

R E F E R E N C E A R C H I T E C T U R E

KubeFATE on VMware Cloud
Foundation with VMware Tanzu

Operationalize Federated Learning Platform Efficiently and Securely

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Table of contents

Business Case 3

Business Values .. 3

Key Results ... 4

Audience ... 4

Technology Overview 4

VMware Cloud Foundation ... 5

VMware Cloud Foundation with VMware Tanzu .. 5

VMware vSphere ... 5

VMware NSX Data Center .. 5

KubeFATE ... 6

Solution Configuration 6

Architecture Diagram .. 6

Hardware Resources .. 10

Software Resources ... 10

Network Configuration ... 11

Solution Validation 11

Overview ... 11

Test Tools .. 13

Deploying a KubeFATE Instance .. 13

Leveraging an external Spark and HDFS Cluster.. 17

Setting up a vSphere HA Pulsar Cluster .. 18

Running a Federated Learning Workload ... 18

Failure Scenarios .. 21

Sizing Guidelines 24

VMware Cloud Foundation Infrastructure .. 24

KubeFATE ... 24

Use Cases 26

Conclusion 27

Reference Architecture 28

About the Author 28

Appendix 29

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Business Case

Artificial Intelligence (AI) adoptions have significant growth in more organizations and more industries. The evolving landscape of
data collection challenges the traditional AI processing methods as worldwide data are increasingly in isolated islands. Likewise,
data privacy and security regulations, such as General Data Protection Regulation (GDPR), impose a significant burden of compliance
to collect and use this data. Federated learning has emerged as a distributed learning paradigm for collaboration between
enterprises to solve isolated data problems while addressing the critical issue of data privacy and data governance. Federated
learning is a state-of-the-art technology:

• Data of all parties is stored locally, ensuring that data privacy and compliance with laws and regulations.

• Multiple parties contribute data to develop a global model from which they can mutually benefit.

• All parties are of equal status.

• The modeling performance of federated learning is the same as, or (in case of user alignment or feature alignment of data)
slightly different from, the modeling result achieved through aggregation of all datasets.

• Transfer learning ensures that knowledge transfer can also be achieved through the exchange of encryption parameters
between data, even when users or features are not aligned. 1

Federated learning allows multiple organizations or companies to build global common machine learning models without leaking any
raw data. The data owners can share high-quality models that get exposed to a significantly wider range of data than they would on
any single organization while preserving privacy and security.

FATE (Federated AI Technology Enabler) is an open-source project hosted by Linux Foundation. It provides a secure computing
framework to support the federated AI ecosystem. It implements secure computation protocols based on homomorphic encryption
and multi-party computation (MPC). It supports federated learning architectures and secure computation of various machine
learning algorithms, including logistic regression, tree-based algorithms, deep learning, and transfer learning.

KubeFATE is designed to provision, orchestrate, operate, and manage FATE-based federated learning systems on Kubernetes in
data centers or multi-cloud environments, and exploits the advantages of the cloud computing delivery model. It manages the
system in the form of a Federated Learning Cluster (FLC), which includes the FATE service, all other services it depends on, as well
as their configurations with cloud-native technology.

Organizations are undergoing an exceptional period of change. Driven by the relentless growth of data, the emergence of
Kubernetes, and the demands of the hybrid cloud, both IT and DevOps teams face challenges that are both massive and inherently
cross disciplinary.

VMware Cloud Foundation™ with VMware Tanzu™ accelerates Kubernetes infrastructure provisioning with full stack consisting of

compute, storage, networking, and management. Through the automatic and reliable deployment of multiple workload domains, it
increases admin productivity while reducing overall TCO to deliver a faster path to a hybrid cloud.

Deploying and operating a federated learning environment within traditional IT infrastructure can be challenging. The KubeFATE on
VMware Cloud Foundation with Tanzu solution aims to address the complexity of AI solution integration with IT infrastructure to
rapidly deploy federated learning systems and the underlying infrastructure with resiliency and security.

In this solution, we provide deployment procedures, design and sizing guidance, and best practices for enterprise infrastructure
admins and application owners to provision and run KubeFATE on the Cloud Foundation platform.

Business Values

Here are the top 4 benefits for deploying and operating KubeFATE for federated learning on VMware Cloud Foundation with Tanzu.

• Full stack integration

VMware Cloud Foundation software stack lifecycle is automated and complete lifecycle management that greatly reduces

risks and increases IT operational efficiency. Tanzu Kubernetes cluster deployment is fully integrated with the VMware vSphere®

SDDC stack, including storage, networking, and authentication.

• Consistent operations and infrastructure for hybrid and multi cloud

1 These bullet definitions are quoted from 1.3 Feasible Solutions to Data Privacy in White Paper on Federated Learning V2.0.

https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/KubeFATE/blob/master/docs/whitepapers/Federated_Learning_White_Papaer_v2.0-EN.pdf

KubeFATE on VMware Cloud Foundation with VMware Tanzu

This tool provides edge, private, and public cloud workload deployment options for a true hybrid cloud solution that maintains

the flexibility of networking and topology. It allows enterprises to build, run, manage, connect, and protect any app on any

cloud or across clouds with complete consistency of experience.

• Security

FATE applies various security protocols, including homomorphic encryption, secret sharing, RSA, and Diffie-Hellman, to different

algorithms to comprise requirements of security, audit, and law.

Data of all parties are stored locally, ensuring data privacy and compliance with laws and regulations and no data leakage to the

outside. All parties only interact with the intermediate results of encryption after processing local data in the process of modeling

and reasoning to ensure the information security of all parties from the aspects of algorithm design, encryption algorithm

strength, and communication security.

• Automated end-to-end lifecycle management

KubeFATE will minimize the federated learning workload impact and downtime during the necessary patching and upgrading of

the full private cloud stack using automated and self-managed services within the workload domain.

Key Results

This reference architecture is a showcase of operating and managing KubeFATE on VMware Cloud Foundation with Tanzu2.

Key results can be summarized as follows:

• Empowers customers to securely provision and operate enterprise-grade federated learning in a production environment using
VMware Cloud Foundation.

