VMware Kubernetes Integration with Bitfusion
(Updated September 2021)
Table of Contents

VMware Kubernetes Integration with Bitfusion

1 **Introduction**
 1.1 Kubernetes evolving as the leading development platform4
 1.2 GPUs for Machine Learning...4
 1.3 vSphere 7 brings together Kubernetes and GPU sharing capabilities with Bitfusion 4

2 **Solution Components**
 2.1 VMware vSphere...4
 2.2 VSphere Bitfusion ...5
 2.3 VMware Tanzu Kubernetes Grid (TKG)..6
 2.4 Tanzu Kubernetes Grid Integrated (TKGI formerly VMware Enterprise PKS) 7
 2.5 VMware NSX-T ..7
 2.6 Bitfusion with Kubernetes integration..8

3 **Solution Setup**
 3.1 Enabling Bitfusion access: ...8
 3.2 Customizations to enable Bitfusion in containers10
 3.3 Kubernetes Setup: ...11
 3.4 Bitfusion with Kubernetes integration Setup:14

4 **Validation of the Solution:**
 4.1 Tanzu Kubernetes Grid...15
 4.2 PodVM or vSphere native pod (Supervisor Clusters)16
 4.3 TKGI (formerly VMware Enterprise PKS)..18
 4.4 Bitfusion with Kubernetes integration..18

5 **Summary:**

Appendix A. Dockerfile for creating PyTorch container:

Appendix B. PyTorch pod config yaml file

Appendix C. Dockerfile for creating TensorFlow container:

Appendix D. TensorFlow pod config yaml file
Table of Figures

Figure 1: vSphere 7 with Kubernetes innovations ... 5
Figure 2: Remote GPU access with vSphere Bitfusion ... 6
Figure 3: Tanzu Kubernetes Grid Benefits ... 6
Figure 4: Tanzu Kubernetes Grid Integrated (TKGI) ... 7
Figure 5: NSX-T Components .. 8
Figure 6: Logical schematic of solution .. 8
Figure 7: Bitfusion Servers with pass-through GPU ... 9
Figure 8: Bitfusion plugin console .. 9
Figure 9: Enabling Bitfusion client for a virtual machine ... 10
Figure 10: Kubernetes namespaces in vCenter Workload management 11
Figure 11: Kubernetes components as seen in “Hosts and Clusters” view 12
Figure 12: Kubernetes login and node listing for a TKG guest cluster 12
Figure 13: Kubernetes login and node listing for a supervisor cluster 13
Figure 14: Kubernetes login and node listing for a supervisor cluster 13
Figure 15: Kubernetes login and node listing for TKGI cluster .. 14
Figure 16: Embedding of Bitfusion files into the docker container 15
Figure 17: TensorFlow run leveraging Bitfusion in a TKG cluster ... 16
Figure 18: Bitfusion console during the TensorFlow ... 16
Figure 19: PyTorch run leveraging Bitfusion in a supervisor cluster 17
Figure 20: Bitfusion console during PyTorch run in Supervisor cluster 17
Figure 21: Successful TensorFlow run with TKGI leveraging NVIDIA GPUs over the network ... 18
1 Introduction

Modern data scientists need diverse sets of tools and infrastructure in order to deliver valuable insights to their organizations. IT infrastructure has struggled to meet the unique needs of data scientists. Because of the increasing importance of data science to business, IT infrastructure needs to evolve rapidly to meet their complex requirements. Infrastructure needs to evolve and bring agility and flexibility to make the data scientist productive through the use of modern developer platforms like Kubernetes. IT should also be able to provide access to specialized HW like GPUs and other accelerators to help data scientists be productive.

1.1 Kubernetes evolving as the leading development platform

Enterprise are shifting their focus from infrastructure to application development. It’s imperative that companies increase developer productivity, shorten the path to production, and accelerate the cadence of new features and services. Easy access to resources is crucial for developer success, but there are many additional reasons that developers like Kubernetes. These include its inherent resilience, repeatability, flexibility, and visibility. Because Kubernetes is flexible rather than prescriptive, it adapts to a wide range of developer needs. A subset of these developer community are data scientists & data engineers that perform machine learning as AI takes on a significant role in today’s business.

