
WHITE PAPER – NOVEMBER 2017

NEW ARCHITECTURES FOR
APACHE SPARKTM AND BIG DATA

W H I T E PA P E R | 2

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Contents

Key Trends in Big Data .4

Goal of the Study .4

Traditional Big Data Infrastructure in VMware Virtualized Environments 4

The Apache Spark Platform for Big Data .6

Infrastructure Requirements for the Apache Spark Platform 6

CPU .6

Memory .6

Disk . 7

Network . 7

Leveraging a Distributed File System Other Than HDFS for the

Apache Spark Platform .7

Proof of Concept for Apache Spark Software on a vSphere Platform 8

GlusterFS for Apache Spark Software on a vSphere Platform 9

Basics of GlusterFS Architecture .9

Testing with TPC-DS for Apache Spark Software . 10

Apache Spark Software with GlusterFS Proof of Concept Infrastructure 10

Physical Infrastructure . 10

Servers and Networking . 11

Storage . 11

Virtual Architecture . 11

Apache Spark Virtual Machine Components . 11

Block Storage Based on Fibre Channel . 11

vSAN Configuration . 11

VMware Cloud on AWS . 13

W H I T E PA P E R | 3

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Apache Spark Architecture . 13

Use Case 1: Distributed Storage Backed by Fibre Channel and

Pure Storage FlashArray//M50 . 13

Use Case 2: Distributed Storage Backed by All-Flash vSAN 14

GlusterFS Configuration . 14

The Apache Spark Console . 15

TPC-DS Query Results . 18

TPC-DS with VMware Cloud on AWS . 19

Conclusion . 20

References . 20

About the Authors . 21

Acknowledgments . 21

Appendix A: GlusterFS Install and Setup Commands .22

Install Commands .22

Enabling the Service .22

Creating and Configuring Gluster Nodes .22

Name Resolution .22

W H I T E PA P E R | 4

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Key Trends in Big Data
Enterprises are deploying new innovations in technology and replacing their
legacy data platforms . The traditional data warehouse technology is not serving
their needs . Newer data exists in many forms, such as structured, unstructured,
streaming, and others; it is no longer just relational . There is a need to integrate
systems that are distributed across the enterprise and provide a single source of
truth . There is increasing demand to leverage new application architectures to
enhance productivity for developers who want to explore data science, machine
learning, and deep learning .

Due to the evolution of compute and storage capabilities such as SSD, Flash,
and NVMe, the landscape and requirements for big data have been transformed .
Decoupling compute and storage clusters is the ideal . Compute nodes must rapidly
scale up from dozens to hundreds of nodes, and many of the modern big data
platforms store and process most data in memory . Newer platforms such as
Apache Spark™ software are primarily memory resident, with I/O taking place
only at the beginning and end of the job . This contrasts with Apache Hadoop®
MapReduce, with which every processing phase shows significant I/O activity .
These contemporary platforms can leverage any regular local, shared, or distributed
file system . Due to the evolving critical nature of these big data platforms, high
availability and fault tolerance are mandatory for components with single points
of failure .

Goal of the Study
The goal of this study is to determine whether we can leverage shared storage in
modern big data platforms . We will look at current in-memory big data platforms
and their suitability for virtualization . The in-memory nature of these newer platforms
makes them less dependent on I/O and storage protocols . In this study, we leverage
virtualized shared storage and the core VMware vSphere® features in an effort to
build out a highly available and performant infrastructure for contemporary big
data platforms .

Traditional Big Data Infrastructure in
VMware Virtualized Environments
Due to the special requirements for Hadoop and MapReduce in traditional big
data environments, dedicated clusters with many local disks have usually been
recommended in a VMware environment . The sequential I/O and large block size
requirements of the Hadoop Distributed File System (HDFS) have not been a good
fit for the traditional shared storage used in standard virtualized environments .
MapReduce on HDFS has its built-in redundancy from a job and data perspective
across physical nodes, which obviates the need for high availability and
load balancing .

W H I T E PA P E R | 5

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

The anatomy of a MapReduce job includes multiple phases, with I/O to read and
write to disk at every phase of the process . I/O throughput and performance are
critical for these traditional workloads . Some core features of vSphere, such as
VMware vSphere vMotion®, VMware vSphere Distributed Resource Scheduler™
(vSphere DRS), and VMware vSphere High Availability (vSphere HA), cannot be
leveraged for the worker nodes in these dedicated clusters, because HDFS and the
data reside on local disks, constraining virtual machine (VM) mobility .

