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Executive Summary 
A virtualized cluster was set up with both Spark Standalone worker nodes and Kubernetes worker nodes 

running on the same VMware vSphere® virtual machines. The same Spark image classification workload was 

run on both Spark Standalone and Spark on Kubernetes with very small (~1%) performance differences, 
demonstrating that Spark users can achieve all the benefits of Kubernetes without sacrificing performance. 

Introduction 
In recent years, Kubernetes [1] has become a dominant container orchestration and workload management 
tool. By separating the management of the application and the infrastructure, Kubernetes makes both the 
application developer and the IT infrastructure administrator more productive. Through very powerful 
scheduling, isolation, and resource management tools, Kubernetes allows multiple users to share the same 
computing framework in a secure fashion. Within VMware, the newly announced Project Pacific [2] brings 
Kubernetes within the vSphere hypervisor itself, providing additional virtual machine management 
possibilities.  

Apache Spark [3] is a popular platform for parallel computation, complementing Hadoop as a Big Data 
platform. Previous work from the VMware Performance Engineering team has shown that Spark and Hadoop 
run on vSphere as fast as on bare metal servers (see, for example, Fast Virtualized Hadoop and Spark on All-
Flash Disks: Best Practices for Optimizing Virtualized Big Data Applications on VMware vSphere 6.5 [4]). 
Recent versions of Spark have been modified to work directly with Kubernetes. 

To gauge the performance impact of running a Spark cluster on Kubernetes, and to demonstrate the 
advantages of running Spark on Kubernetes, a Spark Machine Learning workload was run on both a 
Kubernetes cluster and on a Spark Standalone cluster, both running on the same set of VMs. The results of 
those tests are described in this paper. 

In the next section, Kubernetes is described in more detail, followed by a comparison of the traditional Spark 
architecture with Spark on Kubernetes. Then the performance tests are detailed, starting with the hardware 
and software configuration, the Kubernetes configuration used, the workload containerization process, and, 
finally, the performance results. 

 

  

https://kubernetes.io/
https://www.vmware.com/products/vsphere/projectpacific.html
https://spark.apache.org/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/bigdata-vsphere65-perf.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/bigdata-vsphere65-perf.pdf
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Kubernetes 
The basic Kubernetes architecture is shown in Figure 1. Container deployments and lifetimes are managed in 
collections called pods. The Kubernetes control plane manages resources and scheduling through an API 
interface. Cluster state is stored in an etcd key-value store. Both the control plane and the etcd store may be 
made redundant for high availability. Kubernetes worker nodes (simply referred to as “nodes”) are managed 
through the Kubelet agent. 

 

Figure 1: Kubernetes Architecture 

Kubernetes operates in both imperative and declarative modes. In the imperative mode, the user issues 
commands to directly control the state of the cluster through a kubectl run or kubectl create command, 

where kubectl is the main Kubernetes command-line tool. In the declarative mode, the desired state of the 

cluster and application is specified in a configuration file. When that configuration file is specified as the 
argument of a kubectl apply command, Kubernetes manages the cluster to implement the desired state, 

and maintains that state as necessary through the lifecycle of the application, for example, creating new 
instances as necessary to replace failing replicas. 

Running Kubernetes on vSphere brings all the advantages of virtualization including manageability, ease of 
deployment, and workload consolidation. Additionally, VM-based isolation and multi-tenancy provide 
additional security and resource management to containers. 

VMware currently supports three Kubernetes distributions: Enterprise PKS [5], which is based on Pivotal 
Container Services and integrated with VMware NSX; Cloud PKS [6] for cloud deployments; and Essential PKS 
[7], which is closely aligned with open-source Kubernetes. The latter was chosen for this work. 

https://cloud.vmware.com/vmware-enterprise-pks
https://cloud.vmware.com/vmware-cloud-pks
https://cloud.vmware.com/vmware-essential-pks
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Spark on Kubernetes - Architecture 
The standard Spark architecture is shown in Figure 2. Applications are submitted to the Spark driver, which 
divides up the application into tasks and distributes them to worker nodes running one or more Spark 
executors, with the cluster manager handling the resources allocated to the workers. For Spark running under 
Hadoop distributions, the cluster manager typically has been the Hadoop resource manager, YARN (Yet 
Another Resource Manager).  

