

TECHNICAL WHITE PAPER
August 2024

Troubleshooting TCP
Unidirectional Data
Transfer Throughput on
VMware vSphere
Packet Trace Analysis Using Wireshark

Technical White Paper | 2

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Contents

Audience .. 4

Introduction .. 4

Things to know before starting .. 4

Notation used ... 4

About unidirectional data transfer ... 5

Wireshark profile: TcpTransferTput .. 5

Performance anomalies .. 5

Classes of performance anomalies for data transfer throughput .. 5

Identification of performance anomalies using Wireshark ... 6

Wireshark analysis ... 8

High-level workflow ... 8

Step 1: Note packet capture conditions and capture drops .. 9

Step 2: Note packet trace file stats and TCP connections ... 10

Step 3: Export the selected TCP connection to a packet trace file ... 10

Step 4: Identify performance anomalies using signatures .. 11

Use Display Filter Signatures .. 11

Use Tcptrace graph signatures .. 13

Use I/O graph signatures .. 15

Conclusion ... 19

Appendix ... 19

Wireshark profile: TcpTransferTput .. 19

Packet List pane: Columns ... 20

Packet List pane: Display Filters predefined (buttons) .. 20

I/O graphs ... 21

Wireshark: Tcptrace graph .. 22

Example: Identification using Display Filter signature .. 22

Highlights .. 22

Packet trace analysis (example) ... 23

Technical White Paper | 3

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

References .. 26

About the author .. 26

Acknowledgments ... 26

Technical White Paper | 4

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Audience
This paper is for developers, advanced admins, and tech support specialists who want to troubleshoot TCP data
transfer throughput issues that can affect the performance of customers’ or their own VMware vSphere®
environments.

Introduction
Data transfer over TCP is very common in vSphere environments. Examples include storage traffic between the
VMware ESXiTM host and an NFS or iSCSI datastore, and various forms of vMotion traffic between vSphere
datastores.

We have observed that even extremely infrequent TCP issues could have an outsized impact on overall transfer
throughput. For example, in our experiments with ESXi NFS read traffic from an NFS datastore, a seemingly
minor 0.02% packet loss resulted in an unexpected 35% decrease in NFS read throughput [1].

In this paper, we describe a methodology for identifying TCP issues that are commonly responsible for poor
transfer throughput. We capture the network traffic of a data transfer into a packet trace file for offline analysis.
We then analyze this packet trace for signatures of common TCP issues that may have a significant impact on
transfer throughput.

The TCP issues considered include packet loss and retransmission, long pauses due to TCP timers, and
bandwidth delay product (BDP) issues. We use Wireshark to perform the analysis, and we provide a Wireshark
profile to simplify your analysis workflow. We describe a systematic approach to identify common TCP issues with
significant transfer throughput impact and recommend that engineers troubleshooting data transfer throughput
performance include this methodology as a standard part of their workflow.

We assume our readers are familiar with the relevant TCP concepts described in this paper and have a good
working knowledge of Wireshark. For additional information about these topics, refer to the SharkFest
Retrospective [2] page of recent SharkFest Conferences.

Things to know before starting

Notation used

• S: Sender

• R: Receiver

https://sharkfestus.wireshark.org/retrospective
https://sharkfestus.wireshark.org/retrospective

Technical White Paper | 5

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

About unidirectional data transfer

Consider unidirectional data transfer from sender S to receiver R over TCP.

Network traffic consists of the following:

• Data segments: S à R

• ACK, duplicate ACK: R à S

• Retransmit: S à R

• TCP zero window: R à S

Wireshark profile: TcpTransferTput
In this paper, we use the profile TcpTransferTput (a zip file) to simplify identifying many TCP issues that impact
data transfer throughput. The profile's detailed description is in the appendix section "Wireshark profile:
TcpTransferTput."

To use this profile:

1. Download the profile (TcpTransferTput.zip) at https://community.broadcom.com/vmware-cloud-
foundation/viewdocument/troubleshooting-tcp-unidirectional

2. In Wireshark:

3. Edit à Configuration Profiles à Import à from zip file

4. Edit à Configuration Profiles à TcpTransferTput

Performance anomalies
In this section, we describe signatures of performance anomalies that have a significant impact on data transfer
throughput.

Classes of performance anomalies for data transfer throughput

There are three classes of performance anomalies for data transfer throughput:

• Packet Loss, Out of Order: This class includes packet loss, out of order, duplicate ACKs, and fast and slow
retransmissions. Wireshark issues TCP warnings about these anomalies.

• Long Pause, High Latency: This class includes TCP timer-related anomalies, such as delayed ACK or Nagle
delay. These anomalies typically consist of long repeated pauses of the same duration.

