
W H I T E PA P E R – O C T O B E R 2 0 2 1

Container Network Security
Primer for Network Security
Professionals
Protecting Modern Applications

W H I T E PA P E R | 2

Introduction
Modern applications are increasingly built using a micro-service architecture. These
applications are split up, decoupled from the underlying infrastructure, and delivered as a
service in a way that optimizes the application experience. The micro-services model also
means that each component can be independently developed and managed—creating
operational flexibility and elasticity. Containers are used to deploy each of the micro-
services.

Medium and large enterprises typically have a network security team responsible for
securing their private and public cloud networks. Such a team also secures the intra-
application (east-west) network traffic. When modern applications are deployed, the
network security team may be tasked with providing security or assist with securing the
modern application.

Network security teams are, of course, fluent in network security terminology and adept at
firewall administration. However, often they are not familiar with container terminology or
the container-specific mechanisms for securing modern applications at run time.

In this paper, we bridge the gap between traditional network security concepts and
network security for containers. Our goal is to provide network security professionals with
a conceptual template to secure modern applications.

Note that the sidebar contains an explanation of non-security technical terms used in this
paper. See [1] for additional background on these terms.

An example of modern application
Figure 1 shows an example of a modern
application that we will use and refer to
throughout this paper. The application has
four modules – one front-end module (M0)
and three additional modules (M1, M2, M3).
All user requests are routed to M0, and the
results are served back to the user via M0.

A real-life e-commerce application can be
modeled with these four logical modules.
For example, the web front-end would map
to M0, product search would map to M1, order processing would map to M2, and payment
processing would map to M3. We’ll use the abstract modern application to keep the
exposition independent of the idiosyncrasies of the specific application.

M1, M2, M3 are identical in structure, even though they implement different functionality.
Each of these modules has business logic (BL) and a database (DB). In contrast, M0 only
has business logic.

We can think of each type of business logic and database
as a micro-service. Thus, there are a total of seven micro-
services in our application: one for M0 and two for each
of M1, M2, M3.

All business logic can communicate with other business
logic. However, only the business logic associated with
a module can communicate with the database related to
that module. Figure 2 shows the allowed communication
patterns at the micro-service level abstraction. Figure 3
shows the communication pattern that we wish to
prohibit.

Applications and Workloads
An application is a collection of
workloads. A workload provides a
specific functionality (for example,
database functionality) to the
application.

Three types of workloads exist –
virtual machines, physical servers,
and containers. In the case of virtual
machines and physical servers, the term
workload includes the operating system
on which the functionality runs.

Containers & Containerized Workloads
Containers are software packages
that include the workload logic (for
example, a database) and everything
else that the logic needs to run on an
operating system. Recently, containers
have become a popular method for
packaging software to create workloads.

Containers differ from virtual machines
in that containers virtualize the operating
system such that multiple workloads
can run on a single operating system.
In contrast, virtual machines virtualize
the physical server such that multiple
operating system instances can run on
the physical server.

A workload that is packaged and run
as a container is called a containerized
workload.

Docker
Docker is an open-source project
that provides a set of tools to create
containers. Docker Inc. is a commercial
company that supports the open-source
project and sells a commercial version
of the Docker toolset.

The Docker toolset runs on Linux,
Windows, and macOS. As of this writing,
Docker is the most popular means to
create containers.

Kubernetes
Kubernetes is an open-source
orchestrator for containerized
workloads. Kubernetes automates the
process of running workloads on a set
of physical or virtual machines. As of this
writing, Kubernetes is the most popular
tool to manage Docker containers.

App

M0 M1 M2 M3

BL0 BL1 BL2 BL3

DB1 DB2 DB3

FIGURE 1: Logical Modules in a Modern Application

Introduction

BL1 BL2 BL3

DB1 DB2 DB3

BL0

FIGURE 2: Micro-service-level Allowed
Communication Pattern

East-west firewalling for
intra-application traffic

We will use this application to demonstrate network security
concepts as applied to containers.

East-west firewalling for intra-application traffic
Let’s assume that we want to deploy the application in
a Kubernetes cluster of its own.

We associate a Kubernetes namespace with each micro-
service. Kubernetes pods (one for each business logic
or database micro-service) map to their respective
namespaces. For example, BL1 has a pod P_BL1 in the
namespace N_BL1 (see Figure 4).

Within each pod, the business logic or database runs as
a container, and each pod houses a CNI. Network security
policies for intra-application traffic are enforced at this CNI.

The prevention of communication between two database
micro-services (DB1 and DB2, for example) is enforced at
the CNI of the database pods. Similarly, allowance of
communication between the business logic micro-services
(BL1 and BL2, for example) is enforced at the CNI of the
business logic pods. This enforcement is the equivalent
of having a hypervisor resident distributed firewall for
virtualized workloads [2].

