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Executive Summary 
Large advances have been made in hardware and every level of the software stack since the virtualized Hadoop 
tests published in April 2013. This paper shows how to take advantage of these advances to achieve maximum 
performance. The cluster size remains at 32 two-processor 2U hosts; however, the processor, memory, network, 
and storage capabilities are all roughly doubled from those reported in the earlier paper. The performance of 
native and several VMware vSphere® 6 virtualized configurations were compared using the same TeraSort 
application suite as before. It was found that the more powerful hosts give a larger advantage to multi-VM per 
host configurations: virtualized TeraSort is now up to 12% faster than the optimized native configuration. The 
apples-to-apples case of a single virtual machine per host again shows performance close to that of native Linux. 
The origins of the improvements are examined and recommendations for optimal hardware and software 
configurations are given. 

Introduction 
Apache Hadoop provides a platform for building distributed systems for massive data storage and analysis [1] 
using a large cluster of standard x86-based host servers. It uses data replication across hosts and racks of hosts 
to protect against individual disk, host, and even rack failures. A job scheduler can be used to run multiple jobs of 
different sizes simultaneously, which helps to maintain a high level of resource utilization. Given the built-in 
reliability and workload consolidation features of Hadoop, it might appear there is little need to virtualize it. 
However, there are several use-cases that make virtualization of this workload compelling: 

• Enhanced availability with capabilities like VMware High Availability (HA) and Fault Tolerance (FT). The
performance implications of protecting the Hadoop controller daemons with FT were examined in a
previous paper [2].

• Easier deployment with vSphere tools or vSphere Big Data Extensions (BDE), leading to easier and
faster datacenter management [3].

• Sharing resources with other Hadoop clusters or completely different applications, enabling better
datacenter utilization.

In addition, virtualization enables new ways of integrating Hadoop workloads into the datacenter: 

• Elasticity: The ability to quickly grow a cluster as needs warrant, and to shrink it just as quickly in order
to release resources for other applications.

• Multi-tenancy: Multiple virtual clusters can share a physical cluster while maintaining the highest levels
of isolation between them.

• Separating roles: Greater security within each cluster can be achieved by separating the computational
(TaskTracker) and data (DataNode) parts of Hadoop into different machines, each with its own access
authorization. However, data locality (and thus performance) requires them to be on the same physical
host, leading to the use of virtual machines. This also yields more flexible elasticity, in that the
computational and data roles can be scaled differently as needed.

A detailed discussion of these points is beyond the scope of this paper, but can be found elsewhere [4]. As 
compelling as the current and potential future benefits of virtualization are for Hadoop, they are unlikely to be 
realized if the performance costs are too high. The focus of this paper is to quantify these costs and to try to 
achieve an understanding of the implications of alternative virtual configurations. This is done through the use of 
a set of well-understood, high-throughput benchmarks (the TeraSort suite). While these applications may not be 
generally representative of production clusters running many jobs of different sizes and priorities, they are at the 
high end of infrastructure resource usage (CPU, memory, network, and storage bandwidth) of production jobs. 
As such, they are good tools for stressing the OS, virtualization, and resource layers. The ultimate goal is for a 
Hadoop administrator to be able to create a cluster specification that enables all the above advantages while 
achieving the best performance possible. 
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One of the big advantages of virtualizing a distributed workload like Hadoop is the opportunity to manage the 
scale-up/scale-out trade-offs. In a native environment, the size of each node in the cluster is fixed by the available 
hardware and the system administrator must tune the application to that size. Even when the administrator is 
willing to do this, some distributed applications have been designed to scale-out on small nodes and do not scale-
up well enough to use all the capabilities of modern resource-dense servers [5]. In a virtualized environment a 
smaller machine size may be configured if that allows the application to be more efficient. Such sizing flexibility 
also enables the administrator to create a standard VM template that bin-packs well onto hosts of various sizes. 
For instance, if four-socket hosts were added to a cluster of two-socket hosts, it would be very reasonable to 
simply run twice as many of the same VMs on the larger hosts as proved to work well on the smaller hosts. While 
this ability is extremely important for applications that do not scale up well, it is still important for modern 
applications such as Hadoop that have been designed for both kinds of scaling since it allows both hardware 
utilization and application efficiency to be optimized. 

An early paper on virtualized Hadoop performance tests on a small cluster [6] included discussions of 
motivations for deploying Hadoop, its architecture, and reasons for virtualizing a Hadoop cluster. A paper 
published in April 2013 using 32 hosts tested several configurations and presented models explaining the 
performance advantage of configuring multiple small virtual machines (VMs) per host [7]. 

Configuration 
Hardware Overview 

The hardware configuration is shown in Figure 1. A cluster of 32 servers were connected in a flat network 
topology. Each host was equipped with two Intel Xeon E5-2680 v2 “Ivy Bridge” 2.8GHz ten-core processors, 
256GiB memory, and 23 internal 600GB 10K RPM SAS disks. The servers were each connected to two Extreme 
Summit 10GbE switches using a two-port Intel adaptor. 

Note: Throughout the paper, the “i” in KiB, etc., signifies 1024-based counting, otherwise prefixes are factors of 
1000. 

Figure 1. Cluster hardware configuration. 

The internal disks were connected to a PCI Express 3.0 x8 storage controller, the LSI SAS 9207-8i, which has a 
theoretical throughput of 4 GB/s. With earlier-generation controllers, the aggregate throughput using a simple 
storage microbenchmark can reach the controller limit. While throughput generated by the Hadoop applications 
described here can be very high, the storage controller was never a bottleneck. 
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Power states were enabled in the BIOS, which allows power consumption to drop by a factor of two when the 
cluster is idle. Intel Hyper-Threading (HT) Technology was enabled and used by the hypervisor or native 
operating system in all cases. 

Complete hardware details are given in “Appendix A: Configuration.” 

System Software 

SUSE Linux Enterprise Server (SLES) 11 SP3 x86_64 was used as the guest operating system in the virtual 
machines, which were run on VMware vSphere 6. The same OS was installed natively and configured as 
identically as possible as the virtual machines. The VMware Tools package was installed in each VM and its pvscsi 
and vmxnet3 drivers were used. Sun Java 7 is recommended for Hadoop; version 1.7.0_55 was used here. A few 
Linux kernel tunables were increased in order to handle more files and processes (these are listed in “Appendix A: 
Configuration”). 

Hypervisor tuning was limited to network and storage driver options (see below) and virtual machine migration 
parameters. One way to avoid VM migration between the two NUMA nodes on a host is to affinitize (or “pin”) 
each VM to a NUMA node. However, this introduces scheduling inflexibility and can be error-prone. Instead, the 
hypervisor scheduler was allowed to place the VMs automatically and the NUMA scheduling parameters tuned to 
reduce the migration aggressiveness, while still allowing migration if there is a large resource imbalance. This 
strategy ensures 100% memory locality for the multi-VM per host platforms. For the single-VM platform, virtual 
NUMA (the default) ensures the guest OS sees the same NUMA topology as the native OS. 

Complete hypervisor and operating system details are given in “Appendix A: Configuration.” 

Local Storage 

Two of the 23 internal disks in each host were partitioned and used to store the virtual machine images and the 
native OS. 