• Bandwidth Delay Product: This class consists of anomalies regarding the interaction of the number of bytes
sent but not yet acknowledged, receive window size, and TCP send and receive buffer sizes. There is no
packet loss, no retransmission, and no long pause.

https://community.broadcom.com/vmware-cloud-foundation/viewdocument/troubleshooting-tcp-unidirectional
https://community.broadcom.com/vmware-cloud-foundation/viewdocument/troubleshooting-tcp-unidirectional

Technical White Paper | 6

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Table 1 summarizes the characteristics of these classes of performance anomalies.

Table 1. Classes of performance anomalies

Class Characteristics Highlight

Packet Loss, Out of Order Retransmit (fast, slow) Wireshark TCP warnings

Long Pause, High Latency TCP timers, network latency,
storage latency

Timer-based

Bandwidth Delay Product Bytes in flight, receive window,
Slow Start

No Wireshark warnings, no long
pauses

Identification of performance anomalies using Wireshark

The following table shows various methods of identifying performance anomalies using Wireshark: Expert Info,
Display Filter, Tcptrace graph, and I/O graphs (from the TcpTransferTput profile).

Table 2. Methods of identifying performance anomalies using Wireshark

Class Detail Wireshark: Column
(Packet List pane)

Wireshark: Display Filter
(Time in seconds)

Wireshark:
Feature

Info

Packet
Loss, Out
of Order

DUP ACK tcp.analysis.duplicate_ack Expert Info

• DUP ACK
• Out of order
• Fast retransmit
• Retransmit

Require
trailing
segment(s)

3x DUP ACK tcp.analysis.duplicate_ack_num
>= 3

Require 3+
trailing
segments

Out of order tcp.analysis.out_of_order

Fast
retransmit

 tcp.analysis.fast_retransmission

Slow
retransmit
(RTO)

 tcp.analysis.retransmission

 tcp.analysis.flags

Long
Pause,
High
Latency

Inter-frame
time

frame.time_delta_displayed (frame.time_delta > 0.001) Tcptrace graph

• Long pause

TCP RTO
Timer

frame.time_delta_displayed (frame.time_delta > 1)

TCP Delayed
ACK Timer

frame.time_delta_displayed (frame.time_delta > 0.1)

Technical White Paper | 7

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Network
iRTT latency

tcp.analysis.initial_rtt (tcp.analysis.initial_rtt > 0.01) TCP 3-way
handshake

Network
ACK RTT
latency

tcp.analysis.ack_rtt (tcp.analysis.ack_rtt > 0.01)

Storage NFS
Call-Reply
latency

rpc.time (rpc.time > 0.01)

Storage
iSCSI
Request-
Response
latency

scsi.time (scsi.time > 0.01)

Bandwidth
Delay
Product

Receiver
window size
(scaled)

tcp.window_size Tcptrace graph

• Bytes In Flight
• Receive

window

I/O graphs
(TcpTransferTput
profile)

Obs Point:
Closer to Sender

from
receiver

Sender
BytesInFlight

tcp.analysis.bytes_in_flight from
sender

 tcp.analysis.zero_window from
receiver

 tcp.analysis.window_full from
sender

 tcp.analysis.zero_window_probe from
sender

Note: The time values in Display Filter expressions here (for example, (rpc.time > 0.01)) are for illustration only.
You should use values that are reasonable for your environment.

Regarding long pauses:

• TCP timers are typically in some round number of milliseconds (for example: 10ms, 200ms), so they are easy
to identify.

• Known interactions leading to long pauses (not an exhaustive list):

– Nagle (delayed send) interacts with Delayed ACK. See the explanation by Hansang Bae: Wireshark
Tutorial of TCP Nagle and Delayed ACK Interaction [3].

– Slow Start interacts with Delayed ACK. Refer to NFS Read: Slow Start vs Delayed ACK [1].

https://www.youtube.com/watch?v=adDC5T-RzR4
https://www.youtube.com/watch?v=adDC5T-RzR4
https://www.vmware.com/docs/esxi7-nfs-read-perf

Technical White Paper | 8

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

These deadlocks are eventually broken by typically slow TCP timers, resulting in poor throughput.

Table 3. Summary of signature identification

Class Characteristics Signature Identification using Wireshark

Packet Loss, Out of Order Retransmit (fast, slow) Expert Info: DUP ACK, out of order, fast retransmit,
retransmit

Display Filter: from TcpTransferTput profile

Long Pause, High Latency TCP timers, network latency,
storage latency

Tcptrace graph: long pause

Display Filter: from TcpTransferTput profile

Bandwidth Delay Product Bytes in flight, receive window,
Slow Start

Tcptrace graph: bytes in flight, receive window

I/O Graphs: from TcpTransferTput profile

Observation Point: Closer to Sender

Wireshark analysis
The following sections step through the Wireshark analysis methodology we use.

High-level workflow

Use Wireshark to identify performance anomaly signatures by following this workflow (we’ll describe the details in
the following sections):

1. Note packet capture conditions and capture drops.

2. Note packet trace file stats and TCP connections.

3. Export the selected TCP connection to a packet trace file.

4. Identify performance anomalies using signatures.

Technical White Paper | 9

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Step 1: Note packet capture conditions and capture drops

In this step, we review key information about the packet capture process. You will use this information to estimate
whether the packet trace file is an accurate representation of the network traffic you are analyzing.

