

Apache Flink and Cassandra can provide organizations with a scalable, reliable, and manageable solution to process and store large volumes of

streaming data in real-time.

This paper demonstrates how Flink and Cassandra integrate seamlessly on Tanzu Kubernetes Grid to build highly scalable real-time streaming

analytics applications with robust processing, availability, scalability, and governance. Real-time insights and immutable storage meet scalability

and consistency at scale, enabling advanced use cases such as IoT and log processing, recommendations, and reporting. Enterprises can thus realize

the potential of streaming data through Flink and Cassandra to disrupt markets. Running both platforms on Tanzu Kubernetes Grid delivers a

robust and scalable platform for streaming analysis.

Technology Overview

The technological components in this solution are:

• VMware Tanzu Kubernetes Grid 2

• Apache Flink

• K8ssandra

• Monitoring tools

VMware Tanzu Kubernetes Grid

VMware Tanzu Kubernetes Grid provides organizations with a consistent, upstream-compatible Kubernetes substrate that is ready for end-user

workloads and ecosystem integrations. It uses a new API called ClusterClass that defines a common cluster configuration for different

infrastructure providers. Tanzu Kubernetes Grid 2 deploys clusters using an opinionated configuration of Kubernetes open-source software that is

supported by VMware, so that you do not have to build a Kubernetes environment by yourself, it also provides packaged services such as

networking, authentication, ingress control, and logging that are required for production Kubernetes environments.

Tanzu Kubernetes Grid 2 supports two types of deployment models: Supervisor deployment and standalone management cluster deployment.

Supervisor deployment allows you to create and operate workload clusters natively in VMware vSphere® with Tanzu and leverage vSphere

features. Standalone management cluster deployment allows you to create workload clusters on vSphere 6.7, 7, and 8 without Supervisor, or on

AWS.

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html

R E F E R E N C E A R C H I T E C T U R E | 5

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Flink

Apache Flink is a framework for distributed stream processing. It can process data in real-time streams and can also run batch processing jobs. Flink

uses operator-based APIs that provide reusable data processing building blocks. Some common Flink operators include:

• Data sources: Read data from sources like Kafka, Kinesis, and files.

• Transformations: Map, filter, aggregate, and join to transform data

• Data sinks: Write output to sinks like Kafka, Cassandra, and ElasticSearch

Users can compose operators into data processing pipelines and Flink manages distributed processing, fault tolerance, state management, and

optimization. Flink powers real-time data applications, and the operator-based APIs allow for declarative and scalable data processing.

Flink Kubernetes Operator allows deploying Flink on Kubernetes. It handles provisioning and lifecycle management of Flink clusters on Kubernetes.

This allows running Flink easily and efficiently on cloud-native Kubernetes infrastructures. See https://flink.apache.org for more information.

K8ssandra

K8ssandra is a cloud-native distribution of Apache Cassandra® that runs on Kubernetes. K8ssandra provides an ecosystem of tools to provide richer

data APIs and automated operations alongside Cassandra. This includes metric monitoring to promote observability, data anti-entropy services to

support reliability, and backup/restore tools to support high availability and disaster recovery. As an open-source project licensed under Apache

Software License version 2, K8ssandra is free to use, improve, and enjoy. K8ssandra integrates and packages together:

• Apache Cassandra

• Stargate, the open-source data gateway

• Cass-operator, the Kubernetes Operator for Apache Cassandra

• Reaper for Apache Cassandra, an anti-entropy repair feature (plus reaper-operator)

• Medusa for Apache Cassandra for backup and restore (plus medusa-operator)

• Metrics Collector for Apache Cassandra, with Prometheus integration, and visualization via pre-configured Grafana dashboards

See the k8ssandra website for more information.

Monitoring Tools

Prometheus is an open-source monitoring and alerting toolkit that is commonly used for Kubernetes but also supports other cloud-native

environments. It is a high-scalable open-source monitoring framework that provides out-of-the-box monitoring capabilities for the Kubernetes

container orchestration platform.

Grafana is an open-source analytics and monitoring platform that is commonly used for Kubernetes but also supports other cloud-native

environments. It provides a powerful and elegant way to create, explore, and share dashboards and data with your team and others. Grafana can

be used with Prometheus as a data source to visualize the metrics collected by Prometheus. Grafana can also be used with other data sources such

as Graphite, Elasticsearch, Influx DB, and more.

vSAN Performance Service is used to monitor the performance of the vSAN environment, using the vSphere web client. The performance service

collects and analyzes performance statistics and displays the data in a graphical format. You can use the performance charts to manage your

workload and determine the root cause of problems.

https://flink.apache.org/
https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-main/
https://flink.apache.org/
https://cassandra.apache.org/
https://stargate.io/
https://github.com/k8ssandra/cass-operator
http://cassandra-reaper.io/
https://github.com/k8ssandra/reaper-operator
https://github.com/thelastpickle/cassandra-medusa
https://github.com/k8ssandra/medusa-operator
https://github.com/datastax/metric-collector-for-apache-cassandra
https://k8ssandra.io/
https://prometheus.io/docs/introduction/overview/
https://grafana.com/
https://kb.vmware.com/s/article/2144493

R E F E R E N C E A R C H I T E C T U R E | 6

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Solution Configuration

Architecture

Two Tanzu workload clusters, each with multiple worker nodes, are provisioned. Persistent volumes are backed by vSAN. The k8ssandra operator is

installed in cluster 1, and the Flink Operator is installed on cluster 2.

