

EANTC Test Report: VMware CNF Performance—page 2

Table of Contents

Abstract ... 3

Introduction .. 4

Test Case Description ... 5

Test Bed Details ... 7

Test Results ... 10

Operating System Performance .. 10

Cyclictest ... 10

Oslat ... 12

Resource Utilization ... 14

Memory Usage ... 14

Pod Density. ... 16

General CaaS LCM ... 19

Day-0 Installation .. 19

Provisioning a Kubernetes Cluster 21

Kubernetes Cluster Upgrade ... 22

Delete Cluster ... 23

Adding a Worker Node to Kubernetes Cluster 24

Multi-Cluster Management .. 25

Executing Planned Node Evacuation and Maintenance 26

Stretched Cluster ... 28

Noisy Neighbor Isolation ... 29

CaaS Results Summary .. 31

E2E CaaS Deployment for Performance 32

Node/BMS Customization ... 32

CNF LCM ... 35

CNF Onboarding ... 35

Instantiate CNF ... 36

Query CNF .. 38

Update and Upgrade CNF ... 39

Terminate CNF ... 40

Roll Back CNF .. 41

Scale CNF ... 42

Heal CNF .. 43

CNF LCM Summary .. 44

Conclusion ... 44

EANTC Test Report: VMware CNF Performance—page 3

Abstract

VMware commissioned EANTC to conduct an exten-
sive functional and performance test of its VMware
Telco Cloud Platform RAN; which is powered by a
field-proven virtualized compute solution coupled with
Tanzu for Telco RAN, a telco-grade Kubernetes distri-
bution, and VMware Telco Cloud Automation. The
platform paves a clear RAN modernization path: CSPs
can move from their traditional RAN to vRAN now and
start to move in the direction of O-RAN. The goal of
the engagement was to evaluate the readiness of
VMware Telco Cloud Platform RAN for communica-
tions service provider deployments, specifically those
challenging ones in the 5G RAN area. Specifically,
EANTC was asked to evaluate customer concerns that
"Hypervisors impose performance overhead on their
host systems".

In addition to the testing of their own solution, VMware
also commissioned EANTC to conduct the same set of
tests on the Red Hat OpenShift platform. EANTC
conducted these tests following our guidelines for
competitive evaluation (see the section below). The
raw test results were reviewed by Red Hat in advance
of publication.

Based on the points of interest expressed by VMware,
EANTC composed a detailed test plan for cluster
provisioning, container life-cycle management, contain-
er performance, and related topics. All tests were
conducted at the EANTC lab in Berlin, Germany,
between April and June 2022 with commercial Dell
server hardware and software versions available
commercially as well.

Both the VMware Telco Cloud Platform RAN and the
Red Hat OpenShift platforms matched the expectations
on functionality, performance, and manageability
while showing some differences in the implementation
and the operational paradigms. VMware showed, not
surprisingly, a rich graphical user interface (GUI) that
served as the one-stop shop for all provisioning and
management aspects. The GUI of VMware Telco
Cloud Automation, the orchestration framework includ-
ed in VMware Telco Cloud Platform RAN, shielded us
(playing the operator's and second-level supporter
role) from all the complex command-line options.
However, CLI is also supported on the VMware Telco
Cloud Platform RAN Kubernetes clusters. It provided a
fast learning curve and did not require much detailed
knowledge for simple operations. On the other hand,
we operated the Red Hat OpenShift platform using the
standard command-line interface (CLI).

Test Highlights

→ The Operating System (OS) Performance tests
detect the latency imposed on the system by the
OS, firmware, and hardware.

→ The Cyclictest results showed both platforms
passed the O-RAN requirement for a real-time
OS since the maximum latency of both platforms
was 9µs.

→ The memory usage test demonstrated a good
level of memory usage optimization on the
VMware platform because of its Transparent
Page Sharing (TPS) technology. This test could
not be executed on Red Hat OpenShift.

→ The conducted pod density test showed that
using the same hardware, VMware is more
resource-efficient, as it can deploy more pods.

→ General Container-as-a-Service (CaaS) Life-Cycle
Management (LCM) measured the complexity,
applicability, and required time of cluster
management operations. VMware has less
complexity than Red Hat, while some processes
were not applicable to our Red Hat deployment,
including Cluster Provisioning and Multi-Cluster
Management.

→ Noisy Neighbor Isolation measured the
consistency of both platforms in the presence
of a resource-intensive workload. Both VMware
and Red Hat results show that a noisy neighbor
did not have a tangible adverse effect on
latency-sensitive workloads.

→ In E2E CaaS Deployment for Performance, the
criteria to differentiate VMware and Red Hat
were the applicability, complexity, and execution
time required to customize a node. The results
show in terms of complexity, VMware performs
better because of its automated processes, while
Red Hat needs less time to execute a node
customization operation.

→ The measurement criteria for the CNF LCM tests
are the applicability, complexity, and required
time for common LCM operations. While the
complexity of both platforms was evaluated to
be the same, VMware takes more time to execute
the operations, as VMware TCA has to do
pre-checks and synchronizations.

EANTC Test Report: VMware CNF Performance—page 4

As is typical for CLIs, the initial learning is more com-
plex for those who are not familiar with Kubernetes at
all; on the other hand, Kubernetes-savvy operators will
find their way around quickly, and the wealth of
options is more quickly accessible on the command
line for those who exactly know what they want to do.

An important differentiator between the two product
suites under test was the orchestration component atop
of Kubernetes. VMware Telco Cloud Platform RAN
includes VMware Telco Cloud Automation as part of
the default product bundle, offering an orchestration
framework out of the box. On the Red Hat setup, we
did not use an orchestrator - it is not normally included
in standard Kubernetes offerings. In the review phase,
Red Hat explained that the Advanced Cluster Manager
would be available as well. To our knowledge, this
product requires a separate license, though. With
VMware Telco Cloud Automation, many provisioning
and management operations were straightforward and
well abstracted on the cluster level, making it easy and
efficient for the network operator to execute the first-
time and daily tasks. Without a similar orchestrator on
the OpenShift side, it was difficult to compare the two
solutions as the modes of operation were very differ-
ent.

EANTC operates a joint research lab for Open RAN
and vRAN together with German mobile operators,
mobile equipment manufacturers, and other consortium
partners (https://i14y-lab.com). We have co-
organized O-RAN Alliance Plugfests since 2020 and
are well aware of the extensive performance challeng-
es introduced by the virtualized Open RAN ecosystem.
It was an outstanding positive result of this extensive
testing that the VMware Telco Cloud Platform RAN
and the Red Hat OpenShift platforms fulfill the platform
performance requirements for Open RAN deployments
in principle. While we have not tested the actual
integration with Open RAN software and hardware
components, the operating system latency measure-
ments were passed in both cases.

Generally speaking, the architectural approach of
VMware Telco Cloud Platform RAN to combine the
VMware Kubernetes platform, known as VMware
Tanzu, with VMware ESXi optimized for RAN and
VMware Telco Cloud Automation proved to be a well-
suited solution. It provided identical performance
compared to bare-metal Kubernetes cluster on RedHat
OpenShift, better scalability in some cases, and much
better provisioning and operations support.

Introduction

Communications service providers worldwide are
looking to modernize their cloud platforms with con-
tainerized solutions based on Kubernetes. Application
use case scenarios in communications are largely
distinct from enterprise deployments, specifically
regarding network performance requirements. For
example, virtualized radio access network (vRAN)
deployments are particularly sensitive to latency. Open
-source Kubernetes has been optimized for advanced
enterprise and telecom workloads and large-scale
service management by commercial Kubernetes distri-
butions such as VMware Telco Cloud Platform RAN
and Red Hat OpenShift.

VMware commissioned EANTC to conduct an exten-
sive comparison test of VMware Telco Cloud Platform
RAN and Red Hat OpenShift, aligned with telecom use
case scenarios. The goal of the project was to assess
the state of readiness of these two solutions for telecom
deployments, both from a performance and a manage-
ability perspective.

According to VMware, VMware Telco Cloud Platform
RAN is a cloud-native RAN solution designed specifi-
cally for running virtualized and containerized base-
band functions, virtualized/containerized distributed
units (DUs) and virtualized/containerized central units
(CUs), meeting and exceeding stringent performance
and latency requirements inherent to RAN. VMware
Telco Cloud Platform RAN delivers a highly scalable,
flexible and reliable cloud environment that enables
CSPs to quickly deploy new cloud resources through
automation, reduce operating costs through simplified
management, and deliver new services using cloud-
based containers.

Use Cases: Open RAN, vRAN, and 5G Core

5G deployments and rollouts raise new challenges
and complications, affecting all the aspects and areas
of the communication service provider networks. One
of the main challenges is the deployment of virtualized
and sometimes disaggregated RAN components
(vRAN/Open RAN). The RAN provides the critical
technology in a mobile network infrastructure to con-
nect mobile user equipment, including mobile phones
and other mobile devices. Current RAN deployments
use purpose-built appliances supplied by vendors that
use proprietary hardware and software platforms.
Open RAN aims to create a disaggregated RAN
ecosystem with standardized interfaces that allows for
the separation of functional blocks, hardware, and
software.

EANTC Test Report: VMware CNF Performance—page 5

With the evolution of the communication industry and
the interest from the Service Providers (SPs) in using
cloud-native and containerized architectures in the
RAN segment, both vRAN and Open RAN become a
hot topic of development. They will give service provid-
ers more flexibility to choose the equipment and open
a new market for new suppliers to use new deploy-
ment models. Admittedly, these are challenging goals.
It is not trivial to deploy a vRAN architecture. Reliable
and well-manageable virtualization and container
platforms are a key component for success, specifically
for the Open RAN segment.

The grand ambitions of the 5G technology are de-
manding new approaches to each part of the commu-
nication network architecture. Nevertheless, this tech-
nology is opening a wide range of new use-cases that
require agility and quick responses from the network
architecture, such as implementing Campus 5G net-
works in areas where traditional mobile coverage was
unavailable. The required responsiveness and agility
can be achieved by implementing the containerized
components of the RAN and the Core networks.

Advantage of Containers

Using containers accelerates the delivery of new
applications and functionalities, bringing agility,
scalability, portability, and resiliency.

Containers make it easier to run software reliably
when moved from one location to another, for exam-
ple, from a physical machine to a virtual machine in a
cloud or a staging environment to a production one.
Problems occur when the source and destination
environments are not identical, such as libraries, OS
versions, network topology, and security policies. A
container consists of all essential parts of a runtime
environment, including the application and all its
dependencies, libraries, and binaries.

Containers are an excellent solution to developing
applications, but in a production environment, they
need to be managed and ensure that there is no
problem; if a container crashes and goes down,
another one should start, and it would be easier if this
process were handled by an automated system. This is
where Kubernetes comes to the game to manage the
containers quickly. Many organizations are looking to
implement a container platform like Red Hat OpenShift
and VMware Tanzu, which use Kubernetes as a cloud-
neutral application platform. They offer automated
installation, upgrades, and life cycle management
throughout the container stack on any cloud.