 

 

 

 

 

 

 

 

 

 

Figure 2: Standard Spark Architecture 

 

For Spark on Kubernetes, the Kubernetes scheduler provides the cluster manager capability as shown in 
Figure 3. Upon receiving a spark-submit command to start an application, Kubernetes instantiates the 
requested number of Spark executor pods, each with one or more Spark executors. The Spark driver may run 
in a pod (Spark Cluster mode) or directly in a VM (Spark Client mode). The latter was used here. 

 

Figure 3: Spark on Kubernetes Architecture 

spark-
submit 
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Spark applications running in Standalone mode require that every Spark worker node be installed with the 
correct version of Spark, Python, Java, etc. This puts a burden on the IT administrator, who may be managing 
many Spark applications with different requirements, and it requires coordination between the administrator 
and the application developer. With Kubernetes, the developer only needs to create a container with the 
correct software, and the IT administrator just needs to manage the cluster using the fine-grained resource 
management tools to enable the different Spark workloads. 

Spark on Kubernetes - Performance Tests 

Hardware and Software Configuration 

The tests were run on four virtualized (VMware ESXi™ 6.7.3) 2nd-generation Intel® Xeon® Scalable processor 

(“Cascade Lake”) servers, each with 2x Intel Xeon Platinum 8260 CPUs @ 2.4GHz, with a total of 96 logical 
cores with hyperthreading on, and 768 GB of memory. Five CentOS 7.6 VMs were created on each host, with 
four beefy worker nodes configured with 16 vCPUs and 120 GB each and a fifth, smaller VM with 8 vCPUs and 
64 GB. The total allocation per host was 72 vCPUs and 544 GB. 

For Spark Standalone, the smaller VM on Host 1 was set up as the Spark controller (Figure 4). This is where the 
Spark driver was run. The 16 larger nodes were configured as Spark workers. All Spark nodes were installed 
with the same versions of Spark, Java, and Python.  

 

Figure 4: Spark Standalone VM Configuration 
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To enable the performance comparison between Spark Standalone and Spark on Kubernetes, a VMware 
Essential PKS cluster was installed on the same VMs (Figure 5). The smaller VM on the first three hosts was set 
up as a highly available control plane with three stacked controllers, fronted by an HAProxy load balancer 
running on the small VM on the fourth host. Each of the three controllers ran a redundant copy of the etcd 
key-value store containing the cluster configuration data. 

The 16 larger VMs served as Kubernetes worker nodes, with each Kubernetes worker node hosting one Spark 
executor pod, which may contain one or more Spark executors. 

The Spark driver ran on the first Kubernetes control plane. One important difference between this 
configuration and the Spark Standalone configuration is that, in the Kubernetes cluster, the Spark components 
only need to be installed in the VM hosting the Spark driver.  

 

Figure 5: Spark on Kubernetes VM Configuration 

Spark Workload Containers 

Spark 2.4 ships with sample Docker build files to build containers to run Spark programs in Scala, Python, or 
R. These were used as a base to create container images for the workloads used in these tests. To customize 
these containers, the developer can work inside the container instance and then issue a docker commit 

command to create the image when complete. A better method, used here, is to add commands to the 
Dockerfile to customize it for the desired workloads. The resulting Dockerfile is a self-documenting description 
of what is in the container. The customized container image was pushed to a local repository available to all 
nodes using docker push. 

The workload used in this test classified images using a pre-trained ResNet50 convolutional neural network 
model. The Spark application was written using Intel BigDL [8] which uses Spark to distribute the neural 
network operations across Spark executors, calling TensorFlow through Keras. 

https://github.com/intel-analytics/BigDL
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The dataset used was ImageNet [9], a publicly available set of over one million complex labeled images, with 
1,000 classes. 

The program used was the Maximum Throughput Spark BigDL ResNet50 image classifier from VMware IoT 
Analytics Benchmark [10].  

