
	

	

	

	

	

	

	

	

	

Seamlessly	deploying	&	managing	Kubernetes	across	multi-cloud	with	
VMware	Technologies	

Table of Contents:

Seamlessly	deploying	&	managing	Kubernetes	across	multi-cloud	with	VMware	Technologies	1	
Multi-Cloud	Challenges	and	VMware	Cloud	Capabilities:	...	3	
What	Defines	the	Ideal	Cloud	Environment?	..	3	
Kubernetes	provides	an	ideal	platform	for	Multi	and	Hybrid	Cloud:	...	4	
Tanzu	Kubernetes	Grid:	...	5	
Simplified	Installation	..	5	
Automated	multi-cluster	operations	...	6	
Integrated	Platform	Services	..	6	
Open-Source	Alignment	..	6	

Where	does	Tanzu	Kubernetes	Grid	run?	..	6	
Private	cloud	..	6	
Public	cloud	...	7	
Edge:	..	7	

Tanzu	Service	Mesh:	..	7	
What	Makes	Tanzu	Service	Mesh	Different?	..	8	

Tanzu	Mission	Control:	...	9	
Provider	and	Customer	Challenges	..	10	
The	Problem:	..	10	
Solution	Components:	..	10	
The	Solution:	..	11	
Solution	Architecture:	..	11	
Solution	Configuration:	...	12	
Conclusion:	..	19	

Appendix	A:	Fitness_Cluster.yaml	...	20	
Appendix	B:	Catalog	YAML	file:...	24	
Appendix	C:	Load	Generator	..	26	

	
	

Multi-Cloud Challenges and VMware Cloud Capabilities

The impact of cloud continues to be undeniable to both business and IT. Cloud has redefined the relationship
between business and IT, reshaping business models, accelerating delivery of new business services, created
new models for customer engagement and improved the efficiency and effectiveness of employees.

Figure	1:	Challenges	with	Multi-Cloud

But the cloud market is at an inflection point. Organizations have hundreds or thousands of applications - both
existing monoliths and new cloud microservices. They are all different. But they are also critical to their
business. Longstanding app architectures are giving way to new cloud native models. The worlds of datacenter,
cloud and edge are converging. And the diversity of multi-cloud, once viewed as chaotic and complex, is
emerging as the most powerful source of innovation.

	
What Defines the Ideal Cloud Environment?
	

• Freedom	to	build	and	run	applications	for	ANY	environment	
• With	development	and	operations	teams	collaborating	freely	
• Ability	to	manage	diverse	environments	CONSISTENTLY	
• With	applications	and	data	that	are	secure	and	protected	EVERYWHERE	
• And	the	freedom	to	change	my	mind	in	the	future	without	PENALTY	

	

Figure	2:	The	VMware	Multi-Cloud	Strategy

Only VMware can drive the next generation of cloud, supporting ambitious multi-cloud strategies, for all
application initiatives to deliver unprecedented business value. VMware App Modernization delivers the
technology to build, run, and manage all these applications across any cloud, and the team to guide any
organization's application modernization effort.

Figure	3:	Portfolio	of	a	multi-cloud	journey

VMware	offers	the	complete	portfolio	for	the	multi-cloud	journey	for	any	enterprise	on	any	cloud.	It	
provides	a	platform	where	both	legacy	and	modern	apps	can	co-exist	and	ubiquitously	run	across	
different	cloud	without	re-platforming.	

Kubernetes provides an ideal platform for Multi and Hybrid Cloud
	
Kubernetes	 provides	 the	 capability	 for	 container	 orchestration,	 while	 also	 facilitating	 an	 easy	 way	 to	
encapsulate	applications.	The	Kubernetes	management	system	provides	a	 standardized	mechanism	 for	
application	delivery	that	 is	decoupled	from	the	underlying	infrastructure	and	can	run	in	any	cloud.	 	All	
public	&	private	cloud	providers	have	adopted	cloud-native	technology	and	make	it	possible	for	running	

applications	in	a	standardized	manner	across	a	multi-cloud	infrastructure.		Modern	developers	can	now	
leverage	Kubernetes	APIs	in	multi-cloud	environments	anywhere	in	the	world	to	deploy	their	applications.	
Kubernetes	has	energized	the	software	industry’s	need	for	productivity,	efficiency,	by	leveraging	cloud-
native	technology	available	anywhere	across	public	and	private	clouds.	
	
Tanzu Kubernetes Grid (TKG)
	
Things	 get	 complex	 while	 running	 tens	 of	 thousands	 of	 containers	 across	 your	 enterprise	 at	 scale	 in	
production.	 Automation	 is	mandatory	 for	 the	 deployment	 and	management	 of	 all	 those	 containers	 on	
clusters	of	virtual	or	physical	machines.	Kubernetes,	the	industry-standard	for	container	management,	can	
streamline	 container	 orchestration	 to	 avoid	 the	 complexities	 of	 interdependent	 system	 architectures.	
However,	there’s	still	considerable	heavy	lifting	that	an	operations	team	must	do	to	stand-up	and	manage	
a	Kubernetes	runtime	consistently,	while	running	in	multiple	data	centers	and	clouds.	They	must	also	have	
the	in-house	expertise	to	design,	deploy	and	integrate	all	the	necessary	components.		
	

Figure	4:	Tanzu	Kubernetes	Grid	logical	schematic

Tanzu	Kubernetes	Grid	is	engineered	to	simplify	installation	and	Day	2	operations	of	Kubernetes	across	
enterprises.	It	is	tightly	integrated	with	vSphere	and	can	be	extended	to	run	with	consistency	across	public	
cloud	and	edge	environments.	Tanzu	Kubernetes	Grid	delivers	multiple	benefits	to	unlock	the	full	potential	
of	upstream	Kubernetes	and	its	burgeoning	ecosystem	of	open-source	cloud	native	technology	through:		

Simplified Installation
Tanzu	Kubernetes	Grid	is	engineered	to	include	the	tools	and	open-source	technologies	needed	to	deploy	
and	consistently	operate	a	scalable	Kubernetes	environment	across	VMware	private	cloud,	i	public	cloud,	
edge,	or	encompassing	multiple	clouds.		

Automated multi-cluster operations
With	declarative,	multi-cluster	lifecycle	management,	a	CLI	tool,	and	streamlined	upgrades	and	patching,	
Tanzu	Kubernetes	Grid	helps	enterprises	easily	manage	large-	scale,	multi-cluster	Kubernetes	
deployments	and	automate	manual	tasks	to	reduce	business	risk	and	focus	on	more	strategic	work.		