Figure 1. Solution Architecture

Monitoring service Prometheus is deployed in namespace tanzu-system-monitoring and Grafana is deployed in namespace tanzu-system-

dashboard.

Note: Our validation is based on vSphere 8 cluster.

R E F E R E N C E A R C H I T E C T U R E | 7

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Hardware Resource

Table 1. Hardware Resource

Property Specification

Server model name

4 x Dell PowerEdge R640

CPU Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz, 28 cores each

RAM 512GB

Network adapter
2 x Intel(R) Ethernet Controller 10G X550
2 x Intel Corporation I350 Gigabit Network Connection

Storage adapter
1 x Dell HBA330 Mini
2 x Express Flash PM1725a 1.6TB AIC

Disks
Cache - 2 x 1.6TB Dell Express Flash NVMe PCIe SSD PM1725a
Capacity - 8 x 1.92TB write-intensive SAS SSDs

Software Resource

Table 2. Software Resource

Software Version

vSphere 8.0

Tanzu Kubernetes Release v1.21.6+vmware.1

K8ssandra K8ssandra-operator v1.5.2

Flink Flink operator v1.3.1

MetalLB MetalLB v0.13.9

Network Configuration

Tanzu Kubernetes Grid is configured with Virtual Distributed Scheduler (VDS). MetalLB (see installation instructions) provides load balancing for

external services. The Cassandra pods are placed in a namespace, and the Stargate and Reaper services can also be configured as load balancers.

The configuration YAML files are here.

Tanzu Kubernetes Grid Configuration
Tanzu Kubernetes Grid uses a management cluster to create and manage workload clusters and has different deployment options based on the

location that management cluster runs.

We followed Install the Tanzu CLI and Other Tools for Use with Standalone Management Clusters for the installation and deployed Management

Clusters with the Installer Interface.

Then we deployed Tanzu Kubernetes Grid 2.1 with a standalone management cluster on vSphere 8 without a supervisor (see the guide).

https://metallb.universe.tf/installation/
https://github.com/vsphere-tmm/flinkandcassandraOntkg2/tree/main/ApplicationYamlFiles
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/tkg-deploy-mc-21/install-cli.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/tkg-deploy-mc-21/mgmt-deploy-ui.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/tkg-deploy-mc-21/mgmt-deploy-ui.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/tkg-deploy-mc-21/mgmt-index.html

R E F E R E N C E A R C H I T E C T U R E | 8

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Creating Workload Clusters

In VMware Tanzu Kubernetes Grid, workload clusters are the Kubernetes clusters on which your application workloads run. We followed the

instruction that defined the workload cluster with Class-based clusters control planes and worker nodes as follows.

Table 3. Tanzu Kubernetes Cluster Definition

Role Replicas VM Configuration Tanzu Kubernetes

Release (TKR)

Control Plane 3 best-effort-small machine:

diskGiB: 40

memoryMiB: 8192

numCPUs: 2

v1.24.9+vmware.1-tkg.1

Worker Nodes 3 best-effort-2xlarge

machine:

diskGiB: 40

memoryMiB: 65536

numCPUs: 16

v1.24.9+vmware.1-tkg.1

Role Replicas VM Configuration Tanzu Kubernetes

Release (TKR)

Control Plane 3 best-effort-small machine:

 diskGiB: 40

 memoryMiB: 8192

 numCPUs: 2

v1.24.9+vmware.1-tkg.1

Worker Nodes 8 (initially 3, later

scaled)

best-effort-2xlarge

machine:

 diskGiB: 40

 memoryMiB: 16192

 numCPUs: 4

v1.24.9+vmware.1-tkg.1

The YAML files used in our validation for workload cluster deployment can be found here.

ReadWriteMany File Volume Configuration

File volumes backed by vSAN file shares can be created statically or dynamically and mounted by stateful containerized applications. See the guide

to enable file volumes.