The ESXi hypervisor was PXE-booted from a network repository. ESXi has a memory-based file system and thus 
does not create any storage I/O itself. During the tests, the I/O to these two root disks consisted almost 
exclusively of Hadoop logs and job statistics. The other 21 disks were configured as individual disks (that is, there 
was no striping or RAID), commonly known as a “JBOD” configuration. Twenty were used for Hadoop data (and 
referred to here as “data disks”), while the remaining one was kept as a spare. 

The data disks were passed through to the virtual machines using physical raw device mappings (known as 
pRDM). This allowed the use of the same storage for native and virtual platforms without reformatting, thus 
eliminating a potential source of differences (as well as the small CPU cost of using VMFS). pRDM for local disks is 
not enabled by default in the vSphere UI. This is related to being able to see the UID of the disks; refer to the 
Knowledge Base articles [8,9] for support and configuration details. 

A single aligned partition was created on each data disk and formatted with XFS. XFS supports “allocation 
groups,” which enables greater metadata parallelism and better performance for many use cases. However, for a 
storage pattern consisting of mostly large I/Os to a partition on a single disk, a single allocation group was found 
to yield higher throughput and much better predictability (that is, similar performance for all disks across the 
cluster). The latter is very important for cluster workloads that contain barriers where the application has to wait 
for the slowest cluster member to finish before being able to proceed to the next phase. A single allocation group 
in XFS was configured during file system creation with the option “-d agcount=1”. Results from storage 
microbenchmark tests showing the effect of agcount are given in “Appendix B: XFS Storage Performance.” 

PVSCSI was chosen for the virtual SCSI controller in the VMs. The mpt2sas storage driver was upgraded to 
version 19 for the native OS. Version 19 is included with vSphere 6. To increase efficiency on both platforms the 
number of interrupt vectors was set to 1 using the driver parameter max_msix_vectors=1. More vectors are 
needed only for very high IOPs workloads with small I/Os. 

Complete storage details are given in “Appendix A: Configuration.” 
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Networking 

By default, vmxnet3 enables multi-queue for both transmit and receive. However, very few workloads require this 
capability; typically multi-queue is needed when extremely high packet rates of small packets are generated. For 
others, including Hadoop, it is recommended that vmxnet3 be configured with a single queue for better 
efficiency. Changing the number of queues requires installing the vmxnet3 version provided by VMware Tools. 

For the native OS, a recent ixgbe network driver from Intel was installed. This allowed configuring a single queue 
(driver option MQ=0). This driver has LRO enabled by default. In the ESXi ixgbe driver, LRO was enabled and a 
single queue was configured (VMDQ=1). 

The default interrupt throttling rate of 16000 in both the native and ESXi ixgbe drivers was doubled to 32000 for 
better network latency. This helped throughput for the present tests despite the higher CPU costs, but should 
only be considered a starting point for other applications and hardware configurations since the latency-CPU 
trade-off is likely to be different. 

The analogous change was not found to be helpful for vmxnet3. Some extra efficiency was gained by pinning 
network interrupts in the native and guest OSes: the interrupts corresponding to the two NICs were pinned to 
separate CPUs in the native, 1-VM per host, and 2-VM per host platforms, and to a single CPU for all the platforms 
with four or more VMs per host. 

A vSwitch was configured for each of the two 10GbE NICs on each host. Each NIC was connected to a physical 
10GbE switch, as shown in Figure 1. Two vNICs were created for each VM, one on each vSwitch. That is, both 
physical NICs were fully virtualized for all VMs.  

A bonding device was created from the two Ethernet devices in both the guest and native OSes. This device is 
capable of theoretically delivering up to 20 Gb/s throughput to a single IP address in any one VM, or delivering 
similar throughput split among all VMs on the host simultaneously. The default bonding mode is designed for a 
single stream of traffic. When multiple streams are present (as for Hadoop), mode=2 (balance-xor) is much 
more efficient and delivers higher throughput. In addition, transmit_mode=layer3+4 was found to work 
optimally for both native and virtual configurations. 

Jumbo frames (MTU=9000) was configured for both native and virtual network devices. The physical switches 
have jumbo frames enabled by default; this needs to be checked in general. End-to-end transmission of jumbo 
frames was verified with ping. 

Complete networking details are given in “Appendix A: Configuration.” 

Virtual Machines 

Five different virtual platforms were tested. Each comprised one, two, four, ten, or twenty virtual machines per 
host, for a total of up to 640 virtual machines in the cluster. On each host all 40 logical processors, 20 Hadoop 
data disks, and 241GiB (out of 256GiB available) memory were evenly divided among the desired number of 
virtual machines (Table 1). That is, the CPU and disk resources were exactly-committed and memory was slightly 
under-committed. All VM memory was reserved and preallocated. These five platforms differ only in how the 
workload is decomposed into worker machines. Ideally there should be no difference in performance among 
them. However, hardware and application characteristics (discussed below) lead to substantial differences and an 
optimal choice. 

The ESXi scheduler will place both the CPU and memory of a VM on a single NUMA node (a processor and 
associated memory for the hosts used here) if the VM is small enough to fit. This ensures that the application 
running in the VM accesses only relatively fast “local” memory, which in turn is the major source of the good 
performance found for the multi-VM per host platforms. The native and 1-VM per host platforms cannot avoid 
some amount of remote memory accesses [7]. However, there is a subtlety for the 2-VMs per host configuration. 
By default, both VMs are scheduled across both NUMA nodes since the number of vCPUs of each VM is greater 
than the number of physical cores on one NUMA node. For fully-committed hosts (as here) it is often beneficial to 
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set numa.vcpu.preferHT=true for each VM. This option instructs the scheduler to count logical processors 
as cores with the result that each of the two VMs is seen to fit on a NUMA node. 

Storage was configured as pass-through, and the two physical NICs were fully virtualized as described above. 

Other virtual machine details are given in “Appendix A: Configuration.” 

Hadoop 

The Cloudera CDH 5.3.0 distribution of Apache Hadoop was installed in all virtual and physical OSes. This 
distribution supports the second version of the Hadoop File System (HDFS) and both versions 1 and 2 of 
MapReduce. Version 1 of MapReduce (MR1) was used here since it is more widely used and generally considered 
to be more stable. 

Parameter Tuning 

For best performance, the HDFS block size was increased from the 64MiB default to 256MiB. The larger block size 
increases application efficiency by creating fewer but longer-running Hadoop tasks. The trade-off is that a larger 
block size needs more memory and may make balancing the workload across a large cluster more difficult for 
small datasets. 

Less than half of OS memory was used for all the Java heaps in the task JVMs (each task runs in a separate JVM). 
The maximum heap sizes were set to 800MiB and 1200MiB for map and reduce task JVMs, respectively. Best 
performance was achieved by running at least one map task plus one reduce task per physical core. However, the 
optimum depends on the platform (native or number of VMs). 

Other Hadoop parameters were changed from their defaults in order to further increase efficiency and are listed 
in “Appendix A: Configuration.” Note that a side effect of configuring for best absolute performance is that there 
are fewer high-latency operations that can “hide” overhead (for example, virtualization, OS, or device latency) 
and therefore this overhead is more fully exposed as increased elapsed time. 

