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Business Case 
 
Artificial Intelligence (AI) adoptions have significant growth in more organizations and more industries. The evolving landscape of 
data collection challenges the traditional AI processing methods as worldwide data are increasingly in isolated islands. Likewise, 
data privacy and security regulations, such as General Data Protection Regulation (GDPR), impose a significant burden of compliance 
to collect and use this data. Federated learning has emerged as a distributed learning paradigm for collaboration between 
enterprises to solve isolated data problems while addressing the critical issue of data privacy and data governance. Federated 
learning is a state-of-the-art technology:  

• Data of all parties is stored locally, ensuring that data privacy and compliance with laws and regulations.  

• Multiple parties contribute data to develop a global model from which they can mutually benefit.  

• All parties are of equal status.  

• The modeling performance of federated learning is the same as, or (in case of user alignment or feature alignment of data) 
slightly different from, the modeling result achieved through aggregation of all datasets.  

• Transfer learning ensures that knowledge transfer can also be achieved through the exchange of encryption parameters 
between data, even when users or features are not aligned. 1 

Federated learning allows multiple organizations or companies to build global common machine learning models without leaking any 
raw data. The data owners can share high-quality models that get exposed to a significantly wider range of data than they would on 
any single organization while preserving privacy and security.  

 
FATE (Federated AI Technology Enabler) is an open-source project hosted by Linux Foundation. It provides a secure computing 
framework to support the federated AI ecosystem. It implements secure computation protocols based on homomorphic encryption 
and multi-party computation (MPC). It supports federated learning architectures and secure computation of various machine 
learning algorithms, including logistic regression, tree-based algorithms, deep learning, and transfer learning.  

KubeFATE is designed to provision, orchestrate, operate, and manage FATE-based federated learning systems on Kubernetes in 
data centers or multi-cloud environments, and exploits the advantages of the cloud computing delivery model. It manages the 
system in the form of a Federated Learning Cluster (FLC), which includes the FATE service, all other services it depends on, as well 
as their configurations with cloud-native technology. 
 
Organizations are undergoing an exceptional period of change. Driven by the relentless growth of data, the emergence of 
Kubernetes, and the demands of the hybrid cloud, both IT and DevOps teams face challenges that are both massive and inherently 
cross disciplinary. 

VMware Cloud Foundation™ with VMware Tanzu™ accelerates Kubernetes infrastructure provisioning with full stack consisting of 

compute, storage, networking, and management. Through the automatic and reliable deployment of multiple workload domains, it 
increases admin productivity while reducing overall TCO to deliver a faster path to a hybrid cloud.  

Deploying and operating a federated learning environment within traditional IT infrastructure can be challenging. The KubeFATE on 
VMware Cloud Foundation with Tanzu solution aims to address the complexity of AI solution integration with IT infrastructure to 
rapidly deploy federated learning systems and the underlying infrastructure with resiliency and security. 
 
In this solution, we provide deployment procedures, design and sizing guidance, and best practices for enterprise infrastructure 
admins and application owners to provision and run KubeFATE on the Cloud Foundation platform.  
 

Business Values  

Here are the top 4 benefits for deploying and operating KubeFATE for federated learning on VMware Cloud Foundation with Tanzu.  

• Full stack integration    

VMware Cloud Foundation  software stack lifecycle is automated and complete lifecycle management that greatly reduces 

risks and increases IT operational efficiency. Tanzu Kubernetes cluster deployment is fully integrated with the VMware vSphere® 

SDDC stack, including storage, networking, and authentication.  

• Consistent operations and infrastructure for hybrid and multi cloud 

 
1 These bullet definitions are quoted from 1.3 Feasible Solutions to Data Privacy in White Paper on Federated Learning V2.0. 

https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/KubeFATE/blob/master/docs/whitepapers/Federated_Learning_White_Papaer_v2.0-EN.pdf
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This tool provides edge, private, and public cloud workload deployment options for a true hybrid cloud solution that maintains 

the flexibility of networking and topology. It allows enterprises to build, run, manage, connect, and protect any app on any 

cloud or across clouds with complete consistency of experience. 

• Security  

FATE applies various security protocols, including homomorphic encryption, secret sharing, RSA, and Diffie-Hellman, to different 

algorithms to comprise requirements of security, audit, and law. 

Data of all parties are stored locally, ensuring data privacy and compliance with laws and regulations and no data leakage to the 

outside. All parties only interact with the intermediate results of encryption after processing local data in the process of modeling 

and reasoning to ensure the information security of all parties from the aspects of algorithm design, encryption algorithm 

strength, and communication security. 

• Automated end-to-end lifecycle management 

KubeFATE will minimize the federated learning workload impact and downtime during the necessary patching and upgrading of 

the full private cloud stack using automated and self-managed services within the workload domain. 

Key Results 

This reference architecture is a showcase of operating and managing KubeFATE on VMware Cloud Foundation with Tanzu2.   

Key results can be summarized as follows: 

• Empowers customers to securely provision and operate enterprise-grade federated learning in a production environment using 
VMware Cloud Foundation. 
 

• Validates the deployment and management of KubeFATE by providing an end-to-end integration on Tanzu Kubernetes with a 
unified platform at any scale, on-premises, and in the cloud. 

 
• Provides baseline performance benchmarks and sizing guidelines to achieve lower TCO. 

 

• Identifies the steps required to ensure system resiliency and availability against various failures.  

Audience 

This solution is intended for IT admins and storage experts who are involved in planning, designing, deploying, and managing 
KubeFATE for federated learning on VMware Cloud Foundation with Tanzu. This document assumes that the reader is familiar with 
the concepts and operations of federated learning and VMware Cloud Foundation-related components. 