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-clusters-deploy.html#create-cc
https://github.com/vsphere-tmm/flinkandcassandraOntkg2/tree/main/DeployWorkloadClusters
https://docs.vmware.com/en/VMware-vSphere-Container-Storage-Plug-in/2.0/vmware-vsphere-csp-getting-started/GUID-AE27642A-E656-47F6-9BEE-C6263F6BC7E0.html#GUID-AE27642A-E656-47F6-9BEE-C6263F6BC7E0__SECTION_56BBAABB-EBD9-4C0E-A524-2078D7614BC0

R E F E R E N C E A R C H I T E C T U R E | 9

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Figure 2. File Volume Configuration

Note: The Tanzu Kubernetes Grid cluster using Tanzu Kubernetes Grid role needs to assign the required privilege: Host.Configuration.Storage

partition configuration, see vSphere Roles and Privileges for more information.

Prometheus and Grafana Deployment

Tanzu Kubernetes Grid provides cluster monitoring services by implementing the open-source Prometheus and Grafana projects.

By using Prometheus and Grafana, you can gain insights into the health and performance of your Tanzu Kubernetes Grid clusters. This information

can help you identify and troubleshoot problems and ensure that your clusters are running smoothly.

Prerequisites:

• Contour: see Install Contour for Ingress Control.

• cert-manager: see Install cert-manager for Certificate Management.

Deployment procedures:

1. Deploy Prometheus on workload cluster: we followed this guide to deploy Prometheus on your Tanzu Kubernetes Grid workload cluster.

https://docs.vmware.com/en/VMware-vSphere-Container-Storage-Plug-in/2.0/vmware-vsphere-csp-getting-started/GUID-0AB6E692-AA47-4B6A-8CEA-38B754E16567.html#GUID-043ACF65-9E0B-475C-A507-BBBE2579AA58
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-packages-contour.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-packages-cert-mgr.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-packages-prometheus.html#config-table

R E F E R E N C E A R C H I T E C T U R E | 1 0

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

 Deploy Prometheus with the default configurations because it is on standalone management.

 Figure 3. tanzu-system-monitoring Namespace

2. Deploy Grafana on the workload cluster: follow the instruction to deploy Grafana on workload clusters. And then, verify whether Prometheus

and Grafana are installed.

 tanzu package installed list -A

 NAMESPACE NAME PACKAGE-NAME PACKAGE-

VERSION STATUS

 contour-package contour contour.tanzu.vmware.com

1.22.3+vmware.1-tkg.1 Reconcile succeeded

 grafana-package grafana grafana.tanzu.vmware.com

7.5.16+vmware.1-tkg.1 Reconcile succeeded

 prometheus-package prometheus prometheus.tanzu.vmware.com

37.0+vmware.1-tkg.1 Reconcile succeeded

Figure 4. Prometheus and Grafana Package Installed Screenshot

The Grafana package creates a Contour HTTP Proxy object with a Fully Qualified Domain Name (FQDN) of grafana.system.tanzu.

Notes: Create an entry in your local /etc/hosts file that points an IP address of a worker node to this FQDN.

To access the Grafana dashboard, enter the url: https://grafana.system.tanzu

3. Use Grafana for monitoring.

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-packages-grafana.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-packages-grafana.html
https://grafana.system.tanzu/

R E F E R E N C E A R C H I T E C T U R E | 1 1

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

 Figure 5. Grafana Login

Use the default user admin/admin to log in and then verify the Prometheus data sources.

Figure 6. Prometheus DataSource

R E F E R E N C E A R C H I T E C T U R E | 1 2

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Figure 7. Tanzu Kubernetes Cluster Monitoring Dashboard

Solution Deployment and Validation

The Flink Kubernetes Operator and Cassandra Operator enable seamless deployment and management of Flink and Cassandra on Kubernetes

respectively. By integrating them with Tanzu Kubernetes Grid, VMware's Kubernetes distribution, enterprises gain a fully validated and supported

environment for running modern stream processing and storage workloads.

This solution validates the core capabilities of building and operating highly scalable real-time streaming analytics applications with strong SLAs on

processing, availability, and supportability. The validation includes:

• Flink deployment: The Flink Kubernetes Operator simplifies submitting Flink applications as Kubernetes jobs by injecting them into the cluster

as pods for automated scheduling, orchestration, and high availability.

• Flink job submission validation: The Flink Kubernetes Operator simplifies submission of Flink applications as Kubernetes jobs. It injects them

into the cluster as pods for automated scheduling and orchestration.

• Flink JobManager high availability validation: The Flink JobManager, which oversees cluster resources and job scheduling, is made high

available through Kubernetes deployments to ensure no single point of failure.

• Flink scalability with Reactive Mode: The Flink Operator supports reactive scaling to dynamically adjust cluster size based on workload metrics.

It optimizes performance and costs through automated scaling.

• Cassandra deployment: The Cassandra Operator facilitates deployment of Cassandra clusters on Kubernetes, it also includes a suite of tools to

ease and automate operational tasks.