• Validates the deployment and management of KubeFATE by providing an end-to-end integration on Tanzu Kubernetes with a
unified platform at any scale, on-premises, and in the cloud.

• Provides baseline performance benchmarks and sizing guidelines to achieve lower TCO.

• Identifies the steps required to ensure system resiliency and availability against various failures.

Audience

This solution is intended for IT admins and storage experts who are involved in planning, designing, deploying, and managing
KubeFATE for federated learning on VMware Cloud Foundation with Tanzu. This document assumes that the reader is familiar with
the concepts and operations of federated learning and VMware Cloud Foundation-related components.

Technology Overview
Solution technology components are listed below:

• VMware Cloud Foundation

o VMware Cloud Foundation with Tanzu

o VMware vSphere

o VMware NSX® Data Center

• KubeFATE

2 The reference architecture is validated on VMware Cloud Foundation with Tanzu, it also applies to vSphere with Tanzu.

KubeFATE on VMware Cloud Foundation with VMware Tanzu

VMware Cloud Foundation

VMware Cloud Foundation is full stack hyperconverged infrastructure solution that combines compute virtualization (VMware

vSphere®), storage virtualization (VMware vSAN™), network virtualization (VMware NSX®), and cloud management and monitoring

(VMware vRealize® Suite) into a single platform that can be deployed on-premises as a private cloud or multi-cloud in conjunction

with VMware services that run in all major hyperscalers and VMware Cloud Providers. This documentation focuses on the private

cloud use case. VMware Cloud Foundation can be deployed on-premises on a broad range of vSAN ReadyNode™ servers, on jointly

engineered systems like Dell EMC VxRail, or consumed as a service in the public cloud from VMware Cloud on AWS, Azure VMware

Solution, Google Cloud VMware Engine, and select VMware Cloud™ Providers. VMware Cloud Foundation bridges the traditional

administrative silos in data centers, merging compute, storage, network provisioning, and cloud management to facilitate end-to-
end support for application deployment.

VMware Cloud Foundation with VMware Tanzu

VMware Cloud Foundation with Tanzu is a full stack hyperconverged infrastructure solution that automates infrastructure

deployment and lifecycle management of complex Kubernetes clusters alongside mission critical enterprise applications, including

an embedded Kubernetes runtime environment that accelerates the development of modern applications.

VMware Cloud Foundation with Tanzu automates full-stack deployment and operation of Kubernetes clusters through integration

with VMware Tanzu Kubernetes Grid™ and VMware Tanzu Mission Control. VMware Cloud Foundation with Tanzu helps to eliminate

manual steps for host configuration, creating logical relationships, managing hypervisors for faster deployment of applications at

scale. VMware Cloud Foundation with Tanzu provides a comprehensive hybrid cloud platform that bridges the gap between app

developers and IT administrators. VMware Cloud Foundation can be deployed on-premises on a broad range of vSAN ReadyNode™

servers, on engineered systems like Dell EMC VxRail, or consumed as a service in the public cloud from VMware Cloud on AWS,

Azure VMware Solution, Google Cloud VMware Engine, and select VMware Cloud™ Providers.

e

most exciting feature added to the VMware Cloud Foundation architecture is the integration of Kubernetes directly into the vSphere

Hypervisor, which delivers an entirely new set of VMware Cloud Foundation services, a new Kubernetes and RESTful API surface

that empowers developers to have self-service access to Kubernetes clusters, vSphere Pods, virtual machines, persistent volumes,

stateful services, and networking resources. These services include VMware Tanzu Kubernetes Grid plus infrastructure and

automation services that provide the basis for the cloud infrastructure and container ecosystems to boost developer productivity.

VMware Cloud Foundation with Tanzu represents a major advancement in cloud-native compute, storage, networking, and

management to seamlessly support containers and VMs all within the same automated hybrid cloud infrastructure.

VMware vSphere

VMware vSphere is the next-generation infrastructure for next-generation applications, which provides a powerful, flexible, and

secure foundation for business agility that accelerates the digital transformation to cloud computing and promotes success in the

digital economy. VMware vSphere embeds containers and Kubernetes into vSphere, unifying them with virtual machines as first-

class citizens. This enables all vSphere admins to become Kubernetes admins and easily deliver new services to their developers.

VMware vSphere addresses key challenges faced by the IT admins in areas of lifecycle management, security, and performance and

resiliency needed by business-critical applications, AI/ML applications, and latency-sensitive applications. With VMware vSphere,

customers can run, manage, connect, and secure both traditional and cloud native applications in a common operating environment,

across clouds and devices.

VMware NSX Data Center

VMware NSX® Data Center is the network virtualization and security platform that enables the virtual cloud network, a software-

defined approach to networking that extends across data centers, clouds, and application frameworks. With NSX Data Center,

networking and security are brought closer to the application wherever it is running, from virtual machines to containers to bare

metal. Like the operational model of VMs, networks can be provisioned and managed independent of the underlying hardware. NSX

Data Center reproduces the entire network model in software, enabling any network topology from simple to complex multitier

networks to be created and provisioned in seconds. Users can create multiple virtual networks with diverse requirements,

leveraging a combination of the services offered via NSX or from a broad ecosystem of third-party integrations ranging from next-

generation firewalls to performance management solutions to build inherently more agile and secure environments. These services

can then be extended to a variety of endpoints within and across clouds.

KubeFATE on VMware Cloud Foundation with VMware Tanzu

KubeFATE

To run a federated learning workload requires several services to cooperate, which brings some challenges to the management. The

KubeFATE open source project aims to address these challenges. It helps manage and operate the Federated Learning Cluster

(FLC) with cloud-native technology. Currently, it supports two types of backends to provision FLC: the docker-compose based

development environment and the Kubernetes based production environment.

KubeFATE enables federated learning jobs to run across public, private, and hybrid cloud environments. See KubeFATE for more
information.

Note: We assume that all parties involved in federated learning have agreed on the collaboration principles and the technology at
the first stage in this KubeFATE solution.

Solution Configuration
This section introduces the resources and configurations:

• Architecture diagram

• Hardware resources

• Software resources

• Network configuration

Architecture Diagram

The following sections describe how the KubeFATE components are configured. Figure 1 shows the overall architecture of
KubeFATE on VMware Cloud Foundation.

