
Get Started

10 Things You Must
Do to Secure
Containers Now

10 Things You Must Do to Secure Containers Now | 1

Containers and other cloud-native technology drive massive
organizational and operational changes. Organizations of all sizes
use this technology to deliver modern applications, be more
competitive and drive more revenue through faster innovation
and better customer experiences. Containers give organizations
clear advantages: they go from code to customer faster and
more regularly.

Today, Kubernetes is the most widely used platform to manage
containerized applications at scale. According to the State of
Kubernetes Report 20221, over half of organizations surveyed
plan to expand their Kubernetes environments within the next
year. While there are countless advantages gained from
container and Kubernetes adoption, like any new technology
they bring new security risks that have not gone unnoticed by
cybercriminals.

The rise of containerized applications has made an appealing
case for threat actors to pursue these dynamic attack surfaces.
Due to its popularity, cybercriminals are now creating attacks
specifically targeting Kubernetes vulnerabilities. The increased
speed of development and the ephemeral nature of containers
means Developers have less time to implement security
protocols, leaving points of entry open for attackers.
Additionally, the use of public image registries has become

1. VMware | State of Kubernetes Report 2022

2. VMware | Modern Bank Heist Report

of the financial industry’s top CISOs and
security leaders witnessed an increase
in application attacks in 2021.258%

commonplace, and many Developers use third-party sourced
components. Recognizing an opportunity, attackers are
targeting these open-source projects and inserting malicious
code early in the software supply chain to maximize their
reach.

The attack surface for containerized applications is growing
rapidly relative to virtualized applications, yet DevOps and
Security teams face complexity when running containers at
scale in areas like policy management, visibility and
networking. Making matters worse, traditional security tools
and manual processes are outdated and ineffective for
securing these environments. To properly assess and manage
security risk, DevSecOps teams need holistic visibility and
modern solutions made for cloud native environments.
Additionally, organizations face the cultural shift in adopting a
DevSecOps mindset to bolster collaboration. This e-book will
outline ten best practices for developing a container security
strategy, threat profiles for common attacks and pro tips for
strengthening security posture.

1

2

3

4

5

6
7
8

9

10

https://tanzu.vmware.com/content/ebooks/stateofkubernetes2022-ebook
https://tanzu.vmware.com/content/ebooks/stateofkubernetes2022-ebook
https://tanzu.vmware.com/content/ebooks/stateofkubernetes2022-ebook
https://www.vmware.com/content/dam/learn/en/pdf/carbonblack/Modern Bank Heists 5.0 Report.pdf

10 Things You Must Do to Secure Containers Now | 2

Align Security Controls with the Application Lifecycle
Each step in the application lifecycle requires different techniques and tools to ensure
the application is built in a secure way. Even before Development teams begin coding
and building an application, the first step must be critical planning. DevOps teams
should determine those involved in the process, their assigned roles, what tools to use,
and what security requirements must be met.

1 Provide streamlined access
management and onboarding

2 Ensure compliance with security policy and
align with industry standards

3 Support business continuity

4 Emphasize transparency and open
communication between teams

5 Remove complexity

Pro Tip: Shifting Left
The term “shift-left” means security
starts at the development phase of
an application. Through shifting left,
Developers are coding securely at
the beginning of the application
lifecycle, ensuring security is a
shared responsibility. “Shifting
security left” early in the
development cycle allows Security
and DevOps teams to seamlessly
automate container security from
build to production while supporting
developer agility, modernization, and
operational efficiencies.

Comprehensive security that will not impede developers requires tightly orchestrated
and automated solutions that should:

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 3

Build

To code securely, Development teams
need application building blocks that
are fortified and trusted. Developers
must work with the Security team to
patch and test reported
vulnerabilities, while closely
monitoring third-party dependencies.
Before moving to the next phase,
container images must be scanned
for vulnerabilities and
misconfigurations to meet hardening
and compliance requirements. Fixing
vulnerabilities in the build phase can
save developers a lot of time
compared to later phases.