Review the following:

1. Packet capture details

1.1. Where were packets captured?

1.1.1. On a network endpoint (for example: on an ESXi vmknic using tcpdump-uw or pktcap-uw)

1.1.2. Via an inline network tap on the physical network

1.1.3. Via the mirror/SPAN port of a physical network switch

1.2. Was a hardware packet capture system used?

1.3. Observation point: Was the capture performed closer to the sender or the receiver on the network?

2. Experiment conditions

3. Was the performance anomaly being investigated observed during capture?

4. What was the time of day of the anomaly?

5. Capture drops

6. Capture drops are packets in the traffic being analyzed but are not included in the packet trace file, due to
limitations of the packet capture process. Capture drops are common in endpoint captures and could make
packet trace analysis significantly more challenging.

7. You can identify capture drops in a packet trace file using Wireshark as follows:

8. In Wireshark, open the packet trace file. For example: xyz.pcapng.gz

Use the Display Filter
(tcp.analysis.lost_segment || tcp.analysis.ack_lost_segment)

which is predefined as the Display Filter button	TcpCapDrops in	the	TcpTransferTput profile.

For more information about packet capture, refer to our paper ESX IP Storage Troubleshooting Best Practice:
Packet Capture and Analysis at 10G [3].

https://www.vmware.com/docs/esx-ip-storage-troubleshooting
https://www.vmware.com/docs/esx-ip-storage-troubleshooting

Technical White Paper | 10

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Step 2: Note packet trace file stats and TCP connections

In this step, we examine the number of bytes, number of packets, and duration of the packet trace file.

1. In Wireshark, open the packet trace file. For example: xyz.pcapng.gz

2. Go to Statistics à Capture File Properties and note the following:

3. Time: First Packet (Time of Day)

4. Statistics: Packets, Time Span (duration), Bytes

5. In Wireshark, go to Statistics à Conversations à TCP.

Per connection:

6. Note the Packets, Bytes, and Duration.

7. Identify the data transfer direction (A à B or B à A), which will have higher bytes than the other direction.

Step 3: Export the selected TCP connection to a packet trace file

In this step, we select a TCP connection of interest based on, say, the endpoint IPs and ports, or the number of
packets or bytes. We then export all the packets of this TCP connection to a new packet trace file. Finally, we
perform further analysis of this selected TCP connection on the new packet trace file. This is an optional but
recommended step—it simplifies some of the subsequent analysis steps in Wireshark. If we have multiple TCP
connections of interest, we need to export each connection to a separate packet trace file for further analysis.

1. Select the TCP connection of interest with the desired endpoint IPs and ports.

Note: If you identify multiple connections of interest, you will need to select (and export) each connection
separately.

2. Select all frames of one TCP connection of interest. There are two ways to go about this:

Method 1

2.1. In the Wireshark Packet List pane, select one frame from the TCP connection of interest.

2.2. Use the Display Filter (tcp.stream == ${tcp.stream}) which is predefined as the Display Filter button
TcpStream in the TcpTransferTput profile.

2.3. If the Packet List pane is sorted by some column other than the frame.number (No.) column—the leftmost
column—revert to sort by the frame.number column.

Method 2

2.1. In Wireshark, go to Statistics à Conversations à TCP and select one connection.

3. Select Apply as Filter à Selected à Filter on stream id. The Packet List pane now shows only frames of the

selected TCP connection.

4. Export the displayed frames to a new packet trace file by selecting File à Export Specified Packets.

Technical White Paper | 11

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

5. The file name should be in the form xyz.connection=??.pcapng.gz

6. Save as type: Wireshark/... pcapng

7. Compressed with gzip: Y

8. Select All packets.

9. Select Displayed.

Step 4: Identify performance anomalies using signatures

In this step, we use different Wireshark features to identify various performance anomaly signatures. The features
used include:

• Display Filter

• Tcptrace graph

• I/O graphs

We will describe the use of these features in the following sections.

Note: We assume that the packet trace file contains packets from one TCP connection

Use Display Filter Signatures

Here, we use predefined display filters (from the TcpTransferTput profile) to identify performance anomaly
signatures.

1. Iterate over the predefined display filter buttons to identify performance anomaly signatures.

2. If some frame (F) matches a signature, analyze the TCP connection frame F belongs to. Examine frame F and
successively earlier frames in the TCP connection until you discover the underlying issue.

3. For each performance anomaly identified in a TCP connection, determine if the frequency and severity of the
anomaly together results in a significant impact on transfer throughput.

Example: An instance of packet loss followed by fast retransmit does not always lead to a significant decrease
in transfer throughput.

Technical White Paper | 12

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Table 4 shows performance anomaly signatures and the corresponding display filters.