• Stream application sample using Flink and Cassandra: An example application using Flink, Cassandra, Prometheus, and Grafana is included to

demonstrate their integration in monitoring a stream processing pipeline.

https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/concepts/flink-architecture/

R E F E R E N C E A R C H I T E C T U R E | 1 3

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Prometheus and Grafana are also deployed as part of the solution, providing metrics collection and visualization respectively, by bringing all

components together on Tanzu Kubernetes Grid.

Flink Deployment

Install the certificate manager on your Kubernetes cluster to enable adding the webhook component (only needed once per Kubernetes cluster) to

deploy the Flink Operator:

kubectl create -f https://github.com/jetstack/cert-manager/releases/download/v1.8.2/cert-manager.yaml

helm repo add flink-operator-repo https://downloads.apache.org/flink/flink-kubernetes-operator-1.3.1/

helm install flink-kubernetes-operator flink-operator-repo/flink-kubernetes-operator

Verify Flink Operator installed：

helm list

NAME NAMESPACE REVISION UPDATED STATUS CHART

 APP VERSIO

flink-kubernetes-operator default 1 2023-02-07 22:23:59.643829 +0800 CST deployed

 flink-kubernetes-operator-1.3.1 1.3.1

Figure 8. Flink Deployment

Flink Workload Validation

JobManager is the name of the central work coordination component of Flink. It has implementations for different resource providers, which differ

on high-availability, resource allocation behavior, and supported job submission modes.

Job submission has two modes: Application Mode and Session Mode. We validated the job submissions of both modes respectively in the following

chapter.

https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/concepts/flink-architecture/

R E F E R E N C E A R C H I T E C T U R E | 1 4

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Figure 9. JobManager

Application Mode Job

In Application Mode, Flink creates a cluster for each submitted application and runs the cluster exclusively for that application. The job's main

method (or client) is run on the JobManager. Check out the YAML files.

The WordCount Beam application was first compiled with Flink runner and was packaged into a Flink application.

The Flink job can be viewed on the web UI through the beam-example-test service port.

tyin@tyin0MD6R flink-beam-example % kubectl port-forward service/beam-example-rest 8081:8081

Forwarding from 127.0.0.1:8081 -> 8081

Forwarding from [::1]:8081 -> 8081.

Figure 10. Beam Application in Application Mode

Session Mode Job

In Session mode, an existing cluster was used to run any submitted applications. One JobManager instance manages multiple jobs that share the

same cluster of TaskManagers. This has the advantage of avoiding the resource overhead of spinning up a new cluster for each job. This is

important in scenarios where jobs have short running time, as a high startup time would negatively impact the end-to-end user experience. For

example, interactive analysis of short queries can benefit from Session Mode, as jobs can quickly perform computations using the existing

resources.

https://github.com/vsphere-tmm/flinkandcassandraOntkg2/tree/main/ExampleJobs/flink-beam-example
https://beam.apache.org/
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/concepts/flink-architecture/#taskmanagers

R E F E R E N C E A R C H I T E C T U R E | 1 5

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

The limitation of Session Mode is that TaskManager slots are allocated by the ResourceManager on job submission and released once the job is

completed. This means that there is competition for cluster resources between jobs. We first deployed a session cluster, check out the YAML file

for detailed information.

Kubectl apply -f session-cluster.yaml

We started with the session manager configuration of 3 vCPU and 6GB memory. Then we tested with different parallelisms for the WordCount job,

the input file is Wikipedia Dataset1 50GB with suffix 2. The file size was over 10GB. From the test results, the parallelism 32 configuration got the

shortest duration.

Table 4. Session Mode Job Sample

Parallelism TaskManager Duration

8 1 3h6m52s

16 2 1h49m14s

32 4 1h8m33s

Figure 11. WordCount Test

Flink JobManager High Availability

Apache Flink JobManager High Availability (HA) ensures that Flink clusters continue running the submitted jobs even in the event of a JobManager

failure. Flink provides two HA service implementations:

• ZooKeeper: ZooKeeper HA services can be used with each Flink cluster deployment. They require a running ZooKeeper quorum.

• Kubernetes: Kubernetes HA services only work when running on Kubernetes.

HA Configuration

Check out the test scripts here.

https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/concepts/flink-architecture/
https://github.com/vsphere-tmm/flinkandcassandraOntkg2/blob/main/ExampleJobs/session-deployment.yaml
https://github.com/vsphere-tmm/flinkandcassandraOntkg2/blob/main/ExampleJobs/wordcount-job.yaml
ftp://ftp.ecn.purdue.edu/puma/wikipedia_50GB.tar.bz2
https://github.com/vsphere-tmm/flinkandcassandraOntkg2/tree/main/ExampleJobs/HATest

R E F E R E N C E A R C H I T E C T U R E | 1 6

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Flink Kubernetes HA allows Flink clusters to be deployed to Kubernetes and to continue operating even in the event of a JobManager failure. To

recover the submitted jobs, Flink persists metadata and the job artifacts. The HA data will be kept until the respective job either succeeds, is

cancelled, or fails terminally. Once this happens, all the HA data, including the metadata stored in the HA services, will be deleted.