Deploy

At the deployment phase, Kubernetes
configuration errors could
unintentionally allow the container to
run with escalated privileges or host
access, exposing it to attacks.
DevOps teams must validate the
workload manifest complies with
security policies based on Kubernetes
security best practices and industry
benchmarks such as the Center for
Internet Security (CIS) and the
Security Technical Implementation
Guides (STIG) before deployment. If
the file is correctly configured
according to the security policy, it can
move into production. Automated,
continuous scanning throughout the
CI/CD pipeline enables DevOps
teams to deploy applications faster
and more securely.

Operate

Effective container security in the
Operate phase must address runtime
image scanning as well as threat
detection and response to
understand the overall security
posture and manage risk. Runtime
scanners ensure the environment is
free of risky configurations and
vulnerabilities, and the DevSecOps
team can verify all workloads are
monitored, or denied for security
risks. Security teams require visibility
to correlate between hardening,
runtime and vulnerability scanning
data to enforce compliance and
security governance.

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 4

Adopt a DevSecOps Mindset
DevSecOps is a methodology enabling Development, Security, and
IT Operations teams to deliver secure software at an agile pace by
embedding security throughout the entire software development
lifecycle. This strategy helps drive uniformity and collaboration
between these three teams.

What happens if there is no collaboration? In the same way a car
would not be built without going through a safety inspection, the
same can be said about the development process of a new
application. It is crucial for the application to go through an
“inspection” during every step of the process. The tools an
organization chooses needs to support this model in order to be
more effective and reduce any potential friction between teams.

of organizations have concerns
about Kubernetes security.

1. Source: VMware | State of Kubernetes Report 2022
97%

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 5

Benefits of a DevSecOps Approach

When security is embedded through every step of the application lifecycle,
everyone benefits.

Developers
With a DevSecOps model, developers can become increasingly agile and
push code into production faster. Instead of starting anew if an application
does not meet security and compliance requirements, they save time with
this “secure by design” model. Catching security-related flaws early in the
development process is also much less costly to the organization.

Security Teams
Security teams can benefit from the increased transparency this
methodology creates. They have visibility into what developers are coding,
where they are sourcing code, and any potential vulnerabilities. They can
enforce compliance requirements and remediate potential risks faster.

Operations Teams
Operations teams can benefit through scalability and automated workflows.

DevSecOps is vital when it comes to building cloud-native applications as these
applications are inherently more scalable than their legacy counterparts.
Traditional security practices—especially those involving human intervention—
often don’t address the complexities of cloud-native applications. As a result,
cloud-first companies quickly adopt the use of containers running as microservices
to reap significant value and scale company growth.

Pro Tip
Implementing a DevSecOps approach should not be
a hurried process. If the end goal is to automate and
become more agile, the beginning is a vital time to
figure out what tools and processes are needed:

1. Create a team with representatives from each
area (Development, Security, IT Operations).

2. Start small. Identify a small set of projects that
can benefit the most from embedding security
into the lifecycle. Look for the most dynamic
teams with a well-established process.

3. Start with open-source tools. The cloud-native
open-source community is flourishing with
active projects on security, with different tools
to try until you better understand your needs.
Once requirements are established, an
enterprise grade commercial tool should
be implemented.

4. Integrate into the broader business once
ready, and regularly work to improve functions.

5. Stay up to date on security best practices,
industry standards and critical vulnerabilities.

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 6

Secure Every Layer of Infrastructure
Attackers are actively exploiting the additional entry points modern
applications provide. A strong security posture must go beyond the containers
and be incorporated throughout each layer of infrastructure. Because new
attacks can emerge at any given time, it is critical the process of layered
security is done continuously. A layered security approach will ensure an
application is built secure and stays secure throughout its entire lifecycle.

Pro Tip
Incorporating security into each layer the
application is running on will help establish a
strong security posture. Look for security
solutions that reduce risk across multiple layers
of your infrastructure.