Controller Daemons 

A common recommended practice is to run the NameNode, Secondary NameNode, and JobTracker controller 
daemons on their own physical machines. For large clusters, dedicating such resources is necessary for 
performance reasons. This is also a good idea for enhanced reliability of smaller production clusters. However, for 
well-tuned clusters of small to moderate size, these daemons take very little CPU or memory, so dedicating entire 
hosts to them is generally wasteful of resources. On the other hand, overall cluster performance depends on low-
latency communication between the worker nodes and the controller daemons.  

Virtualization increases resource utilization by giving the administrator the flexibility to size each virtual machine 
according to its needs and to run the appropriate number of them on each host. An example of this was 
described in the Fault Tolerance paper [2] where the NameNode and JobTracker were run in dedicated virtual 
machines which were placed on hosts with fewer worker nodes. In the previous performance paper [7], the three 
controller daemons were run in three of the worker nodes to maximize resource utilization. Here, in order to 
optimize controller daemon latency, the NameNode and JobTracker were run in dedicated VMs on separate hosts 
for all the multi-VM per host configurations (for 20 VMs, an additional VM on each of these two hosts was not 
used as a worker node and kept idle). These two daemons were run in a single dedicated machine for the native 
and single-VM per host configurations.  

Dedicating resources to the NameNode allows it to run single-threaded 
(dfs.namenode.handler.count=1), which is also a work-around for the multi-threaded random number 
generation algorithm used for selecting DataNodes for replication (HDFS-7122 [10]). Added benefits are that the 
worker nodes execute more uniformly across the cluster and run-to-run variation is much smaller than in the 
April 2013 paper [7]. In all cases, the Secondary NameNode was run in a worker node since it requires negligible 
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CPU and is not latency-sensitive. The Hadoop client has similar properties and was run on the NameNode 
machine. 

Replication 

The tests presented here were performed with a replication factor of three for all HDFS storage, as is commonly 
recommended. This means each original block is copied to two other worker nodes. However, when multiple 
virtual machines per host are used, there is the undesirable possibility from an availability perspective that two or 
even three of the replicas of a given block are in different virtual machines on the same host. Hadoop manages 
replica placement based on the network topology of a cluster. Since Hadoop does not discover the topology 
itself, the user needs to describe it in a hierarchical fashion as part of the input (the default is a flat topology). 
Hadoop uses this information both to minimize long-distance network transfers and to maximize availability, 
including tolerating rack failures. 

Hadoop Virtualization Extensions 

Virtualization adds another layer to the network topology that needs to be taken into account when deploying a 
Hadoop cluster. With multiple DataNodes per host, it is important to ensure that data availability is not 
compromised. This could happen if two replicas of a block are placed on separate DataNodes on one host. 
Virtualization-aware network topology has been recently added to Apache Hadoop. Hadoop Virtualization 
Extensions (HVE) [11,12] enables Hadoop to be fully aware of the virtual topology by introducing the “node group” 
layer. Typically, a node group comprises the DataNodes running on one host. HDFS will then place all replicas of 
one block in separate node groups. In CDH 5.3.0, this feature became fully supported. 

There is only one physical rack (in terms of network topology) for the cluster used here, so there is no concern 
about rack availability. This allows the specification of a virtual rack topology. The worker nodes were organized 
into 16 racks with 2 node groups each. The node groups with the controller daemons (JobTracker and 
NameNode) were placed in the same rack. The advantage of this topology is that each rack has a homogeneous 
set of node groups (that is, all node groups in a rack have the same number of worker nodes). The second and 
third replicas of a block are placed in different node groups of a single rack and this homogeneity ensures a 
uniform distribution of replicas across worker nodes. 

Compression 

Compression with the Snappy codec was enabled for the intermediate map output data (but not for HDFS data); 
the amount of storage for such data and the network traffic for the shuffle phase was reduced by almost a factor 
of five. Some CPU is needed for the compression algorithm but overall performance was noticeably increased. 

Hadoop Benchmarks 
Several example applications are included with the Cloudera distribution. Three of these are often run as standard 
benchmarks: TeraGen, TeraSort, and TeraValidate. These are collectively referred to as the TeraSort suite. The 
maximum number of simultaneous map and reduce tasks (slots) for these applications are given in Table 1. The 
number of slots (as well as the other Hadoop parameters) was tuned for each platform to achieve minimum 
elapsed time for the sum of the three applications. Configuring one slot per data disk gives close to optimal 
performance; only very slightly better performance was achieved on some platforms with more slots. TeraSort 
dominated the tuning since it has by far the longest elapsed time. The map and reduce slots are managed 
separately in MR1, so the number of slots shown applies to both kinds of tasks. This is opposed to version 2 of 
MapReduce, where the slots are combined into a single pool and managed by YARN [17]. The latter approach is 
often easier to manage, especially for clusters that run many small jobs. However, the former approach allows 
map tasks and the shuffle part of the reduce tasks to run simultaneously in a way that enables the output of maps 
to “pipeline” into the shuffle by way of the Linux buffer cache. 
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PLATFORM WORKER 
NODES 

RESOURCES PER WORKER NODE MAP/REDUCE SLOTS 
TERASORT MAP 

TASKS, 
30TB DATASET CPUs/ 

vCPUs 
Memory, 

GiB 
Data 
disks 

Cluster Worker 

Native 31 40 256 20 682 22 111848 

1 VM 31 40 241 20 620 20 112220 

2 VMs 62 20 120.5 10 682 11 111848 

4 VMs 126 10 60.25 5 756 6 111888 

10 VMs 318 4 24.1 2 954 3 112572 

20 VMs 636 2 12.05 1 636 1 111936 

Table 1. Worker node resources, cluster and per-worker number of map and reduce slots, total number of TeraSort map 
tasks. Number of VMs is per host. 

This set of applications creates, sorts, and validates a large number of 100-byte records. Each record comprises a 
10-byte key (which the sort is based on) and 90 bytes of data. The applications do considerable computation,
networking, and storage I/O and are often considered to be representative of large batch Hadoop workloads.
Results are reported for 300 billion records, which is referred to as the “30TB” dataset. This is over half the
maximum size that can be run on this cluster based on disk capacity. For the replication and compression
configuration used here, TeraSort requires raw disk space about 6.5 times larger than the dataset size (three
copies each of the input and output, plus compressed intermediate data). Note that the total memory of the
cluster is only 8TiB, which eliminates the possibility of caching the dataset in memory. Results from tests with
smaller dataset sizes are also reported for “weak” scaling analyses and to enable comparisons with other
published tests.

TeraGen creates the data and is similar to TestDFSIO-write (a commonly-used storage test application) except 
that significant computation is involved in creating the random data. The map tasks each write a “partition” 
(which is just an HDFS file, not to be confused with a disk partition) directly to HDFS so there is no reduce phase. 
All the partitions are exactly the same size. Writing to HDFS requires a large amount of network bandwidth for 
replication: the number of bytes transmitted and received are both twice as great as the dataset size. 