1.2 GPUs for Machine Learning

With the impending end to Moore’s law, the spark that is fueling the current revolution in deep learning is having enough compute horsepower to train neural-network based models in a reasonable amount of time. The needed compute horsepower is derived largely from GPUs, which NVIDIA began optimizing for deep learning since 2012. A lot of the machine learning and AI related work relies on processing large blocks of data, which makes GPUs a good fit for ML tasks. Most of the machine learning frameworks have in built support for GPUs. There is a need to provide the capabilities needed by data scientists such as GPU access from Kubernetes environments.

1.3 vSphere 7 brings together Kubernetes and GPU sharing capabilities with Bitfusion

With the release of vSphere 7 many new features such as Kubernetes and Bitfusion were introduced. Kubernetes is the preferred platform for developers and is now fully integrated with vSphere as first class citizens along with virtual machines. vSphere Bitfusion provides the ability to share NVIDIA GPUs over the network. Modern applications quite often need access to GPUs and their massive compute capabilities for timely and efficient processing. There is a significant need for Kubernetes based developer environments to access GPUs. A combination of the VMware Kubernetes platform and vSphere Bitfusion for GPU sharing over the network can help meet the infrastructure needs of modern data scientists. This solution show cases the integration of VMware Kubernetes platforms like TKG and TKGI with vSphere Bitfusion.

2 Solution Components

2.1 VMware vSphere

VMware vSphere extends virtualization to storage and network services and adds automated, policy-based provisioning and management. As the foundation for VMware’s complete SDDC platform, vSphere is the starting point for your virtualization infrastructure providing wide ranging support for the latest hardware and accelerators used for Machine Learning. VMware vSphere with Kubernetes (formerly called “Project Pacific”) empowers IT Operators and Application Developers to accelerate innovation by converging Kubernetes, containers and VMs into VMware’s vSphere platform. VMware has leveraged Kubernetes to rearchitect vSphere and extend its capabilities to all modern and traditional applications.

vSphere with Kubernetes innovations:
- Unite vSphere and Kubernetes by embedding Kubernetes into the control plane of vSphere, unifying control of compute, network and storage resources. Converging VMs and containers using the new native container service that creates high performing, secure and easy to consume containers.
- App-focused management with App level control for applying policies, quota and role-based access to Developers. Ability apply vSphere features (HA, vMotion, DRS) at the app level and to the containers. Unified visibility in vCenter for Kubernetes clusters, containers and existing VMs
- Enable Dev & IT Ops collaboration. Developers use Kubernetes APIs to access the datacenter infrastructure (compute, storage and networking). IT operators use vSphere tools to deliver Kubernetes clusters to developers. Consistent view between Dev and Ops via Kubernetes constructs in vSphere
- Enterprises can expect to get improved economics due to the convergence of vSphere, Kubernetes and containers. Developers get control at scale by focusing on managing apps versus managing VMs. Developers & operators collaborate to gain increased velocity due to familiar tools (vSphere tools for Operators and Kubernetes service for Developers).

![Figure 1: vSphere 7 with Kubernetes innovations](image)

2.2 VSphere Bitfusion

VSphere Bitfusion extends the power of VMware vSphere’s virtualization technology to GPUs. VSphere Bitfusion helps enterprises disaggregate the GPU compute and dynamically attach GPUs anywhere in the datacenter. Support more users in test and development phase. VSphere Bitfusion supports CUDA frameworks and demonstrated virtualization and remote attach for all hardware. GPUs are attached based on CUDA calls at runtime, maximizing utilization of GPU servers anywhere in the network.
VMware Tanzu Kubernetes Grid is a container services solution that enables Kubernetes to operate in multi-cloud environments. VMware TKG simplifies the deployment and management of Kubernetes clusters with Day 1 and Day 2 operations support. VMware TKG manages container deployment from the application layer all the way to the infrastructure layer, according to the requirements VMware TKG supports high availability, autoscaling, health-checks, and self-repairing of underlying VMs and rolling upgrades for the Kubernetes clusters.