Technology Overview 
Solution technology components are listed below: 

• VMware Cloud Foundation 

o VMware Cloud Foundation with Tanzu 

o VMware vSphere 

o VMware NSX® Data Center 

• KubeFATE 

 

2 The reference architecture is validated on VMware Cloud Foundation with Tanzu, it also applies to vSphere with Tanzu. 



 

 
 

KubeFATE on VMware Cloud Foundation with VMware Tanzu 

VMware Cloud Foundation  

VMware Cloud Foundation is full stack hyperconverged infrastructure solution that combines compute virtualization (VMware 

vSphere®), storage virtualization (VMware vSAN™), network virtualization (VMware NSX®), and cloud management and monitoring 

(VMware vRealize® Suite) into a single platform that can be deployed on-premises as a private cloud or multi-cloud in conjunction 

with VMware services that run in all major hyperscalers and VMware Cloud Providers. This documentation focuses on the private 

cloud use case.  VMware Cloud Foundation can be deployed on-premises on a broad range of vSAN ReadyNode™ servers, on jointly 

engineered systems like Dell EMC VxRail, or consumed as a service in the public cloud from VMware Cloud on AWS, Azure VMware 

Solution, Google Cloud VMware Engine, and select VMware Cloud™ Providers.  VMware Cloud Foundation bridges the traditional 

administrative silos in data centers, merging compute, storage, network provisioning, and cloud management to facilitate end-to-
end support for application deployment. 

VMware Cloud Foundation with VMware Tanzu 

VMware Cloud Foundation with Tanzu is a full stack hyperconverged infrastructure solution that automates infrastructure 

deployment and lifecycle management of complex Kubernetes clusters alongside mission critical enterprise applications, including 

an embedded Kubernetes runtime environment that accelerates the development of modern applications.  

VMware Cloud Foundation with Tanzu automates full-stack deployment and operation of Kubernetes clusters through integration 

with VMware Tanzu Kubernetes Grid™ and VMware Tanzu Mission Control. VMware Cloud Foundation with Tanzu helps to eliminate 

manual steps for host configuration, creating logical relationships, managing hypervisors for faster deployment of applications at 

scale. VMware Cloud Foundation with Tanzu provides a comprehensive hybrid cloud platform that bridges the gap between app 

developers and IT administrators. VMware Cloud Foundation can be deployed on-premises on a broad range of vSAN ReadyNode™ 

servers, on engineered systems like Dell EMC VxRail, or consumed as a service in the public cloud from VMware Cloud on AWS, 

Azure VMware Solution, Google Cloud VMware Engine, and select VMware Cloud™ Providers.  

e 

most exciting feature added to the VMware Cloud Foundation architecture is the integration of Kubernetes directly into the vSphere 

Hypervisor, which delivers an entirely new set of VMware Cloud Foundation services, a new Kubernetes and RESTful API surface 

that empowers developers to have self-service access to Kubernetes clusters, vSphere Pods, virtual machines, persistent volumes, 

stateful services, and networking resources. These services include VMware Tanzu Kubernetes Grid plus infrastructure and 

automation services that provide the basis for the cloud infrastructure and container ecosystems to boost developer productivity. 

VMware Cloud Foundation with Tanzu represents a major advancement in cloud-native compute, storage, networking, and 

management to seamlessly support containers and VMs all within the same automated hybrid cloud infrastructure. 

VMware vSphere 

VMware vSphere is the next-generation infrastructure for next-generation applications, which provides a powerful, flexible, and 

secure foundation for business agility that accelerates the digital transformation to cloud computing and promotes success in the 

digital economy. VMware vSphere embeds containers and Kubernetes into vSphere, unifying them with virtual machines as first-

class citizens. This enables all vSphere admins to become Kubernetes admins and easily deliver new services to their developers. 

VMware vSphere addresses key challenges faced by the IT admins in areas of lifecycle management, security, and performance and 

resiliency needed by business-critical applications, AI/ML applications, and latency-sensitive applications. With VMware vSphere, 

customers can run, manage, connect, and secure both traditional and cloud native applications in a common operating environment, 

across clouds and devices. 

VMware NSX Data Center 

VMware NSX® Data Center is the network virtualization and security platform that enables the virtual cloud network, a software-

defined approach to networking that extends across data centers, clouds, and application frameworks. With NSX Data Center, 

networking and security are brought closer to the application wherever it is running, from virtual machines to containers to bare 

metal. Like the operational model of VMs, networks can be provisioned and managed independent of the underlying hardware. NSX 

Data Center reproduces the entire network model in software, enabling any network topology from simple to complex multitier 

networks to be created and provisioned in seconds. Users can create multiple virtual networks with diverse requirements, 

leveraging a combination of the services offered via NSX or from a broad ecosystem of third-party integrations ranging from next-

generation firewalls to performance management solutions to build inherently more agile and secure environments. These services 

can then be extended to a variety of endpoints within and across clouds. 
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KubeFATE 

To run a federated learning workload requires several services to cooperate, which brings some challenges to the management. The 

KubeFATE open source project aims to address these challenges. It helps manage and operate the Federated Learning Cluster 

(FLC) with cloud-native technology. Currently, it supports two types of backends to provision FLC: the docker-compose based 

development environment and the Kubernetes based production environment. 

KubeFATE enables federated learning jobs to run across public, private, and hybrid cloud environments. See KubeFATE for more 
information.  
 
Note: We assume that all parties involved in federated learning have agreed on the collaboration principles and the technology at 
the first stage in this KubeFATE solution. 

Solution Configuration 
This section introduces the resources and configurations:  

• Architecture diagram 

• Hardware resources  

• Software resources 

• Network configuration 

Architecture Diagram 

The following sections describe how the KubeFATE components are configured. Figure 1 shows the overall architecture of 
KubeFATE on VMware Cloud Foundation.  

The configuration is composed of two dimensions. The first one is to provision and manage FLC with KubeFATE locally in each 

party. The other one is to bridge the local FLC to others of different parties.  

https://github.com/FederatedAI/KubeFATE
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Figure 1. Architecture of KubeFATE on VMware Cloud Foundation 

Figure 1 shows the architecture of a two-party KubeFATE cluster on VMware Cloud Foundation with Tanzu. In each organization, we 

deployed a VMware Cloud Foundation instance consisting of a management domain and a workload domain. The 4-node 

management domain cluster hosts multiple management virtual machines and appliances. For the workload domain, we created 

another 4-node cluster with workload management enabled and provisioned a Tanzu Kubernetes cluster. We deployed an FLC in a 

namespace in a VMware Tanzu Kubernetes cluster in each party, and we deployed the Exchange service in another namespace in 

one party. Similarly, we can deploy a multi-party KubeFATE cluster across geographies with more building blocks equivalent to 

Organization 2. 