In the YAML file, the high-availability storageDir property must be set to the directory where the HA state will be stored.

With vSAN file service enabled, we can create ReadWriteMany persistent storage volumes dynamically.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: flink-example-statemachine

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 1Gi

We configured the below keys:

 high-availability: org.apache.flink.kubernetes.highavailability.KubernetesHaServicesFactory

 high-availability.storageDir: file:///opt/flink/volume/flink-ha

 state.checkpoints.dir: file:///opt/flink/volume/flink-cp

 state.savepoints.dir: file:///opt/flink/volume/flink-sp

Application HA Test

The Flink Kubernetes application HA test starts by setting variables, such as CLUSTER_ID, APPLICATION_YAML, and TIMEOUT. It then applies the

YAML file specified in APPLICATION_YAML to create a Kubernetes deployment. The script then waits for the JobManager to start running and

submits a job. After the job is running, the script waits for the logs to show that a checkpoint has been completed. The script then kills the

JobManager and waits for the new JobManager to recover from the latest successful checkpoint. Finally, the script checks the operator log for

errors and prints out a message indicating that the test is successful.

We also monitored the session-cluster-1 pod has restarted during the JobManager failure testing.

tyin@tyin0MD6R ~ % kubectl get pod

NAME READY STATUS RESTARTS AGE

pod/flink-kubernetes-operator-76dfd7fcf5-8xbkw 2/2 Running 0 64d

pod/session-cluster-1-7465757b49-pxrpb 1/1 Running 1 (24s ago) 117s

pod/session-cluster-1-taskmanager-1-1 1/1 Running 0 73s

pod/session-cluster-1-taskmanager-1-2 1/1 Running 0 73s

pod/session-deployment-8698f96848-xcc6k 1/1 Running 0 47d

Session Job HA Test

Similarly, the Flink Session cluster high availability is tested by killing the JobManager pod and ensuring that the cluster recovers successfully. The

script does the following:

• Apply the YAML file for a Flink cluster and job, retrying up to 5 times.

• Wait up to TIMEOUT for the cluster status and job status to become READY and RUNNING.

• Get the job ID from the JobManager logs.

• Kill the JobManager pod.

• Wait for recovering logs and status until another checkpoint is completed.

• Check the operator log for errors.

• Print out a message indicating that the test was successful.

R E F E R E N C E A R C H I T E C T U R E | 1 7

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Flink Scalability with Reactive Mode

Flink offers reactive scaling, which automatically scales the size of a cluster up or down based on metrics. This automates and optimizes the

provisioning and release of cluster resources in line with application workload demands. It adapts capacity seamlessly based on metrics to

maximize performance, minimize costs, and ensure SLO/SLA compliance. This simplifies the management of stream processing at scale.

The Reactive Mode allows Flink users to implement a powerful autoscaling mechanism by having an external service monitor metrics such as

aggregate CPU utilization, throughput, or latency. The Flink JobManager interacts with this external service. As soon as metrics surpass or fall below

thresholds, additional TaskManagers can be added or removed from the Flink cluster.

Flink manages job parallelism that always maximizes values within constraints. Reactive scaling adjusts resources in line with workload demands,

avoiding over or under provisioning. It keeps cluster size optimized for performance and cost, scaling out during load spikes and scaling in during

lulls.

Figure 12. Flink Scalability with Reactive Mode

We used basic-reactive.yaml to verify scalability.

Deployment of Flink clusters on Kubernetes is only supported as a standalone application deployment. To enable elastic scaling, set the mode to

standalone in the YAML file and enable the reactive scaling mode.

flinkConfiguration:

scheduler-mode: REACTIVE

mode: standalone

kubectl apply -f basic-reactive.yaml to validate the scalability function.

Manual Scaling

Scale the Tanzu Kubernetes Grid workload clusters and standalone management clusters using the following methods:

https://github.com/vsphere-tmm/flinkandcassandraOntkg2/blob/main/ExampleJobs/basic-reactive.yaml

R E F E R E N C E A R C H I T E C T U R E | 1 8

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

• Scale horizontally: For workload or standalone management clusters, you can manually scale the number of control plane and worker

nodes. See Scale a Cluster Horizontally.

• Scale vertically: For workload clusters, you can manually change the size of the control plane and worker nodes. See Scale a Cluster

Vertically.

In our validation, the workload cluster "testworkload" initially had 3 worker nodes. We can use Tanzu command line as below to scale the cluster

with 6 worker nodes.

And we use the command below to scale the task-manager to 3 replicas.

tyin@tyin0MD6R examples % kubectl scale

-replicas=3 deployments/basic-reactive-example-taskmanager

deployment.apps/basic-reactive-example-taskmanager scaled

We can see that TaskManager is scaling to 3 pods.