Integrated Platform Services
Tanzu	Kubernetes	Grid	streamlines	the	deployment	of	local	and	in-cluster	services	to	simplify	the	
configuration	of	container	image	registry	policies,	monitoring,	logging,	ingress,	networking &	storage,	and	
enables	the	Kubernetes	environment	for	production	workloads.		
	
Open-Source Alignment
Containerized	applications	can	be	run	on	an	upstream-aligned	Kubernetes	distribution	and	key	open-
source	technologies	like	Cluster	API,	Fluentbit,	and	Contour,	enabling	portability	and	the	support	and	
innovation	of	the	global	Kubernetes	community.	
	
Where does Tanzu Kubernetes Grid run?
	

	
Figure	5:	Private	Cloud	Datacenter

Private cloud
With	Tanzu	Kubernetes	Grid	Service	integrated	with	vSphere,	existing	data	center	tooling	and	workflows	
can	be	leveraged	to	give	developers	on-demand	access	to	conformant	Kubernetes	clusters	in	the	private	
cloud	and	managing	cluster	lifecycle	through	automated,	API-driven	workflows.	

	
	

Figure	6:	Public	Cloud	Infrastructure	

	
Public cloud
Tanzu	Mission	Control	can	be	used	to	enable	development	teams	to	quickly	spin	up	managed	Kubernetes	
clusters	in	their	public	cloud	accounts,	while	operations	maintain	access	to	the	control	plane	for	security	
and	customization.	

	

Figure	7:	Edge	Computing	Infrastructure

	
Edge
Tanzu	Kubernetes	Grid’s	open	architecture	enables	lightweight	deployments	and	streamlined	
multicluster	operations	in	highly	distributed	edge	environments,	like	retail	remote	site	locations.		
	
Tanzu Service Mesh
	
Tanzu	Service	Mesh	provides	consistent	connectivity	and	security	for	microservices	across	all	Kubernetes	
clusters	 and	 clouds	 in	 the	most	demanding	multi-cluster	 and	multi-cloud	 environments.	Tanzu	 Service	
Mesh	can	be	installed	in	Tanzu	Kubernetes	Grid	(TKG)	clusters	and	third-party	Kubernetes-conformant	
clusters.	It	can	be	used	with	clusters	managed	by	Tanzu	Mission	Control	(i.e.,	Tanzu-managed	clusters)	or	
clusters	managed	by	other	Kubernetes	platforms	and	managed	services.	

	
Figure	8:	Tanzu	Service	Mesh	provides	security	across	multi-cloud	Kubernetes

What Makes Tanzu Service Mesh Different?
	
Beyond	its	multi-cloud	focus,	one	of	the	other	differentiating	characteristics	of	Tanzu	Service	Mesh	is	its	
ability	to	support	cross-cluster	and	cross-cloud	use	cases	via	Global	Namespaces	(GNS).	A	GNS	abstracts	
an	 application	 from	 the	 underlying	 Kubernetes	 cluster	 namespaces	 and	 networking,	 allowing	 you	 to	
transcend	infrastructure	limitations	and	boundaries,	and	securely	stretch	applications	across	clusters	and	
clouds.	Global	Namespaces	allow	you	to	have	consistent	traffic	routing,	application	resiliency,	and	security	
policies	for	your	applications	across	cloud	siloes,	regardless	of	where	the	applications	are	running.	

By enabling and delivering true multi-cloud capabilities, GNS can offer improved agility, business continuity,
visibility, and better security for your modern applications.

	
Figure	9:	Tanzu	Service	Mesh	&	Global	Namespaces

In	addition	to	providing	an	abstraction	for	applications,	GNS	also	provides	strong	isolation	that	can	be	used	
for	multi-tenancy	model	for	application	teams	and	business	units.	Each	of	these	groups	can	have	as	many	
GNSs	as	 they	need	 for	 their	application.	More	about	GNS	can	be	 found	at	 “Using	Global	Namespaces	 to	
secure	multi-cloud	applications”.	

	
Figure	10:	Onboarding	Clusters	on	Tanzu	Service	Mesh

Tanzu	Service	Mesh	can	also	automate	and	simplify	the	installation	and	lifecycle	management	of	the	service	
mesh	bits	running	inside	your	Kubernetes	clusters,	while	maintaining	intended	configuration	values.	One	
can	also	 “move”	application	services	without	having	 to	change	anything	 in	 the	application	 itself,	which	
brings	 the	 idea	 of	 multi-cloud	 or	 hybrid-cloud	 workloads	 to	 life.	 This	 cross-domain/cross-cloud	
communication	 requires	 additional	 security	 considerations,	 so	 GNS	 encrypts	 the	 traffic,	 end	 to	 end,	
between	the	services	across	clusters	and	clouds.	
	
Tanzu Mission Control:
Tanzu	 Mission	 Control,	 now	 available	 through	 VMware	 Cloud	 Partner	 Navigator,	 is	 a	 centralized	
management	platform	for	consistently	operating	and	securing	your	Kubernetes	infrastructure	and	modern	
applications	across	multiple	 teams	and	clouds.	Tanzu	Mission	Control	provides	operators	with	a	single	
control	point	to	give	developers	the	 independence	they	need	to	drive	business	forward,	while	enabling	
consistent	management	and	operations	across	environments	for	increased	security	and	governance.	

Figure	11:	VMware	Tanzu	Mission	Control	offers	a	centralized	Kubernetes	management	platform

The	infrastructure	and	platform	teams	use	Tanzu	Mission	Control	to	enable	developers	with	self-service	
access	to	Kubernetes.	 It	also	allows	them	to	centrally	operate	and	manage	the	Kubernetes	clusters	and	
modern	 apps	 running	 on	 them	with	 efficiency,	 consistency,	 and	 security.	Application	 teams	use	Tanzu	
Mission	Control	to	better	manage	and	maintain	applications	by	easily	deploying	services	and	workloads	
across	clusters,	better	understanding	the	health	of	their	applications	and	quickly	troubleshooting	issues.	
	
Provider and Customer Challenges
There	are	a	variety	of	Kubernetes	distributions	out	there.	Managing	access,	policy,	security	and	cost	across	
isolated	 distributions	 can	 be	 a	 challenge.	 Tanzu	 Mission	 Control	 provides	 a	 centralized	 management	
platform,	giving	managed	service	providers	and	their	users	the	independence,	they	need	to	drive	business	
forward,	while	enabling	consistent	management	and	operations	across	environments	at	scale.	
	