Test Case Description

Test Areas

EANTC selected a range of test groups for cloud-native
network functions in telco cloud use cases, based on
input from VMware. We focused five areas with
performance and manageability aspects:

Operating System (OS) Performance

Virtualized and disaggregated RAN solutions require
ultra-low latency processing, to support the strict
performance requirements in the fronthaul. Latency is
introduced by three aspects: Physical distance between
components (5µs/km due to the speed of light in
optical fiber cables), network equipment such as
routers and switches (a few µs depending on the
interface speed), and latency in computing platforms
(in our case, containerized platforms). We defined a
set of test cases to measure the latency caused by the
hardware, firmware, and operating system and deter-
mine if the containerized platform meets 5G require-
ments. We used open-source benchmarking tools
Cyclictest and Oslat on a pod located on a node with
a real-time operating system and a system tuned to
support low latency.

▪ Cyclictest measures operating system latency by

running a non-real-time thread as a master thread
which starts several real-time measuring threads with
a defined priority value. The measuring threads are
triggered periodically at a specified interval. The
master thread tracks the latency values by calculat-
ing the difference between the programmed and
actual wake-up time.

▪ Oslat is a polling mode stress test program to detect

OS level latency caused by system interrupts. The
program runs a busy loop with or without work-
loads, collecting Time Stamp Counter (TSC) infor-
mation and measuring the time frequently during the
process.

Resource Utilization

In addition to low latency, 5G RAN buildouts require
high throughput. A single three-sector macro-cell site
can create 25 Gbit/s traffic—even more, if it is a main
site with microwave links. When aggregated in the
service provider data center, impressive throughput
numbers are expected. Consequently, one of the main
performance requirements for a containerized cloud
platform is scalability and the optimization of network
resources.

EANTC Test Report: VMware CNF Performance—page 6

These requirements directly impact the network expan-
sion from the engineering and financial perspectives
as extra efforts and additional CAPEX and OPEX,
especially in high-demand networks like the 5G net-
works. In this test group, we evaluated the system
scalability and measured resource utilization under
high load and large density to check whether the
system met the 5G expectations.

▪ Memory Usage

▪ Pod Density

General Container-as-a-Service (CaaS)

Life-Cycle Management (LCM)

The complexity and execution time of Life Cycle Man-
agement (LCM) of the container platform as a whole
and individual containerized workloads are critical
factors for efficient network provisioning and opera-
tions. We measured the performance of typical provi-
sioning cases that are potentially complex. Cluster
management operations need to be easy, fast to
execute, and at best automated to speed up opera-
tions, reduce the workload of operators, and reduce
the probability of operational mistakes. In this group,
we covered:

▪ Day-0 Installation, Provisioning a Kubernetes Cluster

▪ Kubernetes Cluster Upgrades

▪ Delete Cluster

▪ Add a Worker Node to the Kubernetes cluster

▪ Multi-Cluster, Executing Planned Node Evacuation,

and Maintenance management

▪ Stretched Cluster

▪ Noisy Neighbor Isolation

End-to-End CaaS Deployment for Performance

Each service and network segment has its require-
ments. Simplicity and automation to customize the
network infrastructure based on the different functions
will be essential for any dynamic service provider
network.

The below test case has been considered for this group
covering different features like the configuration of the
SRIOV interface, binding DPDK to the SRIOV interfac-
es, and passthrough device for PTP.

▪ Node/BMS Customization

Container Network Function (CNF) LCM

Individual containerized network functions (CNFs)
need to be provisioned and managed very frequently
and thus efficiently. Per the open-source kubernetes.io
website, Kubernetes will follow a three-release per
year cadence. This implies that applications and
environments will require consistent updates to keep
pace with new Kubernetes versions. Therefore, a cloud
-native platform's life cycle management (LCM) capa-
bilities are essential. We tested the following aspects
of CNF life-cycle management:

▪ CNF onboarding

▪ CNF Instantiation

▪ Query CNF

▪ Updating CNF

▪ CNF Termination

▪ CNF Upgrade

▪ CNF Roll back

▪ CNF Healing

▪ CNF Scale-Out

The following sections cover details of each test area,
together with an analysis of the results for both the
VMware Telco Cloud Platform RAN and the Red Hat
OpenShift platforms.

EANTC RATING

The process is fully automated

▪ Simple process, e.g., start the process from GUI

and wait for finish

The process is partially automated with simple
input needed

▪ Moderate complex process, e.g., sequentially

execute multiple processes (possibly with simple
values as input)

The process is mostly or completely manual with
(complicated) input

▪ Complicated process, e.g., create an input file in

a specific format, then pass it to a command

EANTC Test Report: VMware CNF Performance—page 7

Test Bed

At the EANTC lab in Berlin, we operated two identical clusters—one for the VMware platform and one for the Red
Hat platform. Each cluster test bed consisted of five Dell servers with the features shown in Table 1.

Physical Hardware

Software Versions

 Server 1 Server 2 Server 3 Server 4 Server 5

Server Dell PowerEdge R740

BIOS Version 2.12.2 (VMware), Version 2.13.3 (Red Hat)

CPU Dual-Socket, 2x Intel Xeon Gold 6248R (3.00 GHz, 24 cores each)

NICs

for mgmt

(onboard)

1× Intel®
Ethernet 10G
4-port X550

1x Broadcom
Adv. Dual
10Gb Ethernet

1x Intel®
Ethernet 10G
4-port X710/I350

1x Intel®
Ethernet 10G
4-port X710/I350

1x Broadcom
Adv. Dual
10Gb Ethernet

NICs for

data plane

workloads

2x Intel®
Ethernet 25G
2-port XXV710

1x Intel®
Ethernet 25G
2-port XXV710

2x Intel®
Ethernet 25G
2-port XXV710

2x Intel®
Ethernet 25G
2-port XXV710

1x Intel®
Ethernet 25G
2-port XXV710

RAM 4x 32GB DDR4 DRAM Dual Rank

Disk 2x 480GB SSD SATA Read Intensive 6Gbps 512

Power Supply 2x Single, Hot-plug Power Supply (1+0)

Fans 6x 6P44T-A00 (High Performance)

Type VMware TCP RAN Red Hat OpenShift

Name Version Name Version

Orchestration VMware Telco Cloud
Automation

1.9.5.1 N/A N/A

Managing Containe-

rized Workloads

VMware Tanzu Kubernetes
Grid (TKG)

1.3.1 OpenShift 4.9.32

Management VMware vCenter Server 7.0 U3c N/A N/A

Compute VMware ESXi 7.0 U3c Red Hat Enterprise Linux CoreOS 49.84

Storage N/A N/A N/A N/A

Container Platform Kubernetes 1.20.5 Kubernetes 1.22.8

Table 1: Set of Physical Hardware used for the Platforms

Table 2: Software Versions used in the Platforms

EANTC Test Report: VMware CNF Performance—page 8

Test Bed Topology

In the network topology, each server had two 10
Gigabit Ethernet ports used for management purposes
and two 25 Gigabit Ethernet ports used for data plane
connections. The standard Dell iDRAC ports were
connected for Out-of-Band management purposes.

Another 10G port of one of the servers (server 5) was
used as a Precision Time Protocol (PTP) port and
connected to an external Precision Time Protocol (PTP)
Grandmaster (GM) Clock supplied by EANTC.

Service VMs

External to the clusters, EANTC provided auxiliary
virtual machines to host the following infrastructure
services:

Figure 1: Logical Test Bed Topology

Platform Services

VMware DHCP - DNS - NTP - Bootstrap - Balancer

Red Hat DHCP - DNS - NTP - Bootstrap - Balancer - Bastion

Table 3: External Services Deployed for the Platforms

EANTC Test Report: VMware CNF Performance—page 9

Test Tools & CNFs

For the testing, EANTC used the following open-source
tools:

Testing Procedure: Test Case Selection,

Competitive Aspects

EANTC was commissioned by VMware to conduct this
test. VMware defined the high-level scope of the
project, while EANTC was responsible for the low-level
test planning. We received support from VMware for
the setup of the Kubernetes cluster and the test execu-
tion. For the competitive comparison, we purchased
commercial Red Hat OpenShift licenses from an offi-
cial distributor. We contracted a Red Hat-certified third
party consultancy company to provision the OpenShift
system initially. Once the EANTC team had conducted
all tests on both platforms, we shared the raw
OpenShift test results with appropriate management
contacts at Red Hat headquarters, asking for review.
Additionally, we provided Red Hat Telco Architects
remote access to the OpenShift cluster running at
EANTC. Red Hat provided guidance specifically on
the performance test configurations and fixed some
configuration errors that had been introduced by the
third-party OpenShift contractor. We performed a
second run of the respective performance tests on
OpenShift. Red Hat did not receive a copy of the full
report in advance of publication.

Originally, there was an additional test area for CNF
throughput performance benchmarking. These tests
were conducted with a commercial cloud infrastructure
test tool. Over the course of the test, VMware, EANTC,
and the commercial test tool provider extensively
analyzed the results and repeated the test cases. Red
Hat provided performance optimization advice on the
OpenShift platform as well, at the time when we had
shared the initial raw results. However, unfortunately it
was not possible to achieve a reproducible set of
results within the time of the project (April to June
2022). The root cause analysis of advanced x86
platforms with specialized software drivers such as
DPDK can be very time-consuming. After a month of
troubleshooting, we could not firmly attribute the result
limitations to either the test tool, or the CNF code, or
the container platform. With much regret, EANTC and
VMware agreed to drop the test case results from the
publication because they were inconclusive.

Type Name Description

CLI Tool Kubectl Client for Kubernetes API

Helm Kubernetes application manager

OpenShift CLI Client for OpenShift API

Test Tool Cyclictest Measures operating system latency

 Oslat

CNF VMware TestNF ▪ Specialized for 5G use case

▪ Contains test tools like Cyclictest, Oslat

 Nginx ▪ Open-source web server (use as a load balancer and reverse proxy)

▪ Generally available

▪ Simple, no special requirements

Table 4: Test Tools and CNFs used in the Testing

EANTC Test Report: VMware CNF Performance—page 10

Test Results & Interpretation

Operating System Performance

Cyclictest

The Cyclictest measures the latency of a real-time
system caused by the hardware and OS. One node in
each platform was tuned for low latency before the test
execution, and a CNF with customized settings was
deployed on the customized node. We ran the Cy-
clictest for one hour on both platforms with the follow-
ing specifications mentioned in Table 5. The test was
executed on both platforms when the Hyper-threading
feature was enabled.

We ran the test on the Red Hat setup after changing
some BIOS settings and running the "hwlatdetect" test
for 12 hours as suggested by their team to ensure that
the hardware did not cause any significant delay.

Per VMware's request, we re-executed this test on
VMware after disabling the hyper-threading feature.

Test Procedures

The same procedure for VMware and Red Hat was
followed as shown below.

Result Analysis and Interpretation

Comparing the results obtained under similar condi-
tions shows the equality of both platforms in a maxi-
mum detected latency of 9µs. However, 99.99999%
of collected samples on the Red Hat setup have a
lower value than on the VMware setup. This means
that Red Hat mostly has lower latency values and
average latency than VMware.

In conclusion, according to the O-RAN Alliance,
Cyclictest's maximum detected value must be less than
20µs latency to meet the requirements of real-time OS.
Both vendors have passed the Cyclictest test.

VMware results illustrated maximum latency values
well under 20us on both Hyper-threading enabled and
Hyper-threading disabled cases, registering maximum
values of 9µs and 7µs, respectively.