Table 4. Performance anomaly signatures and their corresponding display filters

Class Display Filter
Button

Display Filter Expression Direction

Packet Loss, Out of
Order

TcpDupAck3+ tcp.analysis.duplicate_ack_num >= 3 RàS

TcpRetrans(F/S) tcp.analysis.fast_retransmission ||
tcp.analysis.retransmission

SàR

TcpOO tcp.analysis.out_of_order SàR

Long Pause, High
Latency

Pause=1+ms frame.time_delta > 0.001 (any)

Pause=10+ms frame.time_delta > 0.01 (any)

Pause=100+ms frame.time_delta > 0.1 (any)

Bandwidth Delay Product TcpWinFull tcp.analysis.window_full SàR

TcpZeroWin tcp.analysis.zero_window RàS

Example: For the anomaly signature TCP triple duplicate ACK (which would trigger a TCP fast retransmit), you
will use the following analysis steps:

1. Use the Display Filter (tcp.analysis.duplicate_ack_num >= 3) which is predefined as the Display Filter
button TcpDupAck3+ in the TcpTransferTput profile.

2. Select one matching frame (F) in the Packet List pane.

3. Click the Display Filter (tcp.stream == ${tcp.stream}) which is predefined as the Display Filter button
TcpStream.

4. This shows all frames of the TCP connection containing frame F.

5. Investigate: Examine earlier frames in the current TCP connection, beginning with frame F.

Technical White Paper | 13

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Use Tcptrace graph signatures

Here, you will use the Wireshark Tcptrace graph to identify signatures of two classes of performance anomalies:

• Long pause (of multi-millisecond duration) between frames, typically due to TCP timers

• Bandwidth Delay Product (BDP) issues

Refer to the appendix section “Wireshark: Tcptrace graph” for an overview.

There are three different signatures to look for: one for long pauses due to TCP timers, and two for BDP issues.

Signature 1: Long pauses due to TCP timers

To identify these pauses, inspect the Tcptrace graph of the connection. The characteristics to look for include:

• Recurring pauses of identical duration.

• TCP timer values are typically in a round number of milliseconds (for example: 1ms, 10ms, 200ms).

To use the Tcptrace graph to identify long pauses:

1. In Wireshark, go to Statistics à TCP Stream Graphs à Time sequence (tcptrace).

2. Switch Direction if necessary so that the Tcptrace graph is in the data transfer direction. See the IPX:portX à

IPY:portY line at the top of the Tcptrace graph.

3. Look for long, recurring pauses of identical duration between the frames. These appear as relatively long
horizontal line segments in the Tcptrace graph, as shown in Figure 1.

Figure 1. An example of a Tcptrace graph that indicates long pauses

Technical White Paper | 14

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Signature 2: BDP receiver bottleneck

TCP segments frequently fill up the receive window. That is, the "I"-beams come close to the upper line, as shown
in Figure 2. This suggests a receiver bottleneck.

Figure 2. Example of a Bandwidth Display Product receive bottleneck graph

Signature 3: BDP sender bottleneck

TCP segments rarely fill up the receive window, (that is, the "I"-beams are nowhere close to the upper line). This
suggests a sender bottleneck.

Figure 3. Example of a Bandwith Display Product sender bottleneck

Technical White Paper | 15

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

To use the Tcptrace graph to identify BDP issues:

1. In Wireshark, go to Statistics à TCP Stream Graphs à Time sequence (tcptrace).

2. Switch Direction if necessary, so the Tcptrace graph is in the correct data transfer direction.

3. Determine visually if the TCP segments fill up the receive window.

Use I/O graph signatures

In this section, we use predefined I/O graphs (from the TcpTransferTput profile) to identify signatures of
Bandwidth Delay Product–related performance anomalies.

Note: This section is not an exhaustive treatment of BDP. In particular, the following will not be covered:

• BDP = Bandwidth * RoundTripTime

• Comparing SendBufferSize to BDP

• Comparing ReceiveBufferSize to BDP

Table 5 describes the predefined I/O Graphs from the TcpTransTput profile.

Table 5. Predefined I/O Graphs from the TcpTransTput profile

Graph Metric Direction Color Info

BytesInFlightMax tcp.analysis.bytes_in_flight SàR Green Bytes sent but not acknowledged

CalcWinSizeMax tcp.window_size RàS Red Scaled receive window size

TcpWinFull tcp.analysis.window_full SàR Blue Wireshark thinks sender has filled advertised
window

TcpZeroWin tcp.analysis.zero_window RàS Purple Receiver announces receive window is zero

The TcpTransTput profile predefines 2 sets (X, Y) of 4 I/O graphs each, for the two potential directions of data
transfer, respectively.