	

• Multi-Cluster Management
• Manage Kubernetes on vSphere 7
• Kubernetes Deployment at the Edge

Figure	12:	Tanzu	Mission	provides	consistent	operations	across	clouds	

The Problem
It	is	hard	to	consistently	connect,	control,	monitor,	and	remediate	cloud	native	apps.	Moderns	App	are	
running	in	multiple	platforms	and	clouds.	There	are	multiple	endpoints	to	monitor,	scale,	and	make	them	
resilient.	Operational	and	remediation	policies	differ	across	clouds.	Security,	auditing	and	compliance	are	
disoriented	

Solution Components
TKG allows use of existing data center tools and workflows to give developers secure, self-serve access to
conformant Kubernetes clusters in their VMware private cloud and extend the same consistent Kubernetes
runtime across their public cloud and edge environments. TKG can enable consistent Kubernetes everywhere
with automated multi-cluster operations, validated integrated services and enterprise-wide management.

VMware	 Tanzu	Mission	 Control	 gives	 teams	 self	 service	 capabilities	 to	 spin	 up	 their	 own	 Kubernetes	
clusters,	 while	 keeping	 track	 of	 all	 their	 services	 using	workspaces.	Workspaces	work	 across	 clusters	
provides	teams	the	flexibility	they	need	to	run	their	services,	while	conforming	to	organizational	policies.	

Workspaces	also	allows	operations	teams	to	assign	policy	in	a	hierarchical	way	at	the	global,	cluster,	and	
workspace	level.	
	
Tanzu	Service	mesh	provides	the	ability	to	run	applications	across	multi-cloud	environments.		It	ensures	
application	high	availability	and	resiliency	to	deliver	on	application	SLAs	and	ensure	a	positive	experience	
for	 application	 users,	 while	 protecting	 sensitive	 data	 and	 ensuring	 compliance.	 It	 enables	 operational	
Control	to	deliver	consistent	and	intelligent	operations	across	cloud	environments.	
	
This	solution	seeks	to	combine	the	capabilities	of	TKG,	Tanzu	Mission	Control	and	Tanzu	Service	Mesh	to	
host	an	end	to	end	secure	and	optimized	multi-cloud	application.	Kubernetes	is	deployed	distinct	multi-
cloud	locations	that	include	VMC	on	AWS	and	VMC	on	Dell	EMC.		

The Solution
This	 solution	 show	 cases	 a	 multi-cloud	 deployment	 of	 a	 distributed	 application	 leveraging	 Tanzu	
Kubernetes	Grid.	The	multi	cloud	TKG	solution	is	deployed	in	a	distributed	fashion	across	two	different	
cloud	environments	that	includes	a	VMC	on	AWS	SDDC	in	Oregon	and	VMC	on	Dell	EMC	SDDC	in	Santa	
Clara.	Tanzu	Mission	Control	and	Tanzu	service	mesh	described	below	are	used	to	operationalize,	secure	
and	manage	the	environment.	

Solution Architecture

The	logical	schematic	of	the	solution	is	shown.	TKG	is	deployed	independently	in	two	distinct	multicloud	
locations	that	include	a	VMC	on	AWS	SDDC	and	a	VMC	on	Dell	EMC	Edge	location.	Tanzu	Mission	Control	
is	used	to	manage	these	TKG	clusters	in	a	centralized	manner	as	shown.	Tanzu	Service	mesh	is	used	to	
create	 a	 global	 namespace	 and	 provides	 for	 monitoring,	 automation,	 policy	 management	 and	 secure	
communications	across	the	multi-cloud	infrastructure.	An	example	e-commerce	application	was	deployed	
across	the	multicloud	environment	to	showcase	the	capabilities	of	the	solution.	

Figure	13:		Logical	schematic	of	solution	showing	all	components	

	
Solution Configuration

VMware	 Tanzu	 Mission	 Control	 (TMC)	 is	 used	 to	 centrally	 manage	 Kubernetes	 clusters.	 The	 two	
Kubernetes	clusters,	one	running	in	VMC	on	AWS	and	the	other	in	VMC	in	Dell	EMC	are	shown	in	the	TMC	
console.	
	

Figure	14:	Tanzu	Mission	Control	console	showing	the	two	managed	clusters	in	the	solution	

VMware Tanzu Mission Control provides insight into all aspects of the Kubernetes clusters it manages.
It provides a graphical view of all the health metrics, the nodes, namespaces and workloads.

Figure	15:	VMC	on	AWS	TKG	Cluster	overview	in	TMC

The VMC on Dell EMC Kubernetes cluster is shown below. The master node is identified as the control
plane and the four worker nodes are shown below that.

Figure	16:	VMC	on	Dell	EMC	TKG	Cluster	nodes	as	seen	in	TMC

Tanzu Service Mesh (TSM) console is shown with all its components. The sample global namespace used
by the multi-cloud web application is shown.

Figure	17:	Global	Namespace	for	solution	in	Tanzu	Service	Mesh

The two clusters are combined into a global namespace as shown below with Tanzu Service Mesh. TSM
secures and manages the communication across the clusters and the namespace.

Figure	18:	VMC	on	AWS	TKG	Cluster	overview	in	TMC

 Details about the sample service “sample.acme.com” and its details in TSM are shown. Details about
the application security and certificates are shown.

Figure	19:	Details	of	the	Global	Namespace	and	associated	application	service

A snippet from the yaml file from acme fitness service is shown with details of the shopping application.
Full version of the YAML file can be seen in Appendix A.

Figure	20:	Snippet	of	the	ACME	Fitness	Application	YAML	file

Shown is a listing of some of the commands that were run for the the creation of a mongo dB database
and other components of the acme fitness application.

Figure	21:	Commands	showing	creation	of	ACME	fitness	App	service

Components of the acme application in the VMC on Dell EMC Kubernetes is shown in a flow chart
format. TSM shows compelling views of the applications it manages and their relationship.

Figure	22:	Components	of	the	ACME	app	and	their	relationships	as	seen	in	TSM

 The web interface of the multi-tiered application is shown here. The application components are
deployed across two different Kubernetes clusters across a multi-cloud environment.