Vulnerabilities in the operating system (OS) layer occur in
any environment where the host OS lives for the
container. Host OS risks have the largest attack surface,
and these risks are some of the most critical to protect.
Some examples of risks specific to this layer include:

• Kernel vulnerabilities

• Vulnerable packages

• Open ports allowing remote access (ssh, rsh, ftp, etc)

• Permissive privilege escalation (sudo configuration)

• Permissive access to secrets (encryption keys, cloud
access tokens, etc)

OS layer Container layer

The container layer is usually the first and the most
common place to mitigate risk, and for good reason.
Container images are reused and distributed across
development groups, so a single flawed or compromised
container image may impact many workloads. In fact,
many container security solutions only solve for these
specific risks. Types of risks that occur in the container
layer include:

• Images with critical vulnerabilities

• Containers running with the privileged flag

• Unrestricted communications between containers

• Containers running rogue or malicious processes

• Containers not properly isolated from the host

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 7

Kubernetes is the most widely used container
orchestration tool, allowing users to define the desired
end state of their applications via logical constructs
such as deployments, replica sets, configuration
maps, services, and more. Kubernetes users are
exposed to attacks on the Kubernetes server which
can have major ramifications, and application
configuration risks including:

• Remote access to workloads from misconfiguration
of services such as load balancers and node ports

• Secrets exposure and embedding secrets in
workload specs

• Credential theft

• Secrets sitting in the hands of users who no longer
need them

• Resource permissions within the cluster

• Access to cloud resources that allow entry to
databases and other cloud service accounts

• Privilege escalation as a result of misconfigured
Role-Based Access Control (RBAC)

Kubernetes layer

Reducing misconfigurations, monitoring malicious
activity, and preventing unauthorized access are
foundational activities necessary to ensure security and
compliance of applications and data in the cloud. As
criminals become more sophisticated in their abilities to
exploit cloud misconfiguration vulnerabilities, security
teams need a smarter approach to prevent security
breaches. Risks in the cloud layer include:

• API vulnerabilities

• Misconfigurations

• Insufficient identify and access management controls

Cloud layer

Threat Profile:
Exploiting Kubernetes RBAC Misconfigurations
Role-Based Access Control (RBAC) is the ability to set permission for users
that limits their ability to certain networks based on their role. In Kubernetes,
the RBAC module is used to help specify which workloads and clusters can
access specific data. Because Kubernetes manages a wide variety of objects
each with its own risks, it must only allow necessary functions and restrict
unnecessary access. This strategy is commonly referred to as a least-privilege
approach, and typically included as part of a zero-trust implementation. For
example, you may think providing “read only” access to a user seems
harmless, but it can give read access to secrets, including service account
token for service accounts with higher privilege.

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 8

Reduce Risk of Open-Source Software
Open-source software (OSS) has transformed the world of software development
and is a major contributor to the rise of containers and microservices. Without
OSS, organizations operated in a “closed box” model. Developers can now
leverage vast functionality already developed elsewhere in other organizations
with similar needs. Open-source offers Developers the power to narrow their
focus to the areas that bring value to their organization. However, the ways OSS
is consumed (source code, OS and language-specific packages, container
images) introduce massive risk to an organization.

In fact, cybercriminals now target specific open-source projects to inject
malicious code into the software supply chain. They can take a different
approach to each, such as exploiting vulnerabilities to inject backdoors or
malware. Malware can be some of the most common attacks in open-source, but
at the same time some of the hardest to detect.

Organizations can no longer rely on the open-source community alone to
validate shared software. The volume and potential risk of security flaws—and
now targeted attack insertion—require a systematic approach to reducing the
risk associated with the broad adoption of OSS.

1. DARKReading | Log4j Attack Surface Remains Massive

Pro Tip
Reduce open-source software risk through
source scanning, container image scanning, and
utilizing only trusted registries and repositories.