• Set X: BytesInFlightMaxX, CalcWinSizeMaxX, TcpWinFullX, TcpZeroWinX

• Set Y: BytesInFlightMaxY, CalcWinSizeMaxY, TcpWinFullY, TcpZeroWinY

• Statistics à I/O Graphs

– Enable the 4 graphs of set X (or set Y) as appropriate
– Interval: 1ms
– Log scale: (Yes: easier to observe non-zero TcpWinFull* or TcpZeroWin*)
– Automatic Update: Yes

Technical White Paper | 16

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Signature 4: Receiver may be the bottleneck if any of the following is observed:

• BytesInFlightMax is frequently close to the max of CalcWinSizeMax.

• TcpWinFull is non-zero

• TcpZeroWin is non-zero

Example A: Receiver bottleneck

Figure 4 shows an example I/O graph of linear scale with a receiver bottleneck.

Figure 4. Example I/O graph showing receiver bottleneck (linear scale)

Figure 5 shows an example I/O graph of log scale with a receiver bottleneck.	Note the non-zero values of

TcpWinFull and TcpZeroWin at the bottom.

Figure 5. Example I/O graph showing receiver bottleneck (log scale)

Technical White Paper | 17

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Figure 6. Example I/O graph showing receiver bottleneck (linear scale, zoomed in)

From figures 4-6, we can make the following observations:

• BytesInFlightMax is frequently very close to CalcWinSizeMax.

• TcpWinFull is frequently non-zero.

This indicates a receiver bottleneck.

Signature 5: Sender may be the bottleneck if the following is observed:

BytesInFlightMax is always significantly lower than CalcWinSizeMax.

Example B: Sender bottleneck

Figure 7 on the next page shows an example I/O graph of linear scale with a sender bottleneck.

Technical White Paper | 18

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Figure 7. Example I/O graph showing sender bottleneck (linear scale)

Figure 8 shows an example I/O graph of log scale with a sender bottleneck.

Figure 8. Example I/O graph showing sender bottleneck (log scale)

In figures 7 and 8, we can make the following observation:

• BytesInFlightMax is never close to CalcWinSizeMax

This indicates a sender bottleneck.

Technical White Paper | 19

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Conclusion
We have developed a methodology for identifying TCP issues that commonly lead to poor unidirectional data
transfer throughput. We captured the network traffic of the data transfer into a packet trace file for offline
analysis. We then analyzed this packet trace to detect signatures of common TCP performance anomalies that
have a significant impact on transfer throughput. The TCP issues we considered include packet loss and
retransmission, long pauses caused by TCP timers, and Bandwidth Delay Product (BDP) issues. We performed
the analysis using Wireshark and provided a Wireshark profile to simplify the analysis workflow. This
methodology offers a systematic approach to identify common TCP issues that have a significant impact on
transfer throughput. We encourage engineers troubleshooting data transfer throughput performance to
incorporate this methodology as a standard part of their workflow.

Appendix

Wireshark profile: TcpTransferTput

We provide the Wireshark profile TcpTransferTput, which provides predefined Display Filters and I/O graphs that
help you identify TCP performance anomaly signatures that impact data transfer throughput.

To use this profile:

1. Download the profile (TcpTransferTput.zip) [4]
https://community.broadcom.com/vmware-cloud-foundation/viewdocument/troubleshooting-tcp-
unidirectional

2. In Wireshark: Edit à Configuration Profiles à Import à from zip file.

3. In Wireshark: Edit à Configuration Profiles à TcpTransferTput

High level of using the TcpTransferTput profile:

1. Identify TCP performance anomaly signatures that impact data transfer throughput.

2. Display Filters: Predefined filters for performance anomaly signatures.

3. I/O Graphs: Predefined graphs for Bandwidth Delay Product anomaly signatures.

Note: We assume that the packet trace file contains only one TCP stream.

https://community.broadcom.com/vmware-cloud-foundation/viewdocument/troubleshooting-tcp-unidirectional
https://community.broadcom.com/vmware-cloud-foundation/viewdocument/troubleshooting-tcp-unidirectional

Technical White Paper | 20

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Packet List pane: Columns

The following columns are selected to simplify various TCP analysis:

• DeltaTime: The time between the current frame and the previous frame in the same TCP connection.

• DeltaTimeDisplayed: The time between the current frame and the previous frame is displayed in this pane.

– This is useful if some Display Filter is in use and not all frames are displayed.
– Example: DisplayFilter: (tcp.analysis.duplicate_ack_num>=3)||(tcp.analysis.fast_retransmission)

• Seq: Sequence number

• Ack: ACK number

• TcpLen: Payload size

• CalcWinSize: Scaled receive window size

• BytesInFlight: Bytes sent but not acknowledged

Packet List pane: Display Filters predefined (buttons)

The following Display Filters are predefined to simplify anomaly signature identification.