Figure	23:	Web	Interface	of	the	ACME	multi-tiered	application		

The catalog service is hosted in the VMC on AWS Kubernetes cluster while the other aspects of the
solution and the mongo DB are hosted in the Kubernetes cluster running on the VMC on Dell EMC SDDC.
The Tanzu Service Mesh makes it seamless for the application components to communicate with each
other securely across clouds while showing a unified front to the users.

Figure	24:	Global	Namespace	showing	the	application	components	dispersed	across	multi-cloud

The Kubernetes dashboard for each individual cluster helps monitor and maintain the different pods
that make up the distributed web application.

Figure	25:		Kubernetes	Dashboard	to	monitor	and	manage	individual	Kubernetes	cluster

Conclusion:
	
In	summary	we	have	shown	that	this	solution	can	leverage	TKG	clusters	deployed	across	a	multi-cloud	
environment.	 Tanzu	 mission	 control	 provides	 visibility	 and	 operational	 capabilities	 to	 manage	 these	
Kubernetes	clusters	with	a	single	pane	of	glass.	Tanzu	service	mesh	provides	the	ability	to	combine	multi-
cloud	applications	with	global	namespaces	and	secures	the	application	effectively	across	cloud	boundaries.		
All	 the	 components	 showcased	 in	 this	multi-cloud	 solution	 are	 part	 of	 the	VMware Tanzu Advanced
Edition.	 VMware	 Tanzu	 can	 be	 effectively	 leveraged	 by	 enterprises	 to	 deploy	 and	manage	Kubernetes	
application	across	a	multi-cloud	Kubernetes	based	environment.	
	
	
	 	

Appendix	A:	Fitness_Cluster.yaml	
	
--	
apiVersion:	v1	
kind:	Service	
metadata:	
name:	cart-redis	
labels:	
app:	cart-redis	
service:	cart-redis	
spec:	
ports:	
-	port:	6379	
name:	tcp-redis-cart	
selector:	
app:	cart-redis	
service:	cart-redis	

apiVersion:	apps/v1	
kind:	Deployment	
metadata:	
name:	cart-redis	
labels:	
app:	cart-redis	
service:	cart-redis	
spec:	
selector:	
matchLabels:	
app:	cart-redis		#	has	to	match	.spec.template.metadata.labels	
service:	cart-redis	
replicas:	1	
template:	
metadata:	
labels:	
app:	cart-redis		#	has	to	match	.spec.selector.matchLabels	
service:	cart-redis	
spec:	
containers:	
-	name:	cart-redis	
image:	redis:5.0.3-alpine	
command:	
-	"redis-server"	
imagePullPolicy:	Always	
resources:	
requests:	
cpu:	"100m"	
memory:	"100Mi"	
ports:	
-	name:	tcp-redis	
containerPort:	6379	
protocol:	"TCP"	
env:	
-	name:	REDIS-HOST	
value:	'cart-redis'	
-	name:	REDIS_PASS	
valueFrom:	
secretKeyRef:	
name:	redis-pass	
key:	password	
volumeMounts:	
-	mountPath:	/var/lib/redis	
name:	redis-data	
#												-	mountPath:	/etc/redis	
#														name:	redis-config	
volumes:	
-	name:	redis-data	
emptyDir:	{}	
#								-	name:	redis-config	
#										configMap:	
#												name:	redis-config	
#												items:	
#														-	key:	redis-config	
#																path:	redis.conf	

apiVersion:	v1	
kind:	Service	
metadata:	
name:	cart	
labels:	
app:	cart	
service:	cart	
spec:	
ports:	
-	name:	http-cart	
protocol:	TCP	
port:	5000	
selector:	
app:	cart	
service:	cart	

apiVersion:	apps/v1	
kind:	Deployment	
metadata:	
name:	cart	
labels:	
app:	cart	
service:	cart	
spec:	
selector:	
matchLabels:	
app:	cart	
service:	cart	
strategy:	
type:	Recreate	
replicas:	1	
template:	
metadata:	
labels:	
app:	cart	
service:	cart	
spec:	
volumes:	
-	name:	cart-data	
emptyDir:	{}	
containers:	
-	image:	gcr.io/vmwarecloudadvocacy/acmeshop-cart:1.0.0	
name:	cart	
env:	
-	name:	REDIS_HOST	
value:	'cart-redis'	
-	name:	REDIS_PASS	
valueFrom:	
secretKeyRef:	
name:	redis-pass	
key:	password	
-	name:	REDIS_PORT	
value:	'6379'	
-	name:	CART_PORT	
value:	'5000'	
ports:	
-	containerPort:	5000	
name:	http-cart	
volumeMounts:	
-	mountPath:	"/data"	
name:	"cart-data"	
resources:	
requests:	
memory:	"64Mi"	
cpu:	"100m"	
limits:	
memory:	"256Mi"	
cpu:	"500m"	

apiVersion:	v1	
kind:	Service	
metadata:	
name:	shopping	
labels:	
app:	shopping	

service:	shopping	
spec:	
ports:	
-	name:	http-shopping	
protocol:	TCP	
port:	3000	
selector:	
app:	shopping	
service:	shopping	

apiVersion:	apps/v1	#	for	versions	before	1.8.0	use	apps/v1beta1	
kind:	Deployment	
metadata:	
name:	shopping	
labels:	
app:	shopping	
service:	shopping	
spec:	
selector:	
matchLabels:	
app:	shopping	
service:	shopping	
strategy:	
type:	Recreate	
replicas:	1	
template:	
metadata:	
labels:	
app:	shopping	
service:	shopping	
spec:	
containers:	
-	image:	gcr.io/vmwarecloudadvocacy/acmeshop-front-end:rel1	
name:	shopping	
env:	
-	name:	FRONTEND_PORT	
value:	'3000'	
-	name:	USERS_HOST	
value:	'users'	
-	name:	CATALOG_HOST	
value:	'catalog.acme.com'	
-	name:	ORDER_HOST	
value:	'order'	
-	name:	CART_HOST	
value:	'cart'	
-	name:	USERS_PORT	
value:	'8081'	
-	name:	CATALOG_PORT	
value:	'8082'	
-	name:	CART_PORT	
value:	'5000'	
-	name:	ORDER_PORT	
value:	'6000'	
ports:	
-	containerPort:	3000	
name:	http-shopping	

apiVersion:	v1	
kind:	Service	
metadata:	
name:	order-mongo	
labels:	
app:	order-mongo	
service:	order-mongo	
spec:	
ports:	
-	port:	27017	
name:	mongo-order	
protocol:	TCP	
selector:	
app:	order-mongo	
service:	order-mongo	