Generally, communication within a namespace if there are
multiple pods is allowed by the CNI, and communication
between namespaces is prohibited unless the CNI has been configured to let the
communication through. This concept is sometimes called “namespace isolation.”

Figure 5 illustrates the containers C_BL1 and C_BL2 inside
the pods P_BL1 and P_BL2, respectively, with
communication permitted between the pods by their
respective CNIs.

Figure 6 shows all the namespaces, which map to the
micro-services from Figures 2 and 3.

Encryption for intra-application traffic
Now let’s say that we want intra-application communication
to be encrypted. A service mesh can be employed to
enforce service-identity-based TLS encryption.

Note that a service mesh is implemented by injecting
a sidecar proxy container within the appropriate pods
of the applications. A sidecar proxy takes control of all
communication in and out of a pod. The proxy exchanges
keys via mTLS with the appropriate pods for other micro-
services, encrypts outgoing traffic, and decrypts incoming
traffic. Service meshes have other capabilities, such as
application-level observability and application-level policy
control. We focus on encryption in this paper for the sake
of brevity.

Pod: P_BL1

Namespace: N_BL1

C_BL1

Pod: P_BL2

Namespace: N_BL2

C_BL2

Communication permitted
by CNI policies

W H I T E PA P E R | 3

Kubernetes Cluster
A Kubernetes Cluster is a set of
physical or virtual machines on which
an organization can run containerized
workloads. These machines may be
deployed in an organization’s private
cloud (data center) or in the public cloud
(e.g., Amazon Web Services).

Kubernetes Namespace
Kubernetes Namespaces are a way
to organize Kubernetes clusters into
virtual sub-clusters. They can be helpful
when different teams or projects share
a Kubernetes cluster. Any number of
namespaces are supported within a
cluster, each logically separated from
others but able to communicate with
each other. Namespaces cannot be
nested within each other.

Kubernetes Pod
Kubernetes Pods are the smallest, most
basic deployable objects in Kubernetes.
Pods contain one or more containers
(usually Docker containers). When a pod
runs multiple containers, the containers
are managed as a single entity and
share the pod’s resources, including its
IP address for communication outside
the pod.

As of this writing, most workloads are
designed to have one container per pod.

Container Network Interface
Containers, when initially created, are
not “on the network.” Network interfaces
need to be added to these containers
to make them accessible. A Container
Network Interface (CNI) inserts the
required (virtual) network interface into
a container to enable basic networking
for the container. A CNI can also include
functionality to support network policies
and encryption.

Notwithstanding its name, CNI as a
concept applies at the pod level in a
Kubernetes cluster. A pod with multiple
containers has only one CNI. To get
traffic in or out of multiple containers
in a pod, a CNI implements network
address translation since the containers
do not have routable IP addresses of
their own.

CNIs are also known as Network Plugins.

Pod: P_BL1

Namespace: N_BL1

FIGURE 5: Communication Between BL1
and BL2 Permitted by CNI

BL1 BL2 BL3

DB1 DB2 DB3

BL0

FIGURE 3: Micro-service-level Prohibited
Communication Pattern

FIGURE 4: Namespace and Pod for BL1

W H I T E PA P E R | 4

Figure 7 shows a close-up of the containers and
pods for BL1 and BL2. Containers C_BL1 and C_
BL2 are still in place, and pod-to-pod
communication goes through the CNI. However,
C_BL1 directs all traffic through the sidecar proxy
C_BL1_S. Similarly, C_BL2 directs all traffic
through the sidecar proxy C_BL2_S. The sidecar
proxies establish the identity of the service endpoint
that they are communicating with, exchange keys
through mTLS, and encrypt/decrypt traffic.

Sidecar proxies should be present in all the pods
for our seven services to enable encryption across
the application. Thus C_BL1_S communicates not
just with C_BL2_S but also with C_BL0_S,
C_BL3_S, and C_DB1_S.

We should point out that encryption can also be achieved via the CNI – in this case,
Figure 5 remains valid, but with encryption for all pod-pod communication.

Since CNI and service mesh operate at different
levels of the OSI stack, service mesh encryption is
compatible with CNI encryption (for example, you
can use the CNI to encrypt pod-to-pod traffic and
the service mesh to encrypt service-service traffic
for two-levels of encryption).

Load balancing traffic
into the application
Kubernetes, CNI, and service mesh allow the
creation of multiple instances of any of the seven
services discussed in this paper. While a detailed
discussion of this horizontal scaling and
redundancy is outside the scope of this paper,
for illustration purposes, we’ll assume that two
instances of the user-facing business logic (BL0)
have been created.