An Overview of KubeFATE Cluster 

As Figure 2 shows, a KubeFATE cluster includes three components: 

• A KubeFATE service to deploy/manage several Federated Learning Clusters. 

• One or many FLCs to run federated learning workload. An FLC is a FATE cluster that includes the following components: 

o A FATE Flow service to schedule and manage federated learning jobs 
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o A MySQL database to store metadata 

o An Nginx/Pulsar server to synchronize job status and data between different FLCs 

o A Jupyter Notebook for users to build and run federated learning jobs 

o A FATE Board to visualize the status of federated learning workload 

o A Spark cluster to run the actual federated learning workload 

o An HDFS cluster to store training dataset and intermediated results 

For more component details, refer to the Components Table in Appendix.  

• An optional Exchange service to manage the connection information between FLCs. The Exchange service can be 
deployed on Kubernetes and in a demilitarized zone (DMZ). 

 

 

Figure 2. KubeFATE Components 

 

Build Federation of FLCs 

The typical topology of KubeFATE clusters of three parties is shown in Figure 3. Each FLC is managed by different organizations or 

different departments within the same organization. It is important to connect these FLCs as a federation for collaboration. 

Otherwise, each FLC is an isolated system. 
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Figure 3. KubeFATE Clusters of Three Organizations 

As Figure 3 shows, FLCs expose the following two services to each other: 

- Nginx to transfer controlling data and job status to other clusters 

- Pulsar to transfer encrypted model weights or gradients to other clusters 

An Exchange service is deployed in an organization of the federation. It is used to manage the IP address and port number of the 

load balancer of each participant. The Exchange service is independent from the FLC. 

The key steps to build federation among FLCs are as follows: 

1. Deploy an exchange service 

2. Connect e to the exchange service  

3. Add IP addresses or domain names and ports of the loadbalancer of all participants in the exchange 

Refer to Deployment Guide of Multiple Parties for more information.  

  

https://github.com/FederatedAI/KubeFATE/wiki/Deploy-an-exchange-central-multi-parties-federated-learning-network-with-KubeFATE
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Hardware Resources 

KubeFATE is hardware agnostic and runs on a variety of hardware architectures. The following table provides a general description 
of a server of VMware Cloud Foundation workload domain used by KubeFATE. 
 
Table 1. Hardware Configuration  

PRO PERTY  SP EC IF ICAT ION  

CPU 

KubeFATE is not CPU bound and is performant with any modern server-

grade CPU, see VMware Cloud Foundation 4.2 supported hardwareSizing 

Guidelines. 

RAM 
KubeFATE is not memory bound and is performant with any modern 

speed memory.  

Network adapter  Minimum 2 X10GbE NIC. 

Storage adapter 
Dedicated SAS/SATA Storage Controllers with JBOD support and RAID 

disabled. 

Disks Dedicated SAS/SATA drives. 

 

Software Resources 

Table 2 shows the software resources used in this solution.  

Table 2. Software Resources 

 
  

 
3 We used this version in the validation, all Tanzu Kubernetes Grid versions are supported. 

SOFTWARE  VERS I ON  PUR PO SE  

VMware Cloud Foundation 4.2 

VMware Cloud Foundation provides integrated cloud infrastructure (compute, 

storage, networking, and security) and cloud management services to run both 

cloud native and traditional workloads.  

See VMware Cloud Foundation for details. 

Kubernetes 1.18.153 
Kubernetes is an open-source system for automating deployment, scaling, and 

management of containerized applications. 

KubeFATE 1.6.1 or later 

 

KubeFATE is designed to provision, orchestrate, operate, and manage FATE-based 

federated learning systems on Kubernetes in data centers or multi-cloud 

environments. It exploits the advantages of the cloud native delivery model.  

https://docs.vmware.com/en/VMware-Cloud-Foundation/4.2/rn/VMware-Cloud-Foundation-42-Release-Notes.html#hardwarereqd
https://www.vmware.com/topics/glossary/content/cloud-security
https://www.vmware.com/products/cloud-foundation.html
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Network Configuration 

The Tanzu Kubernetes cluster configured with VMware NSX-T Data Center uses the software-based networks of the solution as well 

as an NSX Edge load balancer to provide connectivity to external services and DevOps users. The pods of the KubeFATE cluster are 

placed in a namespace.  

 

Figure 4. Network Configuration  

 

Solution Validation 

Overview  

VMware Cloud Foundation with Tanzu automates the full-stack deployment and operation of Kubernetes clusters through 
integration with VMware Tanzu Kubernetes, makes it easy to stand up the underlying vSphere infrastructure, set up NSX and the 
NSX Edge Clusters.  
 
Figure 5 shows the SDDC Manager UI to deploy the Workload Management for vSphere with Kubernetes. 
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Figure 5. SDDC Manager integrated Kubernetes Workload Management Deployment 

With Workload Management enabled, we can easily enable Tanzu Kubernetes clusters. 

 

Figure 6. Tanzu Kubernetes Cluster Overview 

Figure 6 shows the Tanzu Kubernetes cluster with 3 control nodes and 3 worker nodes deployed in a namespace of a vSphere 
Cluster, we can easily deploy large-scale Tanzu Kubernetes clusters in the same way. 
 
The validation is a showcase of VMware Cloud Foundation with Tanzu for operating and managing KubeFATE federated learning 

platform in a fully integrated SDDC environment.  

Key results can be summarized as follows: 

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-3040E41B-8A54-4D23-8796-A123E7CAE3BA.html


 

 
 

KubeFATE on VMware Cloud Foundation with VMware Tanzu 

• Deploying Instance: Quick guide for multi-party network configuration, KubeFATE Cluster deployment, and validation of 

multi-party connection. 