apiVersion:	apps/v1	
kind:	Deployment	
metadata:	

name:	order-mongo	
labels:	
app:	order-mongo	
service:	order-mongo	
spec:	
selector:	
matchLabels:	
app:	order-mongo		#	has	to	match	.spec.template.metadata.labels	
service:	order-mongo	
replicas:	1	
template:	
metadata:	
labels:	
app:	order-mongo		#	has	to	match	.spec.selector.matchLabels	
service:	order-mongo	
spec:	
containers:	
-	name:	order-mongo	
image:	mongo:4	
resources:	
{}	
ports:	
-	name:	mongo-order	
containerPort:	27017	
protocol:	"TCP"	
env:	
-	name:	MONGO_INITDB_ROOT_USERNAME	
value:	'mongoadmin'	
-	name:	MONGO_INITDB_ROOT_PASSWORD	
valueFrom:	
secretKeyRef:	
name:	order-mongo-pass	
key:	password	
volumeMounts:	
-	mountPath:	/data/db	
name:	mongodata	
volumes:	
-	name:	mongodata	
emptyDir:	{}	
#								-	name:	mongodata	
#										persistentVolumeClaim:	
#												claimName:	mongodata	

apiVersion:	v1	
kind:	Service	
metadata:	
name:	order	
labels:	
app:	order	
service:	order	
spec:	
ports:	
-	name:	http-order	
protocol:	TCP	
port:	6000	
selector:	
app:	order	
service:	order	

apiVersion:	apps/v1	#	for	versions	before	1.8.0	use	apps/v1beta1	
kind:	Deployment	
metadata:	
name:	order	
labels:	
app:	order	
service:	order	
spec:	
selector:	
matchLabels:	
app:	order	
service:	order	
strategy:	
type:	Recreate	
replicas:	1	
template:	
metadata:	

labels:	
app:	order	
service:	order	
spec:	
volumes:	
-	name:	order-data	
emptyDir:	{}	
containers:	
-	image:	gcr.io/vmwarecloudadvocacy/acmeshop-order:1.0.1	
name:	order	
env:	
-	name:	ORDER_DB_HOST	
value:	'order-mongo'	
-	name:	ORDER_DB_PASSWORD	
valueFrom:	
secretKeyRef:	
name:	order-mongo-pass	
key:	password	
-	name:	ORDER_DB_PORT	
value:	'27017'	
-	name:	ORDER_DB_USERNAME	
value:	'mongoadmin'	
-	name:	ORDER_PORT	
value:	'6000'	
-	name:	PAYMENT_PORT	
value:	'9000'	
-	name:	PAYMENT_HOST	
value:	'payment'	
ports:	
-	containerPort:	6000	
name:	http-order	
volumeMounts:	
-	mountPath:	"/data"	
name:	"order-data"	
resources:	
requests:	
memory:	"64Mi"	
cpu:	"100m"	
limits:	
memory:	"256Mi"	
cpu:	"500m"	

apiVersion:	v1	
kind:	Service	
metadata:	
name:	payment	
labels:	
app:	payment	
service:	payment	
spec:	
ports:	
-	name:	http-payment	
protocol:	TCP	
port:	9000	
selector:	
app:	payment	
service:	payment	

apiVersion:	apps/v1	
kind:	Deployment	
metadata:	
name:	payment	
labels:	
app:	payment	
service:	payment	
spec:	
selector:	
matchLabels:	
app:	payment	
service:	payment	
strategy:	
type:	Recreate	
replicas:	1	
template:	
metadata:	
labels:	

app:	payment	
service:	payment	
spec:	
containers:	
-	image:	gcr.io/vmwarecloudadvocacy/acmeshop-payment:1.0.0	
name:	payment	
env:	
-	name:	PAYMENT_PORT	
value:	'9000'	
ports:	
-	containerPort:	9000	
name:	http-payment	

apiVersion:	v1	
kind:	ConfigMap	
metadata:	
name:	users-initdb-config	
data:	
seed.js:	|	
db.users.insertMany([
{"firstname":"Walter","lastname":"White","email":"walter@acmefitness.co
m","username":"walter","password":"6837ea9b06409112a824d113927ad7
4fabc5c76e","salt":""}	
,{"firstname":"Dwight","lastname":"Schrute","email":"dwight@acmefitness.
com","username":"dwight","password":"6837ea9b06409112a824d113927a
d74fabc5c76e","salt":""}	
,{"firstname":"Eric","lastname":"Cartman","email":"eric@acmefitness.com",
"username":"eric","password":"6837ea9b06409112a824d113927ad74fabc
5c76e","salt":""}	
,{"firstname":"Han","lastname":"Solo","email":"han@acmefitness.com","use
rname":"han","password":"6837ea9b06409112a824d113927ad74fabc5c76
e","salt":""}	
,{"firstname":"Phoebe","lastname":"Buffay","email":"phoebe@acmefitness.c
om","username":"phoebe","password":"6837ea9b06409112a824d113927a
d74fabc5c76e","salt":""}	
,{"firstname":"Elaine","lastname":"Benes","email":"elaine@acmefitness.com
","username":"elaine","password":"6837ea9b06409112a824d113927ad74f
abc5c76e","salt":""}	
]);	

apiVersion:	v1	
kind:	Service	
metadata:	
name:	users-mongo	
labels:	
app:	users-mongo	
service:	users-mongo	
spec:	
ports:	
-	port:	27017	
name:	mongo-users	
protocol:	TCP	
selector:	
app:	users-mongo	
service:	users-mongo	

apiVersion:	apps/v1	
kind:	Deployment	
metadata:	
name:	users-mongo	
labels:	
app:	users-mongo	
service:	users-db	
spec:	
selector:	
matchLabels:	
app:	users-mongo		#	has	to	match	.spec.template.metadata.labels	
service:	users-mongo	
replicas:	1	
template:	
metadata:	
labels:	
app:	users-mongo		#	has	to	match	.spec.selector.matchLabels	
service:	users-mongo	
spec:	
containers:	