These two instances of BL0 will run in separate
pods. Thus, incoming traffic from the user needs
to be load balanced to the two pods. This load
balancing can be carried out by Kubernetes’ native
load balancing primitive – kube-proxy. Kube-proxy
exports a virtual IP address to which the user-
application traffic is directed. Traffic coming to this
virtual IP address is then split between the available pods to service the request. Again,
details of the Kubernetes configuration for routing user traffic to the virtual IP address is
out of scope for this paper.

Two levels of protection
Let’s assume that the application is to be deployed in a private cloud. In this case, the
cloud perimeter should be protected by a private cloud zone firewall (also referred to as a
data center perimeter firewall [3]). This firewall protects all the applications in the private
cloud and not just the modern application that we have been discussing.

Network Policies
Network Policy is a Kubernetes concept
that specifies the network entities that
a pod is allowed to communicate with.
Such entities are identified through
a combination of the following three
identifiers:

•	Pods
•	Namespaces
•	IP address ranges
In other words, network policies are
a way to implement access control in
a Kubernetes cluster.

Sidecar Proxy
A sidecar container is sometimes
injected into a Kubernetes pod to
handle specific functionality on behalf
of a containerized workload in the same
pod. In other words, the sidecar acts as
a proxy for the containerized workload.
Hence, the name Sidecar Proxy.

Service Mesh
A Service Mesh is an abstraction layer
that takes care of service-to-service
communications, observability, and
resiliency in modern, cloud-native
applications. It provides a layer of
services (at layers 5 through 7 of the
OSI network stack) to the containerized
workload in a Kubernetes pod. Service
meshes aim to offload certain types of
networking logic from the containerized
workload. Service meshes are usually
implemented as sidecar proxies.

Mutual TLS
Mutual TLS (mTLS) is a method for
mutual authentication. mTLS ensures
that the parties at each end of a network
connection are who they claim to be.
Service meshes use mTLS to exchange
keys and encrypt communication
between micro-services. As discussed
above, a service mesh is implemented
using a sidecar proxy.

N_BL1 N_BL2 N_BL3

N_DB1 N_DB2 N_DB3

N_BL0

P_DB1 P_DB2 P_DB3

P_BL1 P_BL2 P_BL3

P_BL0

FIGURE 6: All the Namespaces for the Application

Load balancing traffic into the application

Pod: P_BL1

Namespace: N_BL1

C_BL1

Pod: P_BL2

Namespace: N_BL2

C_BL2

Communication permitted
by CNI policies

C_BL1_S

C_BL2_S

Encrypted
communication
enabled by
service mesh

FIGURE 7: Intra-application Traffic Encryption

Other ways of organizing the application

W H I T E PA P E R | 5

Thus, our application has two levels of
protection for defense in depth (see Figure
8). The first is the protection provided by
the private cloud zone firewall for user-
application traffic, and the second is the
protection offered by the CNI and service-
mesh for intra-application traffic.

Other ways of organizing
the application
This paper has described a particular way
of organizing modern applications and
securing them at run time. There are alternative ways of architecting and protecting the
application using related organizational and security concepts. We have deliberately
focused on a specific micro-service friendly network-security-centric exposition for brevity
and clarity.

VMware sponsored CNI and service mesh
Several vendors and open-source projects have created CNIs and service meshes for
Kubernetes. One of these vendors is VMware.

Antrea is an open-source project sponsored by VMware that implements a CNI that
provides network connectivity and security for Kubernetes pods. Antrea supports network
policies and encryption [4].

VMware has also created Tanzu Service Mesh (TSM) – a service mesh that provides
connectivity and security for modern applications. Among other capabilities, TSM
supports encryption using mTLS [5].

References
[1] Container Security. Liz Rice. O’Reilly. 2020.

[2] Internal Firewalls for Dummies. VMware Special Edition eBook. 2020.

[3] Bringing Software-Based Elasticity to High-Capacity Firewall Use Cases. VMware blog
post. 2021.

[4] Antrea. antrea.io. Retrieved 2021.

[5] VMware Tanzu Service Mesh. tanzu.vmware.com/service-mesh. Retrieved 2021.

Kube-proxy
Kube-proxy is a network proxy that runs
on each machine of the Kubernetes
cluster. Kube-proxy maintains network
rules that allow network communication
to Kubernetes pods from network
sessions inside or outside the cluster.

Kube-proxy uses the operating system
packet filtering layer if one is available.
Otherwise, kube-proxy forwards the
traffic itself.

Modern applications can use kube-proxy
to expose a virtual IP address (called
ClusterIP) for load balancing traffic
between pods that provide a micro-
service.

Private Cloud
Private Cloud
Zone Firewall

Modern Application

App

M0 M1 M2 M3

BL0 BL1 BL2 BL3

DB1 DB2 DB3

FIGURE 8: Defense in Depth

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com Copyright © 2021 VMware, Inc.
All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other
marks and names mentioned herein may be trademarks of their respective companies. Item No: Container Network Security Primer_Whitepaper_JR5 10/21