Figure 2: Remote GPU access with vSphere Bitfusion

2.3 **VMware Tanzu Kubernetes Grid (TKG)**

Figure 3: Tanzu Kubernetes Grid Benefits
2.4 Tanzu Kubernetes Grid Integrated (TKGI formerly VMware Enterprise PKS)

TKGI is a purpose-built container solution to operationalize Kubernetes for multi-cloud enterprises and service providers. It significantly simplifies the deployment and management of Kubernetes clusters with day 1 and day 2 operations support. With hardened production-grade capabilities, TKGI takes care of your container deployments from the application layer all the way to the infrastructure layer.

TKGI builds on Kubernetes, BOSH, VMware NSX-T, and Project Harbor to form a production-grade, highly-available container runtime that operates on vSphere and public clouds. With built-in intelligence and integration, TKGI ties all these open source and commercial modules together, delivering a simple-to-use product for customers, ensuring the customers have the most efficient Kubernetes deployment and management experience possible.

![Figure 4: Tanzu Kubernetes Grid Integrated (TKGI)](image)

2.5 VMware NSX-T

VMware NSX-T provides an agile software-defined infrastructure to build cloud-native application environments. NSX-T is focused on providing networking, security, automation, and operational simplicity for emerging application frameworks and architectures that have heterogeneous endpoint environments and technology stacks. NSX-T supports cloud-native applications, bare metal workloads, multi-hypervisor environments, public clouds, and multiple clouds.

![Figure 4: VMware NSX-T](image)
Figure 5: NSX-T Components

NSX-T is designed for management, operation, and consumption by development organizations. NSX-T Data Center allows IT and development teams to select the technologies best suited for their applications. NSX-T 3.x is fully integrated with TKG/TGK and provides seamless networking for the Kubernetes workloads.

2.6 Bitfusion with Kubernetes integration

The Bitfusion Device Plugin provides a more convenient way to use Bitfusion in Kubernetes clusters. Users do not need to rebuild the workload image. They can simply configure the original image into POD and the Device Plugin will be responsible for importing the Bitfusion dependencies. It also supports the use of K8S native quota limiting function to limit the quota management of Bitfusion GPU resources.

3 Solution Setup

The logical schematic below shows the components of the solution as validated.

![Logical schematic of solution](image)

Figure 6: Logical schematic of solution

All GPU resources are consolidated in a GPU Cluster. The Bitfusion servers are sourced from this cluster where they are direct attached to the GPU in pass-through mode. Kubernetes Clusters that include different variants of VMware Kubernetes such as Supervisor, TKG Guest and TKGI represented as VMware compute clusters are connected via high-speed datacenter networking to the Bitfusion server farm. Egress network traffic from the Kubernetes clusters is routed by NSX-T to the Bitfusion GPU server farm to establish client-server connectivity to the remote GPUs. The GPU cluster and the Compute clusters are running vSphere 7 and managed by vCenter 7.

3.1 Enabling Bitfusion access:

The Bitfusion plugin is installed in the vCenter and can be used to manage and monitor Bitfusion servers and access to clients. Once Bitfusion is installed and integrated with vCenter and licensed, it appears as a plugin for vCenter. Virtual machines associated with the vCenter can now be enabled for Bitfusion Client access. For Kubernetes environments, the Bitfusion client needs to be embedded inside the container/pod. An example Linux virtual machine is used to obtain these client files. The Linux machine is enabled for Bitfusion as shown in the process below.
Figure 7: Bitfusion Servers with pass-through GPU

Figure 8: Bitfusion plugin console

Once enabled the files are extracted from the Linux machine and used to build the container as a Bitfusion client as shown in Appendix C. The process of enabling a virtual machine for Bitfusion client access is shown in Figure below.
Customizations to enable Bitfusion in containers

Bitfusion client components are installed in the container itself so that it works seamlessly after the pod is deployed. No changes are needed to the Kubernetes worker nodes.

Here are the steps to enable Bitfusion client to work inside a container.

Once you identify a client Linux machine for Bitfusion Client deployment,

- Enable Bitfusion on the client Linux machine
- Install Bitfusion client for that operating system (point to link in documentation)

Confirm that it works fine by running the command:

```
Bitfusion list_gpus
```

Now this Bitfusion client machine has the necessary authorization files for Bitfusion access.