Automatic Scaling

Cluster Autoscaler can automatically scale the number of worker nodes in workload clusters deployed by a standalone management cluster. For

more information, see Scale Worker Nodes with Cluster Autoscaler.

We can use the following command to scale TaskManager automatically based on CPU utilization metric.

kubectl autoscale deployment basic-reactive-example-taskmanager --min=1 --max=15 --cpu-percent=20

horizontalpodautoscaler.autoscaling/basic-reactive-example-taskmanager autoscaled

And

Kubectl get all

 …

NAME REFERENCE

TARGETS MINPODS MAXPODS REPLICAS AGE

horizontalpodautoscaler.autoscaling/basic-reactive-example-taskmanager Deployment/basic-reactive-example-

taskmanager 4%/20% 1 15 3 2m21s

K8ssandra Deployment

Deploying K8ssandra-Operator

We performed the following steps to deploy K8ssandra-operator on a single workload cluster:

1. Install k8sssandra-operator:

 helm install k8ssandra-operator k8ssandra/k8ssandra-operator -n k8ssandra-operator -- create-namespace

 helm list -n k8ssandra-operator

NAME NAMESPACE REVISION UPDATED STATUS

k8ssandra-operator k8ssandra-operator 1 2023-02-28 10:52:22.13637 +0800 CST deployed

CHART k8ssandra-operator-1.5.2

APP VERSION 1.5.2

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-clusters-scale.html#horizontal
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-clusters-scale.html#vertical
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-clusters-scale.html#vertical
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/2.1/using-tkg-21/workload-clusters-scale.html#enable-autoscaler

R E F E R E N C E A R C H I T E C T U R E | 1 9

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

2. Check that there are two deployments in the k8ssandra-operator namespace:

kubectl -n k8ssandra-operator get deployment

NAME READY UP-TO-DATE AVAILABLE AGE

cass-operator-controller-manager 1/1 1 1 2d

k8ssandra-operator 1/1 1 1 2d

For more information, refer to Install K8ssandra Operator.

Cassandra Cluster

We chose Cassandra v4.0. 3 for the workload testing. Check out the test cluster YAML file here.
For detailed benchmark and configuration information, refer to running-k8ssandra-vmware-tanzu-kubernetes-grid-vmware-cloud-aws.

kubectl get svc -n k8ssandra-operator

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

demo-dc1-additional-seed-service ClusterIP None <none> <none>

43d

demo-dc1-all-pods-service ClusterIP None <none>

9042/TCP,8080/TCP,9103/TCP,9000/TCP 13d

demo-dc1-service ClusterIP None <none>

9042/TCP,9142/TCP,8080/TCP,9103/TCP,9000/TCP 13d

demo-dc1-stargate-service LoadBalancer 100.67.100.149 <none>

8080:30294/TCP,8081:31590/TCP,8082:31398/TCP,8084:30105/TCP,8085:30287/TCP,8090:31838/TCP,9042:30062/TCP 12d

demo-seed-service ClusterIP None <none> <none>

43d

k8ssandra-operator-cass-operator-webhook-service ClusterIP 100.64.223.255 <none> 443/TCP

14d

k8ssandra-operator-webhook-service ClusterIP 100.64.241.64 <none> 443/TCP

14d

We changed the type of the demo-dc1-stargate-service service to LoadBalancer:

kubectl -n k8ssandra-operator patch service demo-dc1-stargate-service -p '{"spec": {"type":"LoadBalancer"}}'

service/demo-dc1-stargate-service patched

We used 100.67.100.149 for internal pod access and used 10.156.159.64 for Stargate service access.

kubectl get svc -n k8ssandra-operator

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

demo-dc1-additional-seed-service ClusterIP None <none> <none>

23d

demo-dc1-all-pods-service ClusterIP None <none>

9042/TCP,8080/TCP,9103/TCP,9000/TCP 23d

demo-dc1-service ClusterIP None <none>

9042/TCP,9142/TCP,8080/TCP,9103/TCP,9000/TCP 23d

demo-dc1-stargate-service LoadBalancer 100.67.100.149 10.156.159.64

8080:30828/TCP,8081:31581/TCP,8082:31336/TCP,8084:30232/TCP,8085:31656/TCP,8090:32022/TCP,9042:30204/TCP 22d

demo-seed-service ClusterIP None <none> <none>

23d

k8ssandra-operator-cass-operator-webhook-service ClusterIP 100.64.223.255 <none> 443/TCP

24d

k8ssandra-operator-webhook-service ClusterIP 100.64.241.64 <none> 443/TCP

K8ssandra enables authentication and authorization by default. When the authentication is enabled, K8ssandra configures a new and default

superuser. The username defaults to {metadata.name}-superuser. The credentials for the superuser are stored in a secret named

{metadata.name}-superuser.