For these image classification workloads, Python 3.6, TensorFlow, Keras, and BigDL code were installed in 
the container. The complete contents of the Dockerfile are shown in “Appendix A: Dockerfile Used to Create 
Spark Container.” 

Spark Submit Command 

Once the Kubernetes cluster is up and the Spark workload container is prepared, there are two required steps 
and a recommended step prior to running the Spark application. The recommended step is to create a private 
namespace for Spark to enable Spark-specific resource quotas and access control policies. For example:  

kubectl create namespace spark 

The required steps are to create a Kubernetes service account and give it the ability to create pods: 

kubectl create serviceaccount spark --namespace=spark 
 
kubectl create clusterrolebinding spark-role --clusterrole=edit \ 
  --serviceaccount=spark:spark --namespace=spark 

 

The Spark application run command, spark_submit, has been updated to call on a K8s control plane rather 

than a Spark controller (shown as “master” in Table 1) using the k8s:// prefix. In addition to this change, it is 
necessary to specify the location of the container image, the service account created above, and the 
namespace if one was created. Aside from that, the spark-submit command is unchanged, as shown in 

Table 1 (next page), with all Kubernetes-specific parameters highlighted in red. 

  

http://image-net.org/
https://github.com/vmware/iot-analytics-benchmark
https://github.com/vmware/iot-analytics-benchmark
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Spark Standalone Spark on Kubernetes 

spark-submit  spark-submit  

--master spark://192.168.1.1:7077 --master k8s://192.168.1.2:6443 

--driver-memory 40G --driver-memory 40G 

--conf spark.executor.instances= 16 --conf spark.executor.instances= 16 

--conf spark.cores.max=240 --conf spark.cores.max=240 

--conf spark.executor.cores= 15 --conf spark.executor.cores= 15 

--executor-memory 100g --executor-memory 100g 

 --conf 
spark.kubernetes.container.image=192.168.1.1:5000/spark-tf 

 --conf spark.kubernetes.namespace=spark  

 --conf 
spark.kubernetes.authenticate.driver.serviceAccountName=
spark 

--jars <path to jar> --jars <path to jar> 

<program> <arguments> <program> <arguments> 

Table 1: Spark Submit Command - Spark Standalone vs. Spark on Kubernetes  
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Results 

Deep Learning Image Classification on Spark with BigDL 

To compare Spark Standalone performance to Spark on Kubernetes performance, the Maximum Throughput 
Spark BigDL ResNet50 image classifier was run on the same 16 worker nodes, first while configured as Spark 
worker nodes, then while configured as Kubernetes nodes. Then the number of nodes was reduced by four 
(by removing the four workers on host 4), and the same comparison was made using 12 nodes, then 8, then 4.  

The relative results are shown in Figure 6. The Spark Standalone and Spark on Kubernetes performance in 
terms of images per second classified was within ~1% of each other for all configurations. Performance scaled 
well for the Spark tests as the number of VMs increased from 4 (1 server) to 16 (4 servers), although it should 
be pointed out that the base configuration of 4 VMs was artificially fast since all the VMs were on the same 
server and thus there was no intra-worker node network traffic. Without this boost, the scaling from 4 to 16 
VMs would be closer to the 4x ideal scaling. 

 

Figure 6: Deep Learning Image Classification on Spark with BigDL 

Kubernetes Multiple Workload Performance 

A further test was run to determine how well Kubernetes can handle multiple simultaneous workloads running 
on the cluster. The same Spark Maximum Throughput Spark BigDL ResNet50 image classifier was run on the 
16-node Kubernetes cluster, while four image classification tests from the MLPerf Inference benchmark [11] 
were run on four Kubernetes nodes on one server, using 80% of CPU on that server. The resulting 
degradation in the Spark test was only 3%, demonstrating the ability of Kubernetes to schedule resources 
among multiple workloads. 

  

https://mlperf.org/
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Conclusion 
The benefits of running Spark on Kubernetes are many: ease of deployment, resource sharing, simplifying the 
coordination between developer and cluster administrator, and enhanced security. A standalone Spark cluster 
on vSphere virtual machines running in the same configuration as a Kubernetes-managed Spark cluster on 
vSphere virtual machines were compared for performance using a heavy workload, and the difference 
imposed by Kubernetes was found to be insignificant. 