• Running a federated learning workload: Showcases federated training workflow using integrated Jupyter Notebook, FATE 

Board for job management, model evaluation and prediction. 

• Resilience Tests: Proves the solution resilience to guarantee the service continuity and stability of KubeFATE in failure 

scenarios such as disk and host failures. 

• Best Practices: Provides best practices to deploy the infrastructure and sizing guidelines of CPU/memory/storage/network 

bandwidth planning to target a workload of a given scale. 

• Use cases: Categorizes a broad range of use cases in both vertical federated learning and horizontal federated learning. 

Test Tools 

We used the following monitoring tools and benchmark tools in the solution testing: 
 

Monitoring tools 

• Kubernetes CLI tools 
kubectl + vSphere plugin 
 
The Kubernetes CLI Tools download package includes two executables: the standard open source kubectl and the vSphere 
Plugin for kubectl. The kubectl CLI has a pluggable architecture. The vSphere Plugin for kubectl extends the commands 
available to kubectl so that you can connect to the Supervisor Cluster and to the Tanzu Kubernetes clusters using vCenter 
Single Sign-On credentials. 
 
• Tanzu Kubernetes Cluster Status 
You can monitor the status of Tanzu Kubernetes clusters using the vSphere Client.   

 
• vSAN Health Check 
vSAN Health Check delivers a simplified troubleshooting and monitoring experience of all things related to vSAN. Through the 

vSphere client, it offers multiple health checks specifically for vSAN, including cluster, hardware compatibility, data, limits, and 

physical disks. 

Workload generation and testing tools  

In our baseline benchmark testing, we verified some classic algorithms like logistic regression, gradient boosting tree, and neural 

network. For the neural network, we used the public MNIST dataset. For others, we used scripts from the FATE open source 

community to generate random datasets. For more details about the testing setup, refer to this repo. 

Deploying a KubeFATE Instance 

The deployment of KubeFATE clusters usually includes two or multiple parties, where each party is deployed in a Tanzu Kubernetes 
cluster and managed by the KubeFATE service running in the cluster. The networking information of all parties is configured in the 
Exchange component, which only needs to be deployed in one party. As it is logically a standalone service, the Exchange 
component can even be deployed in a separate cluster. For simplicity, it is deployed alongside one of the parties in the validation 
example. 
 
When provisioning a Tanzu Kubernetes cluster, it is required to configure a separate volume disk to store the container images. The 
recommended size of the separate disk is 32GB. 
 
Assuming the underlying Tanzu Kubernetes clusters have been provisioned, the following steps depict how to set up KubeFATE 
clusters to perform federated learning tasks. Note that the following deployment uses pure HTTP as transportation protocol as an 
example. In real deployment cases, especially for banking or financial companies that have complicated security setup with 
hardware and third-party providers, we keep pure HTTP connection for the Kubernetes level. It is suggested to reach your 
hardware and third-party providers for boundary and transportation protection. 

 
Step 1: Deploying the KubeFATE service 

KubeFATE orchestrates the FLC of a party, managing the lifecycle of FATE clusters and the Exchange component.  

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-627107C0-17E4-4C43-9D6B-35501E5CE083.html#GUID-627107C0-17E4-4C43-9D6B-35501E5CE083
https://kb.vmware.com/s/article/2114803
https://deepai.org/dataset/mnist
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/benchmark_test
https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-B1034373-8C38-4FE2-9517-345BF7271A1E.html#cluster-with-separate-disks-and-storage-parameters-1
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One of the major prerequisites of using KubeFATE is setting up an ingress controller. The official example can be used as a 
reference. The following command is used to install an Nginx ingress controller: 

 
$ helm install ingress-nginx --set controller.service.type=LoadBalancer --set podSecurityPolicy.enabled=true ingress-nginx/ingress-
nginx 
 
Once the command completes, take note of the external IP of the ingress controller service. 

 
The KubeFATE project repository contains a detailed step-by-step guide of the complete workflow. One can follow Deploying a 
KubeFATE Instance to install the KubeFATE service, namely setting up the RBAC roles and creating the deployments and services 
on Tanzu Kubernetes cluster.  
 
After installation, the service deployments and ingress information can be verified as below. The KubeFATE service is exposed via a 
Kubernetes Ingress and is associated with a domain name. In this example, the domain name example.com
configured in the yaml file while installing KubeFATE. To access the service, you can configure the DNS server to point the domain 

10.159.229.67  

 

Figure 7. KubeFATE Deployment  

Many of the next steps are performed using the KubeFATE CLI command to interact with the KubeFATE service. Before proceeding, 
as suggested in the section of KubeFATE Command Line Connection  make sure the CLI command can connect to the service 
without error. The DNS service of the CLI machine should resolve the domain name to the IP address of the ingress controller 
service. Alternatively, name to the IP address of the ingress 
controller service. 
 
Step 2: Deploying an FLC with Exchange Component 

Assume this party is selected to deploy the Exchange component. Two installations are needed: 

  
A. Deploying Exchange component 

• Create a namespace fate-exchange in the Tanzu Kubernetes cluster. 

• Prepare the certificate files as suggested in KubeFATE documents, including generating the certificates and importing 
them into the fate-exchange namespace. 

• Prepare a fate-exchange.yaml file containing the configuration for KubeFATE to deploy the Exchange component. The 
yaml file is customized from the example in the KubeFATE project. 

• Use KubeFATE CLI to install the Exchange component: 

 

./kubefate cluster install -f fate-exchange.yaml 
 
The Exchange component does not contain the network configuration of any party. Such information will be updated 
once all FLCs are deployed. 

 
Below is the information of a deployed Exchange component. 