TeraSort does the actual sorting, reading the data generated by TeraGen from HDFS and writing the sorted data 
back to HDFS in a number of partitions. The default replication factor for the output of this application is one, but 
this is overridden so that there are three copies of all input and output blocks (which is more typical of 
production practice). The first of two computational phases is referred to as “map-shuffle.” For the largest 
dataset, over 100 “waves” of map tasks are performed in each map slot, where each task sorts one block. The 
map task output is always spilled to disk, but if there is enough memory available and the reduce tasks are 
configured to start early (see the MapReduce “slowstart” parameter), then the TaskTrackers can shuffle map 
output from the Linux buffer cache rather than reading it from disk. The overall shuffle can then complete within 
30 seconds after the last map task in most cases. For timing purposes the end of this phase is when the last map 
task finishes. In the “reduce-merge” phase the shuffle is finished, the reduce-sort operation is performed (a few 
seconds), and then each reduce task reads the shuffled data, merges it, and writes the result to an output 
partition. The boundaries of each output partition (minimum and maximum key values) are determined at the 
start of the application by sampling the data. Increasing the number of samples from the default of 100,000 to 
2,000,000 yields far more uniformly-sized output partitions (and consequently a balanced load across the 
reduce tasks) while increasing the cost of the sampling to only about five seconds. 

TeraValidate reads all the sorted data to verify it is correct (that is, it is in order). The map tasks perform this 
verification for each output partition independently, and then the single reduce task checks that the last record of 
each partition comes before the first record of the next one. All tests were validated successfully. 
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Benchmark Results 
Shown in Table 2 and Figure 2 are the measured performance data for the three benchmarks on the native and 
three virtual configurations for the 30TB dataset. Each case was repeated several times with machine reboots 
between, with the best run shown. Run-to-run variation is about 1% of the mean for TeraGen and TeraSort but 
greater for TeraValidate. In the next sections, the elapsed times and metrics from various performance tools are 
examined with the goal of understanding some of the performance effects of virtualization. 

PLATFORM 
ELAPSED TIME, S TERASORT PHASES, ELAPSED TIME, S 

TeraGen TeraSort TeraValidate map-shuffle reduce-merge 

Native 1072 3825 697 2616 1209 

1 VM 1134 4292 728 2979 1313 

2 VMs 1077 3568 723 2343 1225 

4 VMs 1072 3355 695 2151 1204 

10 VMs 1098 3460 649 2195 1265 

20 VMs 1289 3562 633 2083 1479 

Table 2. Elapsed times for the 30TB dataset. Number of VMs is per host. 

Elapsed Time 

The elapsed time results show that while a few of the virtualized tests are significantly slower than the 
corresponding native tests, most of the tests run on the multi-VM per host platforms are faster. Understanding the 
reasons for these differences, together with having knowledge of application resource needs, will lead to an 
optimal design for a Hadoop platform.  

TeraGen 

In the April 2013 paper [7], the throughput limitation of the storage controller led to all the platforms having 
similar performance. With a current generation controller, this is no longer a problem (at least not for hard disks, 
flash drives are another matter). The result is a much higher sustained throughput (over 2500 MiB/s per host), 
and a greater sensitivity to which platform is used and to configuration parameters. 

A single task slot for the 20-VM per host platform is the only choice since running two map tasks simultaneously 
per worker node would be too many. This lack of flexibility in tuning the load per worker is a notable drawback of 
configuring a large number of very small VMs. However, the bulk of the extra elapsed time for this platform is due 
to how replication works within HDFS. The destination nodes for the second and third replicas are chosen 
randomly (under certain constraints). With a larger number of DataNodes, it becomes more likely that at a 
particular point in time some DataNodes will be receiving several replicas, while others will be receiving none. 
That is, while the storage throughput due to writing the first replica is evenly distributed across the cluster for all 
platforms, successive replicas lead to an increasingly uneven distribution with more DataNodes. The trend is 
similar for total capacity utilization. This issue is noted in HDFS-7122 [10], and discussed further in the “Single 
Replica” section below. 

These effects are just noticeable in the 10-VM per host platform. With a more appropriate number of map task 
slots and a smaller replication effect, the differences from the native platform for the 2-, 4-, and 10-VM per host 
platforms are no more than 2.4%. There is sufficient CPU available and storage is essentially pass-through from 
the guest OS to the physical disks, so this remaining small cost is mostly due to the extra network latency from 
the virtualization layer. Tuning the host and guest network drivers as described above helps to minimize this 
latency. 
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Figure 2. Ratio of elapsed times on virtualized platforms to the native platform. Number of VMs is per host. Lower is better. 

TeraSort 

The large dataset size and relatively long execution time help to balance the work across the cluster and make this 
the most reproducible benchmark in the suite. For instance, as noted above, the 30TB dataset comprises about 
112,000 blocks, so each map task slot processes at least 118 blocks on average. This is more than large enough to 
minimize the “long pole” effect of waiting for a single task to finish at the end. The long pole effect is noticeable 
for the 1TB and 3TB cases discussed in the “Dataset Size” section. 

The apples-to-apples comparison of the single-VM per host platform with the native platform shows that the 
former has a 12% greater elapsed time, which is the same as found previously [7]. This difference can be broken 
down into approximately equal software and hardware components. Most of the former comes from the costs of 
virtualizing network and storage I/O, with the rest due to scheduling and other responsibilities of the hypervisor. 
Most of the latter is due to managing memory pages. This is done in hardware using the Extended Page Tables 
(EPT) facility on Intel processors [13]. 

EPT enables the management in hardware of both host and guest memory pages, but requires a two-level page 
table walk on TLB misses. The use of large memory pages (2MiB) at both levels is essential to minimize EPT costs. 
Large pages are used automatically by ESXi, Linux (Transparent Huge Pages), and Java, so normally no 
configuration is necessary. However, if memory is over-committed in the hypervisor (after taking into account the 
memory requirements of the hypervisor itself), then ESXi will leave the “high” memory state (shown in the 
memory screen of esxtop) and start to break host large pages into small pages (4KiB) in order to apply memory
management techniques that allow the VMs to continue to run. While this is a critical capability in many scenarios, 
memory pressure is avoided and best performance is achieved by allocating only up to 94% of host memory to 
VMs. 

All of the multi-VM per host platforms are significantly faster than native. The optimum is four VMs, which is 12% 
faster than native and 22% faster than the single-VM per host platform. This is despite the fact that all of these 
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cases still bear similar I/O and EPT costs as the single VM case. The reasons for this speedup were described in 
the April 2013 paper [7] and are extended here. The optimal number of VMs was also found to be four in that 
study, but this resulted in a much smaller 2% elapsed time reduction compared to native. In Appendix C of the 
April 2013 paper [7], it was shown that significant storage efficiency is gained by having more DataNodes with 
fewer disks per DataNode. However, this effect applies to HDFS reads or (as noted above) single-replica writes. 
So, for the 4-VM per host platform, the reduce-merge phase was faster than native in the previous paper [7] with 
a single replica for the output of TeraSort, while it is somewhat slower than native here with three replicas. 