Table 6. Display Filter buttons and their corresponding filter expressions

Button Filter Expression

TcpDupAck3+ (tcp.analysis.duplicate_ack_num >= 3)

TcpRetrans(F/S) (tcp.analysis.retransmission || tcp.analysis.fast_retransmission)

TcpOO (tcp.analysis.out_of_order)

Pause=1+ms (frame.time_delta > 0.001)

Pause=10+ms (frame.time_delta > 0.01)

Pause=100+ms (frame.time_delta > 0.1)

TcpWinFull (tcp.analysis.window_full)

TcpZeroWin (tcp.analysis.zero_window)

TcpStream (tcp.stream == ${tcp.stream})

TcpCapDrops (tcp.analysis.lost_segment || tcp.analysis.ack_lost_segment)

Technical White Paper | 21

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

I/O graphs

I/O graphs are predefined for Bandwidth Delay Product–related anomaly signature identification.

Table 7. I/O graphs predefined in TcpTransferTput profile

Graph DisplayFilter Style YAxis YField

BytesInFlightMaxX tcp.srcport < tcp.dstport) Line MAX(Y Field) tcp.analysis.bytes_in_flight

CalcWinSizeMaxX tcp.srcport >= tcp.dstport) Line MAX(Y Field) tcp.window_size

TcpWinFullX tcp.srcport < tcp.dstport) Line COUNT FRAMES(Y Field) tcp.analysis.window_full

TcpZeroWinX tcp.srcport >= tcp.dstport) Line COUNT FRAMES(Y Field) tcp.analysis.zero_window

BytesInFlightMaxY tcp.srcport >= tcp.dstport) Line MAX(Y Field) tcp.analysis.bytes_in_flight

CalcWinSizeMaxY tcp.srcport < tcp.dstport) Line MAX(Y Field) tcp.window_size

TcpWinFullY tcp.srcport >= tcp.dstport) Line COUNT FRAMES(Y Field) tcp.analysis.window_full

TcpZeroWinY tcp.srcport < tcp.dstport) Line COUNT FRAMES(Y Field) tcp.analysis.zero_window

The TcpTransTput Wireshark profile predefines 2 sets (X, Y) of 4 I/O graphs each, for the two potential directions
of data transfer respectively.

• Set X: BytesInFlightMaxX, CalcWinSizeMaxX, TcpWinFullX, TcpZeroWinX

• Set Y: BytesInFlightMaxY, CalcWinSizeMaxY, TcpWinFullY, TcpZeroWinY

• Data transfer direction (srcport => dstport)

– Set X: srcport < dstport (for example: 789 => 2049)
– Set Y: srcport >= dstport (for example: 2049 => 789)

• In Wireshark, go to Statistics à I/O Graphs

– Enable the 4 graphs of set X (or set Y) as appropriate.
– Interval: 1ms
– Log scale: (Yes: easier to observe non-zero TcpWinFull* or TcpZeroWin*)
– Automatic Update: Yes

Technical White Paper | 22

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Wireshark: Tcptrace graph

The following table shows the key features of Wireshark's Tcptrace graph.

Table 8. Key features of Tcptrace graph in Wireshark

Graph Element Info

Vertical axis Sequence number

Upper line (green) Highest sequence number sender is allowed to send

Lower line (brown) ACK number

Tiny "I"-beams between lower and upper lines
(dark blue)

TCP segments

Vertical distance between lower and upper lines Scaled receive window size

Example: Identification using Display Filter signature

In this section, we describe the detailed steps for the identification and analysis of a Display Filter anomaly
signature related to a packet loss and TCP fast retransmission episode. The key steps are:

1. Use the Display Filter signature to identify TCP fast retransmission.

2. Identify key frames of interest for a packet loss and fast retransmission episode.

2.1. Lost segment (if found in the packet trace file)

2.2. The 3rd (triple) duplicate ACK (which would trigger TCP fast retransmission on the sender)

3. Compute the delta time between the triple duplicate ACK and fast retransmit, and compare the delta time
with the initial Round Trip Time of the connection.

Highlights

• TCP

– Client: 172.16.64.15:29053
– Server: 13.32.207.59:443

• Data Transfer

– Sender (S): 13.32.207.59:443
– Receiver (R): 172.16.64.15:29053

• Packet capture

– Observation Point is closer to receiver R (from TCP 3-way handshake)

Technical White Paper | 23

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Packet trace analysis (example)

Identify key frames of interest

Assumption: The packet trace file contains only one TCP connection.