The configuration is composed of two dimensions. The first one is to provision and manage FLC with KubeFATE locally in each

party. The other one is to bridge the local FLC to others of different parties.

https://github.com/FederatedAI/KubeFATE

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 1. Architecture of KubeFATE on VMware Cloud Foundation

Figure 1 shows the architecture of a two-party KubeFATE cluster on VMware Cloud Foundation with Tanzu. In each organization, we

deployed a VMware Cloud Foundation instance consisting of a management domain and a workload domain. The 4-node

management domain cluster hosts multiple management virtual machines and appliances. For the workload domain, we created

another 4-node cluster with workload management enabled and provisioned a Tanzu Kubernetes cluster. We deployed an FLC in a

namespace in a VMware Tanzu Kubernetes cluster in each party, and we deployed the Exchange service in another namespace in

one party. Similarly, we can deploy a multi-party KubeFATE cluster across geographies with more building blocks equivalent to

Organization 2.

An Overview of KubeFATE Cluster

As Figure 2 shows, a KubeFATE cluster includes three components:

• A KubeFATE service to deploy/manage several Federated Learning Clusters.

• One or many FLCs to run federated learning workload. An FLC is a FATE cluster that includes the following components:

o A FATE Flow service to schedule and manage federated learning jobs

KubeFATE on VMware Cloud Foundation with VMware Tanzu

o A MySQL database to store metadata

o An Nginx/Pulsar server to synchronize job status and data between different FLCs

o A Jupyter Notebook for users to build and run federated learning jobs

o A FATE Board to visualize the status of federated learning workload

o A Spark cluster to run the actual federated learning workload

o An HDFS cluster to store training dataset and intermediated results

For more component details, refer to the Components Table in Appendix.

• An optional Exchange service to manage the connection information between FLCs. The Exchange service can be
deployed on Kubernetes and in a demilitarized zone (DMZ).

Figure 2. KubeFATE Components

Build Federation of FLCs

The typical topology of KubeFATE clusters of three parties is shown in Figure 3. Each FLC is managed by different organizations or

different departments within the same organization. It is important to connect these FLCs as a federation for collaboration.

Otherwise, each FLC is an isolated system.

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 3. KubeFATE Clusters of Three Organizations

As Figure 3 shows, FLCs expose the following two services to each other:

- Nginx to transfer controlling data and job status to other clusters

- Pulsar to transfer encrypted model weights or gradients to other clusters

An Exchange service is deployed in an organization of the federation. It is used to manage the IP address and port number of the

load balancer of each participant. The Exchange service is independent from the FLC.

The key steps to build federation among FLCs are as follows:

1. Deploy an exchange service

2. Connect e to the exchange service

3. Add IP addresses or domain names and ports of the loadbalancer of all participants in the exchange

Refer to Deployment Guide of Multiple Parties for more information.

https://github.com/FederatedAI/KubeFATE/wiki/Deploy-an-exchange-central-multi-parties-federated-learning-network-with-KubeFATE

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Hardware Resources

KubeFATE is hardware agnostic and runs on a variety of hardware architectures. The following table provides a general description
of a server of VMware Cloud Foundation workload domain used by KubeFATE.

Table 1. Hardware Configuration

PRO PERTY SP EC IF ICAT ION

CPU

KubeFATE is not CPU bound and is performant with any modern server-

grade CPU, see VMware Cloud Foundation 4.2 supported hardwareSizing

Guidelines.

RAM
KubeFATE is not memory bound and is performant with any modern

speed memory.

Network adapter Minimum 2 X10GbE NIC.

Storage adapter
Dedicated SAS/SATA Storage Controllers with JBOD support and RAID

disabled.

Disks Dedicated SAS/SATA drives.

Software Resources

Table 2 shows the software resources used in this solution.

Table 2. Software Resources

3 We used this version in the validation, all Tanzu Kubernetes Grid versions are supported.

SOFTWARE VERS I ON PUR PO SE

VMware Cloud Foundation 4.2

VMware Cloud Foundation provides integrated cloud infrastructure (compute,

storage, networking, and security) and cloud management services to run both

cloud native and traditional workloads.

See VMware Cloud Foundation for details.

Kubernetes 1.18.153
Kubernetes is an open-source system for automating deployment, scaling, and

management of containerized applications.

KubeFATE 1.6.1 or later

KubeFATE is designed to provision, orchestrate, operate, and manage FATE-based

federated learning systems on Kubernetes in data centers or multi-cloud

environments. It exploits the advantages of the cloud native delivery model.

https://docs.vmware.com/en/VMware-Cloud-Foundation/4.2/rn/VMware-Cloud-Foundation-42-Release-Notes.html#hardwarereqd
https://www.vmware.com/topics/glossary/content/cloud-security
https://www.vmware.com/products/cloud-foundation.html

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Network Configuration

The Tanzu Kubernetes cluster configured with VMware NSX-T Data Center uses the software-based networks of the solution as well

as an NSX Edge load balancer to provide connectivity to external services and DevOps users. The pods of the KubeFATE cluster are

placed in a namespace.

Figure 4. Network Configuration

Solution Validation

Overview

VMware Cloud Foundation with Tanzu automates the full-stack deployment and operation of Kubernetes clusters through
integration with VMware Tanzu Kubernetes, makes it easy to stand up the underlying vSphere infrastructure, set up NSX and the
NSX Edge Clusters.

Figure 5 shows the SDDC Manager UI to deploy the Workload Management for vSphere with Kubernetes.

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 5. SDDC Manager integrated Kubernetes Workload Management Deployment

With Workload Management enabled, we can easily enable Tanzu Kubernetes clusters.

Figure 6. Tanzu Kubernetes Cluster Overview

Figure 6 shows the Tanzu Kubernetes cluster with 3 control nodes and 3 worker nodes deployed in a namespace of a vSphere
Cluster, we can easily deploy large-scale Tanzu Kubernetes clusters in the same way.

The validation is a showcase of VMware Cloud Foundation with Tanzu for operating and managing KubeFATE federated learning

platform in a fully integrated SDDC environment.