Most of the speedup seen in Figure 2 is due to NUMA effects. For all the multi-VM per host platforms, the ESXi 
NUMA scheduler puts all of the CPU and memory of a given VM on a single NUMA node. With the ESXi NUMA 
parameters used here, the VMs never migrate between NUMA nodes. The result is that no VMs on a host ever 
access memory on the “remote” NUMA node (that is, VM memory accesses are always 100% local). All of this was 
also true for the previous tests [7], but the speedup here over the 1-VM per host platform is much greater. The 10-
core processors have two to three times the processing power and almost double the local memory bandwidth 
compared to the older quad-core processors, but only 25% more interconnect (QPI) bandwidth between the 
processors. Thus a larger fraction of interconnect bandwidth is consumed, which drives up remote memory 
latency. For both the native and 1-VM per host platforms, this fraction was measured previously to be 19%, and 
now it is estimated to be 27%. 

It is possible that remote memory accesses will effectively become increasingly expensive in the future. For 
example, the next-generation Intel “Haswell” processors have up to 18 cores, but the interconnect bandwidth 
increases by just 20%. 

Memory latency has the largest impact on application performance when the CPU is fully utilized, as in the map-
shuffle phase. Table 2 shows that the multi-VM per host platforms are up to 28% faster than the single-VM 
platform for this phase, compared to 12% faster previously. The increase in elapsed time for the map-shuffle phase 
of the single-VM per host platform compared to native drops to 14% from 17% previously, most likely because the 
I/O load (and the associated virtualization costs) during this phase is much lower since compression was not used 
before. 

The reduce-merge phase as a workload is very similar to TeraGen. Both are dominated by writing three replicas of 
every block to HDFS and the associated network traffic. The reduce-merge phase has the extra work of reading 
compressed intermediate data from disk. For all platforms, the reduce-merge phase requires a consistent 12-16% 
greater elapsed time than TeraGen. 

TeraValidate 

This is a simple sequential, read-only workload with moderate CPU utilization. In theory, it should not require any 
network bandwidth, as was the case previously [7]. Here it drives significant networking and the storage 
performance appears to be not as good as it could be. The reason for both of these observations is that each map 
task reads a whole HDFS file (TeraSort output partition) instead of just a single block. The first copy of a partition 
resides on the DataNode where it was created. The blocks of the second and third replicas are scattered over the 
rest of the cluster. When a map task reads a file, there is no preference for which replica is chosen, except that the 
first block is local. With a single replica, if the first block is local the rest of the file will be too. With more replicas, 
the rest of the file may be on various remote DataNodes. In particular, for three replicas, up to 2/3 of the total data 
read may be from remote DataNodes. Various fixes have been proposed (for example, block affinity groups, 
optimal selection of replica) to ensure that if an entire file is read from HDFS by one map task, all of its blocks will 
be (normally) local. For now, creating a map task that reads an entire HDFS file should be considered an 
inefficient (albeit functionally correct) programming practice. Since the amount and pattern of remote data reads 
is not very repeatable for the current tests, the run-to-run variation is larger than the other applications, about 5%. 
The strong trend of reduced elapsed time with increasing number of smaller VMs per host is real, but not related 
to remote data. Instead, it is almost certainly due to the partitioning effect discussed above and in the April 2013 
paper [7]: it is more likely that all of the disks managed by a DataNode can be kept doing useful work when there 
are fewer disks per DataNode. The trend is also seen for the map-shuffle phase of TeraSort, for apparently the 
same reason. 
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Single Replica 

The origin of some of the above performance differences between the 4-VM and 20-VM per host platforms is 
confirmed by specifying a single replica for the output of both TeraGen and TeraSort. The elapsed time results for 
these cases and the native platform are shown in Table 3. Replication is, of course, important for data availability, 
but it does not in this case help performance, as is often claimed. This is intuitive for the write workloads 
(TeraGen, reduce-merge), but it is also true for read workloads for several reasons. 

• First, in a well-configured cluster, upwards of 99.8% of TeraSort map tasks are data-local, so there is little
opportunity for increased locality with multiple replicas.

• Second, for applications like TeraValidate that read a whole HDFS file, the file will be on a single
DataNode, which makes it possible for the reads to be 100% local.

• Third, when less data has been written to hard disks, the reads will tend to come from the outer and
faster part of the disks.

• Finally, it is possible to achieve an “embarrassingly parallel” configuration for the special case where
each map task reads a whole HDFS file, the TaskTrackers each run a single map task, and the DataNodes
each manage just one physical disk.

The last point results in each task reading from a dedicated disk completely independent of all other tasks. This 
happens for TeraValidate with a single replica on the 20-VM per host platform. Each disk sustains 160 MiB/s and 
the cluster achieves 100,000 MiB/s for nearly the entire duration of the test. For comparison, the maximum read 
throughput using a microbenchmark to the fastest (outer) part of one disk is 190 MiB/s (“Appendix B: XFS 
Storage Performance” shows write performance; read performance is about 1% greater). The elapsed time is 39% 
less than the 4-VM per host platform since, in that case, multiple map tasks on a given worker node are often 
reading data from the same disks while other disks are idle. In general, a DataNode could choose the optimal disk 
for writing a new data block, but this is rarely possible for reads. 

PLATFORM 
ELAPSED TIME, S TERASORT PHASES, ELAPSED TIME, S 

TeraGen TeraSort TeraValidate map-shuffle reduce-merge 

Native 883 3216 600 2318 898 

4 VMs 906 2887 515 1962 925 

20 VMs 919 2933 312 1998 935 

Table 3. Elapsed time for the 30TB dataset with a single HDFS replica. Number of VMs is per host. 

With three replicas, Table 2 shows the elapsed time for TeraGen is 20% greater for the 20-VM per host platform 
compared to the 4-VM per host platform. This drops to about 1% with a single replica (Table 3). The reduce-merge 
phase of TeraSort has almost an identical pattern. Therefore the replication algorithm appears to lose some 
uniformity when scaling to a large number of DataNodes (as opposed, for example, to the platform being unable 
to efficiently support more worker nodes). This is supported by examining the distribution of the total number of 
blocks written by each DataNode for TeraGen with three replicas, which is approximately proportional to the total 
write load for that DataNode. For the 4-VM per host platform, the maximum number of such blocks is 2774; this is 
only 4% greater than the average of 2664. For 20-VM per host, the maximum is 576, which is 9% greater than the 
average of 528. The non-uniformity in instantaneous write throughput would be considerably greater, increasing 
the relative difference of the two platforms. With a single replica, the amount of data written is always the same 
on all DataNodes. Several improvements to the HDFS block placement algorithm have been proposed in HDFS-
7122 [10] to improve uniformity.  

The small difference between the two platforms for the write workloads with a single replica may be due to their 
“bursty” nature: each task alternates between CPU and storage work. For the 4-VM per host platform, some tasks 
will be doing one kind of work, while the rest will be doing the other, thus smoothing out resource needs. For the 
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20-VM per host platform only one task is running in a small worker node, so sometimes there will be a CPU 
bottleneck. It is possible to alleviate this by configuring three vCPUs per VM, which enables the hypervisor to 
smooth out resource needs. However, CPU over-commitment should be considered a very advanced tune: it was 
found to be not helpful for the three-replica configuration or for larger VMs. In any CPU over-commitment 
scenario, it is highly recommended that the “ready” time of each VM be monitored carefully. A low value of this 
metric (below 5%) indicates that the VM is still able to acquire all the CPU resources it requests. 