-	name:	users-mongo	
image:	mongo:4	
resources:	
{}	
ports:	
-	name:	mongo-users	
containerPort:	27017	
protocol:	"TCP"	
env:	
-	name:	MONGO_INITDB_ROOT_USERNAME	
value:	'mongoadmin'	
-	name:	MONGO_INITDB_DATABASE	
value:	'acmefit'	
-	name:	MONGO_INITDB_ROOT_PASSWORD	
valueFrom:	
secretKeyRef:	
name:	users-mongo-pass	
key:	password	
volumeMounts:	
-	mountPath:	/data/db	
name:	mongodata	
-	mountPath:	/docker-entrypoint-initdb.d	
name:	mongo-initdb	
volumes:	
-	name:	mongodata	
emptyDir:	{}	
-	name:	mongo-initdb	
configMap:	
name:	users-initdb-config	
#								-	name:	mongodata	
#										persistentVolumeClaim:	
#												claimName:	mongodata	

apiVersion:	v1	
kind:	Service	
metadata:	
name:	users	
labels:	
app:	users	
service:	users	
spec:	
ports:	
-	name:	http-users	
protocol:	TCP	
port:	8081	
selector:	
app:	users	
service:	users	

apiVersion:	apps/v1	
kind:	Deployment	
metadata:	
name:	users	
labels:	
app:	users	
service:	users	
spec:	
selector:	
matchLabels:	
app:	users	
service:	users	
strategy:	
type:	Recreate	
replicas:	1	
template:	
metadata:	
labels:	
app:	users	
service:	users	
spec:	
volumes:	
-	name:	users-data	
emptyDir:	{}	
containers:	
-	image:	gcr.io/vmwarecloudadvocacy/acmeshop-user:1.0.0	
name:	users	

env:	
-	name:	USERS_DB_HOST	
value:	'users-mongo'	
-	name:	USERS_DB_PASSWORD	
valueFrom:	
secretKeyRef:	
name:	users-mongo-pass	
key:	password	
-	name:	USERS_DB_PORT	
value:	'27017'	
-	name:	USERS_DB_USERNAME	
value:	'mongoadmin'	
-	name:	USERS_PORT	
value:	'8081'	
ports:	
-	containerPort:	8081	
name:	http-users	
volumeMounts:	
-	mountPath:	"/data"	
name:	"users-data"	
resources:	
requests:	
memory:	"64Mi"	
cpu:	"100m"	
limits:	
memory:	"256Mi"	
cpu:	"500m"	

Appendix	B:	Catalog	YAML	file:	
	
apiVersion:	v1	
kind:	ConfigMap	
metadata:	
		name:	catalog-initdb-config-v2	
data:	
		seed.js:	|	
				db.catalog.insertMany([
						{"name":"Super	Yoga	Mat","shortdescription":"Super	Magic	Yoga	
Matv2!","description":"Our	Yoga	Mat	is	magic.	You	will	twist	into	a	human	
pretzel	with	the	greatest	of	ease.	Never	done	Yoga	before?	This	mat	will	
turn	you	into	an	instant	professional	with	barely	any	work.	It’s	the	
American	way!.	
Namaste!","imageurl1":"/static/images/yogamat_square.jpg","imageurl2":
"/static/images/yogamat_thumb2.jpg","imageurl3":"/static/images/yoga
mat_thumb3.jpg","price":700.0,"tags":["mat"]}	
						,{"name":"Super	Water	Bottle","shortdescription":"The	last	Water	Bottle	
you'll	ever	buy!","description":"Our	Water	Bottle	only	has	to	be	filled	once!	
That's	right.	ONCE.	Unlimited	water,	for	the	rest	of	your	life.	Doesn't	that	
$34.99	seem	a	lot	more	reasonable	now?	Stop	buying	all	those	other	water	
bottles	that	you	have	to	keep	refilling	like	a	sucker.	Get	the	ACME	bottle	
today!","imageurl1":"/static/images/bottle_square.jpg","imageurl2":"/stati
c/images/bottle_thumb2.jpg","imageurl3":"/static/images/bottle_thumb3.j
pg","price":3400.9900016784668,"tags":["bottle"]}	
						,{"name":"Super	Fit	Bike","shortdescription":"Get	Light	on	our	Fit	Bike!",	
"description":"Ride	like	the	wind	on	your	very	own	ACME	Fit	Bike.	Have	you	
ever	wanted	to	travel	as	fast	as	a	MotoGP	racer	on	a	bicycle	with	tiny	tires?!	
Me	too!	Get	the	Fit	Bike,	and	you'll	vroom	your	way	into	fitness	in	30	
seconds	
flat!","imageurl1":"/static/images/bicycle_square.jpg","imageurl2":"/static
/images/bicycle_thumb2.jpg","imageurl3":"/static/images/bicycle_thumb3
.jpg",	"price":4990.99,"tags":["bicycle"]}	
						,{"name":"Super	Basket	Ball","shortdescription":"World's	Roundest	
Basketball!","description":"That's	right.	You	heard	me	correctly.	The	worlds	
ROUNDEST	basketball.	Are	you	tired	of	your	current	basketball	simply	not	
being	round	enough.	Then	it's	time	to	step	up	to	the	ACME	Basketball.	Get	
your	round	
on!","imageurl1":"/static/images/basketball_square.jpg","imageurl2":"/sta
tic/images/basketball_thumb2.jpg","imageurl3":"/static/images/basketbal
l_thumb3.jpg","price":1100.75,"tags":["basketball"]}	
						,{"name":"Super	Smart	Watch","shortdescription":"The	watch	that	
makes	you	smarter!","description":"Do	you	have	trouble	remembering	
things?	Can	you	not	remember	what	day	it	is?	Do	you	need	a	robot	with	a	
cute	women's	voice	to	tell	you	when	to	stand	up	and	walk	around?	Then	boy	
do	we	have	the	watch	for	you!	Get	the	ACME	Smart	Watch,	and	never	have	
to	remember	anything	ever	
again!","imageurl1":"/static/images/smartwatch_square.jpg","imageurl2":
"/static/images/smartwatch_thumb2.jpg","imageurl3":"/static/images/sm
artwatch_thumb3.jpg","price":3999.5899963378906,"tags":["watch"]}	
						,{"name":"Super	Red	Pants","shortdescription":"Because	who	doesn't	
need	red	pants??",	"description":"Have	you	found	yourself	walking	around	
tech	conferences	in	the	same	old	jeans	and	vendor	t-shirt?	Do	you	need	to	
up	your	pants	game?	ACME	Red	Pants	are	100%	GUARANTEED	to	take	you	
to	a	whole	new	level.	Women	will	want	to	meet	you.	Men	will	want	to	be	
you.	You	are...	Fancy	Pants.	What	are	you	waiting	
for??","imageurl1":"/static/images/redpants_square.jpg","imageurl2":"/sta
tic/images/redpants_thumb2.jpg","imageurl3":"/static/images/redpants_t
humb3.jpg",	"price":990.0,"tags":["clothing"]}	
						,{"name":"Super	Running	shoes","shortdescription":"Mama	says	they	
was	magic	shoes!",	"description":"And	she	was	right!	Are	you	slow?	Out	of	
shape?	But	still	ready	to	take	on	Usain	Bolt	in	the	100?	Then	strap	up	your	
ACME	Running	Shoes	and	Run	Forest,	Run!	These	shoes	will	make	you	run	
the	100	in	2.5	
flat!","imageurl1":"/static/images/shoes_square.jpg","imageurl2":"/static/i
mages/shoes_thumb2.jpg","imageurl3":"/static/images/shoes_thumb3.jpg"
,	"price":1200.00,"tags":["running"]}	
						,{"name":"Super	Weights","shortdescription":"Get	ripped	without	
breaking	a	sweat!","description":"Are	you	ready	to	get	Pumped	Up	with	
Hanz	and	Franz?	Or	get	swole	like	Arnold?	It's	time	to	hit	the	Add	to	Cart	
button	on	the	ACME	Weights.	Just	45	seconds	a	day,	3	days	a	week,	and	
you'll	be	showing	those	Muscle	Beach	clowns	how	it's	done	in	no	
time!","imageurl1":"/static/images/weights_square.jpg","imageurl2":"/stat
ic/images/weights_thumb2.jpg","imageurl3":"/static/images/weights_thu
mb3.jpg",	"price":300.99,"tags":["weight"]}]);	