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-457B1569-DFDC-4849-959C-72EDA72030AD.html
https://github.com/FederatedAI/KubeFATE/wiki/Deploy-FATE-Clusters-with-KubeFATE-on-Kubernetes
https://github.com/FederatedAI/KubeFATE/blob/master/k8s-deploy/kubefate.yaml#L179
https://github.com/FederatedAI/KubeFATE/wiki/Deploy-FATE-Clusters-with-KubeFATE-on-Kubernetes#kubefate-command-line-connection
https://github.com/FederatedAI/KubeFATE/blob/master/docs/FATE_On_Spark_With_Pulsar.md#certificate-generation
https://github.com/FederatedAI/KubeFATE/blob/master/docs/Pulsar_Exchange.md#import-the-secret-key-to-kubernetes
https://github.com/FederatedAI/KubeFATE/blob/master/docs/Pulsar_Exchange.md#import-the-secret-key-to-kubernetes
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-exchange-initial/fate-exchange.yaml
https://github.com/FederatedAI/KubeFATE/blob/master/k8s-deploy/examples/party-exchange/trafficServer.yaml
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Figure 8. Exchange Component 

The external IP address and the port of the Exchange service will be used by the FLC deployment. 

 
B. Deploying the FLC 

• Create a namespace for this FLC in the Tanzu Kubernetes cluster. In this validation example, fate-30000 is used. 

• Follow the same steps as the Exchange component, generate the corresponding certificates and import them into the 
cluster as Kubernetes secrets. 

• Prepare a cluster-spark-pulsar.yaml file containing the configuration to install a FATE cluster. This validation uses the 
example yaml file for this party. 

 
NOTE: There are some key considerations for better integration with the Tanzu Kubernetes cluster: 

o  Admission Controller is enabled in Tanzu 
Kubernetes clusters. 

o that this party can communicate with the 
Exchange service. 

o enabled. 
o address and port of the related 

Exchange service. 
o 

key data in the event of pod restarting. Refer to the Failure Scenarios section for more detailed discussions. 
o Use the KubeFATE CLI command to install the FLC by providing the yaml file:  

 
$./kubefate cluster install -f cluster-spark-pulsar.yaml 
 

Below is a deployed FLC of one party. 

 

Figure 9. FLC Deployment 

The below command shows that the Nginx external IP address is 10.159.229.72, and the pulsar-public-tls external IP address is 
10.159.229.73. These IP addresses will be used by the Exchange service later. 

https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-30000/cluster-spark-pulsar.yaml
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-30000/cluster-spark-pulsar.yaml
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Figure 10. External IP Address of Nginx and Pulsar Service 

Using KubeFATE CLI, one can list the installed components. This includes the Exchange service and the FLC, namely fate-exchange 
and fate-30000 in the below example. 

 

Figure 11. KubeFATE Cluster Info 

An FLC has a Jupyter Notebook service (notebook) and a Fate Board service (fateboard) that can also be accessed via the ingress 
controller service. In this example, the domain name example.com example.com is used 
for the Jupyter Notebook service and the FATE Board service, respectively. The domain names can be configured in the yaml file 
for deploying the FLC. Similar to the KubeFATE service, the DNS service should be able to resolve these domain names to the 

The following sections interact with an FLC using the notebook and fateboard service. 

 
Step 3: Deploying more federating learning clusters without Exchange service 

Repeat Step 1 and Step 2 to deploy multiple parties. 

 
In Step 1, the Tanzu Kubernetes cluster and KubeFATE CLI should be used 
to connect to the KubeFATE service for the subsequent steps. 

 
In Step 2, since an Exchange component is already deployed in the first party, no Exchange deployment is required for other parties 
so Step 2A can be skipped. The FLC name and namespace should be planned and used accordingly. For example, the FLC name of 
the second - , as used in this example. 
  
Step 4: Updating each FLC address in the route table of the Exchange service 

The Exchange route table should be updated to reflect the external IP addresses of all the FLCs. This can be done by updating the 
fate-exchange.yaml file and invoking the KubeFATE CLI command as follows: 

 
$ ./kubefate cluster update -f fate-exchange.yaml 

 
After updating the Exchange route table, the Exchange service needs to reload the latest configuration. Use the following 
commands to get the pod of the service: 

 
$ kubectl get pod -n fate-exchange 

 
Look for the pod whose name starts traffic-server- Then run the reloaded command in the pod: 

 
$ kubectl exec <traffic-server pod name> -n fate-exchange -- /opt/trafficserver/bin/traffic_ctl config reload 
  

https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-40000/cluster-spark-pulsar.yaml
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-exchange-updated/fate-exchange.yaml
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/fate-exchange-updated/fate-exchange.yaml
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If the Exchange service has multiple pod instances, only one instance of the pod needs to run the above command. 

 
Step 5: Accessing FATE cluster and validating the connection of multiple parties 

Use the below command to get the name of the FATE Flow pod: 
 
$ kubectl get pod -n fate-30000 

 
Look for the pod whose name python- Next, run the below command in the pod to invoke a toy_example script to 
validate the connection: 

 
$ kubctl exec it <python- pod name> -c python n fate-30000 -- /bin/bash 

 
Figure 12 shows the steps to verify the connection between two parties (party identifiers are 30000 and 40000 respectively) from 
the fate-30000 cluster. The script should print the generated job information, and start waiting for the job to finish: 
 

 

Figure 12. Run Toy-example to Verify the Connection 

Typically, after a few minutes, depending on the network conditions between the parties, the script should finish with success. It 
verifies the network setup of the two parties is correct: 

 

Figure 13. Job Status 

For detailed information, including KubeFATE CLI reference and deployment yaml configuration values, refer to 
https://github.com/FederatedAI/KubeFATE/tree/master/k8s-deploy 

Leveraging an external Spark and HDFS Cluster 

A workable FLC is heavily relied on Spark, HDFS, and Pulsar services. By default, the KubeFATE service provides the capability to 

provision these services; however, it does not guarantee high availability (HA) and optimization for these services. 

It is highly recommended for users to deploy their Spark and HDFS clusters according to the official documents, respectively.  

https://github.com/FederatedAI/KubeFATE/tree/master/k8s-deploy
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Once the Spark and HDFS clusters are ready, the FLC can leverage them in federated learning jobs. As there are lots of 

configurations involved, refer to FATE On Spark  Leverage the external cluster for more details.  