Copy the following files to a staging directory, say, Bitfusion-files:

```
cp ~/.Bitfusion/client.yaml Bitfusion-files/
cp /etc/Bitfusion/servers.conf Bitfusion-files/
cp /etc/Bitfusion/tls/ca.crt Bitfusion-files/
```

Additionally download and copy the appropriate installer .deb or .rpm file to the same staging directory:

For example, for Ubuntu OS, we will use a .deb file as below:

```
cp Bitfusion-client-ubuntu1604_2.0.0_amd64.deb Bitfusion-files/
```
When you create a docker image for a container, you need to install Bitfusion client as well as copy the authorization files to the appropriate directories in the container image. Additionally, install open-vm-tools. In the example shown we are copying files to appropriate directories for the user root.

For this, add the following to your Docker file:

```
# Copy Bitfusion client related files
# Copy Bitfusion files
RUN mkdir -p /root/.Bitfusion
COPY ./Bitfusion-files/client.yaml /root/.Bitfusion/client.yaml
COPY ./Bitfusion-files/servers.conf /etc/Bitfusion/servers.conf
RUN mkdir -p /etc/Bitfusion/tls
COPY ./Bitfusion-files/ca.crt /etc/Bitfusion/tls/ca.crt

# Update package list
# Install Bitfusion. Use deb file for Ubuntu16.04
# Set initial working directory
RUN mkdir -p /workspace/Bitfusion
WORKDIR /workspace/Bitfusion
COPY ./Bitfusion-files/Bitfusion-client-ubuntu1604_2.0.0_amd64.deb .
RUN apt-get update \
    && apt-get install -y ./Bitfusion-client-ubuntu1604_2.0.0_amd64.deb \
    && apt-get install -y open-vm-tools \
    && rm -rf /var/lib/apt/lists/
```

These steps ensure that the Bitfusion components are baked into the container image itself. Appendix A and C show the docker file used to create Tensorflow and Pytorch containers with Bitfusion client embedded in it.

3.3 Kubernetes Setup:

Kubernetes Workload management is a new capability that helps manage Kubernetes workloads in vSphere 7. All Kubernetes clusters and pods are visualized and managed in vCenter using workload management. The Kubernetes clusters used in the solution were deployed and is shown below.

![Kubernetes namespaces in vCenter Workload management](image)

Figure 10: Kubernetes namespaces in vCenter Workload management
The hpc2 namespace represents the Kubernetes namespace running in the vSphere Cluster HPC2. All aspects of the Kubernetes namespace such as control plane nodes, TKG guest clusters, storage policies, etc. are seen. The figure below shows the representation of the namespace, its clusters including control and worker nodes in the “Hosts and Clusters” vCenter view.

Figure 11: Kubernetes components as seen in “Hosts and Clusters” view

An example guest cluster hpc2-dev-cluster5 is shown with its control and worker nodes. The PyTorch virtual machine is a podVM running in the supervisor cluster for hpc2. The supervisor cluster control nodes are also shown at the bottom of the list. Kubernetes command line is used to login to a guest cluster and by setting the context as shown below.

```
[root@sc2k8cl4 tkg-bf#] kubectl vsphere login --server 172.30.12.1 --vsphere-username ssgsh@vslab.local --insecure-skip-tlsverify --tanzu-kubernetes-cluster-name hpc2-dev-cluster5
```

Password:
WAY[0005] Tanzu Kubernetes cluster login: no namespace given, name (hpc2-dev-clusters) may be ambiguous logged in successfully.

You have access to the following contexts:

172.30.12.1
general-purpose2
general-purpose2-172.30.11.1
hpc2
hpc2-172.30.12.1
hpc2-dev-cluster5

If the context you wish to use is not in this list, you may need to try logging in again later, or contact your cluster administrator.

To change context, use `kubectl config use-context workload-name`

```
[root@sc2k8cl4 tkg-bf#] kubectl config use-context hpc2-dev-cluster5
```

```
NAME                      STATUS   ROLES       AGE   VERSION
hpc2-dev-cluster5-control-plane-barpz   Ready     master   480s   v1.16.0
hpc2-dev-cluster5-control-plane-c89uz0   Ready     master   480s   v1.16.0
hpc2-dev-cluster5-workers-wcb8g-656868e4-c6tsp   Ready     worker   480s   v1.16.0
hpc2-dev-cluster5-workers-wcb8g-656868e4-c12n6   Ready     worker   480s   v1.16.0
hpc2-dev-cluster5-workers-wcb8g-656868e4-cjzj6   Ready     worker   480s   v1.16.0
hpc2-dev-cluster5-workers-wcb8g-656868e4-cjkm6   Ready     worker   480s   v1.16.0
hpc2-dev-cluster5-workers-wcb8g-656868e4-cjkm6   Ready     worker   480s   v1.16.0
```