To retrieve the Cassandra cluster credential for future connections, use the following command:

kubectl get secret demo-superuser -o jsonpath="{.data.username}" -n k8ssandra-operator | base64 --decode

In our example, we deployed a cluster with name demo (replace the demo with the name configured for your running cluster).

To extract and decode the username secret, use the following command:

kubectl get secret demo-superuser -o jsonpath="{.data.password}" -n k8ssandra-operator | base64 –decode

https://docs-v2.k8ssandra.io/install/
https://github.com/vsphere-tmm/flinkandcassandraOntkg2/tree/main/ApplicationYamlFiles
https://vmc.techzone.vmware.com/resource/running-k8ssandra-vmware-tanzu-kubernetes-grid-vmware-cloud-aws

R E F E R E N C E A R C H I T E C T U R E | 2 0

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Stargate has no specific credentials. It uses the same superuser as defined for Cassandra.

Stream Application Sample Running on Flink and Cassandra

We validated an example of the streaming pipeline. The workflow is as follows:

Figure 13. Stream Application Sample Running on Flink and Cassandra

The TopSpeedWindowing application is an example implementation of a streaming data processing application that uses Flink's windowing

functionality to find the top speed of cars over a sliding time window, the code has been modified to persist the data to a Cassandra keyspace

table.

Overall, this example provides a demonstration of how Flink's windowing functionality can be used to process the streaming data in a flexible and

scalable way, it allows developers to perform complex computations on time-based data with ease.

Check out the example code and YAML files.

Schema of Destination Cassandra Keyspace Table

The output data stream topSpeeds contains tuples of the form (carId, speed, distance, timestamp) representing the highest speed recorded for

each car during the window.

create keyspace example WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '3'} AND

durable_writes = true;

CREATE TABLE example.topSpeeds (carid int, speed int, distance double, time bigint, PRIMARY KEY (carid,time))

WITH CLUSTERING ORDER BY (time DESC);

describe table example.topspeeds;

CREATE TABLE example.topspeeds (

 carid int PRIMARY KEY,

 distance double,

 speed int,

 time bigint

) WITH additional_write_policy = '99p'

 AND bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class': 'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy',

'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '16', 'class': 'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair = 'BLOCKING'

 AND speculative_retry = '99p';

https://github.com/apache/flink/blob/master/flink-examples/flink-examples-streaming/src/main/java/org/apache/flink/streaming/examples/windowing/TopSpeedWindowing.java
https://github.com/vsphere-tmm/flinkandcassandraOntkg2/tree/main/ExampleJobs/topCarSinktoCassandra

R E F E R E N C E A R C H I T E C T U R E | 2 1

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Apache Flink Code to Aggregate and Persist Data in Cassandra Keyspace Table

Apache Cassandra Connector provides sinks that allow you to write data from a Flink data stream to a Cassandra database. The connector supports

both batch and streaming data, and it can be used to write data to any Cassandra tables.

Perform the following steps to use the connector:

1. Create a CassandraSink object. This object takes a Flink data stream as an input and a Cassandra table as an output. You can then configure

the sink with options such as the Cassandra host and port, the Cassandra keyspace, and the Cassandra table name.

final String username = "demo-superuser";

 final String password = "dJLCx7Y0opoIfEarDJTV";

 final String contactpoint = params.getContactPoint().orElse("127.0.0.1");

 try {

 CassandraSink.addSink(topSpeeds)

 .setQuery(

 "INSERT INTO example.topspeeds(carid, speed,distance, time) values (?, ?, ?, ?);")

 .setClusterBuilder(

 new ClusterBuilder() {

 private static final long serialVersionUID =

 2793938419775311824L;

 public Cluster buildCluster(Cluster.Builder builder) {

 return builder.addContactPoints(contactpoint)

 .withPort(9042)

 .withCredentials(username, password)

 .withoutJMXReporting()

 .build();

 }

 })

 .build();

 } catch (Exception e) {

 System.out.println("Error connecting to cluster" + e.getMessage());

 }

2. To use this connector, add the following dependency to the pom.xml in your project:

<dependency>

 <groupId>org.apache.flink</groupId>

 <artifactId>flink-connector-cassandra_2.12</artifactId>

 <version>1.16.1</version>

</dependency>

3. Build an executable jar. Since we are running in a containered environment, we need to Create Executable Fat Jar with Maven Shade Plugin.

4. Build an image that includes the jar.

Job Running

We used the following YAML file to submit the carTopSpeed job and sink to Cassandra.

Kubectl apply -f topcarwithcassparam.yaml

https://howtodoinjava.com/maven/maven-shade-plugin-create-uberfat-jar-example/

R E F E R E N C E A R C H I T E C T U R E | 2 2

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Figure 14. Job Running Sample

Result Verification

In our example, we deployed a cluster with name demo (replace the demo with the name configured for your running cluster).