CPU Utilization 

The CPU utilization for the native, 1-VM per host, and 4-VM per host platforms is shown in Figure 3. This was 
measured with mpstat on native (calculated as 100-%idle), and with esxtop on the virtual platforms (%pcpu 
util). The three benchmarks were run with a 90 second sleep between them in order to separate them in the
figure. 

The somewhat higher CPU utilization for TeraGen on the virtualized platforms is mostly due to network 
virtualization costs due to the very high network bandwidth associated with HDFS replication (see “Network 
Throughput”). 

All of the platforms come close to saturating the CPU during the map-shuffle phase of TeraSort. The lowest 
utilization for this phase is the 1-VM per host platform at 95%; the utilization could have been increased with a 
larger number of tasks, however, doing this does not reduce the overall elapsed time. During this phase, the CPU 
cost of virtualization must manifest itself as increased elapsed time. As discussed above, this is more than offset 
for the multi-VM per host platforms by reduced memory latency. After a quick transition (due to uniform 
completion of all the shuffle tasks) to the reduce-merge phase, the virtualized platforms have the same or a 
slightly higher CPU utilization. As for TeraGen, virtualization costs also lead to small increases in elapsed time even 
though there is spare CPU available. This indicates that increased network latency has a larger effect on elapsed 
time for these two workloads than increased CPU utilization. 

Figure 3. CPU utilization measured on one host for a 30TB dataset. Number of VMs is per host. 
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TeraValidate CPU utilization for the native platform is 40-50% higher than the virtual platforms. Some increase is 
expected since the 4-VM per host platform has better memory efficiency and the 1-VM per host platform has a 
slightly longer elapsed time, however, the magnitude of the difference requires more investigation. 

At the end of each benchmark test or phase, there is a sudden drop in CPU utilization. This shows that the load in 
all cases is well-balanced across the cluster and the performance of the tasks is uniform. An important part of 
achieving this is ensuring the controller daemons, especially the NameNode, do not have to compete for CPU 
resources with worker nodes and are able to deliver low-latency responses to their clients. Therefore these 
daemons should be run in dedicated VMs, even though they typically use no more than 20% of a CPU core for a 
cluster of this size. However, this doesn’t mean that the hosts these VMs run on cannot also run some worker 
nodes, especially for small- to moderate-sized clusters. For the 4-VM per host platform, this means that there are 
effectively 31.5 hosts running worker tasks, or 1.6% more than the 31 hosts configured as workers for the native 
and 1-VM per host platforms. For smaller clusters, being able to use the excess capacity of the controller daemon 
hosts for worker nodes becomes much more significant. 

Storage Throughput 

The total read and write storage throughput for a representative host is shown in Figure 4. Multiplying the 
throughput for either read or write by the elapsed time for a particular phase and by the number of hosts gives 
the total amount of data transferred for that phase. For both TeraGen and reduce-merge, the result is a value very 
close to three times the dataset size. This is exactly what is expected, which means there are no unexpected write 
operations or extra “spills” to disk. Such spills are often unavoidable (especially for very large datasets) but may 
also indicate that better tuning of Hadoop parameters is possible. Similarly, the total amount of data read during 
the map-shuffle phase and during TeraValidate adds up to the database size. 

Figure 4. Storage throughput measured on one host for a 30TB dataset. Number of VMs is per host. 

Storage throughput associated with the map output of TeraSort is more subtle since it is compressed. This data is 
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by the reduce tasks during the merge. The figure shows that twice as much data are written than read, as 
expected. By dividing the total observed amount of data transferred by the expected amount if there were no 
compression gives an average compression ratio of 4.9. Map output compression should always be considered for 
such highly compressible data. 

The write workloads for the 1-VM per host platform (not shown in the figure) have 6-9% lower storage throughput 
than the native platform. Since there is sufficient CPU available to cover the virtualization costs, this appears to be 
at least partially due to the increased latency from virtualizing storage and networking. Thus, tuning for network 
latency as discussed above helps storage and application throughput for write workloads with replication. The 
multi-VM per host platforms bring a small increase in bandwidth and a decrease in CPU utilization, which 
indicates some efficiency gain from memory locality.  

Network Throughput 

The network receive and transmit throughputs are shown in Figure 5 for the 4-VM per host platform. The traffic is 
well-balanced across the two NICs, indicating the configuration of the bonding driver is appropriate for these 
workloads. Receive (Rx) and transmit (Tx) traffic are also nearly the same, which is evidence of uniformity across 
the cluster. The throughput approaches 8000 Mib/s both ways for each NIC for TeraGen. While 9440 Mib/s is 
easily achieved on each NIC simultaneously for one-way traffic using the standard networking microbenchmark 
netperf [18], the limit drops to about 8950 Mib/s each way for two-way traffic. Thus network capacity is close to 
becoming the performance bottleneck. It appears not to be, since a relatively small amount of read storage I/O 
reduces the network throughput for the reduce-merge phase. 

Figure 5. Network receive and transmit throughput for both NICs measured on one host for the 4-VM per host platform. 

If newer processors and higher-performing storage are being considered for a new Hadoop cluster, then higher-
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availability in the event of a NIC or switch failure. The low map-shuffle network throughput reflects the effective 
compression of map output data. 

Similar to the storage throughput analysis, each phase can be integrated over time and summed over the cluster 
to find the total amount of data received and transmitted. Any anomalies may indicate a configuration problem or 
a lack of understanding of what the application is doing. The result for TeraGen and reduce-merge is twice the 
cluster size, which is the amount needed to create the second and third replicas on other hosts. For TeraValidate, 
the result is about 55% of the dataset size. As explained in the “Elapsed Time” section, this is a characteristic of 
the application interacting with HDFS. The network throughput could be essentially eliminated for TeraValidate by 
modifying the application (reading blocks instead of files) or by enhancing HDFS as discussed above. Either 
solution would greatly increase TeraValidate performance (possibly close to the single replica case on the 20-VM 
per host platform). In general, data visualization such as the above figures are crucial in discovering anomalies and 
ensuring applications are running as intended. 

Dataset Size 

Table 4 shows the performance metrics on the 4-VM per host platform for several dataset sizes from the 
commonly-published 1TB size up to the 30TB size discussed above. Also shown is a throughput metric: the 
dataset size in GB divided by the TeraSort elapsed time. For good scaling this metric should be constant or 
slightly decreasing with size, taking into account the log(N) work component of a sort (where N is the number
of rows in the dataset). 

Scaling with dataset size is super-linear up to 10TB, due to better amortization of initialization, JVM start-up, Java 
compilation, and long tail effects. The decrease in throughput for 30TB is due to the log(N) effect plus the
effect of using more of the slower, inner part of all the disk drives. The former effect should theoretically account 
for a 4% reduction in throughput compared to the 6% reduction observed. 

DATASET 
SIZE, TB 

ELAPSED TIME, S TERASORT PHASES, ELAPSED TIME, S TERASORT 
THROUGHPUT, 

GB/S TeraGen TeraSort TeraValidate map-shuffle reduce-merge 

1 69 137 33 82 55 7.30 

3 124 380 104 248 132 7.89 

10 376 1054 214 674 380 9.49 

30 1072 3355 695 2151 1204 8.94 

Table 4. Elapsed time and throughput for several dataset sizes on the 4-VM per host platform. 