Figure 12: Kubernetes login and node listing for a TKG guest cluster

Similarly, one can directly login to the Supervisor cluster to run native pods that run directly on the ESXi hypervisor.
TKGI formerly known as Enterprise PKS is the other prevalent Kubernetes platform used by customers. A TKGI environment was setup in a dedicated VMware cluster. All Enterprise PKS management components were installed followed by a Kubernetes cluster as shown below.

Figure 13: Kubernetes login and node listing for a supervisor cluster

Figure 14: Kubernetes login and node listing for a supervisor cluster
Kubernetes command line is used to login to a PKS cluster as shown below. The Linux client has preloaded configs for the PKS cluster to enable the login process.

![Command Line Output]

Figure 15: Kubernetes login and node listing for TKGI cluster

3.4 Bitfusion with Kubernetes integration Setup:

Refer to the following link to install the Bitfusion Device Plugin:

4 Validation of the Solution:

There are three different variants of VMware based Kubernetes that were tested in this solution to confirm interoperability with Bitfusion. To validate the solution containers with TensorFlow and PyTorch with embedded Bitfusion components were used. The three different VMware Kubernetes variants were then tested by deploying these pods in their clusters and running TensorFlow and PyTorch. The customization of the pods with Bitfusion was done by adding the section shown below to the docker file. YAML files used for TensorFlow and PyTorch Kubernetes pods are shown in Appendix B & D.
Tanzu Kubernetes Grid (TKG) provides a consistent Kubernetes experience across clouds. With it, customers are able to rapidly provision and manage Kubernetes clusters in any and all locations they need Kubernetes-based workloads to run (both vSphere-based and non-vSphere-based). The goal of TKG is deliver a consistent experience with Kubernetes, irrespective of the underlying infrastructure. However, when TKG runs on vSphere, we are able to leverage all the innovations we’ve created with vSphere 7 with Kubernetes to offer a better experience for customers. Shown below is a successful TensorFlow run leveraging Bitfusion in a TKG cluster that was run as part of the validation.
Figure 17: TensorFlow run leveraging Bitfusion in a TKG cluster

Figure 18: Bitfusion console during the TensorFlow

4.2 PodVM or vSphere native pod (Supervisor Clusters)
The vSphere native pod (Supervisor Cluster) in vSphere 7 combines the best of containers and virtualization by running each Kubernetes pod in its own, dynamically created VM.
Figure 19: PyTorch run leveraging Bitfusion in a supervisor cluster

The idea here is to leverage the isolation and security of a VM with the simplicity and configurability of a pod. vSphere Pods are also first-class entities in vSphere, so VI admins can both get full visibility into them from the vSphere Client, but can also use all their existing tooling to manage vSphere Pods just like existing VMs. Shown is a successful PyTorch run leveraging Bitfusion in a Supervisor cluster that was run as part of the validation.

Figure 20: Bitfusion console during PyTorch run in Supervisor cluster
The TensorFlow run shown below uses a remote NVIDIA GPU via Bitfusion for execution. The job executes via the network. The testing with the pods and the containers were seamless with TKGI.

4.4 Bitfusion with Kubernetes integration

Using Bitfusion GPU in Kubernetes workload

Use Bitfusion.io/gpu-amount and Bitfusion.io/gpu-percent parameters in YAML file to specify the resource the pod request.

```yaml
apiVersion: v1
kind: Pod
metadata:
  annotations:
    auto-management/Bitfusion: "all"
    Bitfusion-client/os: "ubuntu18"
    Bitfusion-client/version: "250"
name: bf-pkgs
namespace: tensorflow-benchmark
spec:
  containers:
  - image: nvcr.io/nvidia/tensorflow:19.07-py3
    imagePullPolicy: IfNotPresent
    name: bf-pkgs
```