 Frame S/R Details Comments

Step 1: Signature for Fast/Slow Retransmit
 Display Filter: TcpFastRetrans(F/S): (tcp.analysis.retransmission || tcp.analysis.fast_retransmission)

 1921 S->R Seq=1572235,Len=1440 [TCP Fast Retransmission]
 3646 S->R Seq=2964715,Len=1440 [TCP Fast Retransmission]
 5323 S->R Seq=4637995,Len=1440 [TCP Fast Retransmission]

 # 1921 is fast retransmission

 # Action: select Frame=1921 for further analysis

Step 2: DupAck#3
 Display Filter: (tcp.ack == 1572235) && (tcp.analysis.duplicate_ack_num == 3)

 1541 R->S Ack=1572235 [DupAck 1531#3]

 # 1541 is DupAck#3

Step 3: DupAck#1
 Display Filter: (tcp.ack == 1572235) && (tcp.analysis.duplicate_ack_num == 1)

 1534 R->S Ack=1572235 [DupAck 1531#1]

 # 1534 is DupAck#1

Step 4: Ack
 Display Filter: (tcp.ack == 1572235) && (!tcp.analysis.duplicate_ack)

 1531 R->S Ack=1572235 [ACK]
 1539 R->S Ack=1572235 [ACK][TCP Window Update]
 1688 R->S Ack=1572235 [ACK][TCP Window Update]

 # 1531 is Ack

Step 5: Lost Segment
 Display Filter: (tcp.seq == 1572235)

 1233 S->R Seq=1572235,Len=1440
 1921 S->R Seq=1572235,Len=1440 [TCP Fast Retransmission]

 # 1233 is lost segment
 # 1921 is Fast Retransmission

 # Note: we do not always observe the lost segment in the packet trace file.
 # Sender (S) => Observation Point (OP) => Receiver (R)
 # a. If segment was lost between S/OP: segment not in packet trace file
 # b. If segment was lost between OP/R: segment in packet trace file

Technical White Paper | 24

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Step 6: Receiver caught up
 Display Filter: (tcp.ack > 1572235)

 2115 R->S Ack=1576555 [R caught up]

 # Lost segment ACK'd

Step 7: Summary: Key frames of interest

 1 R->S Syn [SYN]
 2 S->R Syn/Ack [SYN, ACK]
 3 R->S Ack [ACK]

 1233 S->R Seq=1572235,Len=1440 [Lost segment: not arrive at R] *

 1531 R->S Ack=1572235 [ACK]
 1534 R->S Ack=1572235 [DupAck 1531#1]
 1541 R->S Ack=1572235 [DupAck 1531#3] *

 1920 R->S Ack=1572235 [DupAck 1531#30]
 1921 S->R Seq=1572235,Len=1440 [TCP Fast Retransmission] *
 1922 R->S Ack=1572235 [DupAck 1531#31]

 2114 R->S Ack=1572235 [DupAck 1531#51]
 2115 R->S Ack=1576555 [R caught up]

 # Note: Not all frames are shown.

Compare time from DupAck#3 to fast retransmit with iRTT

 Frame Time S/R Details Comments

Step 8: Initial Round Trip Time (iRTT) of TCP 3-way handshake

 1 0.000 R->S Syn [SYN]
 2 0.015 S->R Syn/Ack [SYN, ACK]
 3 0.016 R->S Ack [ACK]

 # iRTT: 160ms (0.016s)
 # This example:
 # + TCP client is Receiver
 # + TCP server is Sender

Step 9: Set time reference at DupAck#3 (Frame=1541)

 1541 *REF* R->S Ack=1572235 [DupAck 1531#3]

 1920 0.018 R->S Ack=1572235 [DupAck 1531#30]
 1921 0.019 S->R Seq=1572235,Len=1440 [TCP Fast Retransmission]
 1922 0.019 R->S Ack=1572235 [DupAck 1531#31]

 2114 0.024 R->S Ack=1572235 [DupAck 1531#51]
 2115 0.024 R->S Ack=1576555 [R caught up]

 # DeltaTime: DupAck#3 (Frame=1541)..Fast Retransmission (Frame=1921): 19ms (0.019s)
 # Important: Unset time reference after this analysis!!!

Technical White Paper | 25

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

Delta time between DupAck#3 and Fast Retransmission is 19ms,
which is comparable with initial Round Trip Time of 16ms for the connection.
Frame=1921 is indeed a fast retransmission.

Key frames of interest: details

No. Time DeltaTime Source Destination SrcPort DstPort Seq Ack TCPLen
CalcWinSize BytesInFlight Info

 1 0.000000000 0.000000000 172.16.64.15 13.32.207.59 29053 443 0 0 0
64240 [SYN]
 2 0.015451449 0.015451449 13.32.207.59 172.16.64.15 443 29053 0 1 0
65535 [SYN, ACK]
 3 0.016156258 0.000704809 172.16.64.15 13.32.207.59 29053 443 1 1 0
263424 [ACK]

 1233 0.187764965 0.000012204 13.32.207.59 172.16.64.15 443 29053 1572235 2772 1440
68096 391680 [ACK]