Containers provide a great mechanism for application packaging and Kubernetes provides the management 
of those deployed containers. When you want to isolate workloads on the same servers from each other, 
however, then virtual machines provide that strong isolation, as seen in the mixed workloads example. 

 VMware has made a considerable investment in this key technology and will continue to do so. 
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Appendix A: Dockerfile Used to Create Spark Container 

# Dockerfile.spark.tf: Spark on CentOS container with TensorFlow and IoT Analytics Benchmark 
# Based on Dockerfile.spark.centos 
 
FROM centos 
 
ARG spark_jars=jars 
ARG img_path=kubernetes/dockerfiles 
 
# Before building the docker image, first build and make a Spark distribution following 
# the instructions in http://spark.apache.org/docs/latest/building-spark.html. 
# Also need to copy a Java JDK to the spark directory (jdk-8u201-linux-x64.rpm used here) 
# Modify /root/spark/kubernetes/dockerfiles/spark/entrypoint.sh to change last line to exec 
"${CMD[@]}" 
# If this docker file is being used in the context of building your images from a Spark 
# distribution, the docker build command should be invoked from the top level directory 
# of the Spark distribution. E.g.: 
# docker build -t spark-tf:latest -f <path>/Dockerfile.spark.tf . 
 
RUN set -ex 
RUN mkdir -p /opt/spark/work-dir 
 
COPY ${spark_jars} /opt/spark/jars 
COPY bin /opt/spark/bin 
COPY sbin /opt/spark/sbin 
COPY ${img_path}/spark/entrypoint.sh /opt/ 
COPY jdk-8u201-linux-x64.rpm /opt 
 
ENV SPARK_HOME /opt/spark 
 
WORKDIR / 
RUN mkdir ${SPARK_HOME}/python 
RUN yum -y install iputils iproute which wget pdsh ntp nc unzip 
RUN yum -y install https://centos7.iuscommunity.org/ius-release.rpm 
RUN yum -y install python36u python36u-pip 
RUN ln -s /usr/bin/python3.6 /usr/bin/python3 
RUN ln -s /usr/bin/pip3.6 /usr/bin/pip3 
RUN pip3 install --upgrade pip 
RUN pip3 install numpy keras tensorflow 
RUN rpm -iv /opt/jdk-8u201-linux-x64.rpm 
ENV JAVA_HOME /usr/java/latest 
RUN wget -nv https://github.com/vmware/iot-analytics-benchmark/archive/master.zip -O /root/iot-
analytics-benchmark-master.zip 
RUN unzip /root/iot-analytics-benchmark-master.zip -d /root 
RUN mkdir /root/BigDL 
RUN wget -nv https://repo1.maven.org/maven2/com/intel/analytics/bigdl/dist-spark-2.4.0-scala-
2.11.8-all/0.8.0/dist-spark-2.4.0-scala-2.11.8-all-0.8.0-dist.zip -O /root/BigDL/dist-spark-
2.4.0-scala-2.11.8-all-0.8.0-dist.zip 
RUN unzip /root/BigDL/dist-spark-2.4.0-scala-2.11.8-all-0.8.0-dist.zip -d /root/BigDL 
RUN pip3 install BigDL==0.8.0 
RUN mkdir -p /root/.keras/datasets 
RUN wget -nv https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz -O 
/root/.keras/datasets/cifar-10-batches-py.tar.gz 
RUN cd /root/.keras/datasets; tar xzvf cifar-10-batches-py.tar.gz 
RUN rm -r /root/.cache 
 
COPY python/lib ${SPARK_HOME}/python/lib 
ENV PYTHONPATH ${SPARK_HOME}/python/lib/pyspark.zip:${SPARK_HOME}/python/lib/py4j-*.zip 
 
WORKDIR /opt/spark/work-dir 
 
ENTRYPOINT [ "/opt/entrypoint.sh" ] 
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