Figure 21: Successful TensorFlow run with TKGI leveraging NVIDIA GPUs over the network
command: ["python
/benchmark/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --local_parameter_device=gpu --batch_size=32 --model=inception3"]

resources:
 limits:
 # Request one GPU for this Pod from the Bitfusion cluster
 Bitfusion.io/gpu-amount: 1
 # 50 percent of each GPU to be consumed
 Bitfusion.io/gpu-percent: 50
 volumeMounts:
 - name: code
 mountPath: /benchmark
 volumes:
 - name: code
 # The Benchmarks used for the test came from:
 # https://github.com/tensorflow/benchmarks/tree/tf_benchmark_stage
 # Please make sure you have the corresponding content in
 # /home/benchmarks directory on your node
 hostPath:
 path: /home/benchmarks

TensorFlow: 1.14
Model: inception3
Dataset: imagenet (synthetic)
Mode: training
SingleSess: False
Batch size: 32 global
 32 per device
Num batches: 100
Num epochs: 0.00
Devices: ['/gpu:0']
NUMA bind: False
Data format: NCHW
Optimizer: sgd
Variables: parameter_server

Generating training model
Initializing graph
Running warm up
Done warm up
Step Img/sec total_loss
1 images/sec: 199.4 +/- 0.0 (jitter = 0.0) 7.312
10 images/sec: 196.6 +/- 2.1 (jitter = 5.7) 7.290
20 images/sec: 198.3 +/- 1.3 (jitter = 4.5) 7.351
30 images/sec: 198.4 +/- 0.9 (jitter = 3.8) 7.300
40 images/sec: 199.4 +/- 0.8 (jitter = 4.1) 7.250
50 images/sec: 199.8 +/- 0.7 (jitter = 4.6) 7.283
60 images/sec: 200.1 +/- 0.6 (jitter = 4.2) 7.301
70 images/sec: 199.8 +/- 0.6 (jitter = 4.2) 7.266
80 images/sec: 200.1 +/- 0.6 (jitter = 4.4) 7.266
90 images/sec: 199.9 +/- 0.5 (jitter = 4.4) 7.334
100 images/sec: 199.9 +/- 0.5 (jitter = 4.0) 7.380

total images/sec: 199.65

Figure 22: Successful TensorFlow run

5 Summary:
This solution has successfully validated access to Bitfusion served GPUs from all three VMware Kubernetes platforms. ML training runs with TensorFlow and PyTorch were executed successfully with GPU access over the network through Bitfusion.

This solution has effectively shown the following:

- VMware Cloud foundation with vSphere 7 has two key new features
 - Native Support for Kubernetes
 - Bitfusion which enables sharing of GPUs across the network
- This solution showcased integration between Kubernetes and Bitfusion
- vSphere Bitfusion can be used over the network from Kubernetes for machine learning
Appendix A. Dockerfile for creating PyTorch container:

IMPORTANT:
We are adding dlbs code to make use of the benchmark scripts that
is available with dlbs
#
This example Dockerfile illustrates a method to install
additional packages on top of NVIDIA's pytorch container image.
#
To use this Dockerfile, use the `docker build` command.
See https://docs.docker.com/engine/reference/builder/
for more information.
#
FROM nvcr.io/nvidia/pytorch:19.02-py3
#
Copy Bitfusion client related files
Set initial working directory
RUN mkdir -p /root/.Bitfusion
COPY ./Bitfusion-files/client.yaml /root/.Bitfusion/client.yaml
COPY ./Bitfusion-files/servers.conf /etc/Bitfusion/servers.conf
RUN mkdir -p /etc/Bitfusion/tls
COPY ./Bitfusion-files/ca.crt /etc/Bitfusion/tls/ca.crt
COPY ./Bitfusion-files/nvidia-smi /workspace/Bitfusion/batch-scripts/nvidia-smi

Update package list
Install Bitfusion. Use deb file for Ubuntu16.04
Install open-vm-tools
RUN mkdir -p /workspace/Bitfusion/batch-scripts
WORKDIR /workspace/Bitfusion
COPY ./Bitfusion-client-ubuntu1604_2.0.0v12nstaging-876_amd64.deb .
RUN apt-get update && apt-get install -y ./Bitfusion-client-ubuntu1604_2.0.0v12nstaging-876_amd64.deb

This is for DLB cookbook - experimenter.py needs python 2.7
So installing it too
RUN apt-get update && apt-get install -y --no-install-recommends python2.7