Threat Profile: Common Exploit
The December 2021 Log4j vulnerability is a
prime example of exploited code in an OSS.
Log4j allows Developers to log user activity
and is a universally used tool by Apache
Software. Attackers were able to execute code
remotely on a server and thus steal data or
take control of the system. Organizations
around the globe were affected, and in one
study, over 90,000 public-facing servers
running on OSS contained a vulnerable version
of Log4j.1

1

2

3

4

5

6
7
8

9

10

https://www.darkreading.com/threat-intelligence/l0g4j-attack-surface-remains-huge

10 Things You Must Do to Secure Containers Now | 9

Minimize Risk when Using Third-Party
Image Registries
Third-party image registries help Developers scale quickly. They save time through
automated deployments and allow for collaboration across teams and applications.
When building an image, it can either be run on the system it was built on or
uploaded to a registry and downloaded onto another computer. Certain registries are
public, allowing anyone to pull images, while others are private, only accessible to
certain people or machines.

Public image registries are typically used by smaller teams, requiring less resources
and budget to set up and maintain. While public image registries can be extremely
useful, they are inherently less secure. When using a public image registry, take extra
security precautions to reduce the risk of an application.

Cybercriminals love to insert malicious code into image registries. If a developer pulls
from a public registry and uses that malicious code in an application, the application is
now susceptible to attack. Automation helps developers push updates more
frequently, but automated deployments of this code in the continuous integration/
continuous deployment (CI/CD) pipeline can further cultivate misconfigurations or
malicious images in production. Additionally, a once secure image can become
vulnerable after it is added to the pipeline.

Pro Tip
Use third-party registries to ease
resource strains, but reduce risk with
continuous scanning for
vulnerabilities and misconfigurations
throughout the CI/CD pipeline,
before deployment and at runtime.
Follow security best practices, adopt
industry standards, and ensure
container images meet organizational
security requirements at each stage
of development.

Threat Profile: Delivering
Poisoned Container Images
One of the easiest ways for
developers to consume OSS is to
pull an image that includes the
application they need, whether it is
networking, monitoring, data
storage or other service. Such
images contain many different files,
and an attacker can easily hide
malware an image and publish it.
Their hope is a developer will pull it
into their clusters, bypassing all
perimeter defenses, where the
malware can run and act as a
beachhead for an attack.

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 10

Reduce the Attack Surface with Vulnerability
Management and Hardening
Image scanning is the process of scanning container images for vulnerabilities
throughout the application lifecycle. Scanners help identify any potential threats to
your environment so security teams can take the necessary actions to mitigate those
risks. Most scanners use the Common Vulnerabilities & Exposures (CVE) database to
identify these potential threats.

Pro Tip:
Image scanning needs to take place
at each stage of the application
lifecycle, even after it is deployed.
The ability to restrict image registries
is also an important tool for
preventing developers from using
registries that are not approved.

Give visibility into the container
images in your environment

Ensure container images used in any running
workload are up to date and approved

Provide insight into identified
vulnerabilities and available fixes

Prevent container images with vulnerabilities
from progressing through the CI/CD pipeline

Create exceptions at the image level
from inside the image scan report

An image scanning tool should:

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 11

Threat Profile:
Trojan Malware
Container image malware is one of
the most common types of exploits
related to the use of third-party
image registries. Specifically, Trojan
Malware is a type of malware
disguised as useful code and can
easily go unnoticed. To prevent this
type of attack, using a trusted image
scanner is critical.

Scanning in the CI/CD pipeline and at runtime

Image scanning needs to take place everywhere, for every image. Effective
image scanning must occur at each phase of the development lifecycle —
from Build through Operate. The ability to carry vulnerability scanning
through the runtime layer gives Security and DevOps teams visibility into
vulnerabilities in images that were not previously scanned, and images
deployed from any third-party registries. Giving the user control to customize
their scan means Security teams can introduce automated, custom policies
and be notified when those policies have been violated. Automation is a key
component to helping organizations achieve continuous compliance.