Key results can be summarized as follows:

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-3040E41B-8A54-4D23-8796-A123E7CAE3BA.html

KubeFATE on VMware Cloud Foundation with VMware Tanzu

• Deploying Instance: Quick guide for multi-party network configuration, KubeFATE Cluster deployment, and validation of

multi-party connection.

• Running a federated learning workload: Showcases federated training workflow using integrated Jupyter Notebook, FATE

Board for job management, model evaluation and prediction.

• Resilience Tests: Proves the solution resilience to guarantee the service continuity and stability of KubeFATE in failure

scenarios such as disk and host failures.

• Best Practices: Provides best practices to deploy the infrastructure and sizing guidelines of CPU/memory/storage/network

bandwidth planning to target a workload of a given scale.

• Use cases: Categorizes a broad range of use cases in both vertical federated learning and horizontal federated learning.

Test Tools

We used the following monitoring tools and benchmark tools in the solution testing:

Monitoring tools

• Kubernetes CLI tools
kubectl + vSphere plugin

The Kubernetes CLI Tools download package includes two executables: the standard open source kubectl and the vSphere
Plugin for kubectl. The kubectl CLI has a pluggable architecture. The vSphere Plugin for kubectl extends the commands
available to kubectl so that you can connect to the Supervisor Cluster and to the Tanzu Kubernetes clusters using vCenter
Single Sign-On credentials.

• Tanzu Kubernetes Cluster Status
You can monitor the status of Tanzu Kubernetes clusters using the vSphere Client.

• vSAN Health Check
vSAN Health Check delivers a simplified troubleshooting and monitoring experience of all things related to vSAN. Through the

vSphere client, it offers multiple health checks specifically for vSAN, including cluster, hardware compatibility, data, limits, and

physical disks.

Workload generation and testing tools

In our baseline benchmark testing, we verified some classic algorithms like logistic regression, gradient boosting tree, and neural

network. For the neural network, we used the public MNIST dataset. For others, we used scripts from the FATE open source

community to generate random datasets. For more details about the testing setup, refer to this repo.

Deploying a KubeFATE Instance

The deployment of KubeFATE clusters usually includes two or multiple parties, where each party is deployed in a Tanzu Kubernetes
cluster and managed by the KubeFATE service running in the cluster. The networking information of all parties is configured in the
Exchange component, which only needs to be deployed in one party. As it is logically a standalone service, the Exchange
component can even be deployed in a separate cluster. For simplicity, it is deployed alongside one of the parties in the validation
example.

When provisioning a Tanzu Kubernetes cluster, it is required to configure a separate volume disk to store the container images. The
recommended size of the separate disk is 32GB.

Assuming the underlying Tanzu Kubernetes clusters have been provisioned, the following steps depict how to set up KubeFATE
clusters to perform federated learning tasks. Note that the following deployment uses pure HTTP as transportation protocol as an
example. In real deployment cases, especially for banking or financial companies that have complicated security setup with
hardware and third-party providers, we keep pure HTTP connection for the Kubernetes level. It is suggested to reach your
hardware and third-party providers for boundary and transportation protection.

Step 1: Deploying the KubeFATE service

KubeFATE orchestrates the FLC of a party, managing the lifecycle of FATE clusters and the Exchange component.

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-627107C0-17E4-4C43-9D6B-35501E5CE083.html#GUID-627107C0-17E4-4C43-9D6B-35501E5CE083
https://kb.vmware.com/s/article/2114803
https://deepai.org/dataset/mnist
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/benchmark_test
https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-B1034373-8C38-4FE2-9517-345BF7271A1E.html#cluster-with-separate-disks-and-storage-parameters-1

KubeFATE on VMware Cloud Foundation with VMware Tanzu

One of the major prerequisites of using KubeFATE is setting up an ingress controller. The official example can be used as a
reference. The following command is used to install an Nginx ingress controller:

$ helm install ingress-nginx --set controller.service.type=LoadBalancer --set podSecurityPolicy.enabled=true ingress-nginx/ingress-
nginx

Once the command completes, take note of the external IP of the ingress controller service.

The KubeFATE project repository contains a detailed step-by-step guide of the complete workflow. One can follow Deploying a
KubeFATE Instance to install the KubeFATE service, namely setting up the RBAC roles and creating the deployments and services
on Tanzu Kubernetes cluster.

After installation, the service deployments and ingress information can be verified as below. The KubeFATE service is exposed via a
Kubernetes Ingress and is associated with a domain name. In this example, the domain name example.com
configured in the yaml file while installing KubeFATE. To access the service, you can configure the DNS server to point the domain

10.159.229.67

Figure 7. KubeFATE Deployment

Many of the next steps are performed using the KubeFATE CLI command to interact with the KubeFATE service. Before proceeding,
as suggested in the section of KubeFATE Command Line Connection make sure the CLI command can connect to the service
without error. The DNS service of the CLI machine should resolve the domain name to the IP address of the ingress controller
service. Alternatively, name to the IP address of the ingress
controller service.

Step 2: Deploying an FLC with Exchange Component

Assume this party is selected to deploy the Exchange component. Two installations are needed:

A. Deploying Exchange component

• Create a namespace fate-exchange in the Tanzu Kubernetes cluster.

• Prepare the certificate files as suggested in KubeFATE documents, including generating the certificates and importing
them into the fate-exchange namespace.

• Prepare a fate-exchange.yaml file containing the configuration for KubeFATE to deploy the Exchange component. The
yaml file is customized from the example in the KubeFATE project.

• Use KubeFATE CLI to install the Exchange component:

./kubefate cluster install -f fate-exchange.yaml

The Exchange component does not contain the network configuration of any party. Such information will be updated
once all FLCs are deployed.

Below is the information of a deployed Exchange component.