Table 5: Cyclictest Test Procedure

Step VMware and Red Hat

1 Run Cyclictest for 1 hour with one core for the main thread and the remaining cores as measuring threads
(1 thread per core). Set a priority of 99 to the first thread, and each subsequent thread is assigned one
priority value lower than the previous, i.e., the second thread has priority 98, and so on.
Memory allocations will be locked to prevent being paged out. Set the base interval of the threads to
100µs and the maximum latency for the histogram to 100µs.
taskset -c <core list> cyclictest -t <number of threads> -m -p 99 -i 100 -h 100 -a <core list> —mainaffinity
<core> -D 60m --histfile <output file>

Cyclictest

Hyper-

threading

VMware Red Hat

Max. Latency

(µs)

99.99999%

Latency (µs)

Pass/Fail Max. Latency

(µs)

99.99999%

Latency (µs)

Pass/Fail

Enabled 9 7 Pass 9 4 Pass

Disabled 7 6 Pass - - -

Table 6: Cyclictest Test Results

EANTC Test Report: VMware CNF Performance—page 11

Figure 2: Cyclictest Result on the VMware Platform with Hyper-threading Enabled

Figure 3: Cyclictest Result on the Red Hat Platform with Hyper-threading Enabled

Figure 4: Cyclictest Result on the VMware Platform with Hyper-threading Disabled

EANTC Test Report: VMware CNF Performance—page 12

Oslat

This Oslat detects the OS level latency on real-time
systems. The prerequisite of the test is to tune the
system for low latency. We ran the test for one hour on
each platform with a set of cores. On the VMware
platform, the "SCHED_FIFO" is configured to 99,
while on the Red Hat setup, the same configuration
caused a crash of the real-time worker node. So, we
changed the "SCHED_FIFO" priority to 98 and ran the
test.

Result Analysis and Interpretation

The maximum latency value (in microsecond) on each
thread for VMware is "10 12 12 10 24 12 14 12 11
13 11 12 10 11 14 12 10 17 14 13 11" and the
obtained result for Red Hat after running "hwlatdetect"
test for 12 hours (with no recorded samples) is "22 15
21 18 17 21 19 22 19 18 12 17 16 16 19 14 23
14 14 12 12".

Comparing the results from initial runs without optimi-
zation shows both vendors have the same conditions
and values higher than 20µs. While the maximum
latency is higher for VMware (24µs) compared with
Red Hat (23µs), the number of the values which are
higher than 20µs are fewer on VMware. Based on
expert opinion, values above 20µs are not acceptable.
After doing some changes on the VMware software,
including updating the kernel and enabling pre-heating
for the test, a significant difference was observed in
the results. The new result shows 5us as the maximum
detected latency value.

Testing Experience

When we performed the task with the "SCHED_
FIFO=99" on OpenShift, the worker node crashed
after some minutes. So we assigned the priority of 99
to the RCU threads (rcutree.kthread_prio=99) in the
applied performance profile and ran the Oslat test
with the "SCHED_FIFO=98" priority.

EANTC Test Report: VMware CNF Performance—page 13

Test Procedure

Test Results

Vendors Max Latency on

each Thread (µs)

Pass/

Fail

Notes Number

of

Threads

VMware 10 12 12 10 24 12
14 12 11 13 11 12
10 11 14 12 10 17
14 13 11

Fail 21

5 4 5 4 4 4 4 4 5 4
5 4

Pass After kernel update and extending pre-heating to
10 seconds

12

Red Hat 22 15 21 18 17 21
19 22 19 18 12 17
16 16 19 14 23 14
14 12 12

Fail According to Red Hat, in RHEL 8.x, RHCOS 4.x, and
kernel 4.18.x, the "Stalld, rcuc and ksoftirqd run at
FIFO:10/11" and "interrupt handlers are at around
FIFO:50". Red Hat does not recommend changing the
priority of "rcutree.kthread_prio" in the performance
profile. Furthermore, they recommend running the Oslat
test with the priority of 1, as running anything polling
above those priorities kills the system and reduces system
performance.
Due to logistical reasons, we could not perform another
run with suggested configurations for Red Hat.

21

Table 8: Oslat Test Results

Step VMware Red Hat

1 Run Oslat for one 1 hour on a set of cores and set
SCHED_FIFO priority to 99:
taskset -c <core list> oslat -c <corelist> -f 99 -D
3600 -z

Run Oslat for one 1 hour on a set of cores and set
SCHED_FIFO priority to 98:
taskset -c <core list> oslat -c <corelist> -f 98 -D
3600 -z -C <core>

Table 7: Oslat Test Procedure

EANTC Test Report: VMware CNF Performance—page 14

Resource Utilization

Memory Usage

This test group compares some aspects of resource
utilization on both platforms.

This test compares the memory usage of a cluster by
using a Redis cluster as the database and YCSB
(Yahoo! Cloud Serving Benchmark) for creating test
data. Redis is a distributed, in-memory database and
YCSB is a database management benchmarking tool
used here to create test data. An external NFS, config-
ured on a physical server with CentOS 7, was used as
storage.

Step VMware

1 Log in to the TCA web interface.

2 Create three node pools.

3 Deploy Redis with the required specifications using Helm:
helm install <name> bitnami/redis-cluster --set \
"redis.useAOFPersistence=no,cluster.nodes=15,cluster.replicas=4,persistence.size=50Gi,usePassword=false
,cluster.externalAccess.enabled=true" -n <namespace>

4 Get all the external IPs for Redis using this command: kubectl get svc -n <namespace>

5 Attach the external IPs for Redis to the corresponding pod using a command similiar to this:
helm upgrade <name> bitnami/redis-cluster --set \"redis.useAOFPersistence=no,cluster.nodes=15,
cluster. replicas=4,persistence.size=50Gi,usePassword=false,cluster.externalAccess.enabled=true,
cluster.externalAccess.service.type=LoadBalancer,cluster.externalAccess.service.loadBalancerIP[0]
=<ip>,cluster.externalAccess.service.loadBalancerIP[1]=<ip>, ..." -n <namespace>

6 Set the external IP of a Redis master node to a variable with "export SERVICE_IP=<ip>".
Log in with "docker run -it --rm redis:alpine redis-cli -h <ip> -p <port>". (IP and port can be retrieved from
the output of "kubectl get all".)
Get the node list with "cluster nodes". Then, exit the master with "exit".

7 Use YCSB to create the dataset for the test:
ycsb.sh load redis -s -threads 20 -P <workload file> -p "redis.host=$SERVICE_IP" -p "redis.cluster=true" -p
recordcount=22000000

8 After YCSB dataset creation has filled the disks, record the memory usage of your cluster using the vCenter
memory dashboard.
Click the VM, go to the Monitor tab, and select Performance > Advanced.
To add a "Shared" resource to the chart, click Chart Options, select Memory, then search for "Shared" and
select it.

Table 9: Memory Usage Test Procedure

EANTC Test Report: VMware CNF Performance—page 15

Result Analysis and Interpretation

Due to the complexity of this test case and logistical
issues, explained more in detail in the test experience
section, the test could not be completed on the Red Hat
platform.

Table 10 shows the results for the VMware platform.
The page-sharing statistics were retrieved through the
"esxtop" command from the servers right after test
execution. VMware's Transparent Page Sharing (TPS)
mechanism can detect shared memory, i.e., memory
pages with identical content. The statistics show that
TPS has identified around 6.5 GB of shared memory
across all three servers. The total amount of saved
physical memory is 4 GB, shown by the sum of
"PSHARE saving", which is 63% of the detected
amount. From these numbers, we can conclude that the
VMware platform uses memory efficiently through TPS.

Testing Experience

This section describes the issues that we faced during
our trials to execute this test case.

When we started to execute this test case on Open-
Shift version 4.7, we ran into a deployment error with
the Helm chart, which was caused by one of the
parameters (cluster.externalAccess.enabled=true) that
were passed to it. We have tried to set different addi-
tional parameters, which resulted in the same error.
We spent several hours trying to find the cause and
make the Helm chart deployment work. Unfortunately,
we couldn't find a solution. Our Red Hat support
contact suspected a parameter was missing in the
template. This would be confirmed by removing
"cluster.externalAccess.enabled=true" from the com-
mand. Running the command without this parameter
didn't cause any error, but we needed this setting
since we also used this in the VMware setup. We
finally opted to use an older version of the Helm chart
(version 6.2.6), which didn't throw this error, when
deployed with "cluster.externalAccess.enabled=true"
in the Helm command.

Shortly after that, we received the feedback from Red
Hat and went on with re-testing of the test groups on
OpenShift version 4.9. When it came to re-run this test
case, we faced the same deployment error as before.
After further trials, we discovered that the Helm chart
deployment would work on an older version of the
Helm chart, so we decided to use that instead. During
the deployment trials, it also took some time to figure
out what and how to configure in OpenShift to use an
NFS.

Using an older version of the redis-cluster Helm chart,
we completed steps one to five of the procedure. After
we ran the Helm upgrade command in step six, the
pods were deployed, but we noticed that some of the
pods were crashing. The event log showed that these
pods were not responding to readiness and liveness
probes. We contacted our Red Hat support about this
issue, and they replied that it is an issue with the
containers themselves, so they couldn't directly help in
this case. But they researched further into Redis cluster
deployments on OpenShift and provided a different
procedure and working example. After following this
procedure to the point where the pods have been
deployed, we noticed that the cluster's architecture is
different than the one we used in the VMware setup.
At this point, we were unfortunately on the last day
before we had to dismantle the servers, so there was
no time left to discuss a comparable deployment with
our Red Hat contact further.

Table 10: Page-sharing Statistics Retrieved Through "esxtop" Command from the Servers right after Test Execution

Page-sharing statistics (in MB) Server 3 Sum of

Servers

Server 1 Server 2

PSHARE shared (shared guest memory) 1,472 6,477 1,253 3,752

PSHARE common (common machine memory across worlds) 371 1,598 459 2,428

PSHARE saving (saved machine memory due to page-sharing) 882 2,154 1,013 4,049

EANTC Test Report: VMware CNF Performance—page 16

Pod Density

Although typical RAN deployments are characterized
by the use of a small number of huge Pods deployed
on single worker nodes, Pod density is essential when
planning to maximize the use of available resources
for non-RAN workloads (e.g., near Edge apps).

This test verified if the maximum number of pods,
defined by the kubelet config of the worker nodes,
could be deployed on the worker nodes. This test also
verified which platform could deploy a higher number
of pods on the same number of physical servers with
identical hardware. In Kubernetes, the maximum
number of pods for a worker node is set to 110 by
default. VMware Telco Cloud Platform RAN follows
this default limit, while OpenShift has increased it to
250. We stayed with these default limits and deployed
a simple web service that served a website as the test
workload. The pods of this workload replicated the
same website, and a standard Kubernetes load bal-
ancer distributed the incoming requests evenly across
all pods.

Result Analysis and Interpretation

Both platforms could deploy their maximum number of
pods, so both passed this test. The rating for "CNF
Scaling" could be referenced to get an idea of the
scale-out operation by increasing a pod's replica count
to the platform maximum pod limit.

We used three physical servers for the VMware setup
to deploy 24 TKG (Tanzu Kubernetes Grid) worker
nodes in total, eight on each server. With a limit of
110 pods per node, the total limit was 2640. We had
two worker nodes in the Red Hat setup, meaning the
total number limit was 500 pods.

We executed the test on the VMware setup with three
physical worker nodes in mind. As we only had two
physical worker nodes in the Red Hat setup, the
VMware results had to be adapted for two physical
worker nodes to enable a fair comparison. Table
12 shows the results of this test. The first row shows the
original VMware results. The second row shows the
adapted VMware results, which were calculated in the
following way: The pod limit for the third node (880,
eight worker node VMs with a capacity of 110 pods
each) was subtracted from the columns "Total Max.
Number of Pods" and "Target Number of Test Pods".