Setting up a vSphere HA Pulsar Cluster 

 
By default, the KubeFATE service deploys a standalone Pulsar service; however, the standalone Pulsar service does not have high 

availability. To set up a Pulsar service with HA, a Helm chart is provided with this white paper to deploy Pulsar service with HA on 

Kubernetes. For more details, refer to the pulsar deployment. See FATE On Spark  Leverage the external cluster about how to use 

the external Pulsar cluster in FLC. 

Running a Federated Learning Workload 

 
In the Deploying a KubeFATE Instance section, two FLCs with ID 30000 and 40000 were created. Next, we will run a workload on 
them. We choose the dataset (https://www.kaggle.com/mlg-ulb/creditcardfraud) containing transactions of credit cards in 
September 2013 by European cardholders to showcase federated learning workflow using Jupyter Notebook and FATE Board to 
monitor jobs and to visualize the result of model evaluation and prediction.  
 
The FATE open source project provides out-of-the-box components like feature engineering and machine learning algorithms for 
users to compose a job. In this example, we will use the homogeneous logistic regression algorithm to train a model. For more 

details about the available components, refer to the FATE repo. 
 
The dataset can be split into two halves: datasets_guest  and datasets_host . Each half of the dataset can be used by one of the 
two involved parties (party identifies are 30000 and 40000),  respectively. 
 
Next, we upload datasets_guest  and  to the FLC 30000 and 40000 through Jupyter Notebook, respectively. 
After the feature engineering of the dataset is finished by each party, we can start a federated learning job from party 30000 and 
evaluate the output model. All scripts and commands could be found in the repo. 

 
Data Preparation 

Download the dataset creditcard. and split the dataset into two halves. 

 
The following operations except the job submission are required to be performed on both FLC 30000 and 40000. However, since 
they are identical operations, we only show the workflow of the party 30000. 

 
Uploading data to Jupyter Notebook 

FLC has an integrated Jupyter Notebook service for editing the federated learning job. It can be accessed from the configured 

hostname such as 30000.notebook.example.com. 

 

Figure 14. Uploading Data to Jupyter Notebook 

 
 

 

https://github.com/FederatedAI/KubeFATE/wiki/FATE-On-Spark---Leverage-the-external-cluster
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/pulsar_deployment
https://github.com/FederatedAI/KubeFATE/wiki/FATE-On-Spark---Leverage-the-external-cluster
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://github.com/FederatedAI/FATE/tree/master/python/federatedml
https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/credit_card_use_case
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Preprocessing the dataset and uploading it to the FLC 

Just like traditional machine learning, before the training is running, it needs preprocessing of the dataset, for example, 
normalization and null value handling. After data preprocessing, the dataset needs to be uploaded to the FLC for further usage in 
the federated learning workload. 

 

Figure 15. Preprocessing Dataset 

As Figure 16 shows, we can upload the dataset with the FATE Pipeline Python library. 

 

Figure 16. Uploading Data to FLC 

 
 

Job Definition and Submission 

After the data is ready, a user can continue to define the training job. We can develop federated learning models conveniently 
with FATE Pipeline Python library in a few lines. The sample code below shows how to construct a homogenous logistic regression 
job to train pre-uploaded data. The code to evaluate the output model is added. Once the job is finished, the output model is stored 
on FLC with a unique identifier for later usage. 

https://github.com/FederatedAI/FATE/tree/master/examples/pipeline
https://github.com/FederatedAI/FATE/blob/master/python/fate_client/pipeline/README.rst
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Figure 17. Key Definition for the Job 

The FATE Board portal can be used to create and view federated training jobs. It can be accessed from a browser through URL like 
30000.fateboard.example.com. In our example, a user can check the status of a job and the evaluation results. 
 

 

Figure 18. Job Status 
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Figure 19. The Evaluation Output 

 
Prediction 

After successfully running a training job, we can define a job to perform prediction with the output model. After the job is finished, 
we can download the prediction result using the FATE API or from the FATE Board portal. 

 

 

Figure 20. Prediction Result 

Failure Scenarios 

This section introduces the failure scenarios and the behavior of failure handling. This section includes: 

• KubeFATE component failures 

• Single party failures in an FL training job 

• Host and VM failures 

• Disk failure 

KubeFATE Component Failures 

Using KubeFATE, an FLC and all its components are deployed in the form of Kubernetes pods and organized as deployments and 
services. A component failure means its related pod failed, either due to the underlying failure of the host or VM, or the unexpected 
errors in the corresponding containers. The pod level resiliency provided by Tanzu Kubernetes Grid Service and Kubernetes native 
reconciling mechanism guarantees that when such a pod failure event occurs, it will be restarted, or a new pod will be launched to 
replace the failed one. It takes less than 30 seconds for an FLC pod to restart and become fully functional. 
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When a job is running on FLC, the resiliency of the job is validated as the components below are configured with necessary 
persistent volumes to store key data: 

• The components in the Exchange service are all stateless and can be replicated to multiple instances. Restarting any of 
them will not impact the continuation of a training job. 

• Since all necessary stateful data are stored in the underlying volume and preserved across pods restart or recreation, users 
can create new training jobs, view job history, and download trained models and data after such events without any 
manual intervention. 

• When restarting events of FLC pods occur during ongoing training jobs, training jobs can resume in most cases. The table 
below lists the related pods and their impact on ongoing training jobs when the pods restart. 

Table 4. Impact of Component Failures 

Component Failures Impact on the Training Job 

FATE Flow 
The job hung and eventually reported as a timeout. 
Users must re-submit the job to rerun from the beginning. 

MySQL 

The job continues to finish automatically. 

Nginx 

Pulsar 

HDFS datanode 

Spark master 
Spark worker 

HDFS namenode The job fails but can be resumed manually. 

 
In the case of FATE Flow failure where the job will hang and timeout, a FATE training job timeout is 72 hours by default. This can be 
configured on a per- "timeout": <value in seconds> the job 
submission. 
 
To manually resume a failed training job, the FATE Board Web UI provides a retry link that can be used to continue the job from the 
previously failed step. 