Comparison with Earlier Tests 

In the previous tests [7], an 8TB dataset was used with an HDFS replication of 2 for the output of TeraGen and 1 
for TeraSort. The results of those tests plus the corresponding results from the current setup (except replication 
was changed to match the earlier tests) are shown in Table 5. The performance of the current setup for the 
various tests is between 1.9 and 2.6 times faster than previously. This is mostly due to improvements in hardware 
(each host has 10-core instead of quad-core processors, much more memory, two NICs instead of one, 20 data 
disks instead of 12), however there were important improvements in the software stack (Hadoop distribution, 
guest OS, hypervisor) as well. Hadoop tuning also played a significant role, especially isolating the controller 
daemons and using compression for the intermediate map output data. 
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BENCHMARK 
DATE 

ELAPSED TIME, S TERASORT PHASES, ELAPSED TIME, S 

TeraGen TeraSort TeraValidate map-shuffle reduce-merge 

April 2013 [7] 490 2046 349 1491 555 

Current 259 824 176 570 254 

Table 5. Elapsed time and throughput for previous and current tests for the 8TB dataset size on 4-VM per host platforms. 
HDFS replication is 2 for TeraGen and 1 for the output of TeraSort. 

Best Practices 
Some suggestions to optimize virtualized Hadoop performance follow. In the future, TaskTrackers and DataNodes 
will likely be managed in separate virtual machines, hence the sizing of them should be considered independent.  

• Size TaskTracker virtual machines to fit on one NUMA node. Each VM will access only local memory with
much lower latency.

• Size DataNode virtual machines so that each owns a small number of disks (preferably five or fewer).
Such partitioning increases read storage throughput by flattening the I/O load across the disks.

• If Hadoop virtual machines run both a TaskTracker and a DataNode (as is the standard practice today),
size the VMs to be the smaller of the above two.

• Ensure there is sufficient memory left over for the Linux buffer cache in TaskTracker VMs after memory
is allocated for all the Hadoop processes. This enables TaskTrackers to obtain map task output directly
from the cache instead of reading it from disk.

• After sizing VMs with the above constraints, allocate host hardware to accommodate the desired
number of these VMs.

• Ensure large pages are used by the hypervisor, guest OS, and Java. This is the default starting with ESX
3.5 and recent Linux and Java distributions. Manual configuration of guest memory and Hadoop Java
heap will be needed if Transparent Huge Pages is not available or not enabled in the guest OS. 

• Specify the virtual machine memory size to avoid leaving host “high” memory state with the associated
breaking of host large pages into small pages. For 256GiB hosts, allocating no more than 94% of
memory to VMs is recommended. For larger hosts, a slightly larger percentage may be allocated, but for
smaller hosts less memory should be allocated to VMs. See memory management resources for more
details ([14] and references therein).

• Avoid multi-queue networking in all but possibly the largest VMs: Hadoop drives a high packet rate, but
not high enough to justify the overhead of multi-queue. Check /proc/interrupts for the number of
queues and the virtual network adapter options to change it. At the host level, multi-queue networking
is usually not needed either, but performance should be tested before disabling this feature in
production.

• Evaluate network adapters and drivers with respect to hardware features such as checksum offload, TCP
segmentation offload (TSO), jumbo frames (JF), large receive offload (LRO), and support for high
memory DMA and multiple scatter-gather elements per Tx frame. These are all supported by vSphere,
however, jumbo frames require manual configuration of the virtual switches and adapters.

• If storage is configured manually (not through the vSphere UI), ensure it is block-aligned (for example,
as described in the following blog [16]).

• Ensure predictable and uniform storage performance with XFS by setting agcount=1 during file
system creation on Hadoop data disks.
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• Check individual hosts and VMs regularly for amount of work done (for example, the number of tasks
finished per unit time). Inconsistencies may indicate hardware problems (especially disk drives) or
variations in machine configurations.

Conclusion 
The results presented here for a cluster of 32 high-performance hosts show that virtualizing Hadoop on vSphere 
6 works very well. A few configurations show measurably greater elapsed time, but the reasons for this are 
explained so that in practice these configurations may be easily avoided. Platforms with two to ten VMs per host 
are recommended for two-socket hosts, with four VMs being the optimum. In that case, performance is the same 
as the native platform for the two I/O-dominated tests and 12% better for TeraSort. These results are due in large 
part to the NUMA properties of current servers, and some evidence is presented that indicates the ability to 
manage memory through the use of virtual machines will become increasingly important as processor 
capabilities outrun remote memory bandwidth. 

Appendix A: Configuration 
Units 
• K=1000, M=K*K, G=K*K*K, T=K*K*K*K
• Ki=1024, Mi=Ki*Ki, Gi=Ki*Ki*Ki, Ti=Ki*Ki*Ki*Ki
• b=bit, B=byte, s=second

Hardware 
• Cluster: 32X Dell PowerEdge R720xd
• Host CPU and memory

o Processors: 2X Intel Xeon E5-2680v2, 2800MHz, 25MiB L3 cache
o Memory: 256GiB: 16X 16GiB ECC DDR3 DIMMs, 1866 MHz

• Host BIOS settings
o Intel Hyper-Threading Technology: enabled (default)
o Intel TurboMode: enabled (default)
o Performance Per Watt (OS) (default)

• Host storage controller
o Dell H220: LSI SAS9207-8i, Internal Passthrough Host Bus Adapter, x8 PCI Express 3.0
o Firmware version: 18

• Host storage disks
o 23X 600GB 10K RPM SAS 6Gbps (WD6001BKHG)
o 2 disks for VM storage and native OS install
o 20 disks for Hadoop data

One partition per disk, aligned at 8MiB boundary:
partedUtil mklabel <disk> gpt 
last=`partedUtil getUsableSectors <disk> | awk '{print $2}'` 
partedUtil setptbl "<disk>" gpt "1 16384 $last \ 

EBD0A0A2B9E5443387C068B6B72699C7 0"
• Host network adapter: Intel Ethernet X540 DP 10GBASE-T (2 ports)
• Network switch: 2X Extreme Summit X670V-48t-BF-AC

o Each switch connected to each host

Hypervisor 
• vSphere 6.0 (RC build 2412978)
• Network driver: ixgbe 3.7.13.7.14iov-NAPI
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o options: LRO=1,1 VMDQ=1,1 FdirMode=0,0 InterruptThrottleRate=32000,32000
• Storage driver: mpt2sas 18.00.00.00.1vmw

o options: max_msix_vectors=1
• Create physical Raw Device Mappings (pRDM) disks:

vmkfstools -z <disk> <path>/<file>.vmdk 
• One vSwitch per 10GbE NIC

o Virtual Machine Port Group for VM traffic
o Jumbo frames enabled:

esxcfg-vswitch -m 9000 <vswitch>

Virtual Machines 
• Virtual hardware: version 10
• VMware Tools: installed
• Hadoop data disks: pRDM
• Memory, vCPUS, number of disks: Table 1
• Memory preallocated and reserved
• VM parameters

numa.memory.gransize = 1024 
numa.vcpu.preferHT = “true”