Copy dlbs dir
RUN mkdir -p /workspace/dlbs
WORKDIR /workspace/dlbs
COPY ./dlbs /workspace/dlbs

End of Dockerfile
Appendix B. PyTorch pod config yaml file

#--
yaml file to start pod for pytorch
#--
apiVersion: v1
kind: Pod
metadata:
 name: pytorch
spec:
 containers:
 - name: bit2pyt
 # The following image id for HP DLB pytorch
 image: pmohan77/Bitfusion2:pyt_cude_1902p3
 "imagePullPolicy": "Always"
 resources:
 limits:
 memory: "16Gi"
 requests:
 memory: "16Gi"
 #
 #The command that is run
 command: ["/bin/bash", "-ec", "while :; do echo ";.\'; sleep 300 ; done"]
 env:
 - name: POD_UID
 valueFrom:
 apiVersion: v1
 fieldPath: metadata.uid
 - name: OUTPUT_PATH
 value: "/tmp"
 - name: NUM_WARMUPS
 value: "20"
 - name: TOTAL_NUM_BATCHES
 value: "100"
 - name: MODEL_LIST
 value: "alexnet"
 - name: BATCH_SIZE
 value: "32"
 - name: PARTIALGPU
 # Change value to the required fraction of GPU
 value: "1.0"
 - name: SERVER_LIST
 value: "--server_list 172.16.31.247:56001"
 restartPolicy: Never
#--
Appendix C. Dockerfile for creating TensorFlow container:

IMPORTANT:
We are adding dlbs code to make use of the benchmark scripts that is
available with dlbs
Have adapted tensorflow benchmark code to run under dlbs benchmark scripts
This example Dockerfile illustrates a method to install
additional packages on top of NVIDIA's tensorflow container image.
#
To use this Dockerfile, use the `docker build` command.
See https://docs.docker.com/engine/reference/builder/
for more information.
#
FROM nvcr.io/nvidia/tensorflow:19.03-py3

Copy dlbs files
RUN mkdir -p /root/.Bitfusion
COPY ./.Bitfusion-client files /root/.Bitfusion/files
COPY ./Bitfusion-client-ubuntu1604_2.0.0v12nstaging-876_amd64.deb .
RUN apt-get install --no-install-recommends
 python2.7 \
 && apt-get install -y open-vm-tools \
 && rm -rf /var/lib/apt/lists/

Copy dlbs dir
Then copy latest tensorflow benchmark code - otherwise we get errors like:
" ImportError: cannot import name 'nccl'"
RUN mkdir -p /workspace/dlbs
COPY ./dlbs /workspace/dlbs
COPY ./dlbs /workspace/dlbs/python
RUN git clone https://github.com/tensorflow/benchmarks.git
RUN mv tf_cnn_benchmarks/ ltf_cnn_benchmarks /
RUN cp -R benchmarks/scripts/tf_cnn_benchmarks/ .
WORKDIR /workspace/dlbs

End of Dockerfile
Appendix D. TensorFlow pod config yaml file

```yaml
#---------------------------------------------
# yaml file to start pod for tensorflow
#---------------------------------------------
apiVersion: v1
kind: Pod
metadata:
  name: tf
spec:
  containers:
    - name: bit2tf
      # The following image id for DLB tensorflow
      image: pmohan77/Bitfusion2:tf_cuda_dlbs
      "imagePullPolicy": "Always"
      resources:
        limits:
          memory: "16Gi"
        requests:
          memory: "16Gi"
      #The command that is run
      command: ["/workspace/dlbs/run_tensorflow.sh"]
      env:
        - name: POD_UID
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: metadata.uid
        - name: OUTPUT_PATH
          value: "/tmp"
        - name: NUM_WARMUPS
          value: "20"
        - name: TOTAL_NUM_BATCHES
          value: "100"
        - name: MODEL_LIST
          #value: "alexnet resnet50 vgg16"
          value: "alexnet"
        - name: BATCH_SIZE
          value: "32"
        - name: PARTIALGPU
          # Change value to the required fraction of GPU
          #value: "0.75"
          value: "1.0"
        - name: SERVER_LIST
          value: "--server_list 172.16.31.247:56001"
  restartPolicy: Never
#---------------------------------------------
```