 

Figure 21. Retry a Failed Job 

 
After clicking the retry link, the job will resume from the step where it failed. If the dependent components are back online, the job 
will finish successfully. 
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Figure 22. Status of a Retried Job 

 
Single Party Failures in an FL Training Job 

An FL training job requires multiple participants. From the perspective of a multi-party training job, several types of failures can 
happen to one participant. The table below lists how a training job involving multi-party ends if some error occurs at one participant. 

Table 5. Single Party Failures and Expected Results 

 

 
 
Host and VM Failures 

When host failures or VM failures occur, the pods running on the host or VM will be affected. It is validated that with vSphere HA 
and Tanzu Kubernetes Grid Service, the impacted pods can be restarted promptly. 

• In the event of a host failure, the affected VMs will be restarted on other hosts by vSphere HA. 

• When a VM of Tanzu Kubernetes cluster fails, it will be restarted automatically. 
o vSphere HA will restart the VM if the VM crashes. This typically takes less than 1 minute after the event is detected. 
o Tanzu Kubernetes Grid Service can restart the VM if the VM is shut down or powered off. This can take less than 5 

minutes. 

Failure type Training job 

Network disconnection The job continues to finish if the network issue is resolved. 
Otherwise, the job will be reported as a timeout. 

FATE Flow failure The job cannot resume and will be reported as a timeout. 

Job encountered an error in one 
party 

The job will be reported as a failure on all other parties. 
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Figure 23. Tanzu Kubernetes Grid W Events 

 
NOTE: Since a separate disk is configured as one storage volume when provisioning a Tanzu Kubernetes cluster, an extra step of 
configuration is required to make sure the volume is properly mounted during the reboot of a VM. 

• After the Tanzu Kubernetes cluster is provisioned, apply a DaemonSet to the Tanzu Kubernetes cluster, which would 
update the worker node VM with the proper mount information. 

• After all the DaemonSet pods have updated the worker node, the DaemonSet can be deleted. In future, if a new worker 
node VM is added to the cluster, run the DaemonSet again to update the new node. The existing worker node VMs will not 
be updated again. 

• Alternatively, this DaemonSet can be left active so it will automatically update any newly added worker node VMs. 
 
With the above configuration, once the worker node VM restarts, either caused by a host failure or a VM failure, the impacted pods 
will be restarted on the same VM. For FLC pods, they typically take less than 3 minutes to be relaunched after VM restarts. During 
the failover, these pods will be temporarily unavailable. This means the ongoing FL training job could hang during this period, and 
users cannot view the job history or launch new jobs. After the pods restart, as discussed in the previous KubeFATE Component 
Failures part, the FLC can automatically resume working in most cases. To further achieve the minimum service interruption, as 
recommended in the Deploying a KubeFATE Instance section, many FLC components including Spark, HDFS, and Pulsar can be 
deployed separately with HA enabled. 

 
Disk Failure 

As discussed previously, KubeFATE supports configuring and provisioning persistent volumes for all the components it manages. 
These persistent volumes are backed by vSAN that provides storage availability for all the persistent volumes (vsan-default-
storage-policy is the default storage class). It is validated that disk failure will not impact the KubeFATE cluster training jobs can 
continue to run and finish without error; new jobs can be launched, and historical job data are preserved. 

• In the component of FATE Flow, the logs, job metadata, and trained models are all saved in the backing persistent volume. 

• For other components, KubeFATE supports storing key data for the MySQL, HDFS, and Pulsar deployments. 

Sizing Guidelines 

The following recommendations provide the best practices and sizing guidance to run KubeFATE on VMware Cloud Foundation. 

VMware Cloud Foundation Infrastructure 

 
Follow the general sizing guide: Cloud Foundation Kubernetes Sizing Guide  

KubeFATE 

 
Figure 24 shows the resource consumption type of KubeFATE components. For example, the FATE Flow service is CPU and 
memory intensive, we should allocate adequate CPU or memory resource to the worker node it runs on.  

https://github.com/vsphere-tmm/KubeFATE-on-VCF/tree/main/kubefate_deployment/mount_path_patch/mount_path_patch_daemonset.yaml
https://core.vmware.com/resource/kubernetes-sizing-and-planning-vmware-cloud-foundation#section1
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Figure 24. Service Detail of the KubeFATE Instance 

The following parameters affect the overall sizing of compute and storage requirements: 
 
Deployment with the internal Spark and HDFS service (default): 

• VM Class: A virtual machine (VM) class is a request for resource reservations on the VM for processing power (CPU and 

memory). There are two class reservation types: guaranteed and best effort. The guaranteed class fully reserves its 

configured resources. The best effort class allows resources to be overcommitted. It is recommended that the VM class 

type of the Kubernetes control panel is best-effort-small or larger. For Kubernetes worker nodes, the VM class types of 

best-effort-2xlarge or larger are recommended. To avoid overcommitting resources, production workloads should use the 

guaranteed class type. Refer to VM classes for Tanzu Kubernetes Cluster for more details. 

• CPU: The number of vCPUs associated per pod except for the Spark worker pod should be 4 vCPUs at minimum. For the 

neural network workload, more vCPU resources should be allocated to 

8 vCPUs should be allocated to the Spark worker pod. It is recommended to allocate all CPU resources of a Tanzu 

Kubernetes cluster worker node to the Spark worker pod, because more CPU resources will speed up the workload 

execution according to our baseline testing. For more details, refer to Resource Usage of TKG Cluster. 

• Memory: A minimum of 8 GB memory is recommended for all pods. For the python

should be given more memory based on the workload size. At least 16 GB memory should be allocated to the Spark worker 

pod. 

Number of nodes: It is recommended to run only one Spark worker pod on a Tanzu Kubernetes Grid cluster worker node.  
• Storage size: The persistent volume size of each pod should be 5GB at least. For the DataNode of HDFS and 

pod, the storage size must be at least two times of the dataset size. 

• Network: 10 Gb Ethernet or higher speed network is recommended. 

 

Deployment without internal Spark and HDFS service: 

Component Pod sizing is similar to the default deployment. 