A strong need for visibility

DevSecOps teams need visibility and a deep understanding of the workloads
running in their environments in order to properly secure them. They need an
image scanning tool that helps them understand the current level of risk and
protect against potential threats and weaknesses in their environment.
Ideally, this tool should allow them to

• Review vulnerable images in the CI/CD pipeline

• Review images running in production

• Prioritize vulnerabilities by severity

• Ensure all images are scanned

• Restrict registries and repositories allowed in production

• Get visibility into connectivity and configuration of applications
installed in Kubernetes clusters

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 12

Implement Runtime Security
Containers and cloud-native infrastructure and applications
are constantly evolving, which leads to a wide variety of vulnerabilities.
In order to detect attacks, focusing on known patterns can only be part
of the solution. Identifying what constitutes normal application
behavior, and detecting suspicious deviations from that behavior, is key
for reducing the rate of false positives and detecting exploits of
zero-day vulnerabilities.

What makes threat detection in cloud-native environments different
than traditional detection and response is that there is no longer an
affinity between the application and server. Any server can run
multiple applications, any application can run on multiple servers, and
that relationship is constantly changing.

A cloud-native detection and response solution continuously collects
comprehensive activity data of cloud services, container orchestrators,
servers and applications, giving you the information needed to:

• Proactively hunt threats

• Uncover suspicious behavior

• Disrupt attacks in progress

• Repair damage quickly

• Manage vulnerabilities

• Address gaps in defenses

Threat Profile: Cryptomining
Why are Kubernetes clusters a favorite target for
cryptominers? Many organizations do not protect
Kubernetes or monitor Kubernetes security events,
leaving them vulnerable. When a container runs on a
modern server with a certain number of vCPUs, the
miner can use all vCPUs if no quota is applied on the
compromised container. It is important to remember
if a Kubernetes cluster is hosted on an elastic platform,
there is no limit for the CPU, and your cloud bill will be
grossly inflated.

Currently, XMRig is the most popular cryptominer on
Linux. It is both open-source, available in Ubuntu
packages, and as a ready to run container on
DockerHub. Regardless of the primary attack vector,
injection, vulnerability in SQL, log4j, or any vulnerability
in an application used in a container, the attacker needs
to inject and run the malicious application, in our case
XMRig, inside a container of the victim Kubernetes
cluster. The default network policy for Kubernetes is
“Allow All,” meaning by default any container can
connect to any local/Internet IP.

Pro Tip
Scanning open ports is the standard tactic for attackers
to find the next step and move laterally through an
environment, and detecting such behavior is critical to
stopping a breach. Look for security solutions that can
detect and alert on port scanning activity.

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 13

How can you mitigate runtime attacks? Runtime security addresses all aspects of running containers in
production. Security and DevOps teams need a single source of
truth to connect data and help detect and address runtime
anomalies. A consolidated view of these events enables better
investigation and correlation of different types of events for
different types of objects.

There are two major categories of runtime threats:

• Attacks that use your data or infrastructure to run malicious
activities

• Attacks that use your infrastructure to mine cryptocurrency

Before the attack:

• Identify container images that have known software
vulnerabilities

• Harden Kubernetes configuration: use least
privilege security principles

• Build a baseline of container behaviors: network/
file access

• Reduce the attack surface: eliminate complexity,
minimize the amount of code

• Limit the blast radius: leverage micro segmentation
and encryption

During the attack:

• Block/detect network IP/URLs and malicious files
on a blacklist

• Block/detect deviations from the baselines

• Block/detect privilege escalation

• Block/detect suspicious behaviors: use of shells,
download of binaries/packages, change in
configuration files

Threat detection is especially critical for stopping lateral attacks.
In addition, it is important that security tools eliminate noise and
alert on real and active events without affecting the application
and overall user experience. Implementing the right level of
runtime security ensures your applications can remain safe from
threats – including those outside the physical control of security
teams.

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 14

Secure Your Network
In today’s hyper-connected world, applications are becoming more virtualized and
distributed across many locations, some outside the physical control of security teams.
With the number of attacks on companies rising, protecting network traffic and
infrastructure is critical.