apiVersion:	v1	
kind:	Service	
metadata:	
		name:	catalog-mongo-v2	
		labels:	
				app:	catalog-db-v2	
				service:	catalog-db-v2	
spec:	
		ports:	
				-	port:	27017	
						name:	mongo-catalog	
						protocol:	TCP	
		selector:	
				app:	catalog-db-v2	
				service:	catalog-db-v2	

apiVersion:	apps/v1	
kind:	Deployment	
metadata:	
		name:	catalog-mongo-v2	
		labels:	
				app:	catalog-db-v2	
				service:	catalog-db-v2	
spec:	
		selector:	
				matchLabels:	
						app:	catalog-db-v2		#	has	to	match	.spec.template.metadata.labels	
						service:	catalog-db-v2	
		replicas:	1	
		template:	
				metadata:	
						labels:	
								app:	catalog-db-v2		#	has	to	match	.spec.selector.matchLabels	
								service:	catalog-db-v2	
				spec:	
						containers:	
								-	name:	catalog-mongo	
										image:	mongo:4	
										resources:	
												{}	
										ports:	
												-	name:	mongo-catalog	
														containerPort:	27017	
														protocol:	"TCP"	
										env:	
										-	name:	MONGO_INITDB_ROOT_USERNAME	
												value:	'mongoadmin'	
										-	name:	MONGO_INITDB_DATABASE	
												value:	'acmefit'	
										-	name:	MONGO_INITDB_ROOT_PASSWORD	
												valueFrom:	
														secretKeyRef:	
																name:	catalog-mongo-pass	
																key:	password	
										volumeMounts:	
												-	mountPath:	/data/db	
														name:	mongodata	
												-	mountPath:	/docker-entrypoint-initdb.d	
														name:	mongo-initdb	
						volumes:	
								-	name:	mongodata	
										emptyDir:	{}	
								-	name:	mongo-initdb	
										configMap:	
												name:	catalog-initdb-config-v2	
#								-	name:	mongodata	
#										persistentVolumeClaim:	
#												claimName:	mongodata	

apiVersion:	apps/v1	
kind:	Deployment	
metadata:	
		name:	catalog-v2	
		labels:	
				app:	catalog	

				service:	catalog	
				version:	v2	
spec:	
		selector:	
				matchLabels:	
						app:	catalog	
						service:	catalog	
						version:	v2	
		strategy:	
				type:	Recreate	
		replicas:	1	
		template:	
				metadata:	
						labels:	
								app:	catalog	
								service:	catalog	
								version:	v2	
				spec:	
						volumes:	
						-	name:	catalog-data	
								emptyDir:	{}	
						containers:	
						-	image:	gcr.io/vmwarecloudadvocacy/acmeshop-catalog:1.0.0	
								name:	catalog	
								env:	
								-	name:	CATALOG_DB_HOST	
										value:	'catalog-mongo-v2'	
								-	name:	CATALOG_DB_PASSWORD	
										valueFrom:	
												secretKeyRef:	
														name:	catalog-mongo-pass	
														key:	password	
								-	name:	CATALOG_DB_PORT	
										value:	'27017'	
								-	name:	CATALOG_DB_USERNAME	
										value:	'mongoadmin'	
								-	name:	CATALOG_PORT	
										value:	'8082'	
								ports:	
								-	containerPort:	8082	
										name:	http-catalog	
								volumeMounts:	
								-	mountPath:	"/data"	
										name:	"catalog-data"	
								resources:	
										requests:	
												memory:	"64Mi"	
												cpu:	"100m"	
										limits:	
												memory:	"256Mi"	
												cpu:	"500m"	
	 	

Appendix	C:	Load	Generator	

apiVersion:	apps/v1	
kind:	Deployment	
metadata:	
		name:	acme-locust	
		namespace:	loadgen	
spec:	
		selector:	
				matchLabels:	
						app:	acme-locust	
		replicas:	4	
		template:	
				metadata:	
						labels:	
								app:	acme-locust	
				spec:	
						terminationGracePeriodSeconds:	5	
						restartPolicy:	Always	
						volumes:	
						-	name:	acme-locustfile	
								configMap:	
										name:	acme-locustfile	
						containers:	
						-	name:	main	
								image:	harbor.tanzuworld.com/apps/locust:1.4.1	
								imagePullPolicy:	IfNotPresent	
								ports:	
								-	containerPort:	8089	
								env:	
								command:	
								-	locust	
								args:	["-f","/mnt/locust/locustfile.py","--headless","--host=http://istio-
ingressgateway.istio-system"]	
								resources:	
										requests:	
												cpu:	300m	
												memory:	256Mi	
										limits:	
												cpu:	1	
												memory:	512Mi	
								volumeMounts:	
								-	name:	acme-locustfile	
										mountPath:	/mnt/locust	