 

 

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-7351EEFF-4EF0-468F-A19B-6CEA40983D3D.html
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Use Cases 

FL is considered as one of the most exciting technologies nowadays. Many industries and companies are beginning to incorporate 
FL into their work cycles. More use cases are surfaced when FL is getting more mature. These use cases can be categorized as the 
following two types of federated learning: 
 
Vertical Federated Learning, also known as heterogeneous federated learning, applies to the cases that two data sets share the 
same sample ID space but differ in feature space. Vertical federated learning usually happens in collaboration between 
organizations from different industries.  

 
Figure 25. Vertical Federated Learning4 

 
The typical use cases of vertical federated learning are: 

• Auto insurance pricing: FL in the prediction of auto insurance pricing gathers the facts of consumer, vehicle, and behaviors 
from different data resources for modeling. The predictive pricing accuracy has been improved to over 90% while 
comparing to the traditional vehicle-based pricing strategy. 

• Credit-risk management: The credit-risk management for small and micro enterprises (SME) is high cost and low accuracy 
due to the lack of enough credit records of SMEs. By using FL to establish a multisource data fusion mechanism to include 
transaction data, taxation, industrial and commercial data, and other SME data to assist financial institutions in obtaining 
data in more dimensions to enrich their feature systems. After applying the FL, there is a 12% AUC improvement compared 
with the traditional credit checks method with a much lower cost. 

• Smart retail: To keep up with the business transformation strategies, retail enterprises can provide personalized product 
services in a legal and compliant manner to expand sales channels. In addition to improving the user experience, the 
solutions lay a foundation for precision marketing. The FL smart labor allocation system provides a complete platform that 
covers the entire labor allocation process and solves the problem of data asymmetry between the supply and demand of 
labor. In future, the FL models can further diversify into industries such as manufacturing, warehousing and logistics, 
import/export, and other vertical areas. 

 
Horizontal Federated Learning, also called homogenous federated learning, is the scenario that data sets share the same feature 
space but are different in samples. In this case, the organizations are in the same type of industry. The data can be images, video 
files, audio files, and other unstructured data, which share the same features. 

 
4 This Vertical Federated Learning concept and diagram is quoted from the Federated Machine Learning: Concept and Applications. 

https://arxiv.org/abs/1902.04885
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Figure 26. Horizontal Federated Learning5 

 
 
The typical use cases of horizontal federated learning are: 

• Smart security: By using FL and multi-community data to build an interconnected and intercommunicated security model, 
which establishes a smart security network with overlapping dimensions. FL smart security ensures data privacy while 
integrating user traffic and other data across multiple communities. The solution delivers all-weather monitoring of the 
public and secure areas, early prediction, timely detection, along with early warning and post-incident tracing to enhance 
community security.  

• Healthcare assistant: FL smart medical care empowers the treatment in clinical diagnosis and other subfields while 
protecting patient privacy. The applications of federated learning for smart medical care scenarios develop high-quality 
medical resources shared by regions with fewer resources and improve the capacity and quality of medical services. 

• Smart advertising: FL smart advertising enables the enhanced integration of multiparty data to develop user insight and 
targeting strategies and preserve the privacy of the individual user. The differential privacy technology in federated 
learning obfuscates data so that other parties can only view a generalized summary without identifying any individual in the 
data. FL advertising technology reduces delivery costs, improves advertiser ROI, and enables the utilization of funds for 
product innovation and R&D. For ad providers, it improves user click-through rate (CTR) and conversion rate and optimizes 
link efficiency to achieve mutually beneficial cooperation between all parties. 

• Autonomous driving: Using horizontal federated learning to integrate the data from the cameras, ultrasonic sensors, radars 
(mmWave and LIDAR), and other devices of different vehicles accelerates the deployment of scenario data and improves 
the model robustness. Horizontal FL driving technologies accelerate perception training while protecting the privacy of 
drivers and passengers. In future, vertical FL will integrate with IoT, CVIS, 5G, and other new technologies to constitute a 
smart traffic ecosystem that is efficient, secure, and low-cost. 

Conclusion 
VMware Cloud Foundation with Tanzu automates infrastructure provisioning and scaling so that developers can focus on building 
and deploying apps while infrastructure teams become more strategic, maintaining centralized visibility and control of their global 
cloud infrastructure and operations. Developers consume cloud resources such as Kubernetes clusters, disks, and networks using 
familiar Kubernetes CLI and API tools, while the admins can manage systems at scale through vCenter Server. It suits the demands 
of modernized federated learning workloads. 
 
KubeFATE on VMware Cloud Foundation with Tanzu simplifies the deployment and management of federated learning systems and 
workloads. KubeFATE  to provision and manage the industrial grade FL clusters on 
demand and to run FL workload according to their business needs.  
  

 
5 This Horizontal Federated Learning concept and diagram is quoted from the Federated Machine Learning: Concept and Applications. 

https://arxiv.org/abs/1902.04885
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Appendix 
Figures  Resource usage of Tanzu Kubernetes Grid cluster 

• CPU and memory usage of a host running Spark worker 
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Memory usage 
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• CPU and Memory usage of a host running non-spark components. 
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Components Table 

Component Name Component's Role 

FATE Flow Service The FATE Flow service is the entry point of the FATE cluster, accepting requests 

from a user. It also schedules jobs and manages job status among different FATE 

clusters. 

MySQL In a FATE cluster, the MySQL service is used to persist metadata for jobs. 

Nginx In a FATE cluster, the Nginx service is used to transfer controlling messages between 

FATE clusters. 

Pulsar In a FATE cluster, the Pulsar service is used to transfer encrypted gradients, model 

weights between FATE clusters during training. 

Juypter Notebook The Jupyter Notebook is used to build and run jobs for a user. 

FATE Board The FATE Board is used to visualize the status of the federated learning workload. 

Spark Cluster In a FATE cluster, the Spark is used to run the computing workload of a federated 

learning job. 

HDFS Cluster In a FATE cluster, the HDFS stores the training dataset and intermediated results. 
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