Solutions such as those of Dell EMC™ Isilon® provide the ability to serve HDFS, from
a shared storage array to a virtual Hadoop cluster, but these are vendor-specific
solutions . The usual limitations of a physical cluster to independently scale compute
and storage also pertain to a dedicated VMware cluster . Because the traditional
architecture requires the use of direct attached storage (DAS), managing these
drives is a challenge as compared to centralized management for commonly used
SAN and NAS storage in virtualized environments .

Apache Hadoop Node 1
Virtual Machine

Apache Hadoop Node 2
Virtual Machine

VMware vSphere
Host Server

Ext4 Ext4 Ext4 Ext4 Ext4 Ext4 Ext4 Ext4 Ext4 Ext4 Ext4 Ext4

VMDK VMDK VMDK VMDK VMDK VMDK VMDK VMDK VMDK VMDK VMDK VMDK

DataNode DataNodeNodeManager NodeManager

Figure 1. Traditional Architecture for Big Data on vSphere

W H I T E PA P E R | 6

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

The Apache Spark Platform for Big Data
The Apache Spark platform is an open-source cluster computing system with
an in-memory data processing engine . It has a rich set of APIs for Java, Scala,
Python, and R as well as an optimized engine for ETL, analytics, machine learning,
and graph processing . Spark is a distributed platform for complex multistage
applications . It also supports many higher-level tools, including Spark SQL for
SQL and structured data processing, MLlib for machine learning, GraphX for
graph processing, and Spark Streaming .

Spark
SQL

Spark
Streaming

MLlib
(Machine
Learning
Library)

GraphX
(Graph
Library)

Apache Spark

Figure 2. Apache Spark Platform Components

Infrastructure Requirements for the
Apache Spark Platform
Before we look at creating a proof of concept (POC) for the Apache Spark
platform, we will discuss the requirements for the infrastructure components .
See Apache Spark .

CPU
Apache Spark software scales well, to tens of CPU cores per server and to hundreds
of servers, due to minimal sharing between threads and because it is truly distributed .
We recommend provisioning at least 8–16 cores per machine . The actual number of
cores and the number of servers depend on the particular workload .

Memory
In general, Apache Spark software runs well with anywhere from eight to hundreds of
gigabytes of memory per machine . In all cases, allocate no more than 75 percent of
memory for Spark use; reserve the remainder for the operating system (OS) and
buffer cache . To determine how much an application uses for a certain dataset size,
load part of the dataset in a Spark resilient distributed dataset (RDD) and click
Storage on the Spark monitoring UI (http://<driver-node>:4040) to see its memory
size . The Java VM does not always perform well with more than 200GB of RAM, so
size the VM based on these factors .

W H I T E PA P E R | 7

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Disk
Although the Apache Spark platform can perform much of its computation in
memory, it uses local disks to store data that doesn’t fit in RAM and to preserve
intermediate output between stages . HDFS has been the traditional de facto file
system for big data, but Spark software can use any available local or distributed file
system . The spark.local.dir variable can be used to set up the location of the
storage to be used for processing .

Network
Due to the in-memory nature of the Apache Spark platform, it can be network
bound . We recommend a 10Gbps or higher network for Spark applications . These
requirements are primarily due to the distributed nature of Spark computing .

Leveraging a Distributed File System Other Than
HDFS for the Apache Spark Platform
Apache Spark software works with any local or distributed file system solution
available for the typical Linux platform . As mentioned earlier, HDFS is an older file
system and big data storage mechanism that has many limitations . These make it
incompatible with the common shared storage, such as SAN and NAS, used in
virtualized environments . We opted to use a distributed storage platform that works
with Spark software and is compatible with virtualized shared storage . By leveraging
virtualized shared storage, the core features of the vSphere platform such as
vSphere vMotion, vSphere DRS, vSphere HA, and so on, can be fully utilized for
the big data infrastructure .

Many file system candidates present themselves . The most common ones are NFS,
Ceph, and GlusterFS . A solution is needed that works well with any shared storage
backend for the vSphere platform, including block, NFS, and VMware vSAN™ . A
solution is required that can be easily set up and scaled across hundreds of nodes, if
needed, with minimal complexity . A comprehensive shared storage solution for big
data must provide the ability to ingest data from multiple sources using the prevailing
mechanisms such as NFS, CIFS, HDFS, Amazon S3 (Object), FTP, and so on .

• NFS, if available, as a data repository for a Spark platform can be leveraged, but it
must be highly available . Its innate horizontal scalability is limited .

• Ceph is relatively new and is primarily used in container environments as a shared
storage backend .

• GlusterFS is mature and has been commonly used for many years as a distributed
file system . It is easy to set up and has its own optimized driver for Linux .

W H I T E PA P E R | 8

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Proof of Concept for Apache Spark Software on
a vSphere Platform
Based on the profile and requirements of the newer big data platforms such as
Apache Spark, we created a POC to leverage and set up distributed storage not
based on HDFS for Spark software on a vSphere platform . The POC exercised SQL
query tests, as described in the “Testing with TPC-DS for Apache Spark Software”
section, with GlusterFS as the shared file system replacing traditional HDFS .
Because past studies have shown GlusterFS to be the most performant file system
as compared to HDFS and Ceph, we chose it as the underlying distributed storage
for the POC . Based on a study by IOPscience, Table 1 compares the performance of
Ceph and GlusterFS to that of HDFS .

IOPscience designed tests to compare reading and writing data across the HDFS,
GlusterFS, and Ceph file systems . They primarily used IOzone, a very popular
multithreaded file system benchmark tool, for this comparison . Because HDFS is
not suited for random writes, some of these tests error out .

HDFS HDFS CEPH CEPH CEPH GLUSTER GLUSTER

24 Threads 36 Threads 0 .61 0 .67 .3 0 .70 3 .3 3 .4

Initial
Write

239 .72 N .A . 52 .49 18 .93 51 .06 234 .06 306 .34

Rewrite ERROR ERROR 54 .05 19 .31 60 .05 311 .75 406 .9

Random
Write

ERROR ERROR ERROR 13 .96 7 326 .89 406 .33

Read 155 .18 193 .65 95 .38 53 .4 101 .58 621 .08 688 .06

Reread 151 .33 207 .43 102 .04 57 .29 133 .61 662 .92 711 .46

Random
Read

29 .06 39 .98 ERROR 5 .13 12 .05 242 .75 284

Table 1. Comparison of Read/Write Performance Across HDFS, Ceph, and GlusterFS Platforms in MBps
(Source: IOPscience study)

W H I T E PA P E R | 9

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

GlusterFS for Apache Spark Software on a
vSphere Platform
GlusterFS is an open-source scalable network file system that can run on top of any
backend storage . It is a proven storage solution for large distributed datastores used
in media streaming, data analysis, and bandwidth-intensive tasks .

Global Namespace

Multiprotocol
Client Support

Clustered Storage
Building Blocks

Flexible
Backend

Direct
Attached

JBOD

• GlusterFS Native
• NFS
• ClFS
• HTTP
• WebDAV
• FTP

SAN

GbE/10GbE/InfiniBand

Figure 3. GlusterFS Logical Architecture (Source: GlusterFS and Hadoop)

Basics of GlusterFS Architecture
Figure 4 shows a GlusterFS volume, a collection of bricks . A brick is a logical
construct that represents a particular directory on an underlying disk file system in a
GlusterFS node . It is used as a building block for the volumes .

Based on requirements, GlusterFS supports various types of volumes . These volumes
can be built for scaling, performance, or high availability . The POC uses a replicated
GlusterFS volume . In this volume, files are distributed across replicated sets of bricks
across servers . This type of volume is used when high availability for the data
is required .

W H I T E PA P E R | 1 0

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Replicated Volume

server1:/exp1
Mount Point

Brick

server1:/exp2

Brick

File 1 File 2

Figure 4. Replicated GlusterFS Volume (Source: Gluster Quick Start Guide)

Testing with TPC-DS for Apache Spark Software
TPC-DS is the common industry-standard tool suite for performance testing of
decision support solutions and for validation of the infrastructure . It is one of the tools
often used in testing Apache Spark environments . We used subsets of TPC-DS
queries to validate the performance of our POC environment . As described on its
home page, TPC-DS does the following:

• Examines large volumes of data

• Provides answers to real-world business questions

• Executes queries of various operational requirements and complexities—
for example, ad hoc, reporting, iterative OLAP, and data mining

• Characterizes workloads by high CPU and I/O load

Apache Spark Software with GlusterFS
Proof of Concept Infrastructure
Physical Infrastructure
The POC was deployed both on premises and on VMware Cloud™ on AWS . We
first look at the on-premises deployment, then look at the same deployment on
VMware Cloud on AWS, and then compare the results .

The on-premises Apache Spark POC environment was built in the VMware Solutions
Lab . The lab leverages VMware and partner resources to build application solutions
and POCs . The POC infrastructure had the following components .

W H I T E PA P E R | 1 1

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Servers and Networking
A four-node vSphere cluster with the following physical server specifications
was used to host the Apache Spark cluster components:

• Dell PowerEdge R720 server (44 cores/88 threads)

• 1TB RAM

• 4 x 10Gbps network adapters

• 2 x 16Gbps Fibre Channel ports

Storage
The POC was validated on two different types of backend storage:

• Block storage backed by a Brocade 16Gbps Fibre Channel fabric attached to a
Pure Storage FlashArray//M50

• vSAN storage with Western Digital NVMe for cache and Western Digital Optimus
MAX SSD 3 .5TB drives for the capacity tier, with two of the four 10Gbps ports in
each server dedicated for vSAN traffic across two distinct port groups

TPC-DS query times for the two use cases were compared . The TPC-DS dataset was
sized at 5TB .

Virtual Architecture
The virtual infrastructure was deployed on a four-node compute cluster . Each server
contained 44 physical cores and 1TB of RAM .

Apache Spark Virtual Machine Components
Each VM corresponds with the following Apache Spark node description:

• One Spark master node with 16 vCPUs and 128GB RAM

• Eight Spark worker nodes with 16 vCPUs and 128GB RAM with 2 x 200GB disks used
for OS and scratch space respectively (total worker compute capacity: 128 cores
and 1,024GB RAM)

The solution used CentOS Linux 7 .x VMs with Apache Spark 2 .2 .0 for master and
worker nodes .

The following two storage methods were used for independent test sequences for
purposes of comparison; they were not used together .

Block Storage Based on Fibre Channel
A large, 50TB LUN hosted on a Pure Storage FlashArray//M50 was used as
backend storage for all Apache Spark workloads . All vSphere hosts had dual
16Gbps Fibre Channel connections to the storage fabric .

vSAN Configuration
The all-Flash vSAN configuration used the following components . Each node had two
disk groups, with one NVMe drive for caching and two Flash drives for capacity .

W H I T E PA P E R | 1 2

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Figure 5. vSAN Disk Group Configuration

Two distinct port groups for use by vSAN traffic were created . Two separate
10Gbps network adapters were dedicated to these port groups . See Figure 6 . The
two port groups worked across different network boundaries; the vSAN instance
load-balanced between them . Under normal circumstances, port group Private1
used VMNIC3 as primary adapter and port group Private2 used VMNIC4 as
primary adapter .

Figure 6. Dedicated Highly Available Network Configuration for vSAN Traffic

W H I T E PA P E R | 1 3

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

VMware Cloud on AWS
The same POC was deployed on VMware Cloud on AWS, an on-demand service
that enables applications to run across cloud environments based on the vSphere
platform and having access to a broad range of AWS services . Powered by
VMware Cloud Foundation™, this service integrates vSphere, vSAN, and
VMware NSX®, along with VMware vCenter Server® management, and is optimized
to run on dedicated, elastic, bare-metal AWS infrastructure . With this service,
IT teams can manage their cloud-based resources with familiar VMware tools .
The following are among the core benefits of VMware Cloud on AWS:

• Simple and consistent operations

• Enterprise-grade capabilities

• Flexible consumption options

• Delivered as a service from VMware

A four-node VMware Cloud on AWS cluster was used for the tests . Details of the
VMware Cloud on AWS infrastructure can be found in the VMware Cloud on AWS
Technical Overview . VM configuration for all Apache Spark and GlusterFS components
was identical to that of the on-premises use case .

Apache Spark Architecture
The Apache Spark compute architecture included one master server and eight
worker nodes . See Figure 7 . GlusterFS is the distributed file system shared across the
entire Spark infrastructure . vSphere DRS automatically load-balances the VMs across
the four-cluster server hosts .

Use Case 1: Distributed Storage Backed by Fibre Channel and
Pure Storage FlashArray//M50

Pure Storage FlashArray//M50
on Fibre Channel

VMware vSphere VMware vSphere VMware vSphere VMware vSphere

Spark
Worker

VM VM

Spark
Master

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Gluster
Node

VM VM

Gluster
Node

VM VM
VM VM

Gluster
Node

GlusterFS

Figure 7. Apache Spark Standalone with GlusterFS on Fibre Channel Storage

W H I T E PA P E R | 1 4

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

The GlusterFS nodes were created with storage from the Pure Storage
FlashArray//M50 . Each of the three GlusterFS nodes has a 2TB data disk that is
peered across the nodes . This 2TB disk is available for the Spark master and worker
nodes as the distributed file system . The Gluster nodes were created with storage
from the all-Flash vSAN storage . Each of the three GlusterFS nodes has a 2TB data
disk that is peered across the nodes .

Use Case 2: Distributed Storage Backed by All-Flash vSAN

Clustered vSAN Datastore

VMware vSphere +
vSAN

VMware vSphere +
vSAN

VMware vSphere +
vSAN

VMware vSphere +
vSAN

Spark
Worker

VM VM

Spark
Master

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Spark
Worker

VM VM

Gluster
Node

VM VM

Gluster
Node

VM VM
VM VM

Gluster
Node

GlusterFS

Figure 8. Apache Spark Standalone with GlusterFS on vSAN Storage

GlusterFS Configuration

Figure 9. GlusterFS Peering Status

W H I T E PA P E R | 1 5

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

The three nodes acting as servers for GlusterFS were configured identically . They
were then peered with each other using proprietary Gluster commands . Appendix A
shows the details of the Gluster commands used on a CentOS system to install, peer,
and configure nodes . Figure 10 shows the status of the peered nodes .

The data partitions from the peered nodes were then used to create a volume for
use as the distributed file system . See Figure 10 . The file systems were automatically
mounted in the Apache Spark worker and master nodes through /etc/fstab, as
shown in the example configuration, using the native GlusterFS mount option . The
output shown in Figure 10 illustrates Spark nodes that had mounted the distributed
file system served by GlusterFS .

Figure 10. GlusterFS Mounted Locally on Apache Spark Nodes

The Apache Spark Console
The standalone Apache Spark environment was launched by starting the master
server, followed by the slaves that register with the master . Figure 11 shows the master
server web console with the registered slave servers . The functions are performed by
Java processes representing the workers and the master .

Figure 11. Apache Spark Web Console Dashboard

W H I T E PA P E R | 1 6

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

After the Spark components were up and running, the Spark shell was launched to
run interactive jobs across the cluster . Figure 12 shows the use of spark-shell to
generate a 1TB dataset for TPC-DS testing with Spark SQL .

Figure 12. Spark Shell Used for TPC-DS Data Load

The Pure Storage FlashArray dashboard tool captured the massive throughput
required during the 5TB data-generation process . Figure 13 shows the various
performance characteristics . Because this is a “one-off” data-generation process,
the increased latency during this period can be tolerated .

Figure 13. Load on Pure Storage FlashArray During TPC-DS Data Generation

W H I T E PA P E R | 1 7

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Performance characteristics at the VM level were captured during data generation .
Figure 14 shows the metrics for one of the VMs . All eight worker nodes were equally
stressed during data generation . The performance screen displays an overview of all
critical infrastructure components and their performance during the data load for one
of the worker nodes .

Figure 14. Apache Spark Worker Node Performance Metrics During Test

The Apache Spark console enables users to drill down and look at executors and
processes for running jobs . See Figure 15 . Summary displays numbers of active tasks
and cores in use . Executors shows the characteristics of the executors and the status
of completed and active tasks . The standard output and standard error links can be
used for troubleshooting .

Figure 15. Apache Spark Executors Console During Data Generation

W H I T E PA P E R | 1 8

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

The Spark infrastructure executes the processes across multiple executors and
various stages . Details are provided on the number of tasks and the time of
completion . See Figure 16 . Completed Jobs shows the various stages and the
duration of each stage .

Figure 16. Apache Spark Jobs: Stages and Duration

TPC-DS Query Results
After the data was successfully generated, subsets of TPC-DS queries were run
against the data, and the query times were captured . The tests were run multiple
times to ensure data warm-up and consistent query results .

First, the query times were observed with the data residing on the Fibre Channel
Pure Storage FlashArray//M50 . Then the data was migrated via VMware vSphere
Storage vMotion® to the all-Flash vSAN datastore . The query times were then
observed with the data residing on the vSAN datastore . Table 2 compares the results .

W H I T E PA P E R | 1 9

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

QUERY (SECONDS) FIBRE CHANNEL BLOCK vSAN

q19 2 .31 2 .21

q42 0 .32 0 .23

q52 0 .29 0 .26

q55 0 .35 0 .23

q63 0 .41 0 .3

q68 2 .85 2 .5

q73 1 .37 0 .5

q98 0 .54 0 .51

Table 2. Interactive Query Time Comparison Between Fibre Channel SAN and vSAN

TPC-DS with VMware Cloud on AWS
A 1TB dataset with one master and eight worker nodes was generated on a
VMware Cloud on AWS cluster . Sizing of CPU and memory is similar to that of
the on-premises configuration .

The TPC-DS queries were run on VMware Cloud on AWS and were compared
with those of the on-premises vSAN instance . Table 3 shows the results .

QUERY TIME (SECONDS) ON-PREMISES VMWARE CLOUD ON AWS

q19 2 .61 2 .86

q42 0 .33 0 .32

q52 0 .27 0 .32

q55 0 .28 0 .33

q63 0 .47 0 .35

q68 2 .75 3 .1

q73 2 .82 2 .49

q98 0 .69 0 .77

Table 3. Interactive Query Time Comparison Between On-Premises and VMware Cloud on AWS

W H I T E PA P E R | 2 0

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Conclusion
This proof of concept and associated test results have affirmed that big data
platforms such as Apache Spark are excellent candidates for deployment on
virtual machines because they are primarily memory resident . GlusterFS provides
a high-performance distributed file system for the Spark platform and newer
big data workloads . In lieu of HDFS, Spark software can also use Ceph, NFS,
and other distributed file systems . Because GlusterFS supports a wide range of
protocols and can ingest data from multiple sources, it can potentially serve as
the data lake for contemporary big data environments . All major VMware vSphere
capabilities—including VMware vSphere vMotion, VMware vSphere Distributed
Resource Scheduler, VMware vSphere High Availability, and so on—can be
leveraged to provide redundancy and high availability to all big data components,
including those that are single points of failure . Dedicated hardware with local
storage is no longer the sole technical choice for modern big data applications .

TPC-DS testing showed similar performance for Spark SQL on vSAN and Fibre
Channel storage . Our comparison between an on-premises configuration and a
similar one on VMware Cloud on AWS also shows consistency, with equivalent results .
By uniquely leveraging scalable distributed file systems, modern big data platforms
can thrive on a vSphere platform . This solution can be extended to include other
memory-resident applications that require a distributed file system for data sharing .
The results clearly show that both an on-premises private cloud based on a vSphere
platform and the public cloud infrastructure hosted on VMware Cloud on AWS are
well suited to run next-generation big data workloads .

References
1 . Justin Murray . VMware . “Big Data Video – Benefits of Virtualizing Big Data

on vSphere .” (2017)

2 . Giacinto Donvito et al . IOP Publishing . Journal of Physics: Conference Series 513
042014 . “Testing of Several Distributed File-Systems (HDFS, Ceph and GlusterFS)
for Supporting the HEP Experiments Analysis .” (2014)

3 . Spark SQL, DataFrames and Datasets Guide . (2017)

4 . Getting Started with GlusterFS: Architecture. (2017)

5 . Shubhendu Tripathi . Red Hat . “GlusterFS and Hadoop .” (2015)

6 . Apache Spark . (2017)

7 . TPC-DS . (2017)

8 . VMware . VMware Cloud on AWS Technical Overview. (2017)

W H I T E PA P E R | 2 1

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

About the Authors
Mohan Potheri is a senior solutions architect at VMware . His focus is on virtualizing
business-critical applications .

Justin Murray is a senior technical marketing architect at VMware . His focus is on
virtualizing big data .

Acknowledgments
The authors thank Dave Jaffe, staff engineer in performance engineering at VMware;
Don Sullivan, product line marketing manager at VMware; and Charu Chaubal,
director of technical marketing at VMware, for their help in discussing the solution
and for their review of this paper .

W H I T E PA P E R | 2 2

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Appendix A: GlusterFS Install and
Setup Commands
Install Commands
yum install centos-release-gluster310
yum install glusterfs gluster-cli glusterfs-libs glusterfs-server

Enabling the Service
systemctl enable glusterd .service
systemctl start glusterd .service

Creating and Configuring Gluster Nodes
Clone the CentOS machine with Gluster components to create three Gluster nodes,
gluster01-03 .

Name Resolution
Create an /etc/hosts file containing the name and IP addresses of all GlusterFS hosts
and Spark master and worker nodes . An example follows .
cat /etc/hosts
192 .168 .81 .200 spark200 .sfo01 .rainpole .local spark200 sparkmaster
192 .168 .81 .201 spark201 .sfo01 .rainpole .local spark201
192 .168 .81 .202 spark202 .sfo01 .rainpole .local spark202
192 .168 .81 .203 spark203 .sfo01 .rainpole .local spark203
192 .168 .81 .204 spark204 .sfo01 .rainpole .local spark204
192 .168 .81 .205 spark205 .sfo01 .rainpole .local spark205
192 .168 .81 .206 spark206 .sfo01 .rainpole .local spark206
192 .168 .81 .207 spark207 .sfo01 .rainpole .local spark207
192 .168 .81 .208 spark208 .sfo01 .rainpole .local spark208
192 .168 .81 .221 gluster01 .sfo01 .rainpole .local gluster01
192 .168 .81 .222 gluster02 .sfo01 .rainpole .local gluster02
192 .168 .81 .223 gluster03 .sfo01 .rainpole .local gluster03

From the shell of the first node, gluster01, peer with the other two nodes via
the following:
gluster peer probe gluster02
gluster peer probe gluster03

Check the peering status . The following is an example of a normally operating
peering status:
[root@gluster01 ~]# gluster peer status
Number of Peers: 2

Hostname: gluster02
Uuid: 87993141-5f0d-406a-b388-fc6c5412df33
State: Peer in Cluster (Connected)

Hostname: gluster03
Uuid: 62311b71-1905-4363-9979-054fa7339814
State: Peer in Cluster (Connected)

W H I T E PA P E R | 2 3

NEW ARCHITECTURES FOR APACHE SPARK AND BIG DATA

Create a directory structure for bricks to be used for Gluster volumes in each of
the nodes:
for i in ‘gluster01 gluster02 gluster03’
do
ssh $i mkdir -p /glusterdata/brick1
done

Create a Gluster volume for use as a distributed file system, with three copies of the
data across three nodes stored under the brick directory:
gluster volume create sparkvol1 replica 3 transport tcp \
gluster01:/glusterdata/brick1 gluster02:/glusterdata/brick1 gluster03:/glusterdata/
brick1

Check the status of the volume by typing the following command:
[root@gluster01 ~]# gluster volume status
Status of volume: sparkvol1

GLUSTER PROCESS TCP PORT RDMA PORT ONLINE PID

Brick gluster01:/glusterdata/brick1 49152 0 Y 9049

Brick gluster02:/glusterdata/brick1 49152 0 Y 11977

Brick gluster03:/glusterdata/brick1 49152 0 Y 3519

Self-heal Daemon on localhost N/A N/A Y 9069

Self-heal Daemon on gluster03 N/A N/A Y 3539

Self-heal Daemon on gluster02 N/A N/A Y 11997

Task Status of Volume sparkvol1
The volume is now ready for use . Mount the volume via fstab on all Spark nodes, with
an entry such as the following one . The mount uses the native GlusterFS protocol,
which has the best performance . To make this mount option available, the Spark
nodes should have the GlusterFS packages .

gluster01:/sparkvol1 /sparkdata glusterfs defaults,_netdev 0 0

The df command shows the mounted file system as in the following:
gluster01:/sparkvol1 2146435072 315739392 1830695680 15% /sparkdata

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www .vmware .com
Copyright © 2017 VMware, Inc . All rights reserved . This product is protected by U .S . and international copyright and intellectual property laws . VMware products are covered by one or more patents listed at
http://www .vmware .com/go/patents . VMware is a registered trademark or trademark of VMware, Inc . and its subsidiaries in the United States and other jurisdictions . All other marks and names mentioned herein
may be trademarks of their respective companies . Item No: VMW-WP-Apache-Spark-Big-Data-USLET-101
11/17