apiVersion:	v1	
kind:	ConfigMap	
metadata:	
		name:	acme-locustfile	
		namespace:	loadgen	
data:	
		locustfile.py:	|	
				#	This	program	will	generate	traffic	for	ACME	Fitness	Shop	App.	It	
simulates	both	Authenticated	and	Guest	user	scenarios.	You	can	run	this	
program	either	from	Command	line	or	from	
				#	the	web	based	UI.	Refer	to	the	"locust"	documentation	for	further	
information.		
				from	locust	import	HttpUser,	TaskSet,	task,	SequentialTaskSet,	Locust,	
LoadTestShape,	between	
				import	random	
				import	math	
				#	List	of	users	(pre-loaded	into	ACME	Fitness	shop)	
				users	=	["eric",	"phoebe",	"dwight",	"han"]		
				#	List	of	products	within	the	catalog	
				products	=	[]	
				import	logging	
				#	GuestUserBrowsing	simulates	traffic	for	a	Guest	User	(Not	logged	in)	
				class	GuestUserBrowsing(SequentialTaskSet):	
								def	on_start(self):	
												self.getProducts()	
								def	listCatalogItems(self):	
												items	=	self.client.get("/products").json()["data"]	
												for	item	in	items:	
																products.append(item["id"])	

												return	products	
								@task	
								def	getProducts(self):	
												logging.info("Guest	User	-	Get	Products")	
												self.client.get("/products")	
								@task	
								def	getProduct(self):	
												logging.info("Guest	User	-	Get	a	product")	
												products	=	self.listCatalogItems()	
												id	=	random.choice(products)	
												product	=	self.client.get("/products/"+	id).json()	
												logging.info("Product	info	-	"	+		str(product))	
												products.clear()	
				#	AuthUserBrowsing	simulates	traffic	for	Authenticated	Users	(Logged	
in)	
				class	AuthUserBrowsing(SequentialTaskSet):	
								def	on_start(self):	
												self.login()	
								@task	
								def	login(self):	
												user	=	random.choice(users)	
												logging.info("Auth	User	-	Login	user	"	+	user)	
												body	=	self.client.post("/login/",	json={"username":	user,	
"password":"vmware1!"}).json()	
												self.user.userid	=	body["token"]	
								@task	
								def	getProducts(self):	
												logging.info("Auth	User	-	Get	Catalog")	
												self.client.get("/products")					
								@task(2)	
								def	getProduct(self):	
												logging.info("Auth	User	-	Get	a	product")	
												products	=	self.listCatalogItems()	
												id	=	random.choice(products)	
												product	=	self.client.get("/products/"+	id).json()	
												logging.info("Product	info	-	"	+		str(product))	
												products.clear()	
								@task(2)	
								def	addToCart(self):	
												self.listCatalogItems()	
												productid	=	random.choice(products)	
												logging.info("Add	to	Cart	for	user	"	+	self.user.userid)	
												cart	=	self.client.post("/cart/item/add/"	+	self.user.userid,	json={	
																						"name":	productid,	
																						"price":	"100",	
																						"shortDescription":	"Test	add	to	cart",	
																						"quantity":	random.randint(1,2),	
																						"itemid":	productid	
																				})	
												products.clear()	
								@task	
								def	checkout(self):	
												userCart	=	self.client.get("/cart/items/"	+	self.user.userid).json()	
												order	=	self.client.post("/order/add/"+	self.user.userid,	json={	
"userid":"8888",	
																				"firstname":"Eric",	
																				"lastname":	"Cartman",	
																				"address":{	
																								"street":"20	Riding	Lane	Av",	
																								"city":"San	Francisco",	
																								"zip":"10201",	
																								"state":	"CA",	
																								"country":"USA"},	
																				"email":"jblaze@marvel.com",	
																				"delivery":"UPS/FEDEX",	
																				"card":{	
																								"type":"amex/visa/mastercard/bahubali",	
																								"number":"349834797981",		
																								"expMonth":"12",	
																								"expYear":	"2022",	
																								"ccv":"123"	
																				},	
																				"cart":[
																								{"id":"1234",	"description":"redpants",	"quantity":"1",	
"price":"4"},	

																								{"id":"5678",	"description":"bluepants",	"quantity":"1",	
"price":"4"}	
],	
																				"total":"100"})	
								def	listCatalogItems(self):	
												items	=	self.client.get("/products").json()["data"]	
												for	item	in	items:	
																products.append(item["id"])	
												return	products	
								@task(2)	
								def	index(self):	
												self.client.get("/")	
				class	UserBehavior(SequentialTaskSet):	
								tasks	=	[AuthUserBrowsing,	GuestUserBrowsing]	
				class	WebSiteUser(HttpUser):	
								tasks	=	[UserBehavior]	
								userid	=	""	
								#min_wait	=	2000	
								#max_wait	=	10000	
								wait_time	=	between(0.5,	3)	
				class	StagesShape(LoadTestShape):	
								"""	
								A	simply	load	test	shape	class	that	has	different	user	and	spawn_rate	at	
								different	stages.	
								Keyword	arguments:	
												stages	--	A	list	of	dicts,	each	representing	a	stage	with	the	following	
keys:	
																duration	--	When	this	many	seconds	pass	the	test	is	advanced	to	the	
next	stage	
																users	--	Total	user	count	
																spawn_rate	--	Number	of	users	to	start/stop	per	second	
																stop	--	A	boolean	that	can	stop	that	test	at	a	specific	stage	
												stop_at_end	--	Can	be	set	to	stop	once	all	stages	have	run.	
								"""	
								total_runtime	=	1200	
								stages	=	[
												{"duration":	300,	"users":	100,	"spawn_rate":	5},	
												{"duration":	450,	"users":	150,	"spawn_rate":	5},	
												{"duration":	600,	"users":	600,	"spawn_rate":	50},	
												{"duration":	750,	"users":	400,	"spawn_rate":	5},	
												{"duration":	900,	"users":	300,	"spawn_rate":	1},	
												{"duration":	1050,	"users":	100,	"spawn_rate":	5},	
												{"duration":	1200,	"users":	50,	"spawn_rate":	1},	
]	
					
								def	tick(self):	
												run_time	=	self.get_run_time()	%	self.total_runtime	
					
												for	stage	in	self.stages:	
																if	run_time	<	stage["duration"]:	
																				tick_data	=	(stage["users"],	stage["spawn_rate"])	
																				return	tick_data	
					
												return	None	
					