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-457B1569-DFDC-4849-959C-72EDA72030AD.html
https://github.com/FederatedAI/KubeFATE/wiki/Deploy-FATE-Clusters-with-KubeFATE-on-Kubernetes
https://github.com/FederatedAI/KubeFATE/blob/master/k8s-deploy/kubefate.yaml#L179
https://github.com/FederatedAI/KubeFATE/wiki/Deploy-FATE-Clusters-with-KubeFATE-on-Kubernetes#kubefate-command-line-connection
https://github.com/FederatedAI/KubeFATE/blob/master/docs/FATE_On_Spark_With_Pulsar.md#certificate-generation
https://github.com/FederatedAI/KubeFATE/blob/master/docs/Pulsar_Exchange.md#import-the-secret-key-to-kubernetes
https://github.com/FederatedAI/KubeFATE/blob/master/docs/Pulsar_Exchange.md#import-the-secret-key-to-kubernetes
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-exchange-initial/fate-exchange.yaml
https://github.com/FederatedAI/KubeFATE/blob/master/k8s-deploy/examples/party-exchange/trafficServer.yaml

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 8. Exchange Component

The external IP address and the port of the Exchange service will be used by the FLC deployment.

B. Deploying the FLC

• Create a namespace for this FLC in the Tanzu Kubernetes cluster. In this validation example, fate-30000 is used.

• Follow the same steps as the Exchange component, generate the corresponding certificates and import them into the
cluster as Kubernetes secrets.

• Prepare a cluster-spark-pulsar.yaml file containing the configuration to install a FATE cluster. This validation uses the
example yaml file for this party.

NOTE: There are some key considerations for better integration with the Tanzu Kubernetes cluster:

o Admission Controller is enabled in Tanzu
Kubernetes clusters.

o that this party can communicate with the
Exchange service.

o enabled.
o address and port of the related

Exchange service.
o

key data in the event of pod restarting. Refer to the Failure Scenarios section for more detailed discussions.
o Use the KubeFATE CLI command to install the FLC by providing the yaml file:

$./kubefate cluster install -f cluster-spark-pulsar.yaml

Below is a deployed FLC of one party.

Figure 9. FLC Deployment

The below command shows that the Nginx external IP address is 10.159.229.72, and the pulsar-public-tls external IP address is
10.159.229.73. These IP addresses will be used by the Exchange service later.

https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-30000/cluster-spark-pulsar.yaml
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-30000/cluster-spark-pulsar.yaml

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 10. External IP Address of Nginx and Pulsar Service

Using KubeFATE CLI, one can list the installed components. This includes the Exchange service and the FLC, namely fate-exchange
and fate-30000 in the below example.

Figure 11. KubeFATE Cluster Info

An FLC has a Jupyter Notebook service (notebook) and a Fate Board service (fateboard) that can also be accessed via the ingress
controller service. In this example, the domain name example.com example.com is used
for the Jupyter Notebook service and the FATE Board service, respectively. The domain names can be configured in the yaml file
for deploying the FLC. Similar to the KubeFATE service, the DNS service should be able to resolve these domain names to the

The following sections interact with an FLC using the notebook and fateboard service.

Step 3: Deploying more federating learning clusters without Exchange service

Repeat Step 1 and Step 2 to deploy multiple parties.

In Step 1, the Tanzu Kubernetes cluster and KubeFATE CLI should be used
to connect to the KubeFATE service for the subsequent steps.

In Step 2, since an Exchange component is already deployed in the first party, no Exchange deployment is required for other parties
so Step 2A can be skipped. The FLC name and namespace should be planned and used accordingly. For example, the FLC name of
the second - , as used in this example.

Step 4: Updating each FLC address in the route table of the Exchange service

The Exchange route table should be updated to reflect the external IP addresses of all the FLCs. This can be done by updating the
fate-exchange.yaml file and invoking the KubeFATE CLI command as follows:

$./kubefate cluster update -f fate-exchange.yaml

After updating the Exchange route table, the Exchange service needs to reload the latest configuration. Use the following
commands to get the pod of the service:

$ kubectl get pod -n fate-exchange

Look for the pod whose name starts traffic-server- Then run the reloaded command in the pod:

$ kubectl exec <traffic-server pod name> -n fate-exchange -- /opt/trafficserver/bin/traffic_ctl config reload

https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-40000/cluster-spark-pulsar.yaml
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-exchange-updated/fate-exchange.yaml
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-exchange-updated/fate-exchange.yaml

KubeFATE on VMware Cloud Foundation with VMware Tanzu

If the Exchange service has multiple pod instances, only one instance of the pod needs to run the above command.

Step 5: Accessing FATE cluster and validating the connection of multiple parties

Use the below command to get the name of the FATE Flow pod:

$ kubectl get pod -n fate-30000

Look for the pod whose name python- Next, run the below command in the pod to invoke a toy_example script to
validate the connection:

$ kubctl exec it <python- pod name> -c python n fate-30000 -- /bin/bash

Figure 12 shows the steps to verify the connection between two parties (party identifiers are 30000 and 40000 respectively) from
the fate-30000 cluster. The script should print the generated job information, and start waiting for the job to finish:

Figure 12. Run Toy-example to Verify the Connection

Typically, after a few minutes, depending on the network conditions between the parties, the script should finish with success. It
verifies the network setup of the two parties is correct:

Figure 13. Job Status

For detailed information, including KubeFATE CLI reference and deployment yaml configuration values, refer to
https://github.com/FederatedAI/KubeFATE/tree/master/k8s-deploy

Leveraging an external Spark and HDFS Cluster

A workable FLC is heavily relied on Spark, HDFS, and Pulsar services. By default, the KubeFATE service provides the capability to

provision these services; however, it does not guarantee high availability (HA) and optimization for these services.

It is highly recommended for users to deploy their Spark and HDFS clusters according to the official documents, respectively.

https://github.com/FederatedAI/KubeFATE/tree/master/k8s-deploy

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Once the Spark and HDFS clusters are ready, the FLC can leverage them in federated learning jobs. As there are lots of

configurations involved, refer to FATE On Spark Leverage the external cluster for more details.

Setting up a vSphere HA Pulsar Cluster

By default, the KubeFATE service deploys a standalone Pulsar service; however, the standalone Pulsar service does not have high

availability. To set up a Pulsar service with HA, a Helm chart is provided with this white paper to deploy Pulsar service with HA on

Kubernetes. For more details, refer to the pulsar deployment. See FATE On Spark Leverage the external cluster about how to use

the external Pulsar cluster in FLC.