Step VMware Red Hat

1 Go to Network Functions > Catalog and
instantiate the hello-Kubernetes CNF.

Optionally, create a new project.

2 Go to Network Functions > Inventory, click the
three dots next to the CNF and click Scale.

Deploy the Helm chart "hello-kubernetes".

3 Provide the yaml file to increase the replica count
to 2600 and click Finish.

To set the number of pods, scale the replicas. To limit
the stress on cluster resources, add replicas in batches
(200, 400, and then 500).

4 Get the port of the instantiated service and
update the ports for the worker nodes at the end
of the HAProxy config file.

Get the external IP address for the service and
optionally expose the service if the IP address is not
reachable from your testing machine.

5 Execute the script that sends an unending queries
to the HAProxy's IP address.

Execute the script that sends an unending queries to the
HAProxy's IP address.

6 To end the test, press Control + C . The result file
contains the pod's name that received and res-
ponded to the query and the total time needed to
complete the request.

To end the test, type Control + C . The result file con-
tains the pod's name that received and responded to
the query and the total time needed to complete the
request.

Table 11: Memory Usage Test Procedure

EANTC Test Report: VMware CNF Performance—page 17

Assuming that the number of other pods scales propor-
tionally with the number of worker nodes, we took two-
thirds from 83 pending pods to arrive at 55. The
column "Number of Other Pods" was calculated by
subtracting "Number of Running Test Pods" from "Total
Max. Number of Pods". During the test, no other
workloads were running, so we can conclude that the
other pods are system pods.

Table 12: Pod Density Test Results

Platform Number of

Worker

Nodes

Number of

Pods per

Worker

Node

Number of

Other Pods

Total Max.

Number of

Pods

Target

Number of

Test Pods

Number of

Running

Test Pods

Number of

Pending

Test Pods

VMware
(3 server)

24 110 122 2640 2600 2518 83

VMware
(2 server)

16 110 94 1760 1720 1666 55

Red Hat
(2 server)

2 250 48 500 500 452 49

Figure 5: Comparison of Running Test Pods and Other Pods Between the Platforms

EANTC Test Report: VMware CNF Performance—page 18

Besides the different number of physical worker nodes
used between the platforms, the available resources
also differed. In the VMware setup, one worker node
VM had 8 CPU and 8 GB memory. With eight worker
node VMs running on one physical server, the total
available resources were 64 CPU and 64 GB memory.
The resources per server for the Red Hat setup were 96
CPU and 128 GB memory. Table 13 shows the
amount of CPU and memory the pods used on the
physical servers. These values were retrieved with the
"kubectl top nodes" command while the test pods were
running. While comparably, only a few system pods
were running, it must be noted that the system pods'
resource utilization is also included here. Even though
VMware Telco Cloud Platform RAN had more than
three times the amount of pods running as OpenShift,
it only used about double the resources. The conclu-
sion from this observation is that the VMware platform
handles its resources more efficiently when many
replicas of the same pod are deployed.

The conclusion from this specific test scenario is that if
many simple non-RAN workloads need to be de-
ployed, VMware Telco Cloud Platform RAN is more
cost-efficient, as it can deploy a higher amount of pods
on the same hardware compared to the Red Hat
OpenShift. For this case, it can also be inferred that
the VMware platform would use fewer resources if
both platforms ran the same number of pods. Howev-
er, this may not apply if more complex workloads or
workloads with higher resource requirements are
involved. One possibility could be that the hardware
resources are exhausted before the default number of
maximum pods is reached.

Additionally, increasing the total maximum number of
pods on the VMware platform is easier where addi-
tional worker node VMs can be deployed. On the
other hand, the only option on the Red Hat platform is
to increase the default limit in the worker nodes'
kubelet config file. Increasing the limit and deploying
more pods could negatively affect the cluster, i.e., pod
scheduling could become slower, the management
overhead could increase, which results in higher CPU
utilization, or resources could be overcommitted,
leading to poorer workload performance.

Table 13: Total Pod Resource Utilization on the Physical Worker Nodes

Platform Server Name CPU (milicore) Memory (MiB) Number of Running

Pods

VMware Server 1 (.150) 2,368 48,454 880

Server 2 (.167) 2,404 48,537 880

Server 3 (.168) 2,448 48,546 880

Server 1 (worker1) 2,143 36,498 250 Red Hat

Server 2 (worker2) 1,070 31,505 250

EANTC Test Report: VMware CNF Performance—page 19

General CaaS LCM

There are nine test cases in this group. All of these tests
were executed on the VMware platform, where Provi-
sioning a Kubernetes Cluster and Multi-Cluster man-
agement were not executed on the Red Hat platform.

The orchestration component is a fundamental differ-
ence between the two products. VMware Telco Cloud
Platform RAN includes VMware Telco Cloud Automa-
tion in its product bundle which makes daily and first-
time tasks easier for the operator. On the Red Hat
setup, the cluster manager is available via separate
product licenses but it was not proposed by the region-
al distributors during the offering as it may have been
unknown to them at that time.

Accordingly, on the VMware platform, all the test
cases were executed using VMware Telco Cloud
Automation except "Day-0 Installation" and "Noisy
Neighbor Isolation." And on the Red Hat platform, we
used "OpenShift Assisted Installer" in two test cases,
"Day-0 Infrastructure Installation" and "Adding a
Worker Node to the Kubernetes Cluster." In contrast,
we used the OpenShift command-line interface (CLI) for
the remaining test cases on the Red Hat setup.

Day-0 Installation

The Day-0 installation includes all the infrastructure
installation processes and the needed components.
This test case measures the complexity of the proce-
dures and the required time for the installation of both
platforms.

Result Analysis and Interpretation

When comparing the results, VMware Telco Cloud
Platform RAN installation took double the time needed
for the Red Hat OpenShift installation, about 136
minutes for VMware compared with 72 minutes for
Red Hat as shown in Table 14. VMware Day-0 instal-
lation was less complicated than Red Hat because of
the fully automated installation process. The VMware
installation went through running an "Ansible job" with
a "Zero-touch Installation process" which automatically
installed all the required components including ESXi,
VMware vCenter Server Appliance, Telco Cloud
Automation, and Harbor. Additionally, the configura-
tion for port groups, datastores, and SR-IOV interfaces
is applied automatically via VMware Telco Cloud
Automation throughout the job.

On the other hand, for the Red Hat OpenShift installa-
tion, we used "OpenShift Assisted Installer" to install
OpenShift on the bare-metal environment from the
"Red Hat hybrid console" instead of using Provisioned
Infrastructure (UPI) mode per the Red Hat team recom-
mendation. Using the assisted installer did not require
any bootstrap node and there was no need for pre-
installation of the Red Hat CoreOS on the nodes
before provisioning the Kubernetes cluster.

Table 14: Day-0 Installation Test Results

VMware Red Hat

Time Time

Rating

Procedure

Steps

Procedure

Complexity

Time Time

Rating

Procedure

Steps

Procedure

Complexity

02:15:58 16 01:12:18 14

EANTC Test Report: VMware CNF Performance—page 20

Test Procedure

Step VMware (Steps done by Ansible. The

user only needs to start the Ansible job.)

Red Hat

1 Configure PXE Get the "SSH public key" that should be added to the cluster nodes

via the ignition process

2 Configure BIOS Log in to https://console.redhat.com

3 Install ESXi Click on the "Create cluster" button

4 Check ESXi installation Choose the desired environment (Cloud, Datacenter, or Local)

and click on the "Create cluster" button

5 Configure datastore Enter the required information (Cluster name, Cluster domain,

and Cluster version) and click "Next"

6 Install vCenter Server Appliance Click "Add Hosts" and upload the "SSH public key" file or just

paste the content of the key

7 Configure vSphere Click on "Generate Discovery ISO" and download the ISO image

8 Enable SR-IOV and PCI passthrough

on all uplinks on physical hosts

Mount the ISO image to the servers and reboot them to boot from

the ISO

9 Add licenses Wait for the hosts to become available on the web page.

(Optionally, choose the appropriate roles and hostnames for the

hosts.)

10 Deploy TCA Once all servers are listed and ready on the page, click "Next."

11 Configure TCA and TCA-CP Enter the required information. If you don't have DHCP or prefer to

configure static IPs, enter them manually:

- Available subnets

- API Virtual IP

- Ingress Virtual IP

12 Deploy Harbor Click "Next" and review the information.

13 Import TKG templates Click "Install" and wait for the installation process to complete.

14 Add VIM and Harbor into TCA -

15 Create TKG cluster templates for

management and workload clusters

-

16 Deploy TKG clusters -

Table 15: Day-0 Installation Test Procedure

http://console.redhat.com/

EANTC Test Report: VMware CNF Performance—page 21

Provisioning a Kubernetes Cluster

This test was designed to evaluate the complexity of
provisioning a Kubernetes cluster and measure the
time to finish the creation of the cluster. We were able
to execute the test on VMware Telco Cloud Platform
RAN, but we could not perform it on the Red Hat
setup.

The Red Hat OpenShift is a platform based on Kuber-
netes. When installing OpenShift, we effectively install
a Kubernetes cluster as one step within the Day-0
process and can't be separated. While VMware treats
Kubernetes as an application managed by the underly-
ing virtualization platform. See install section of the
report. In a different Red Hat deployment like the
traditional DIY Kubernetes distribution where the
setting up of the OS and the deployment for the Kuber-
netes stack are handled separately the provisioning of
the Kubernetes cluster as stand-alone task would be
doable.

Result Analysis and Interpretation

As stated before, one key difference between VMware
Telco Cloud Platform RAN and Red Hat OpenShift is
that on the VMware platform, the provisioning of a
new cluster is an operation that is carried out with
complete independence from Day-0 installation. This
allows the use of templates to deploy Kubernetes
clusters on any available host and at any time. Where-
as on Red Hat OpenShift, provisioning of a cluster is
part of the Day-0 installation procedure, thus, tightly
coupled to the cluster characteristics and to the host
being activated. This means that any new cluster
provisioning or significant changes on the existing
cluster or hosts that lead to irreversible problems will
require undergoing the whole Day-0 installation proce-
dure, which will take around 77 minutes.

VMware uses VMware Telco Cloud Automation web
interface for provisioning a Kubernetes cluster.
VMware Telco Cloud Automation executed all the
steps—including cluster creation and configuration,
configuring add-ons, VIM Registration, and inventory
update—automatically. The provisioning of a cluster
was completed in 19 minutes. This operation on
VMware was fully automated and simple to conduct.

Step VMware

1 Log in to the TCA web interface

2 Go to Infrastructure > CaaS Infrastructure

3 Click Deploy Kubernetes Cluster

4 Select an infrastructure and click Next

5 Select a cluster template and click Next

6 Fill in Kubernetes Cluster details (Name, Management cluster, etc.) and click Next

7 Fill in Master Node Configuration and click Next

8 Fill in Worker Node Configuration and click Next

9 Review and click Deploy

Table 16: Provisioning a Kubernetes Cluster Test Procedure

Table 17: Provisioning a Kubernetes Cluster Test Results

VMware

Time Time Rating Procedure Steps Procedure Complexity

00:19:00 - 9

EANTC Test Report: VMware CNF Performance—page 22

Kubernetes Cluster Upgrade

This test verifies the upgrade capability for the Kuber-
netes cluster. Given that cluster upgrades are opera-
tions that are repeated multiple times during a year,
the time that operation needs to complete is vital as it
impacts the planning and duration of maintenance
windows. The more the duration, the more windows or
longer windows have to be planned. In this test, we
upgraded the Kubernetes version and measured the
time, and evaluated the complexity of performing a
cluster upgrade. The open-source Kubernetes Release
Team has stated that new releases of Kubernetes will
occur approximately three times per year. On the Red
Hat OpenShift, we have two options for upgrading the
cluster, OpenShift CLI and OpenShift console web
interface and we went through the CLI.

Result Analysis and Interpretation

The Kubernetes cluster upgrade was executed using
the VMware Telco Cloud Automation web interface in
the VMware and the cluster upgraded from version
1.19.9 to 1.20.2. We used the CLI for the test execu-
tion on the Red Hat setup and, by executing the up-
grade procedure, the OpenShift version upgraded
from 4.9.25 to 4.9.31, and the Kubernetes cluster
upgraded from 1.22.5 to.1.22.8 as well.

Red Hat needed triple the time required by VMware
when upgrading the Kubernetes cluster: VMware
needed 24 minutes while Red Hat needed 77 minutes.
Regarding the procedure's complexity, both evaluated
having a simple procedure. On the VMware setup, the
GUI makes it easy to execute the upgrade process,
while on the Red Hat setup, the operator must execute
two simple CLI commands.

Step VMware Red Hat

1 Log in to the VMware Telco Cloud Automation web

interface

Optionally, check on this page which versions you

can upgrade to from your current version:

https://access.redhat.com/labs/

ocpupgradegraph/update_path

2 Go to Infrastructure > CaaS Infrastructure. The

CaaS Infrastructure page is displayed.

Set the upgrade channel using this command:

oc patch clusterversion version --type merge -p

'{"spec": {"channel": "<channel>"}}'

3 Select the cluster instance for upgrade Start the upgrade process using this command:

oc adm upgrade --to='<version>'

4 Click the Options (⋮) symbol against the Kubernetes

cluster that you want to upgrade

-

5 Select Upgrade Kubernetes. The Upgrade

Kubernetes window is displayed

-

6 In the Select Version field, select the Kubernetes

version to upgrade from the list

-

7 In the Virtual Machine Template, click the option

to select the VM template applicable for the new

version of Kubernetes

-

8 Click Upgrade. The upgrade process starts -

9 Click > to view the progress of the update -

Table 18: Kubernetes Cluster Upgrade Test Procedure

https://access.redhat.com/labs/ocpupgradegraph/update_path
https://access.redhat.com/labs/ocpupgradegraph/update_path

EANTC Test Report: VMware CNF Performance—page 23

Delete Cluster

This test case verifies that a Kubernetes cluster can be
deleted. By performing the test we measured the
execution complexity and the duration of Kubernetes
cluster deletion on both vendors.

Step VMware Red Hat

1 Log in to the TCA web interface Log in to the CLI

2 Go to Infrastructure > Partner Systems Delete all nodes from the cluster using this command:

oc delete node <name>

3 Select a Harbor partner system Optionally, wipe the disks on the servers.

(On iDRAC: Go to Storage > Overview > Virtual

Disks. For each disk, select action "Delete" and click

"Apply Now". Then go to Storage > Overview >

Physical Disks and select "Cryptographic Erase" for

all disks and apply the change.)

4 Click Modify Registration, click Next -

5 Deselect the VIM of the cluster and click Finish -

6 Go to Infrastructure > Virtual Infrastructure -

7 Select the VIM of the cluster and click Delete -

8 After the cluster is updated, go to Infrastructure >

CaaS Infrastructure

-

9 Select the cluster and click Delete -

Table 20: Delete Cluster Test Procedure

Table 19: Cluster Upgrade Test Results

VMware Red Hat

Time Time

Rating

Procedure

Steps

Procedure

Complexity

Time Time

Rating

Procedure

Steps

Procedure

Complexity

00:24:00 9 01:17:00 3

Table 21: Delete Cluster Test Results

VMware Red Hat

Time Time

Rating

Procedure

Steps

Procedure

Complexity

Time Time

Rating

Procedure

Steps

Procedure

Complexity

00:04:43 9 00:00:17 2

EANTC Test Report: VMware CNF Performance—page 24

Result Analysis and Interpretation

VMware cluster deletion went through the Telco Cloud
Automation web interface while on the Red Hat setup
we used the OpenShift CLI. The results show that Red
Hat performs better than VMware because it takes less
time, has fewer steps, and is less complicated for a
Kubernetes cluster deletion operation. It is 17 seconds
compared with 4 minutes and 43 seconds respectively.
De-provisioning VMs is the reason why VMware takes
more time for this operation.

Adding a Worker Node to Kubernetes

Cluster

This test case verifies that a new worker node can be
added to an existing cluster. The ability to quickly
deploy and activate a new node impact scalability
and recovery of networks. The complication of the
procedure and required time for adding a worker
node were measured during the test execution.

Result Analysis and Interpretation

There are two possible ways for adding a worker
node to a cluster on the VMware software, creating a
new node pool and increasing the replica count in an
existing node pool. We added a new worker node to
the VMware Tanzu Kubernetes grid cluster using the
VMware Telco Cloud Automation in both ways. On the
Red Hat setup, the procedure was similar to the Day-0
installation using the Red Hat hybrid console, mounting
the generated ISO file, and starting a fresh install on
the new physical node.

Comparing the results, VMware has a less complicated
procedure than Red Hat because of its fully automated
execution. The required time for adding a node in Red
Hat is 17 minutes, almost double the time VMware
needed, which is 8 minutes, based on Table 23.

Step VMware Red Hat

1 Log in to the TCA web interface Log in to https://console.redhat.com

2 Go to Infrastructure > CaaS Infrastructure Go to Clusters

3 Select a cluster by clicking its name Choose your cluster and then go to the "Add Hosts" tab

4 Go to Worker Nodes Click on the "Add hosts" key, then generate and download

the discovery ISO file

5 Select a node pool and click Edit Mount the ISO file to the server and restart it.

6 Increase replica count and click update Wait until the server appears in the list on the web UI and
click on install.

7 - When the installation is completed, log in to the OpenShift

console

8 - Go to Compute > Nodes

9 - Wait for the node to be added to the list and approve the CSR

Table 22: Adding a Worker Node to Kubernetes Cluster Test Procedure

Table 23: Adding a Worker Node to Kubernetes Cluster Test Results

VMware Red Hat

Time Time

Rating

Procedure

Steps

Procedure

Complexity

Time Time

Rating

Procedure

Steps

Procedure

Complexity

00:08:00 6 00:17:00 6

https://sso.redhat.com/auth/realms/redhat-external/protocol/openid-connect/auth?client_id=cloud-services&redirect_uri=https%3A%2F%2Fconsole.redhat.com%2F&state=af1542e6-e646-468d-bddb-881031fc6a7b&response_mode=fragment&response_type=code&scope=openid&nonce=9
ttps://console.redhat.com

EANTC Test Report: VMware CNF Performance—page 25

Multi-Cluster Management

Multi-Cluster management is one of the main capabili-
ties that ensure consistent operations across the net-
work. This test verifies this capability and measures the
complexity and required time.

In this test, we used the VMware Telco Cloud Automa-
tion to add an NFS storage to the cluster as the default
storage for the VMware Telco Cloud Platform RAN
environment. However, the test was not executable on
Red Hat.

Result Analysis and Interpretation

On the VMware setup, the test went through VMware
Telco Cloud Automation and the procedure took two
minutes to complete, and our evaluation of the com-
plexity level is moderate.

On the other side, the test was not performed on Red
Hat on the current bare-metal deployment. The multi-
cluster management was not supported as it required
changing the master nodes to be schedulable and
turning the worker nodes into single-cluster nodes, but
the deployment changes were out of the test proce-
dure.

Step VMware

1 Log in to TCA web interface

2 Go to Infrastructure > CaaS Infrastructure

3 Click the three vertical dots next to the cluster you want to modify

4 Click Edit Cluster Configuration

5 In the CSI section, click Add and select nfs_client

6 Enter the details, select as default, unselect the previous default storage, and click save

Table 24: Multi-Cluster Management Test Procedure

Table 25: Multi-Cluster Management Test Results

VMware

Time Time Rating Procedure Steps Procedure Complexity

00:02:00 - 6

EANTC Test Report: VMware CNF Performance—page 26

Executing Planned Node Evacuation and

Maintenance

This test verifies that a planned node evacuation is
applicable in the case of system maintenance. This
maintenance can be hardware replacement or up-
grade and any other similar activities. We performed
this test to measure the required time and the complexi-
ty of preparing a physical node for maintenance
activities while the Kubernetes cluster is online.

Results Analysis and Interpretation

We executed this test using VMware Telco Cloud
Automation and vCenter Server Appliance for
VMware. In Red Hat, we used the OpenShift CLI.

A comparison of the results shows that both platforms
have the same complexity based on our evaluation.
Red Hat took 38 seconds compared with 2 minutes
and 40 seconds on the VMware platform. It is im-
portant to notice that in VMware's case, the VMs were
moved to the other hosts without pods disruption, i.e.;
no downtime, while in Red Hat the pods were shut-
down and restarted on the other hosts.

Table 26: Executing Planned Node Evacuation and Maintenance Test Results

VMware Red Hat

Time Time

Rating

Procedure

Steps

Procedure

Complexity

Time Time

Rating

Procedure

Steps

Procedure

Complexity

00:02:40 16 00:00:38 3

EANTC Test Report: VMware CNF Performance—page 27

Test Procedure

Step VMware Red Hat

1 Log in to the TCA web interface Drain the worker node using this

command:

oc adm drain <worker node> --ignore-

daemonsets --force --grace-period=30 --

delete-local-data

2 Go to Infrastructure > CaaS Infrastructure Perform maintenance on the worker node

3 Select a cluster by clicking its name

4 Go to the Worker Nodes tab After the maintenance is finished,

let the worker node accept workload

again using this command:

oc adm uncordon <worker node>

5 Click the vertical three dots next to the cluster and select Enter

Maintenance Mode

-

6 Log in to vSphere -

7 On the left sidebar in the host view, right-click a physical host,

click Maintenance Mode, and then click Enter Maintenance Mode

-

8 In the dialogue, select "Move powered-off and suspended virtual

machines to other hosts in the cluster" and click Ok

-

9 On the left sidebar in the host view, click the same physical host,

then on the right, click the VMs tab

-

10 Click on the VM, then on the left sidebar, right-click on the VM,

and click Migrate.

-

11 Select to move both compute and storage, select a new host
in workload cluster, select local storage, keep network, keep
schedule vMotion with high priority, and click Finish

-

12 Repeat steps 9 to 11 for all VMs on the host -

13 The physical host is now in maintenance mode; perform
maintenance

-

14 On the left sidebar in the host view, right-click a physical host,
click Maintenance Mode, and then click Exit Maintenance Mode

-

15 Go to the TCA web interface and click the three vertical dots next
to the cluster, then click Exit Maintenance Mode

-

16 Optionally, migrate VMs back to the physical host -

Table 27: Executing Planned Node Evacuation and Maintenance Test Procedure

EANTC Test Report: VMware CNF Performance—page 28

Stretched Cluster

It is a part of the high availability plan to maintain the
overall operation in case of disaster or planned
maintenance activities by having multiple sites. This
test verifies that the stretched cluster can be created in
both platforms.

Result Analysis and Interpretation

While OpenShift performs the test faster than VMware
and takes less time, the test shows that the execution in
OpenShift is more complicated as the operator must
create new configuration files manually.

Step VMware Red Hat

1 Log in to the TCA web interface Create a Machine Config Pool

2 Go to Infrastructure > CaaS Infrastructure Add the corresponding label to the node

3 Select a cluster by clicking its name Create a kubelet configuration file

4 Go to Worker Nodes and click Add Apply the kubelet configuration file

5 Enter the details and click Add -

Table 28: Stretched Cluster Test Procedure

Table 29: Executing Planned Node Evacuation and Maintenance Test Results

VMware Red Hat

Time Time

Rating

Procedure

Steps

Procedure

Complexity

Time Time

Rating

Procedure

Steps

Procedure

Complexity

00:07:00 5 00:02:39 4

EANTC Test Report: VMware CNF Performance—page 29

Noisy Neighbor Isolation

Noisy neighbor is a phrase that applies to a cloud
computing infrastructure user (a workload) that uses a
lot of the shared resources, including CPU, Memory, I/
O, and other resources, and can have an adverse
effect on the other system users, especially the ones
which are latency-sensitive. We performed the test in
two different scenarios to measure the negative effect
of different noisy neighbors. In the first scenario, we
deployed both workloads, including the latency-
sensitive and the resource-intensive, on the same Non-
Uniform Memory Access (NUMA), and in the second
scenario, we deployed the workloads on different
NUMAs. A Stress-ng workload was used to simulate
different noisy workloads.

For a better understanding of the effects that different
noisy workloads can have on other workloads, we ran
the Cyclictest once when the noisy workload was idle
to compare it with further tests when we had noisy
workloads.

In both scenarios, we ran the Cyclictest on the latency-
sensitive workload when the shared resources were
being used by the Stress-ng workload in different
ways. First, we started a stress test on the CPU with
10% of load using the Stress-ng when the Cyclictest
was running. Then we moved forward and repeated
the same procedure with different CPU loads, memory
loads with different sleep times, I/O loads, and a
mixed load of CPU, memory, and I/O on the system.

Step VMware and Red Hat

1 Start 1.1 Cyclictest Test for 310 seconds: taskset -c <core list> cyclictest -t <number of threads> -m -p 99 -i

100 -h 100 -a <core list> --mainaffinity <core> -D 310s --histfile <output file>

2 Run CPU workload simulation (6 jobs) at 10% load (--cpu-load) for 300 seconds:

taskset -c <core list> chrt -f 1 stress-ng -c 6 --cpu-method pi --cpu-load 10 -t 300 -v --metrics-brief

3 Repeat steps 1 and 2 with 20% CPU load

4 Repeat steps 1 and 2 with 40% CPU load

5 Repeat steps 1 and 2 with 50% CPU load

6 Repeat steps 1 and 2 with 80% CPU load

7 Start 1.1 Cyclictest Test for 310 seconds

8 Run memory workload simulation (6 jobs) with 2 seconds sleep time (--vm-hang) before unmapping for

300 seconds:

taskset -c <core list> chrt -f 1 stress-ng --vm 6 --vm-hang 2 -t 300 -v --metrics-brief

9 Repeat steps 7 and 8 with 3 seconds of sleep time before unmapping

10 Repeat steps 7 and 8 with 5 seconds of sleep time before unmapping

11 Start 1.1 Cyclictest Test for 310 seconds

12 Run I/O workload simulation (6 jobs) for 300 seconds where each process writes 256 MB:

taskset -c <core list> chrt -f 1 stress-ng --hdd 6 --hdd-bytes 256M -t 300 -v --metrics-brief

13 Start 1.1 Cyclictest Test for 310 seconds

14 Run a mixed workload (4 CPU, 4 memory, and 4 I/O processes) simulation for 300 seconds: taskset -c

<core list> chrt -f 1 stress-ng -c 2 --cpu-method pi --cpu-load 50 --vm 2 --vm-hang 3 --hdd 2 --hdd-bytes 256M -t

300 -v --metrics-brief

Table 30: Noisy Neighbor Isolation Test Procedure

https://wiki.eantc.de/display/VMWAR/1.1+Cyclictest+Test
https://wiki.eantc.de/display/VMWAR/1.1+Cyclictest+Test
https://wiki.eantc.de/display/VMWAR/1.1+Cyclictest+Test
https://wiki.eantc.de/display/VMWAR/1.1+Cyclictest+Test

EANTC Test Report: VMware CNF Performance—page 30

Result Analysis and Interpretation

In the first scenario, the measurements show that the
results obtained during the presence of a noisy neigh-
bor workload compared to the idle run have fewer
differences on the VMware setup compared to Red
Hat. The highest detected latency value is for Red Hat
which is obtained in the "Memory Load" test with 5
seconds of "Sleep time". In the second scenario,
comparing the results obtained with idle execution
shows that the increase of the maximum detected
delay on the VMware platform has happened less
compared to Red Hat. While the highest obtained
latency belongs to VMware in the "Memory Load" test
with 3 seconds of "Sleep time". In this test case,
measuring the complexity and required time for execu-
tion is not meaningful.

The focus of this test is to find out if a latency-sensitive
workload is affected by other workloads running
resource-intensive operations. The results showed that
the noisy neighbor did not affect the latency-sensitive
workload in both scenarios on both platforms. We
compared the maximum latency from the runs with a
noisy neighbor to the idle run (neighbor is idle). If the
maximum latency did not exceed 150% of the idle
run's maximum latency, i.e., it does not increase by
half of the idle run's maximum latency, we consider it
an acceptable increase and conclude that the latency-
sensitive workload is unaffected. Comparing both
vendors' results based on this criterium, VMware
shows better isolation between the pods in both sce-
narios. The maximum latency increased less on
VMware for all workload types on the noisy neighbor
in Scenario 1 and six out of ten in Scenario 2.

Figure 6: Noisy Neighbor Isolation Test Results of Scenario 1 and 2

EANTC Test Report: VMware CNF Performance—page 31

CaaS Results Summary

As we observe the results from the perspective of time
it takes to complete CaaS management operations
(i.e., duration) and the complexity of carrying them
out, we can see that:

When it comes to the duration of the operations, both
platform architectures offer substantially different
results depending on the type of operation, highlight-
ing the advantages and disadvantages of their core
stack. Whereas when it comes to the complexity of
executing these operations, VMware has a better
performance by automating most of the procedures out
of the box.

However, other factors can be taken into account. For
example, the level of the expertise of the administrator
or the performer, the size of the cluster, the size of the
upgrade package, and the number/size of the pods or
VMs can slightly change the results.

Following some steps using the GUI would be easier
than executing different CLI commands. It reduces the
probability of human errors to execute multiple com-
mands, simplifying the steps for non-experienced users
and also would make the troubleshooting process
easier in case of any provisioning or management
issue. We must point out that Multi-Cluster manage-
ment was not applicable with our Red Hat OpenShift
deployment.

Figure 7: CaaS LCM Duration 1, Duration 2, and Complexity Rating Results

*N/A: As mentioned in the text, the test was not applicable in Red Hat.

EANTC Test Report: VMware CNF Performance—page 32

E2E CaaS Deployment for Performance

Node/BMS Customization

Customizing a node allows to configure or tune the
operating system or change the "kubelet" parameters
according to the CNF's requirements. These customiza-
tions applied to a node can enable features including
tuning the OS for latency-sensitive workloads (Real-time
OS), adding and configuring SR-IOV interface, DPDK
binding, and so forth.

In this test, we investigated the node customization
capability of both platforms and measured the re-
quired time and the complexity of the procedures. The
test went through configuring the node for the real-time
kernel, adding SR-IOV interfaces and binding DPDK to
them, configuring passthrough devices for PTP, and
instantiating a CNF step by step.

Result Analysis and Interpretation

The node customization for VMware was implemented
using the VMware Telco Cloud Automation web
interface. For enabling the customized features the
Telco Cloud Automation uses TOSCA (Topology and
Orchestration Specification for Cloud Applications)
extensions. The node customization process is partially
automated on the VMware platform while the proce-
dure is completely manual on Red Hat OpenShift by
creating configuration files and applying them.

Manual configuration needs more technical knowledge
and increases the complexity of performing an activity.
Also, the more complex configuration process leads to
a higher risk of probable errors. VMware eliminates
these risks, overheads, and the need for more pro-
found technical knowledge by automating the process
and making it more straightforward.

In conclusion, comparing the results and evaluations,
both vendors took roughly the same time for the node
customization process. However, VMware is easier to
use and less likely to cause probable errors thanks to
its automation of the procedures. According to our
experiences, we evaluate the node customization
complexity to be moderate for VMware while it is
complicated to perform on Red Hat OpenShift.

Testing Experience

The experience we had while executing this test was
vastly different between the two platforms, and so was
the ramp-up process to get us from a basic deployment
to node customization for RAN workloads.

The main difference between the procedures on both
platforms is that VMware Telco Cloud Automation
takes an infrastructure requirements file during the
CNF instantiation process and customizes the worker
node accordingly. So the user did not require
knowledge about the underlying infrastructure. At the
same time, the customization was mainly manual in
OpenShift. While figuring out how to customize a
worker node for the same requirements, we struggled
with several aspects of the customization and even the
instantiation of the CNF itself. The first step was to
identify the appropriate OpenShift Operators that
would carry out the node configuration and install
them. The next step was creating and providing config-
uration files that defined our requirements to the Oper-
ators. To be able to create the configuration files,
some knowledge about the infrastructure and possibly
the subject matter is required. For example, to make
SR-IOV interfaces available to pods, we needed to
define the server's interface names or device PCI IDs
we wanted to use for SR-IOV. A regular user may not
have access to this information, so some parts of node
customizations may only become available through
admins.

Aside from these manual efforts that require more
knowledge, we also faced some issues while prepar-
ing for the test execution. For example, when we
worked with the Performance Addon Operator and
tried to apply a performance profile on both worker
nodes, one node got stuck, so the profile could not be
applied. The issue was that we only had two worker
nodes, the master nodes were not schedulable, and
some system pods required to be highly available. The
system kept looking for a suitable worker node to
move the system pods to, but there was none, so the
process got stuck. We received support from Open-
Shift experts and solved this issue by making the
master nodes schedulable, which means that they were
now able to run those system pods too.

All in all, the Operators are well documented, so the
installation went smoothly, and creating the configura-
tion files was not too difficult. But reading the docu-
mentation and preparing the test execution took a lot
of time. We also required support from OpenShift
experts for some issues we ran into during the prepara-
tions.

EANTC Test Report: VMware CNF Performance—page 33

Test Procedure

Step VMware Red Hat

1 Log in to the VMware Telco Cloud Automation web

interface

Configure the Ingress controller pods to run outside

the worker nodes that will be configured here

2 Go to Network Functions > Catalog Create a namespace for the Performance Addon

Operator

3 Select the CNF "TestNF" and click INSTANTIATE to

instantiate a network function instance

Create an Operator Group for the Performance

Addon Operator

4 Give a proper instance name, select a cloud,

select a workload cluster, and click NEXT

Get your OpenShift version and subscribe to

the Performance Addon Operator

5 Select a node pool, click NEXT, and view

Customization Required. Click OK

Verify the Operator has been installed successfully

6 In the Helm Charts section, give a proper

namespace and select repository URL, including

the TestNF Helm chart

Create a MachineConfigPool (MCP) for each

desired node type

7 In the network functions properties, click Next Assign an MCP to a worker node

8 In the Inputs workflow section, input the same

namespace as in the Helm Charts section.

Provide values.yaml file, select VLANs and provide

a PTP4L_CONFIG_FILE file

Log in to the OpenShift Console

9 Review the instance creation parameters and click

INSTANTIATE

Navigate to Operators > Installed Operators >

Performance Profile v2 and click Create a profile

and create the required performance profile

10 - OpenShift will start configuring the nodes.

Wait for it to finish

11 - Create a namespace for the SR-IOV Operator

12 - Create an Operator Group for SR-IOV Operator

13 - Get your OpenShift version and subscribe to the

SR-IOV Operator

14 - Verify the Operator has been installed successfully

15 - Label the nodes that should be capable of SR-IOV

16 - Optionally, create a new project

17 - Create a SriovNetworkNodePolicy object in a file

and apply it

EANTC Test Report: VMware CNF Performance—page 34

Table 31: Node Customization Test Procedure

Step VMware Red Hat

18 - Check that the policy was applied successfully

19 - Create a SriovNetwork object in a file and apply it

20 - Verify that the NAD (Network Attachment

Definition) has been created

21 - Create a namespace for the PTP Operator

22 - Create an Operator Group for the Operator

23 - Get your OpenShift version and subscribe to the

PTP Operator

24 - Verify that the Operator has been installed

successfully

25 - Configure the Linuxptp service by creating a

PtpConfig CR and applying it

26 - Check that the PtpConfig profile is applied to the

nodes that match the node label or nodeName

27 - Add the required annotations and resource

definitions to TestNF's values.yaml file

28 - Add "runtimeClassName: performance-ran-du" to

the pod's deployment.yaml file

29 - Instantiate the CNF "TestNF"

30 - Get the CNF's interface information

31 From the CNF's SR-IOV interface, ping an

infrastructure gateway to verify that SR-IOV was

configured correctly

VMware Red Hat

Time Time

Rating

Procedure

Steps

Procedure

Complexity

Time Time

Rating

Procedure

Steps

Procedure

Complexity

00:21:00 9 00:18:20 28

Table 32: Node Customization Test Results

EANTC Test Report: VMware CNF Performance—page 35

CNF Life-Cycle Management

Containers are the workforce of the platform and need
to be maintained in large quantities. All the activities
around the provisioning, regular operations
(independent of the applications running in each
container), and teardown are called containerized
network functions life-cycle management (CNF LCM).
Such functions are not new in principle; operations
with identical purposes were already the norm in
virtualized platforms (VNF LCM). However, the con-
tainerized functions are of course implemented differ-
ently and are typically used even more frequently, as
the granularity of containerized network functions is
higher than virtualized network functions.

We set out to test each of the typical CNF LCM func-
tions. In total, these are ten functions. Some are re-
quired to be executed by every CNF, such as the
instantiation and terminate functions. Others are
optional and are used for specific querying or modifi-
cation purposes. They are described in a bit more
detail in each subsection further below.

All ten LCM test cases were executed on VMware
Telco Cloud Platform RAN, while only nine were run
on the Red Hat OpenShift platform. Both platforms
have passed all test cases from a functional perspec-
tive. There are differences in the complexity of perform-
ing the operations and the respective execution times
are discussed in each subsection.

It is essential to understand the significant difference in
how the two evaluated platforms handle CNFs.
VMware Telco Cloud Automation is built with an
understanding of the TOSCA (Topology and Orches-
tration Specification for Cloud Applications) standard
language developed by OASIS (Organization for the
Advancement of Structured Information Standards). A
CNF can be defined via TOSCA, which describes the
CNF components, their relationships, and manage-
ment processes of the CNF. OpenShift does not imple-
ment support for TOSCA; thus, VMware Telco Cloud
Platform RAN operates on a higher abstraction level.
When it comes down to the execution of the operation,
VMware Telco Cloud Automation uses Helm, a pack-
age manager for Kubernetes. Helm was used for the
tests on OpenShift as well.

CNF Onboarding

This test verifies that a CNF can be onboarded.
Onboarding means uploading a network function
package - such as a software image - and creating a
descriptor for it, including the parameters and execu-
tion requirements.

The VMware platform operates with Cloud Service
Archive (CSAR) packages and TOSCA descriptors, as
mentioned above. Onboarding a new CNF makes it
available in the catalog so that it can be instantiated
later. Onboarding only needs to happen once for each
type of CNF, not for each instance. When virtualiza-
tion architectures were invented, the onboarding and
instantiation were separated into two steps to reduce
the potential risks of a platform failing at instantiation
time: A container should be instantiated without any
major ado, as quickly as feasible. This is enabled by
uploading the (potentially large) package and check-
ing all the operational requirements early on during
onboarding. OpenShift, in contrast, follows the native
Kubernetes way—where onboarding and instantiation
are combined. In OpenShift, onboarding could be
counted as part of CNF instantiation, as the instantia-
tion command "helm install" contains actions that
could be similar to onboarding. For example, when
the command is called, Helm may automatically
download the required (package) files defined in the
Helm templates in the background. Thus, it was not
useful to execute the onboarding test case on the Red
Hat platform.

Result Analysis and Interpretation

The VMware Telco Cloud Automation onboarding took
seven GUI-based configuration steps and, in our case,
five seconds of execution (waiting) time. Of course the
execution time might change if larger packages need
to be uploaded. As a general remark, we decided not
to grade the procedural complexity of the life-cycle
management activities in this section: The VMware
graphical user interface and the Red Hat command-
line interface used in this campaign are very different.
While there are typically more steps (aka more click-
ing) to be done on the VMware platform, the fewer
text commands on the Red Hat side are usually more
complex and require a different type of operator
education. VMware explained to EANTC that the
simplified GUI-based operations and advanced con-
sistency checks in the background bear many benefits,
which are all good points. At EANTC, we are not in a
position to devalue command-line based operations
because they are more versatile and efficient. (Just as
a side note, VMware also provides a command-line
interface as an alternative.)

EANTC Test Report: VMware CNF Performance—page 36

Test Procedure

Instantiate CNF

The instantiation of a CNF is the main provisioning
activity to start an instance, as the name says. In
contrast to onboarding, this activity is executed for
each single new instance of a CNF. It is obviously a
mandatory step. Depending on the use case scenario,
containerized network functions may be long-living
applications with only a few instances; or they might
be short-lived and a large number might be needed.
Which scenario is selected is a choice of the applica-
tion developer. In effect, a container platform may face
a high load of instantiations. Thus, the instantiation
should be simple and efficient.

The normal way to manage package templates in
Kubernetes is via Helm; templates that consist of
potentially multiple YAML files and dependencies are
called Helm charts. Both VMware and Red Hat use
such helm charts - OpenShift uses them directly, where-
as VMware Telco Cloud Automation provides a graph-
ical frontend and consistency validator for the configu-
ration.

Result Analysis and Interpretation

As we saw in previous tests, the GUI-based approach
by VMware has more steps, but each of them is
straightforward or even trivial. The OpenShift experi-
ence is more "raw"; it allows full flexibility for all
aspects of helm charts, but requires the operator to
fully understand the creation and maintenance of such
helm charts. In some cases, software manufacturers
might provide the appropriate helm charts together
with their software, but this cannot be taken for grant-
ed in all cases.

VMware Telco Cloud Automation took 48 seconds
execution time (in step 11) to complete the instantia-
tion; Red Hat OpenShift took 10 seconds (in step 3).
From EANTC's point of view, there are no hard, well-
defined goals for this activity. In many cases, an
instantiation in the order of magnitude of a minute or
less could be considered reasonable. In case the
instantiation would be very time-critical (because, for
example, a large number of CNFs needs to be instanti-
ated), the CLI-based approach is faster. However, the
likelihood of failures is higher because all the checks
happen only at instantiation time. Remember that
OpenShift does not differentiate between onboarding
and instantiation as the VMware Telco Cloud Automa-
tion does (see first test case in this section).

Step VMware

1 Log in to the VMware Telco Cloud Automation web interface

2 Select Network Functions > Catalog

3 Click Onboard

4 Provide a name for the CNF

5 For Descriptor File, click Browse

6 Choose the CSAR file for upload

7 Click Upload

Table 33: CNF Onboarding Test Procedure

EANTC Test Report: VMware CNF Performance—page 37

Test Procedure

Table 34: Instantiate CNF Test Procedure

Step VMware Red Hat

1 Log in to the VMware Telco Cloud Automation web interface Log in to the CLI

2 Select Network Functions > Catalog Optionally, create a new project

3 Select the desired CNF and click INSTANTIATE.

The Create Network Function Instance page is displayed

Deploy the CNF using this command:

helm install -n <namespace> <name>

<Helm chart>

4 In the Inventory Detail tab, enter the following information:

▪ Name - Enter a name for your network function instance

▪ Description - Provide an explanation.

▪ Select Cloud - Select a cloud from your network on which to

instantiate the network function. Select the node pool if you

have created the Kubernetes cluster instance using VMware

Telco Cloud Automation.

-

5 Click Next -

6 In the Helm Charts tab, enter the following information:

▪ Namespace - Enter the Kubernetes Cluster namespace.

▪ Repository URL

▪ Select Repo URL - If you have added Harbor as the

third-party repository provider, select the Harbor

repository URL from the drop-down menu.

▪ Specify Repo URL - Specify the repository URL.

Optionally, enter the user name and password to access

the repository.

-

7 Click Next -

8 In the Network Function Properties tab, click Next -

9 The Inputs tab displays any instantiation properties. Provide the
appropriate inputs and click Next

-

10 In the Review tab, review the configuration -

11 Click Instantiate -

EANTC Test Report: VMware CNF Performance—page 38

Query CNF

This test verifies the function which inquires about a
CNF's status details. The query function is helpful to
understand the current status of a CNF at any time
during its life. A CNF might be running normally,
might have been terminated, in pending status, or
might have run into an error or a frequent restart issue.

Result Analysis and Interpretation

Querying a CNF is a very simple operation with little
complexity. It can be executed swiftly on both plat-
forms. The execution wait time was less than on sec-
ond for each of the solutions.

Test Procedure

Table 35: Query CNF Test Procedure

Step VMware Red Hat

1 Log in to the VMware Telco Cloud Automation web interface Log in to the CLI

2 Select Network Functions > Inventory Get pod information using this command:

oc describe pod <pod name>

3 Click on the network function name -

4 Click on the Inventory to check CNF instantiation details -

EANTC Test Report: VMware CNF Performance—page 39

Update and Upgrade CNF

Often, operators want to change the configuration of a
CNF during its operation. One option would be to
terminate the CNF and instantiate another one with the
new configuration. However, that potentially results in
a service interruption (depending on the use case
scenario). In cases where CNFs are long-lived, com-
plex, or both, it is usual practice to update the configu-
ration. Behind the scenes, Kubernetes manages this
with a "helm upgrade" command which supplies a
new Helm chart. Helm then calculates the differences
between the old and new configuration and runs a
minimal modification for a smooth upgrade procedure.
There is a slightly confusing language. While helm
upgrade covers all possible configuration and software
image changes, "CNF Update" refers to configuration
changes whereas "CNF Upgrade" refers to new
software versions to be upgraded to during the CNF
lifetime. We tested both scenarios, which differ on the
VMware side but are identical on the Red Hat side.

CNF Update and CNF Upgrade functions are support-
ed by both platforms. VMware Telco Cloud Automa-
tion provides a GUI-based wrapper around the basic
helm upgrade function as seen before. In the GUI, it is
possible to change individual instantiation properties
graphically. On the Red Hat OpenShift side, a new
Helm chart needs to be edited by the operator and
supplied to the CLI-based upgrade function.

Result Analysis and Interpretation

The update and upgrade functions worked without any
issues during our tests. On the VMware solution, the
update CNF function took 27 seconds and the up-
grade function took 25 seconds with our test CNF. Red
Hat OpenShift completed the update activity in 7
seconds, and the upgrade activity in 14 seconds.
These numbers will certainly vary depending on the
individual update/upgrade parameters and images.

Table 36: Update CNF Test Procedure

Step VMware Update VMware Upgrade Red Hat

1 Log in to the VMware Telco Cloud Automation web interface Log in to the CLI

2 Select Network Functions > Inventory and select the CNF to update Update the pod to the updated

Helm chart using this command:

helm upgrade -i -n <namespace>

<name> <updated Helm chart>

3 Click the ⋮ symbol against the

CNF and select update

Click the ⋮ symbol against the CNF
and select Upgrade.

-

4 In the Update Revision tab, select

the CNF catalog to update. The

Descriptor version updates auto-

matically based on your selection

In the Upgrade Revision tab, select

the software version and

Descriptor version to upgrade to.

-

5 Click Next In the Components tab, select the

upgraded components to be in-

cluded in your CNF.

-

6 In the Inventory Detail tab, select the repository for your CNF -

7 In the Inputs tab, update the instantiation properties, if any -

8 - In the Network Function Properties

tab, review the updated model.

You can download or delete Helm

Charts from the updated model.

-

9 In the Review tab, review the updates -

10 Click Update

EANTC Test Report: VMware CNF Performance—page 40

Terminate CNF

At the end of its lifetime, each CNF must be terminat-
ed. This test verifies that the procedures undertaken to
terminate a CNF.

Result Analysis and Interpretation

As expected, the terminate functionality is provided
without issues in both environments. The VMware
platform took 12 seconds to terminate our sample
CNF, while the Red Hat platform needed 3 seconds.
The difference in time did not bother us, as the termi-
nate activity is usually not time-critical.

Table 37: Terminate CNF Test Procedure

Step VMware Red Hat

1 Log in to the VMware Telco Cloud Automation web interface Log in to the CLI

2 Select Network Functions > Inventory Get pod information using this command:

oc describe pod <pod name>

3 Click the Options (three dots) icon for the desired network

function and select Terminate.

VMware Telco Cloud Automation checks for inputs based on

the workflows that you added to the catalog. If there are any

inputs, you can update them here.

-

4 Click Finish after adding the inputs, if any. -

EANTC Test Report: VMware CNF Performance—page 41

Roll Back CNF

This is an activity no operator would like to execute:
Rolling back a CNF to a previous state usually means
that something went wrong during a previous Upgrade
command. The Rollback command returns a CNF to
such a previous revision smoothly.

Result Analysis and Interpretation

Both platforms support rolling back CNFs, and the
functionality was provided by each of them correctly.
The rollback took two seconds on the Red Hat
OpenShift platform, executing the corresponding helm
rollback command. The VMware platform conducts
additional checks and verifications, and takes a total
of 25 seconds to rollback to a previous revision under
similar conditions. Both times are well acceptable, as
they are within less than a minute which is more than
acceptable for such a quite rare provisioning activity.

Table 38: Roll Back CNF Test Procedure

Step VMware Red Hat

1 Log in to the VMware Telco Cloud Automation web interface Log in to the CLI

2 Select Network Functions > Inventory and select the CNF to

roll back

Roll back to an older revision using this

command:

helm rollback <name> <revision number>

3 Click the ⋮ symbol against the CNF and select update -

4 In the Update Revision tab, select the CNF catalog to roll

back to. The Descriptor version updates automatically based

on your selection

-

5 Click Next -

6 In the Inventory Detail tab, select the repository for your CNF -

7 In the Inputs tab, update the instantiation properties, if any -

8 In the Review tab, review the updates -

9 Click Update -

EANTC Test Report: VMware CNF Performance—page 42

Scale CNF

Resource management is always a critical point in
shared systems. Static configurations lead to over-
reservation of too many resources from the beginning.
Scaling out containers is an appropriate mechanism to
provide the necessary flexibility to respond to chang-
ing performance needs: Initially, a single CNF instance
is created; when needed, more replicas of the CNF
can quickly be added to scale the performance of the
service; during idle times, the number of replicas can
be reduced again. This test case verifies both the scale
out and scale in procedure.

Test Procedure

The test procedure for scale-out and scale-in is the
same. The number of replicas passed to the Helm
command, and the current number of deployed repli-
cas decide if the operation is a scale-out or scale in.
The operation is scale-out if the number passed to the
Helm command is higher than the number of currently
deployed replicas. Similarly, if the number passed to
the Helm command is lower, it is a scale in operation.

Result Analysis and Interpretation

The scale-out operation is quite complex - it is similar to
instantiation, plus added coordination activities across
the replicas. Both platforms took a few seconds to
prepare the scale-out: VMware took 23 seconds, and
Red Hat 21 seconds. This time is more than acceptable
and both platforms did well.

Table 39: Scale CNF Test Procedure

Step VMware Red Hat

1 Log in to TCA web UI Log in to the CLI

2 Navigate to Network Functions > Inventory Create a yaml file with the number of

replicas:

3 Click the three dots next to the CNF that should be scaled Scale the CNF using this command:

helm upgrade -i -n <namespace> <name>

<Helm chart> -f values.yaml

4 Create a yaml file with the number of replicas

values.yaml

replicaCount: 10

-

5 Click Browse and upload the created yaml file. Click Next -

6 Optionally, provide other input. Click Next -

7 Review the values and click Finish -

values.yaml

replicaCount: 10

EANTC Test Report: VMware CNF Performance—page 43

Heal CNF

Finally, this test case verifies that a CNF can be
healed, i.e. restarted through the Kubernetes function
based on liveness probes. This test is emulated by
stopping the application from responding to such
liveness probes.

Keeping all CNFs up and running is an important task
in a containerized environment. To ease this task on a
generic CNF level while avoiding application-specific
verification steps or separate monitoring utilities,
Kubernetes offers the liveness probes, checking the
container status. These liveness probes are configured
at the creation time of the CNF. They can be specific
to the VNF's function; for example, if there is a web-
server running in the CNF, it can be pinged by Kuber-
netes regularly to check the health of the CNF. In case
the health check fails, Kubernetes proceeds with the
restart procedure that is preconfigured.

Result Analysis and Interpretation

The healing function is configured at CNF instantiation
time, and embedded in the Helm charts startup config-
uration. Both solutions support the Heal CNF function,
as it is part of the standard Kubernetes feature set.
Consequently, both vendor platforms took exactly the
same amount of time to complete the request in our
test: 33 seconds. Of course, this time largely depends
on the complexity of the CNF under test, so the abso-
lute value is of less interest than the relative compari-
son.

Step VMware and Red Hat

1 Log in to the CNF's CLI

2 Ensure the CNF answers to the liveness probe on port 80 by checking that the CNF is listening on port 80,
e.g. with the command "ss -tulnp"

3 Change the configuration to answer liveness probes on port 8080 instead of 80

4 Restart the service

5 Check that the service now listens on port 8080, e.g. with the command "ss -tunlp"

6 Observe the events section displayed through the command "kubectl describe pod <pod name>".
See that the pod doesn't answer to liveness probes and is restarted

7 After some time, check that the pod has restarted and listens to port 80 again. Take note that the RESTARTS
counter was increased by 1

Table 40: Heal CNF Test Procedure

EANTC Test Report: VMware CNF Performance—page 44

CNF LCM Summary

When comparing the results, both platforms show the
same procedure complexity. Both systems completed
all request types within less than a minute, which is
sufficient for almost all from our point of view In seven
test cases, VMware Telco Cloud Platform RAN took a
few more seconds than Red Hat OpenShift to execute
the same operation. In two test cases, both platforms
were tested with the same execution time. Both plat-
forms used Helm to execute the operation, so one
would assume that the times would be almost the
same. The longer execution time on VMware Telco
Cloud Platform RAN comes from processes in the
additional layer of abstraction. When the user triggers
CNF operations on Telco Cloud Automation, Telco
Cloud Automation creates asynchronous sub-tasks. The
concrete tasks depend on the CNF operation, but the
two main tasks are the grant verification and carrying
out the operation via a Helm service (if the operation is
granted). The grant process determines through static
and dynamic validations whether the requested opera-
tion can be executed on the current state of the Kuber-
netes cluster. Some of the sub-tasks are performed by
sub-components of Telco Cloud Automation, so the last
step for Telco Cloud Automation is to wait for all tasks
to be completed and synchronize with its sub-
components.

A general conclusion on which platform performs
better regarding CNF LCM cannot be drawn from
these results alone. Additional factors that were not
covered in this testing need to be considered. First, the
execution time for most LCM operations depends on
the complexity of the CNF or the operation itself. For
example, "Update CNF" depends on the update itself,
e.g., the size of the new image, "Onboard CNF"
depends on the size of the CSAR file, "Instantiate
CNF" depends on the CNF components and hardware
requirements, and "Scale CNF" depends on the
number of replicas. The tests were conducted on a
simple Nginx CNF, a web server without specific
hardware requirements. Second, while in OpenShift,
the difficulty of executing specific LCM operations
increases with the complexity of the CNF, it does not
change for VMware Telco Cloud Platform RAN. The
test case "Node customization" illustrates this point
well.

Considering all this, the Red Hat platform performed
slightly faster in the tested scenarios, but the VMware
platform removed potential manual configuration steps
from the user. The advantage of automated hardware
configurations is that they are less prone to error and
reduce the potential for human errors that lead to long
troubleshooting cycles and, in some cases outages,
and the user does not need to know details about the
infrastructure to get the desired configuration.

Conclusion

EANTC’s extensive tests of VMware Telco Cloud
Platform RAN and Red Hat OpenShift compared the
functionality, day-zero, and performance of the two
solutions. The validation specifically focused on the
requirements for disaggregated RAN solutions which
are intensively evaluated by mobile operators these
days.

In general, both solutions performed very well and
passed each of the tests. We did not come across any
knock-out criteria in the result sets. That said, each of
the two vendors exhibited specific strengths: VMware
Telco Cloud Platform RAN excelled in reliable low-
latency performance and user-friendly GUI-based
management procedures, removing manual configura-
tion steps and potential user errors. Red Hat OpenShift
exhibited efficient command-line-based provisioning
and fast command-line actions for CNF operations.

EANTC has not witnessed any performance overhead
of the hypervisor included in VMware’s Telco Cloud
Platform RAN solution in our tests.

This report is copyright © 2022 EANTC AG.

While every reasonable effort has been made to ensure
accuracy and completeness of this publication, the authors
assume no responsibility for the use of any information
contained herein. All brand names and logos mentioned here
are registered trademarks of their respective companies.

EANTC AG
Salzufer 14, 10587 Berlin, Germany

info@eantc.de, https://www.eantc.de/
[v1.0 20220803]