Ingress and Egress Security

Traffic can flow in and around your network in various ways and security teams need to
be on high alert for where that traffic is coming from. Ingress data refers to unsolicited
traffic coming from outside an organization’s network that gets transferred in. Service-
to-service connections, or egress data, can be used to leak information from the cluster
layer. It is important to gain visibility into these connections and have controls on both
ends – ingress controls will help minimize hostile incoming traffic, while egress controls
prevent insiders from sharing data to unauthorized groups.

API Security

API security risks are a concern not to take lightly, as APIs are such a common and
universal method of passing information. New API breaches and vulnerabilities are
constantly being discovered, and traditional approaches to API security are too slow to
keep up with the evolving tactics by malicious actors. According to VMware’s 2022
Global Incident Response Threat Report, 23% of all attacks seen by respondents in the
past 12 months compromised API security1.

1. VMware | Service Mesh for Dummies, VMware 2nd Special Edition

Threat Profile: Exploiting
Rogue and Open APIs
Rogue or shadow APIs are APIs that
exist outside of an organization’s
official security and operational
maintenance processes, and are
particularly dangerous as they can be
exploited to steal data or gain access
to an organization’s systems. Many
teams have open APIs that are
publicly accessible to customers or
partners, but an unsecured open API
means cybercriminals can integrate a
virus themselves directly into its
code. DevSecOps teams must track
all APIs that are in use in order to
identify and mitigate risk.

1

2

3

4

5

6
7
8

9

10

https://tanzu.vmware.com/content/ebooks/service-mesh-for-dummies-2022

10 Things You Must Do to Secure Containers Now | 15

All API traffic should be encrypted, authenticated, and routed through an API gateway.
Extra layers of protection can bring stronger security measures for safer API usage such
as enforcing schema validations, anomaly detection, and payload inspection. Strong
telemetry and visibility into an application’s stack can lead to these informed decisions.

Service Mesh

A service mesh is a modern connectivity and security runtime platform that takes care of
service-to-service communication and security, observability, and resiliency. It allows
development teams to focus on building business logic rather than dealing with the
connectivity and security requirements of an application. They do, however, need to
follow security and compliance guidelines to mitigate insider threats and reduce the risk
of a data breach. This can be achieved by ensuring all communications between
applications are encrypted and mutually authenticated. Developers can do that in
middleware by setting up a mutual Transport Layer Security (TLS) connection each time
a microservice connects to another, or a client connects to a microservice.

Access Control

A multilayered security architecture that implements network security will have elements
of access control and threat control. If a bad actor gains access to a network, they can
monitor traffic and map the entire infrastructure. From there, they can launch an attack
or insert malware. Access control restricts the movement of bad actors throughout the
network. Unfortunately, that is not enough, and problems can still arise, which brings the
need for threat control. Threat control prevents the actions of bad actors from doing
damage within the network.

Pro Tip
Protect your network traffic and
infrastructure to enable your
developers to focus on building an
application rather than the
connectivity requirements. Use the
security frameworks in the following
section to ensure your protection is
compliant with the standards.

1. VMware | Global Incident Response Threat Report: Weathering the Storm

1

2

3

4

5

6
7
8

9

10

https://www.vmware.com/content/microsites/learn/en/1553238_REG.html

10 Things You Must Do to Secure Containers Now | 16

Adopt Trusted Compliance and Security Frameworks

CIS Benchmarks

The Center for Internet Security (CIS) is an independent group
of cybersecurity experts who aim to make the internet safe. CIS
Benchmarks are a commonly used third-party approach to
securing your environment beyond standard configuration.
Organizations of all industries, sizes, and various environments
use CIS Benchmarking for implementing their security
standards. CIS outlines multiple documents that include
guidelines around network, cloud, mobile devices and OS
security, and more. Two key documents to get familiar with
when it comes to container security are:

• CIS Kubernetes Benchmarks

• CIS Docker Benchmarks

NIST Framework

Another way for organizations to improve their security posture
is through the National Institute of Standards and Technology
(NIST) Framework. The NIST Framework allows users to
measure their current cybersecurity maturity against industry
standards and visualize a desired security state. The NIST
Application Container Security Guide gives a detailed
breakdown of how to secure containers from build to operate,
including explanations of potential security concerns associated
with using containers. Some helpful tips from the guide include:

• Using container-specific host OSs instead of general-purpose
ones to reduce attack surfaces

• Segmenting containers by purpose and threat posture on a
single host OS kernel to allow for additional defense

• Using container-aware runtime defense tools

Pro Tip:
Consider your unique environment and use this guide to decide which framework is best suited for your needs. These widely accepted industry benchmarks and
frameworks will help your organization be better prepared for common attacks targeting containers and Kubernetes.