Running a Federated Learning Workload

In the Deploying a KubeFATE Instance section, two FLCs with ID 30000 and 40000 were created. Next, we will run a workload on
them. We choose the dataset (https://www.kaggle.com/mlg-ulb/creditcardfraud) containing transactions of credit cards in
September 2013 by European cardholders to showcase federated learning workflow using Jupyter Notebook and FATE Board to
monitor jobs and to visualize the result of model evaluation and prediction.

The FATE open source project provides out-of-the-box components like feature engineering and machine learning algorithms for
users to compose a job. In this example, we will use the homogeneous logistic regression algorithm to train a model. For more

details about the available components, refer to the FATE repo.

The dataset can be split into two halves: datasets_guest and datasets_host . Each half of the dataset can be used by one of the
two involved parties (party identifies are 30000 and 40000), respectively.

Next, we upload datasets_guest and to the FLC 30000 and 40000 through Jupyter Notebook, respectively.
After the feature engineering of the dataset is finished by each party, we can start a federated learning job from party 30000 and
evaluate the output model. All scripts and commands could be found in the repo.

Data Preparation

Download the dataset creditcard. and split the dataset into two halves.

The following operations except the job submission are required to be performed on both FLC 30000 and 40000. However, since
they are identical operations, we only show the workflow of the party 30000.

Uploading data to Jupyter Notebook

FLC has an integrated Jupyter Notebook service for editing the federated learning job. It can be accessed from the configured

hostname such as 30000.notebook.example.com.

Figure 14. Uploading Data to Jupyter Notebook

https://github.com/FederatedAI/KubeFATE/wiki/FATE-On-Spark---Leverage-the-external-cluster
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/pulsar_deployment
https://github.com/FederatedAI/KubeFATE/wiki/FATE-On-Spark---Leverage-the-external-cluster
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://github.com/FederatedAI/FATE/tree/master/python/federatedml
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/credit_card_use_case

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Preprocessing the dataset and uploading it to the FLC

Just like traditional machine learning, before the training is running, it needs preprocessing of the dataset, for example,
normalization and null value handling. After data preprocessing, the dataset needs to be uploaded to the FLC for further usage in
the federated learning workload.

Figure 15. Preprocessing Dataset

As Figure 16 shows, we can upload the dataset with the FATE Pipeline Python library.

Figure 16. Uploading Data to FLC

Job Definition and Submission

After the data is ready, a user can continue to define the training job. We can develop federated learning models conveniently
with FATE Pipeline Python library in a few lines. The sample code below shows how to construct a homogenous logistic regression
job to train pre-uploaded data. The code to evaluate the output model is added. Once the job is finished, the output model is stored
on FLC with a unique identifier for later usage.

https://github.com/FederatedAI/FATE/tree/master/examples/pipeline
https://github.com/FederatedAI/FATE/blob/master/python/fate_client/pipeline/README.rst

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 17. Key Definition for the Job

The FATE Board portal can be used to create and view federated training jobs. It can be accessed from a browser through URL like
30000.fateboard.example.com. In our example, a user can check the status of a job and the evaluation results.

Figure 18. Job Status

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 19. The Evaluation Output

Prediction

After successfully running a training job, we can define a job to perform prediction with the output model. After the job is finished,
we can download the prediction result using the FATE API or from the FATE Board portal.

Figure 20. Prediction Result

Failure Scenarios

This section introduces the failure scenarios and the behavior of failure handling. This section includes:

• KubeFATE component failures

• Single party failures in an FL training job

• Host and VM failures

• Disk failure

KubeFATE Component Failures

Using KubeFATE, an FLC and all its components are deployed in the form of Kubernetes pods and organized as deployments and
services. A component failure means its related pod failed, either due to the underlying failure of the host or VM, or the unexpected
errors in the corresponding containers. The pod level resiliency provided by Tanzu Kubernetes Grid Service and Kubernetes native
reconciling mechanism guarantees that when such a pod failure event occurs, it will be restarted, or a new pod will be launched to
replace the failed one. It takes less than 30 seconds for an FLC pod to restart and become fully functional.

KubeFATE on VMware Cloud Foundation with VMware Tanzu

When a job is running on FLC, the resiliency of the job is validated as the components below are configured with necessary
persistent volumes to store key data:

• The components in the Exchange service are all stateless and can be replicated to multiple instances. Restarting any of
them will not impact the continuation of a training job.

• Since all necessary stateful data are stored in the underlying volume and preserved across pods restart or recreation, users
can create new training jobs, view job history, and download trained models and data after such events without any
manual intervention.

• When restarting events of FLC pods occur during ongoing training jobs, training jobs can resume in most cases. The table
below lists the related pods and their impact on ongoing training jobs when the pods restart.

Table 4. Impact of Component Failures

Component Failures Impact on the Training Job

FATE Flow
The job hung and eventually reported as a timeout.
Users must re-submit the job to rerun from the beginning.

MySQL

The job continues to finish automatically.

Nginx

Pulsar

HDFS datanode

Spark master
Spark worker

HDFS namenode The job fails but can be resumed manually.

In the case of FATE Flow failure where the job will hang and timeout, a FATE training job timeout is 72 hours by default. This can be
configured on a per- "timeout": <value in seconds> the job
submission.

To manually resume a failed training job, the FATE Board Web UI provides a retry link that can be used to continue the job from the
previously failed step.

Figure 21. Retry a Failed Job

After clicking the retry link, the job will resume from the step where it failed. If the dependent components are back online, the job
will finish successfully.

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 22. Status of a Retried Job

Single Party Failures in an FL Training Job

An FL training job requires multiple participants. From the perspective of a multi-party training job, several types of failures can
happen to one participant. The table below lists how a training job involving multi-party ends if some error occurs at one participant.

Table 5. Single Party Failures and Expected Results

Host and VM Failures

When host failures or VM failures occur, the pods running on the host or VM will be affected. It is validated that with vSphere HA
and Tanzu Kubernetes Grid Service, the impacted pods can be restarted promptly.

• In the event of a host failure, the affected VMs will be restarted on other hosts by vSphere HA.