Linux 
• Distribution: SLES 11 SP3 x86_64
• Kernel: 3.0.76-0.11-default
• Kernel parameters in /etc/security/limits.conf:

nofile = 32768 
nproc = 32768

• Kernel parameters in /etc/sysctl.conf:
net.ipv4.conf.all.arp_filter = 1 
vm.dirty_background_ratio = 1 
vm.swappiness = 0 
vm.overcommit_memory = 0 
net.core.rmem_max = 16777216 
net.core.wmem_max = 16777216 
net.ipv4.tcp_rmem = 4096 87380 16777216 
net.ipv4.tcp_wmem = 4096 65536 16777216 
net.ipv4.tcp_mtu_probing = 1

• Java: Java HotSpot™ 64-Bit Server VM 1.7.0_55
• Hadoop data disk partition formatted with XFS File system

mkfs -t xfs -d agcount=1 –L <label> <partition> 
• Native OS drivers

o Network: ixgbe 3.21.2
– options: MQ=0,0 InterruptThrottleRate=32000,32000

o Storage: mpt2sas 19.00.00.00
– options: max_msix_vectors=1

• Virtual Machine guest OS drivers
o Network: vmxnet3 1.2.39.0-NAPI

– options: num_tqs=1,1 num_rqs=1,1
o Storage: pvscsi 1.1.3.0

• Network bonding driver
o Two secondary NICs
o BONDING_MODULE_OPTS='mode=2 xmit_hash_policy=layer3+4'
o MTU='9000'
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Hadoop 
• Distribution: Cloudera CDH 5.3.0
• HADOOP_MAPRED_HOME = ${HADOOP_HOME}/share/hadoop/mapreduce1
• NameNode and JobTracker

o Multi-VM per host platforms: each in a separate dedicated VM
20-VM per host platform: extra idle VM in same hosts

o Native and 1-VM per host platforms: both in one dedicated machine
• Secondary NameNode placed in one of the worker machines
• Number of worker machines: Table 1
• Cluster topology (topology.sh)

o Multi-VM per host platforms: two hosts (node groups) per Hadoop rack:
for i in $*; do 
  if [ `expr $i : "cirrus"` -gt 0 ]; then 

 echo $i | awk -F "cirrus" '{h=1+($2-1)%32; r=1+(h-1)/2; 
printf "/r%d/n%d ", r, h}' 

  elif [ `expr $i : "192.168."` -gt 0 ]; then 
    echo $i | awk -F "." '{h=$3; r=1+(h-1)/2; 

printf "/r%d/n%d ", r, h}' 
 else 
   echo -n "/def " 
 fi 
done

o Native and 1-VM per host platforms: flat (default) topology:
for i in $*; do echo -n "/d "; done 

• Non-default parameters
o hadoop-env.sh

export HADOOP_HEAPSIZE = 1300 
o core-site.xml

io.file.buffer.size = 131072 
terasort.partitions.sample = 2000000 
topology.script.file.name = <path>/topology.sh 

o hdfs-site.xml
dfs.datanode.max.transfer.threads = 4096 
dfs.replication = 3 (final = true) 
dfs.blocksize = 268435456 
dfs.datanode.max.transfer.threads = 4096 
dfs.datanode.readahead.bytes = 4194304 
dfs.datanode.drop.cache.behind.writes = true 
dfs.datanode.sync.behind.writes = true 
dfs.datanode.drop.cache.behind.reads = true 
dfs.permissions.enabled = false 
dfs.namenode.handler.count = 1 
dfs.heartbeat.interval = 1 
dfs.namenode.replication.interval = 1 
dfs.blockreport.intervalMsec = 21600000 

o mapred-site.xml
mapreduce.framework.name = classic 
mapred.local.dir = <list of directories> 
mapred.system.dir = /system/mapred 
mapred.{map,reduce}.tasks: Table 1 
mapred.tasktracker.{map,reduce}.tasks.maximum: Table 1 
mapred.map.child.java.opts = ”-Xmx800m -Xms800m -Xmn256m” 
mapred.reduce.child.java.opts = ”-Xmx1200m -Xmn256m” 
mapred.child.ulimit = 4000000 
mapred.jobtracker.taskScheduler = org.apache.hadoop.mapred.FairScheduler 
mapred.fairscheduler.locality.delay = 100 
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mapred.{map,reduce}.tasks.speculative.execution = false 
mapred.job.reuse.jvm.num.tasks = -1 
mapred.reduce.parallel.copies = 20 (20-VMs per host: 5) 
mapred.reduce.slowstart.completed.maps = 0 
mapred.job.tracker.handler.count = 10 
io.sort.factor = 64 
io.sort.mb = 400 
io.sort.record.percent = 0.15 
mapred.task.timeout = 300000 
mapred.tasktracker.shuffle.fadvise = true 
mapreduce.ifile.readahead.bytes = 16777216 
tasktracker.http.threads = 120 
mapred.inmem.merge.threshold = 0 
mapred.job.shuffle.merge.percent = 0.95 
mapred.job.shuffle.input.buffer.percent = 0.75 
mapreduce.tasktracker.outofband.heartbeat = true 
mapred.task.cache.levels = 3 (native and 1-VM per host platforms: 2) 
mapred.job.reduce.input.buffer.percent = 0.7 
mapred.compress.map.output = true 
mapred.map.output.compression.codec = org.apache.hadoop.io.compress.SnappyCodec 
mapred.jobtracker.completeuserjobs.maximum = 1 

Appendix B: XFS Storage Performance 
Some simple throughput tests were run to determine the maximum sequential throughput to an XFS filesystem 
and to determine the effect of the XFS parameter agcount. This parameter, which is specified at the time of file
system creation, determines the number of “aggregation groups” that XFS will manage. The default depends on 
disk/LUN size, but will normally be 4 for typical disks. Certain file system locks are applied to the smaller scope of 
an aggregation group rather than to the whole file system. Very high IOPs workloads then benefit from 
parallelizing certain metadata operations. However, with I/O sizes typically much greater than 100KiB, Hadoop is a 
low-to-moderate IOPs workload for which XFS defaults may not be optimal. 

The storage benchmark aio-stress [15] was used to perform a sequential write test with a 512KiB record size,
20000MiB file size, and a single thread. The test was repeated 28 times sequentially to different files (each in a 
different directory) on a single 600GB disk that was formatted with XFS and various values of agcount. Total
data written was 587GB, nearly filling the disk. The results for throughput are shown in Figure 6. The pattern for 
agcount=1 is expected: throughput starts off close to 190 MiB/s since the outer (fastest) part of the disk is used
first, and then drops to just over 110 MiB/s when the disk becomes full and the inner part must be used. This 41% 
drop in throughput can easily cause non-uniform storage performance across the cluster, or even within a single 
host. Greater values of agcount show that XFS partitions the disk into that many regions, and each file is written 
to one of them. For instance, with agcount=2 files are written to either the first half of the disk or the second
half. The average throughput is similar for all three cases, but only agcount=1 will give predictable and uniform
performance across all disks. Also, larger values of agcount will result in significantly lower average throughput if
only a portion of a disk is filled. 
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Figure 6. Storage throughput to an XFS filesystem on a single disk for different values of agcount. Files are 20000MiB
each and written sequentially. 
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