1

2

3

4

5

6
7
8

9

10

https://www.cisecurity.org/benchmark/kubernetes
https://www.cisecurity.org/benchmark/docker
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf

10 Things You Must Do to Secure Containers Now | 17

Stay Informed to Prepare for Common Critical Security Risks
Each year the Open Web Application Security Project® (OWASP) compiles a list for application developers for what is widely
accepted as the top ten most critical security risks for web applications in that given year. Let’s dive into the most recent list to learn
more about each of these risks, why they are so common, and how to prevent them.

1. Broken Access Control
Failure to enforce access control can lead to
unauthorized information disclosure, destruction of all
data, or a user performing a business function
outside their limits. This can be prevented via deny by
default or implementing access control mechanisms
once and re-using them throughout the application.

2. Cryptographic Failures
Failures related to cryptography (or lack thereof) can
often lead to the exposure of sensitive data. This can
be prevented through multiple methods, including
encrypting all sensitive data at rest, and not storing
sensitive data unnecessarily.

3. Injection
Applications are susceptible to attack when hostile
data is used, or user-supplied data is not validated
by the application. Preventing the risk of injection
calls for keeping data independent from commands
and queries.

4. Insecure Design
Risks can be related to design and architectural flaws
that are missing or have ineffective controls.
Establishing a secure development lifecycle to aid with
evaluating and designing security and privacy-related
controls can help prevent this.

5. Security Misconfiguration
Systems are at higher risk if there is no concrete,
replicable security configuration process. Create a
secure process on a minimal platform to make it quick
and simple to deploy another environment that is
properly locked down.

6. Vulnerable and Outdated Components
Vulnerable and outdated components can occur if teams
are not keeping up to date on the state of their software.
By initiating a continuous plan for monitoring, triaging,
and applying updates for the lifetime of an application,
security teams can be confident knowing there are no
vulnerable components in their environment.

1

2

3

4

5

6
7
8

9

10

https://owasp.org/www-project-top-ten/

10 Things You Must Do to Secure Containers Now | 18

7. Identification and Authentication Failures
Confirming a user’s identity and authentication is critical to
protecting against authentication-related attacks. A weak password
or ineffective credential recovery can poke holes for automated
attacks. Implementing multi-factor authentication and having strict
password policies can prevent these types of intrusions.

8. Software and Data Integrity Failures
A software and data integrity failure is associated with code and
infrastructure that neglects to protect against integrity violations or
comes from untrusted sources. Prevent failure by verifying all
sources and having a review process for code and configuration
changes.

9. Security Logging and Monitoring Failures
If a system is not logging and monitoring, breaches cannot be
detected. Logs of applications should be monitored for suspicious
activity, and any auditable events should be logged in a manner
that log management solutions can easily consume.

10. Server-Side Request Forgery
Server-Side Request Forgery (SSRF) issues happen whenever a
web application is fetching a remote resource without
authenticating the user-given URL. This can be prevented at an
application layer by verifying all client-given input data and
disabling HTTP redirections.

Pro Tip
Threats to your containerized applications will
happen. Be prepared for how to mitigate and
respond to them by understanding how they
work, and take the first step towards changing
the software development culture within your
organization into one that produces more
secure code.

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 19

Conclusion and Next Steps
Containers and cloud-native technology will allow organizations
to move from code to customer faster than ever before, deliver
new revenue-generating features more often, and hyper-focus
on the customer experience to be more competitive. The rapid
adoption of containers for modern application delivery will
continue to grow, and so will the attack surface. This security
guide was created to help DevSecOps teams take advantage of
all the benefits containers have to offer, while mitigating the
massive amount of risk that comes with using them.