• When a VM of Tanzu Kubernetes cluster fails, it will be restarted automatically.
o vSphere HA will restart the VM if the VM crashes. This typically takes less than 1 minute after the event is detected.
o Tanzu Kubernetes Grid Service can restart the VM if the VM is shut down or powered off. This can take less than 5

minutes.

Failure type Training job

Network disconnection The job continues to finish if the network issue is resolved.
Otherwise, the job will be reported as a timeout.

FATE Flow failure The job cannot resume and will be reported as a timeout.

Job encountered an error in one
party

The job will be reported as a failure on all other parties.

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 23. Tanzu Kubernetes Grid W Events

NOTE: Since a separate disk is configured as one storage volume when provisioning a Tanzu Kubernetes cluster, an extra step of
configuration is required to make sure the volume is properly mounted during the reboot of a VM.

• After the Tanzu Kubernetes cluster is provisioned, apply a DaemonSet to the Tanzu Kubernetes cluster, which would
update the worker node VM with the proper mount information.

• After all the DaemonSet pods have updated the worker node, the DaemonSet can be deleted. In future, if a new worker
node VM is added to the cluster, run the DaemonSet again to update the new node. The existing worker node VMs will not
be updated again.

• Alternatively, this DaemonSet can be left active so it will automatically update any newly added worker node VMs.

With the above configuration, once the worker node VM restarts, either caused by a host failure or a VM failure, the impacted pods
will be restarted on the same VM. For FLC pods, they typically take less than 3 minutes to be relaunched after VM restarts. During
the failover, these pods will be temporarily unavailable. This means the ongoing FL training job could hang during this period, and
users cannot view the job history or launch new jobs. After the pods restart, as discussed in the previous KubeFATE Component
Failures part, the FLC can automatically resume working in most cases. To further achieve the minimum service interruption, as
recommended in the Deploying a KubeFATE Instance section, many FLC components including Spark, HDFS, and Pulsar can be
deployed separately with HA enabled.

Disk Failure

As discussed previously, KubeFATE supports configuring and provisioning persistent volumes for all the components it manages.
These persistent volumes are backed by vSAN that provides storage availability for all the persistent volumes (vsan-default-
storage-policy is the default storage class). It is validated that disk failure will not impact the KubeFATE cluster training jobs can
continue to run and finish without error; new jobs can be launched, and historical job data are preserved.

• In the component of FATE Flow, the logs, job metadata, and trained models are all saved in the backing persistent volume.

• For other components, KubeFATE supports storing key data for the MySQL, HDFS, and Pulsar deployments.

Sizing Guidelines

The following recommendations provide the best practices and sizing guidance to run KubeFATE on VMware Cloud Foundation.

VMware Cloud Foundation Infrastructure

Follow the general sizing guide: Cloud Foundation Kubernetes Sizing Guide

KubeFATE

Figure 24 shows the resource consumption type of KubeFATE components. For example, the FATE Flow service is CPU and
memory intensive, we should allocate adequate CPU or memory resource to the worker node it runs on.

https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/mount_path_patch/mount_path_patch_daemonset.yaml
https://core.vmware.com/resource/kubernetes-sizing-and-planning-vmware-cloud-foundation#section1

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 24. Service Detail of the KubeFATE Instance

The following parameters affect the overall sizing of compute and storage requirements:

Deployment with the internal Spark and HDFS service (default):

• VM Class: A virtual machine (VM) class is a request for resource reservations on the VM for processing power (CPU and

memory). There are two class reservation types: guaranteed and best effort. The guaranteed class fully reserves its

configured resources. The best effort class allows resources to be overcommitted. It is recommended that the VM class

type of the Kubernetes control panel is best-effort-small or larger. For Kubernetes worker nodes, the VM class types of

best-effort-2xlarge or larger are recommended. To avoid overcommitting resources, production workloads should use the

guaranteed class type. Refer to VM classes for Tanzu Kubernetes Cluster for more details.

• CPU: The number of vCPUs associated per pod except for the Spark worker pod should be 4 vCPUs at minimum. For the

neural network workload, more vCPU resources should be allocated to

8 vCPUs should be allocated to the Spark worker pod. It is recommended to allocate all CPU resources of a Tanzu

Kubernetes cluster worker node to the Spark worker pod, because more CPU resources will speed up the workload

execution according to our baseline testing. For more details, refer to Resource Usage of TKG Cluster.

• Memory: A minimum of 8 GB memory is recommended for all pods. For the python

should be given more memory based on the workload size. At least 16 GB memory should be allocated to the Spark worker

pod.

Number of nodes: It is recommended to run only one Spark worker pod on a Tanzu Kubernetes Grid cluster worker node.
• Storage size: The persistent volume size of each pod should be 5GB at least. For the DataNode of HDFS and

pod, the storage size must be at least two times of the dataset size.

• Network: 10 Gb Ethernet or higher speed network is recommended.

Deployment without internal Spark and HDFS service:

Component Pod sizing is similar to the default deployment.

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-7351EEFF-4EF0-468F-A19B-6CEA40983D3D.html

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Use Cases

FL is considered as one of the most exciting technologies nowadays. Many industries and companies are beginning to incorporate
FL into their work cycles. More use cases are surfaced when FL is getting more mature. These use cases can be categorized as the
following two types of federated learning:

Vertical Federated Learning, also known as heterogeneous federated learning, applies to the cases that two data sets share the
same sample ID space but differ in feature space. Vertical federated learning usually happens in collaboration between
organizations from different industries.

Figure 25. Vertical Federated Learning4

The typical use cases of vertical federated learning are:

• Auto insurance pricing: FL in the prediction of auto insurance pricing gathers the facts of consumer, vehicle, and behaviors
from different data resources for modeling. The predictive pricing accuracy has been improved to over 90% while
comparing to the traditional vehicle-based pricing strategy.

• Credit-risk management: The credit-risk management for small and micro enterprises (SME) is high cost and low accuracy
due to the lack of enough credit records of SMEs. By using FL to establish a multisource data fusion mechanism to include
transaction data, taxation, industrial and commercial data, and other SME data to assist financial institutions in obtaining
data in more dimensions to enrich their feature systems. After applying the FL, there is a 12% AUC improvement compared
with the traditional credit checks method with a much lower cost.