 1531 0.194847383 0.000025576 172.16.64.15 13.32.207.59 29053 443 2772 1572235 0
4013056 [ACK]
 1532 0.194856671 0.000009288 13.32.207.59 172.16.64.15 443 29053 1959595 2772 1440
68096 375840 [ACK]
 1533 0.194868882 0.000012211 13.32.207.59 172.16.64.15 443 29053 1961035 2772 1440
68096 377280
 1534 0.194869650 0.000000768 172.16.64.15 13.32.207.59 29053 443 2772 1572235 0
4013056 [TCP Dup ACK 1531#1]
 1535 0.194881086 0.000011436 13.32.207.59 172.16.64.15 443 29053 1962475 2772 1440
68096 364320 [ACK]
 1536 0.194893282 0.000012196 13.32.207.59 172.16.64.15 443 29053 1963915 2772 1440
68096 365760 [ACK]
 1537 0.194905506 0.000012224 13.32.207.59 172.16.64.15 443 29053 1965355 2772 1440
68096 367200 [ACK]
 1538 0.194958353 0.000052847 172.16.64.15 13.32.207.59 29053 443 2772 1572235 0
4013056 [TCP Dup ACK 1531#2]
 1539 0.194959122 0.000000769 172.16.64.15 13.32.207.59 29053 443 2772 1572235 0
4200448 [TCP Window Update]
 1540 0.194974901 0.000015779 13.32.207.59 172.16.64.15 443 29053 1966795 2772 1440
68096 354240 [ACK]
 1541 0.194985089 0.000010188 172.16.64.15 13.32.207.59 29053 443 2772 1572235 0
4200448 [TCP Dup ACK 1531#3]

 1920 0.213974920 0.001065628 172.16.64.15 13.32.207.59 29053 443 2772 1572235 0
4230656 [TCP Dup ACK 1531#30]
 1921 0.214040303 0.000065383 13.32.207.59 172.16.64.15 443 29053 1572235 2772 1440
68096 478080 [TCP Fast Retransmission]
 1922 0.214116890 0.000076587 172.16.64.15 13.32.207.59 29053 443 2772 1572235 0
4230656 [TCP Dup ACK 1531#31]

 2114 0.219340445 0.000012552 172.16.64.15 13.32.207.59 29053 443 2772 1572235 0
4230656 [TCP Dup ACK 1531#51]
 2115 0.219375412 0.000034967 172.16.64.15 13.32.207.59 29053 443 2772 1576555 0
4230656 [ACK]

Note: Packet trace file provided by www.bettydubois.com.

https://www.bettydubois.com/

Technical White Paper | 26

Troubleshooting TCP Unidirectional Data Transfer Throughput on VMware vSphere

References

[1] Kinson Ho, "ESXi NFS Read Performance: TCP Interaction between Slow Start and Delayed
Acknowledgement," May 2020.
https://www.vmware.com/docs/esxi7-nfs-read-perf

[2] Wireshark, "Sharkfest Retrospective," 2022. https://sharkfestus.wireshark.org/retrospective

[3] Hansang Bae, "Wireshark Tutorial of TCP Nagle and Delayed Ack interaction," January 2013.
https://www.youtube.com/watch?v=adDC5T-RzR4

[4] Kinson Ho, "ESX IP Storage Troubleshooting Best Practice: Packet Capture and Analysis at 10G," December
2017.
https://www.vmware.com/docs/esx-ip-storage-troubleshooting

[5] Kinson Ho, "Wireshark Profile: TcpTransferTput," August 2023. (Downloads a file.)
https://community.broadcom.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=
77c3644b-ea3e-46c6-ad61-a893dbfabbde&forceDialog=1

About the author
Kinson Ho is a staff engineer in Performance Engineering at VMware focusing on vSphere networked storage
performance, including NFS, iSCSI, and vSAN File Services performance. He has extensive experience with the
use of packet capture and analysis for performance troubleshooting and optimization on high-speed networks.

Acknowledgments
The author sincerely thanks Vikas Madhusudana, John McSweeney, Murali Krishnamurthy, Krishna Yenduri, and
Nitish Kumar for their very thoughtful comments about the paper. A big thank you is extended to Julie Brodeur
for superb technical editing that greatly improved the readability of the paper at incredibly fast turnaround times.

Special thanks are due to Wireshark super experts Sake Blok, Jasper Bongertz, and Betty Dubois for their highly
insightful feedback about the performance anomaly signatures described in this paper. Betty Dubois provided the
packet trace file used in one of the examples and explained some of the fine points about TCP fast retransmission.

https://www.vmware.com/docs/esxi7-nfs-read-perf
https://sharkfestus.wireshark.org/retrospective
https://www.youtube.com/watch?v=adDC5T-RzR4
https://www.vmware.com/docs/esx-ip-storage-troubleshooting
https://community.broadcom.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=77c3644b-ea3e-46c6-ad61-a893dbfabbde&forceDialog=1
https://community.broadcom.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=77c3644b-ea3e-46c6-ad61-a893dbfabbde&forceDialog=1

Copyright © 2024 Broadcom. All rights reserved.
The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade names, service marks, and logos
referenced herein belong to their respective companies. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,
function, or design. Broadcom believes the Information herein is accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this
information, or the application or use of any product described herein. It does not convey any license under its patent rights or the rights of others.