Keep these ten best practices in mind as you build out your
container security strategy:

1. Align security controls with the application
lifecycle
Security should be integrated throughout the
application lifecycle, from build to run.

2. Establish a DevSecOps approach
By embracing a devsecops mindset,
organizations can leverage growing advances in
applications without putting themselves or
customers at risk.

3. Secure every layer
Security must go beyond the container and be
integrated throughout each layer of
infrastructure. Layered security helps keep
applications secure throughout their lifecycle.

4. Reduce risk of open-source software
Open-source software has enabled developers
to share solutions to common problems, but
they are tempting targets for attackers. Prevent
any risk from using this software so developer
teams can focus on the areas that will bring
value to your organization.

5. Minimize risk when using third-party
image registries
Image registries allow developers to scale
quickly by automating deployments and
encouraging collaboration. However, be aware
of what code may be laying in a public registry.

1

2

3

4

5

6
7
8

9

10

10 Things You Must Do to Secure Containers Now | 20

6. Reduce the attack surface with vulnerability management
and hardening
It is important to have a complete understanding of risks in
your environment to help reduce the attack surface. Image
scanning in every phase for every image provides the level of
visibility needed.

7. Secure containers at runtime
A consolidated view of runtime anomalies will enable strong
investigation and correlation. Continuous scanning at runtime
will ensure no new misconfigurations or vulnerabilities are
introduced.

8. Secure your network
As applications become more virtualized and distributed, it is
important to protect network traffic. Understanding API
security and utilizing service mesh can help verify all pieces
are talking and making informed decisions.

9. Align with industry standards and compliance frameworks
Improve your security posture and build a more mature
security program by following security frameworks such as
CIS benchmarks and the NIST framework.

10. Prepare for critical security risks
Containers may be an enticing target, but you can be
prepared to protect your business by following OWASP’s list
of the top ten most critical security risks to applications.

1

2

3

4

5

6
7
8

9

10

Copyright © 2022 VMware, Inc. All rights reserved. VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001
VMware and the VMware logo are registered trademarks or trademarks of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.
VMware products are covered by one or more patents listed at vmware.com/go/patents. Item No: 10 Things You Must Do to Secure Containers Now 11/22

Join us online:

Check out these additional resources to
learn more about securing containers:
Container Security Pathfinder

VMware Carbon Black Container Technical Overview

VMware Carbon Black Container Test Drive

Secure Modern Applications Industry Guide

Secure Modern Applications Solution Guide

Start Bridging the Dev-Sec-Ops Divide

https://pathfinder.vmware.com/v3/path/containersecurity
https://via.vmw.com/tchz24b2b1d7no2922
https://kb.vmtestdrive.com/a/1552310-securing-modern-applications-with-cbc-container-security
https://carbonblack.vmware.com/resource/securing-modern-applications-industry-guide
https://carbonblack.vmware.com/resource/securing-modern-applications-solution-guide
https://www.vmware.com/resources/security/bridging-the-developer-and-security-divide.html?utm_source=marketing-vmw&utm_medium=website&utm_campaign=security-forrester-research-Q4FY22-web-promo-container-product-page&utm_term=none&utm_content=report

	Page 1 - Cover Link
	Nav 1
	Nav 2
	Nav 4 - Adopt
	Nav 6 - Secure Layer
	Nav 8 - Reduce Risk
	PAGE 9 - Minimize
	Page 10 - Reduce
	Page 12 - Impliment
	Backcover
	Page 14 - Secure Network
	Page 16 - Adopt Trusted
	Page 17 - Stay Informed
	Page 19 - Conclusion

	Forward button 4:
	Page 1:

	forward circle 4:
	Page 1:

	Button 100:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 1:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 10:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 11:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Forward button:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	forward circle:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Back button:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	back circle:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Button 99:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Button 102:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 2:
	Page 2:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 3:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 4:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 5:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 6:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 8:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:

	Nav 7:

