VMware Cloud on Dell EMC

The speed and flexibility of public cloud with the security and control of on-premises infrastructure delivered as a fully managed Data Center-as-a-Service solution

Enterprise use of the public cloud is burgeoning, and for good reason—the speed, agility and simplicity of public cloud are undeniable. Still, many organizations continue to invest in their on-premises infrastructure to better manage workloads, comply with regulatory requirements, and ensure application low latency. Now, with VMware Cloud on Dell EMC, VMware's Data Center-as-a-Service offering, customers can experience on-premise security, compliance and cost efficiencies coupled with public cloud like agility and managed services.

Operational simplicity that empowers your organization to focus on business innovation and differentiation

VMware Cloud on Dell EMC eliminates organizational complexities in two key ways:

1. **Delivers cloud-like ease-of-use** to your on-premises workloads
2. **Provides unparalleled consistency** between your on-premises and public cloud environments

This new construct removes the friction of day-to-day tasks and frees your entire organization to focus on driving business value.

The simplicity of VMware Cloud on Dell EMC is evident from the moment you place your online order. This is, at least in part, because the infrastructure is delivered, installed, maintained and supported by VMware. Additionally, VMware’s hybrid cloud control plane enables you to provision and monitor resources as you already do with existing VMware on-premise infrastructures. These steps are further detailed below.

1. **Order**
 Customer signs into VMware Cloud on Dell EMC service portal, selects configuration that fits their capacity needs and is provided with a delivery date.

2. **Deploy**
 Dell EMC delivers the new service infrastructure to the customer site. An onsite technician installs, tests the equipment and activates the service. Customer migrates workloads to new infrastructure.

3. **Support**
 VMware continually monitors the service infrastructure, patching/updating software while proactively addressing any issues that may surface.

VMware Cloud on Dell EMC

AT-A-GLANCE

VMware Cloud on Dell EMC is an on-premise infrastructure as a Service installed in your data center and edge deployments and consumed as a cloud service.

ADVANTAGES

- **Cloud-like ease-of-use** for on-premises workloads enables your IT operations staff to focus on value-added services
- **Unparalleled consistency** between on-premises and public cloud environments (VMware Cloud on AWS) allows your IT Security and Developers to focus efforts on a common set of tooling
- **Ultimate peace-of-mind** with VMware and Dell Technologies as your proven and trusted enterprise solution provider
- **Familiar VMware Cloud management** on Dell EMC VxRail hyperconverged infrastructure delivers a best-of-breed enterprise solution

The speed and flexibility of public cloud with the security and control of on-premises infrastructure delivered as a fully managed Data Center-as-a-Service solution

Enterprise use of the public cloud is burgeoning, and for good reason—the speed, agility and simplicity of public cloud are undeniable. Still, many organizations continue to invest in their on-premises infrastructure to better manage workloads, comply with regulatory requirements, and ensure application low latency. Now, with VMware Cloud on Dell EMC, VMware's Data Center-as-a-Service offering, customers can experience on-premise security, compliance and cost efficiencies coupled with public cloud like agility and managed services.

Operational simplicity that empowers your organization to focus on business innovation and differentiation

VMware Cloud on Dell EMC eliminates organizational complexities in two key ways:

1. **Delivers cloud-like ease-of-use** to your on-premises workloads
2. **Provides unparalleled consistency** between your on-premises and public cloud environments

This new construct removes the friction of day-to-day tasks and frees your entire organization to focus on driving business value.

The simplicity of VMware Cloud on Dell EMC is evident from the moment you place your online order. This is, at least in part, because the infrastructure is delivered, installed, maintained and supported by VMware. Additionally, VMware’s hybrid cloud control plane enables you to provision and monitor resources as you already do with existing VMware on-premise infrastructures. These steps are further detailed below.

1. **Order**
 Customer signs into VMware Cloud on Dell EMC service portal, selects configuration that fits their capacity needs and is provided with a delivery date.

2. **Deploy**
 Dell EMC delivers the new service infrastructure to the customer site. An onsite technician installs, tests the equipment and activates the service. Customer migrates workloads to new infrastructure.

3. **Support**
 VMware continually monitors the service infrastructure, patching/updating software while proactively addressing any issues that may surface.
Furthermore, the consistency VMware Cloud on Dell EMC creates between your public cloud and on-premises infrastructure reduces overhead for IT Operations, IT Security, Developers and CIOs/CTOs, enabling these roles to instead focus on accelerating the business.

Bring public cloud benefits to workloads in both your core data center and edge locations
VMware Cloud on Dell EMC seamlessly extends public cloud benefits to workloads in your on-premise data centers and edge locations alike. This is significant because requirements for integrating security, networking and policy management at the edge are just as stringent as those in your data center—if not more so. Yet, VMware’s hybrid cloud control plane makes it as easy to configure and monitor edge workloads at scale as it is with data center workloads.

This offers distinct advantages not only for industries like Banking, Healthcare, and Oil & Gas, but other industries will benefit as well, including Retail, Grocery and Manufacturing, to name just a few. The fact is VMware Cloud on Dell EMC delivers value to any edge location where business is transacted and there is a need for compute, storage or networking capabilities.

VMware offers unmatched peace-of-mind as a proven and trusted enterprise solution provider
What makes VMware Cloud on Dell EMC truly unique is Dell EMC’s trusted experience in building heterogeneous data centers for thousands of customers, taking thousands of variables into account and making these environments work perfectly. This is amplified by the proven enterprise level support at scale that both Dell EMC and VMware have delivered for decades. Collectively, Dell EMC and VMware can reliably provide a fully integrated and functional Day 1 experience as well as a highly responsive, dependable support for Day 2 and beyond.
Foundational to this peace of mind is that VMware Cloud on Dell EMC is built on VxRail—VMware’s industry standard compute, storage, and networking software integrated with Dell EMC’s enterprise-grade HCI infrastructure. As a result, VMware Cloud on Dell EMC provides resilient architecture with enterprise-grade security built-in. For instance, VMware Cloud on Dell EMC comes with VMware NSX, bringing networking and security capabilities to endpoints in different locations and micro-segmentation capabilities to provide granular control over traffic between application workloads.

HOSTS

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>G1s.small</th>
<th>M1s.medium</th>
<th>M1d.medium⁴</th>
<th>X1d.xLarge⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>1UIN (VxRail E560F)</td>
<td>1UIN (VxRail E560F)</td>
<td>1UIN (VxRail E560N)</td>
<td>1UIN (VxRail E560F)</td>
</tr>
<tr>
<td>CPU cores</td>
<td>24</td>
<td>24</td>
<td>48 (2x24)</td>
<td>48 (2x24)</td>
</tr>
<tr>
<td>vCPUs²</td>
<td>48</td>
<td>48</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>CPU frequency</td>
<td>3.1 Ghz All Core Turbo</td>
<td>3.1 Ghz All Core Turbo</td>
<td>3.1 Ghz All Core Turbo</td>
<td>2.9 Ghz All Core Turbo</td>
</tr>
<tr>
<td>RAM</td>
<td>256 GB</td>
<td>384 GB</td>
<td>768 GB</td>
<td>1536 GB</td>
</tr>
<tr>
<td>Cache storage</td>
<td>800 GB SSD SAS</td>
<td>1.6 TB SSD SAS</td>
<td>3.2 TB NVMe</td>
<td>3.2 TB NVMe</td>
</tr>
<tr>
<td>Primary storage</td>
<td>11.5 TB SSD</td>
<td>23 TB SSD</td>
<td>23 TB NVMe</td>
<td>61 TB SSD</td>
</tr>
<tr>
<td>Disk Groups</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>Redundant x 750W 100-200-240v</td>
<td>Redundant x 750W 100-200-240v</td>
<td>Redundant x 1100W 200-240v</td>
<td>Redundant x 1100W 200-240v</td>
</tr>
</tbody>
</table>