After the Flink job starts and persists results to database, we can use ‘cqlsh’ to connect to the Cassandra keyspace and then query and review the

aggregated data as illustrated below:

tyin@tyin0MD6R bin % /cqlsh 10.156.159.164 -u demo-superuser --request-timeout=6000

Password:

Connected to demo at 10.156.159.164:9042.

[cqlsh 6.8.0 | Cassandra 4.0.4 | CQL spec 3.4.5 | Native protocol v4]

Use HELP for help.

demo-superuser@cqlsh> select count(*) from example.topspeeds ;

 count

 3546

However, as the number of records inserted increases quickly, using ‘cqlsh’ will eventually generate a timeout error. In this case, we can use

tablestats to check the number of records written to the topspeeds table.

tyin@tyin0MD6R examples % kubectl exec -it pod/demo-dc1-default-sts-0 -n k8ssandra-operator -c cassandra --

nodetool -u demo-superuser -pw dJLCx7Y0opoIfEarDJTV tablestats example.topspeeds

Total number of tables: 42

Keyspace: example

 Read Count: 0

 Read Latency: NaN ms

 Write Count: 35040986

 Write Latency: 0.009253590552503289 ms

 Pending Flushes: 0

 Table: topspeeds

 SSTable count: 3

 Old SSTable count: 0

 Space used (live): 150225664

R E F E R E N C E A R C H I T E C T U R E | 2 3

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

 Space used (total): 150225664

 Space used by snapshots (total): 0

 Off heap memory used (total): 118112

 SSTable Compression Ratio: 0.6663820948690086

 Number of partitions (estimate): 4000

 Memtable cell count: 4552412

 Memtable data size: 77782389

 Memtable off heap memory used: 0

 Memtable switch count: 6

 Local read count: 0

 Local read latency: NaN ms

 Local write count: 35040986

 Local write latency: NaN ms

 Pending flushes: 0

 Percent repaired: 0.0

 Bytes repaired: 0.000KiB

 Bytes unrepaired: 214.478MiB

 Bytes pending repair: 0.000KiB

 Bloom filter false positives: 0

 Bloom filter false ratio: 0.00000

 Bloom filter space used: 7536

 Bloom filter off heap memory used: 7512

 Index summary off heap memory used: 768

 Compression metadata off heap memory used: 109832

 Compacted partition minimum bytes: 11865

 Compacted partition maximum bytes: 379022

 Compacted partition mean bytes: 41255

 Average live cells per slice (last five minutes): NaN

 Maximum live cells per slice (last five minutes): 0

 Average tombstones per slice (last five minutes): NaN

 Maximum tombstones per slice (last five minutes): 0

 Dropped Mutations: 0

 Droppable tombstone ratio: 0.00000

.

R E F E R E N C E A R C H I T E C T U R E | 2 4

 Running Flink and K8ssandra on VMware Tanzu Kubernetes Grid 2

Best Practices

• It is recommended to deploy multiple workload cluster for production for better resource isolation and monitoring.

• For workload cluster deployment, start from a small number of nodes to tune the parameters and then scale up gradually.

• For K8ssandra cluster deployment, the Stargate heap size should match the Cassandra pod, the proper size can be tuned through the

throughput or latency workload testing.

• For the Flink cluster deployment, start from a small number of nodes and small worker node size to tune the parameters and then scale

up gradually.

Conclusion

Flink and Cassandra are two popular open-source tools that work together appropriately for modern applications. By combining Flink and

Cassandra, enterprises can build integrated real-time streaming analytics pipelines. The Flink Kubernetes Operator, Cassandra Operator,

Prometheus, and Grafana integrate seamlessly on Tanzu Kubernetes Grid. This solution thus streamlines building and running real-time workloads

on Kubernetes, which allows IT administrators to enable fast application deployment, achieve better scalability for performance, ensure high

availability, governance and lower TCO expenditure.

Reference

For more information, you can explore the following resources:

• VMware vSphere

• VMware vSAN

• VMware Tanzu Kubernetes Grid

• Apache Flink docs

• K8ssandra docs

About the Author

Ting Yin, Senior Technical Marketing Architect in the Workload Technical Marketing Team of the Cloud Infrastructure Big Group, wrote the original version

of this paper. The following reviewers also contributed to the paper contents:

• Chen Wei, Director of the Workload Technical Marketing Team in VMware

• Catherine Xu, Senior Manager of the Workload Technical Marketing Team in VMware

https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsan.html
https://tanzu.vmware.com/kubernetes-grid
https://flink.apache.org/
https://flink.apache.org/
https://k8ssandra.io/

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com.
Copyright © 2023 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. Item No: vmw-

wp-tech-temp-word-102-proof 5/19

