This reference architecture details how on-prem Active Directory infrastructure can be extended to VMware Cloud on AWS (VMC) infrastructure. It also shows how AWS Identity and Access Management service along with SCD and AWS AD Connector can be integrated with Windows Active Directory server hosted on VMware Cloud on AWS for user authentication and management of native AWS resources.

1. Deploy and configure SDDC on VMC on AWS – a region and availability zone that hosts most of the AWS native resources.
2. Setup VPC connections and/or Direct Connect connections so that on-prem users and VMware Cloud Admins can access resources on VMC on AWS as a private network. Route based VPC is preferred as opposed policy based VPC for dynamic route propagation.
3. Setup On-Prem Router and Compute Gateway with appropriate firewall rules to route the infrastructure and end user workload traffic "to and from" infrastructure and VMC on AWS. Setup Management Gateway with appropriate firewall rules to route all the administrative traffic including AD replication and management traffic "to and from" Management Appliances/VMS.
4. Deploy two Windows servers in VMC on AWS infrastructure network segment and promote those Windows servers to domain controllers in the on-prem Active Directory forest, making AD DS highly available in the VMC on AWS Cloud. Configure Active Directory replication between on-prem and VMC on AWS hosted Windows AD server. All network traffic, between on-prem AD Server and VMC on AWS AD Server in SDDC, including AD DS communication, authentication requests and Active Directory replication is secured across the VPC tunnel or Direct Connect link.
5. Configure Amazon EC2 instances to join AD domain and use private DNS servers that are hosted on VMC on AWS. All network traffic, including AD DS communication and authentication requests between EC2 instances and other Native AWS services flows through Cross VPC ENI with low latency high bandwidth connectivity. There will be no extra data egress charges for the data traffic passing through Cross VPC ENI and AWS resources that resides on same AZ as the VMC SDDC.
6. These EC2 instances can now access AD domain controllers sitting on VMC on AWS for secure, low-latency directory services and DNS requests.
7. Configure AD Connector to perform LDAP authentication to Active Directory servers that are hosted on VMC on AWS. With this configuration, AD Connector can locate the nearest domain controllers by querying the ADSI DNS records for the domain.
8. Setup AD Connector to call the STS Asynchronous method to assume IAM role and get temporary security credentials for user authentication. Using those temporary security credentials, AD Connector can construct a sign-on UBL that users can use to access the AWS management console.
9. Setup AD Connector to call the STS Asynchronous method to assume IAM role and get temporary security credentials for user authentication. Using those temporary security credentials, AD Connector can construct a sign-on UBL that users can use to access the AWS management console.
10. VMC Cloud Admins can now use the integrated AD authentication for AWS management console logins and manage AWS resources conveniently without requiring to remember multiple passwords.

Active Directory Firewall Rules

Inbound Rules:
- Protocol: TCP/UDP
- Port Number: 389
- Type of Traffic: AD DC1
- CIDR: 10.30.0.0/16

Outbound Rules:
- Protocol: TCP/UDP
- Port Number: 389
- Type of Traffic: AD DC1
- CIDR: 10.30.0.0/16