RACK INFRASTRUCTURE

<table>
<thead>
<tr>
<th>Rack Type</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usable Instances per rack type</td>
<td>Minimum: 3 / Maximum: 5</td>
<td>Single Phase: Min. 3 / Max. 14 Three Phase: Min. 3 / Max. 26</td>
</tr>
<tr>
<td>Standby Host² per rack type</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rack</td>
<td>24U (600mm Wide x 1070mm Deep)</td>
<td>42U (600mm Wide x 1200mm Deep)</td>
</tr>
<tr>
<td>Network Fabric</td>
<td>1 x management switch 2 x 10Gbps Host Network Interfaces Redundant Top of Rack Switches 960Gb (full duplex) non-blocking switching capacity</td>
<td>1 x management switch 2 x 25Gbps Host Network Interfaces Redundant Top of Rack Switches 4Tbps (full duplex) non-blocking switching capacity</td>
</tr>
<tr>
<td>SD-WAN</td>
<td>Redundant VMware SD-WAN</td>
<td>Redundant VMware SD-WAN</td>
</tr>
<tr>
<td>Customer facing uplinks</td>
<td>Data: 1 or 2 x 1Gbps or 10Gbps Per ToR (Optical) SD-WAN: 1Gb copper or optical per VMware SD-WAN</td>
<td>Data: 1-4 x 1/10/25Gb Per ToR (Optical) SD-WAN: 1Gb copper or optical per VMware SD-WAN</td>
</tr>
<tr>
<td>PDU</td>
<td>Redundant SmartPDUs</td>
<td>Redundant SmartPDUs</td>
</tr>
<tr>
<td>UPS / battery</td>
<td>SmartUPS & Battery w/ 30-minute hold time</td>
<td>N/A</td>
</tr>
<tr>
<td>Power Connections</td>
<td>1xNEMA L5-30 (100-120v) 1xNEMA L6-30 (200-240v)</td>
<td>4xNEMA L6-30 (200-240v) Single Phase 2xIEC 309 60A (200-240v) Three Phase</td>
</tr>
<tr>
<td>Ambient operating temperature</td>
<td>10°C to 30°C 50°F to 86°F</td>
<td>10°C to 30°C 50°F to 86°F</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-40°C to +65°C -40°F to +149°F</td>
<td>-40°C to +65°C -40°F to +149°F</td>
</tr>
<tr>
<td>Operating relative humidity</td>
<td>10% to 80% (non-condensing)</td>
<td>10% to 80% (non-condensing)</td>
</tr>
<tr>
<td>Operating altitude with no deratings</td>
<td>3048m (approx. 10,000 ft)</td>
<td>3048m (approx. 10,000 ft)</td>
</tr>
</tbody>
</table>
POWER AND WEIGHT

<table>
<thead>
<tr>
<th>Power</th>
<th>Base rack (switches + RAS node)</th>
<th>Active Node Power per Instance Type</th>
<th>Total Power</th>
</tr>
</thead>
</table>
| Maximum Estimated Input power in (watts) | • R1: 815W
• R2: 1552W | • G1s.small: 316W
• M1s.medium: 348W
• M1d.medium: 605W
• X1d.xLarge: 614W | Base Rack Power
+ Number of Active Nodes
× Power Per Instance Type
Example: R2 w/ 10 x M1d.medium nodes = 1152 + 10 × 605W = 7,202W |
| Max Estimated Input current (amps) | • 110v Source:
7A (only in R1)
• 220v Source:
7A | 110v (only in R1):
• G1s.small: 2.9A
• M1s.medium: 3.2A
• M1d.medium: 5.6A
• X1d.xLarge: 5.6A
220v:
• G1s.small: 1.4A
• M1s.medium: 1.6A
• M1d.medium: 2.8A
• X1d.xLarge: 2.8A | Base Rack Current
+ Number of Active Nodes
× Current Per Instance Type
Example: R2 (220V Source)
w/ 10 x M1d.medium nodes = 7A + 10 × 2.8A = 35A |
| Maximum heat Output (BTU/hr) | • R1: 2779 BTU/hr
• R2: 5292 BTU/hr | • G1s.small: 1077 BTU/hr
• M1s.medium: 1187 BTU/hr
• M1d.medium: 2063 BTU/hr
• X1d.xLarge: 2093 BTU/hr | Base Rack BTU/hr
+ Number of Active Nodes
× BTU/hr Per Instance Type
Example: R2 w/ 10 x M1d.medium nodes = 5292 + 10 × 2063 = 25,922 BTU/hr |
| Weight (Pounds) | • R1 (w/ common equipment): 688 Pounds
• R2 (w/ common equipment): 778 Pounds | • G1s.small: 91 Pounds
• M1s.medium: 91 Pounds
• M1d.medium: 48 Pounds
• X1d.xLarge: 48 Pounds | R1 or R2 Weight
+ Number of Nodes
× Node Type Weight
Example: R2 w/ 10 x M1d.medium nodes = 778 + 10 × 91
= 1688 Pounds |

1. “Standby Host” is an additional spare host used for lifecycle management.
2. vCPU is based upon 2 hyper-threads per core. All hosts are based upon Cascade Lake Processors operating at all core turbo frequency of 3.1 GHz. The hosts support the Intel Advanced Vector Extensions 512 (AVX-512) instruction set, offering up to 2x the FLOPS per core of a Broadwell Processor. In addition to AVX-512, there is support for the new Neural Network Instructions (AVX-512 VNNI) which will speed up machine learning operations like convolution and inference.
3. Max Estimated Power Consumption leverages simulated transactional workloads running on the specified Dell servers. Go to dell.com/calc for more information.
4. This instance type cannot be used in the ‘R1’ half rack due to the power draw of this instance type when used in the required 3 node minimum configuration.