• Smart retail: To keep up with the business transformation strategies, retail enterprises can provide personalized product
services in a legal and compliant manner to expand sales channels. In addition to improving the user experience, the
solutions lay a foundation for precision marketing. The FL smart labor allocation system provides a complete platform that
covers the entire labor allocation process and solves the problem of data asymmetry between the supply and demand of
labor. In future, the FL models can further diversify into industries such as manufacturing, warehousing and logistics,
import/export, and other vertical areas.

Horizontal Federated Learning, also called homogenous federated learning, is the scenario that data sets share the same feature
space but are different in samples. In this case, the organizations are in the same type of industry. The data can be images, video
files, audio files, and other unstructured data, which share the same features.

4 This Vertical Federated Learning concept and diagram is quoted from the Federated Machine Learning: Concept and Applications.

https://arxiv.org/abs/1902.04885

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Figure 26. Horizontal Federated Learning5

The typical use cases of horizontal federated learning are:

• Smart security: By using FL and multi-community data to build an interconnected and intercommunicated security model,
which establishes a smart security network with overlapping dimensions. FL smart security ensures data privacy while
integrating user traffic and other data across multiple communities. The solution delivers all-weather monitoring of the
public and secure areas, early prediction, timely detection, along with early warning and post-incident tracing to enhance
community security.

• Healthcare assistant: FL smart medical care empowers the treatment in clinical diagnosis and other subfields while
protecting patient privacy. The applications of federated learning for smart medical care scenarios develop high-quality
medical resources shared by regions with fewer resources and improve the capacity and quality of medical services.

• Smart advertising: FL smart advertising enables the enhanced integration of multiparty data to develop user insight and
targeting strategies and preserve the privacy of the individual user. The differential privacy technology in federated
learning obfuscates data so that other parties can only view a generalized summary without identifying any individual in the
data. FL advertising technology reduces delivery costs, improves advertiser ROI, and enables the utilization of funds for
product innovation and R&D. For ad providers, it improves user click-through rate (CTR) and conversion rate and optimizes
link efficiency to achieve mutually beneficial cooperation between all parties.

• Autonomous driving: Using horizontal federated learning to integrate the data from the cameras, ultrasonic sensors, radars
(mmWave and LIDAR), and other devices of different vehicles accelerates the deployment of scenario data and improves
the model robustness. Horizontal FL driving technologies accelerate perception training while protecting the privacy of
drivers and passengers. In future, vertical FL will integrate with IoT, CVIS, 5G, and other new technologies to constitute a
smart traffic ecosystem that is efficient, secure, and low-cost.

Conclusion
VMware Cloud Foundation with Tanzu automates infrastructure provisioning and scaling so that developers can focus on building
and deploying apps while infrastructure teams become more strategic, maintaining centralized visibility and control of their global
cloud infrastructure and operations. Developers consume cloud resources such as Kubernetes clusters, disks, and networks using
familiar Kubernetes CLI and API tools, while the admins can manage systems at scale through vCenter Server. It suits the demands
of modernized federated learning workloads.

KubeFATE on VMware Cloud Foundation with Tanzu simplifies the deployment and management of federated learning systems and
workloads. KubeFATE to provision and manage the industrial grade FL clusters on
demand and to run FL workload according to their business needs.

5 This Horizontal Federated Learning concept and diagram is quoted from the Federated Machine Learning: Concept and Applications.

https://arxiv.org/abs/1902.04885

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Reference Architecture

• VMware Cloud Foundation

• VMware vSphere

• VMware vSAN

• VMware NSX Data Center

• KubeFATE

• White Paper on Federated Learning V2.0

• Yang, Qiang & Liu, Yang & Chen, Tianjian & Tong, Yongxin. (2019). Federated Machine Learning: Concept and Applications. ACM

Transactions on Intelligent Systems and Technology. 10. 1-19. 10.1145/3298981.

About the Author
Ting Yin, Senior Solutions Architect in the Solutions Architecture team of the Cloud Infrastructure Big Group, and Fangchi Wang,
Senior Member of Technical Staff in Office of the CTO, co-authored the original content of this reference architecture.

The following people also contributed to this paper:

• Layne Peng, Staff Engineer 2 in Office of the CTO in VMware
• Jiahao Chen, Member of Technical Staff in Office of the CTO in VMware

https://www.vmware.com/products/cloud-foundation.html
https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsan.html
https://www.vmware.com/products/nsx.html
https://github.com/FederatedAI/KubeFATE
https://github.com/FederatedAI/KubeFATE/blob/master/docs/whitepapers/Federated_Learning_White_Papaer_v2.0-EN.pdf
https://arxiv.org/abs/1902.04885
https://arxiv.org/abs/1902.04885

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Appendix
Figures Resource usage of Tanzu Kubernetes Grid cluster

• CPU and memory usage of a host running Spark worker

CPU usage

Memory usage

KubeFATE on VMware Cloud Foundation with VMware Tanzu

• CPU and Memory usage of a host running non-spark components.

 CPU usage

Memory usage

KubeFATE on VMware Cloud Foundation with VMware Tanzu

Components Table

Component Name Component's Role

FATE Flow Service The FATE Flow service is the entry point of the FATE cluster, accepting requests

from a user. It also schedules jobs and manages job status among different FATE

clusters.

MySQL In a FATE cluster, the MySQL service is used to persist metadata for jobs.

Nginx In a FATE cluster, the Nginx service is used to transfer controlling messages between

FATE clusters.

Pulsar In a FATE cluster, the Pulsar service is used to transfer encrypted gradients, model

weights between FATE clusters during training.

Juypter Notebook The Jupyter Notebook is used to build and run jobs for a user.

FATE Board The FATE Board is used to visualize the status of the federated learning workload.

Spark Cluster In a FATE cluster, the Spark is used to run the computing workload of a federated

learning job.

HDFS Cluster In a FATE cluster, the HDFS stores the training dataset and intermediated results.

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com.

Copyright © 2021 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property
laws. VMware products are covered by one or more patents listed at vmware.com/go/patents. VMware is a registered trademark or
trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein
may be trademarks of their respective companies. Item No: vmw-wp-tech-temp-word-102-proof 5/19

