

Ship new features and applications
in days or hours, instead of months

Stop building IT infrastructure,
start building your business

Sleep better at night with the platform
that keeps your services running

Cloud Native
At Your Service

Begin your
Cloud Native
journey today at
pivotal.io/platform

Trusted by Fortune 100 enterprises including
Allstate, Verizon, Daimler AG, GE, Philips,
and more, Pivotal Cloud Foundry® is the
comprehensive Cloud Native platform
for building your future.

http://pivotal.io/platform/pcf-tutorials/getting-started-with-pivotal-cloud-foundry

Kevin Hoffman

Beyond the
Twelve-Factor App

Exploring the DNA of Highly Scalable,
Resilient Cloud Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-94401-1

[LSI]

Beyond the Twelve-Factor App
by Kevin Hoffman

Copyright © 2016 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Brian Anderson
Production Editor: Melanie Yarbrough
Copyeditor: Amanda Kersey

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

April 2016: First Edition

Revision History for the First Edition
2016-04-26: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Beyond the
Twelve-Factor App, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com

Table of Contents

Foreword. v

Preface. vii

1. One Codebase, One Application. 1

2. API First. 5
Why API First? 5
Building Services API First 6

3. Dependency Management. 9
Reliance on the Mommy Server 9
Modern Dependency Management 10

4. Design, Build, Release, Run. 13
Design 14
Build 14
Release 15
Run 16

5. Configuration, Credentials, and Code. 17
Externalizing Configuration 19

6. Logs. 21

7. Disposability. 23

iii

8. Backing Services. 25

9. Environment Parity. 29
Time 30
People 30
Resources 31
Every Commit Is a Candidate for Deployment 32

10. Administrative Processes. 33

11. Port Binding. 37
Avoiding Container-Determined Ports 37
Avoiding Micromanaging Port Assignments 38
Applications are Backing Services 38

12. Stateless Processes. 39
A Practical Definition of Stateless 39
The Share-Nothing Pattern 40
Data Caching 41

13. Concurrency. 43

14. Telemetry. 45

15. Authentication and Authorization. 49

16. A Word on Cloud Native. 51
What Is Cloud Native? 51
Why Cloud Native? 52
The Purist vs the Pragmatist 54

17. Summary. 57

iv | Table of Contents

Foreword

Understanding how to design systems to run in the cloud has never
been more important than it is today. Cloud computing is rapidly
transitioning from a niche technology embraced by startups and
tech-forward companies to the foundation upon which enterprise
systems build their future. In order to compete in today’s market‐
place, organizations large and small are embracing cloud architec‐
tures and practices.

At Pivotal, my job is to ensure customers succeed with Cloud Foun‐
dry. On a typical engagement, I focus mostly on working with oper‐
ations teams to install and configure the platform, as well as training
them to manage, maintain, and monitor it. We deliver a production-
grade, fully automated cloud application runtime and hand it over
to developers to seize the benefits of the cloud. But how is this
achieved? Developers are often left with many questions about the
disciplines and practices they should adopt to build applications
designed to take advantage of everything the cloud offers. Beyond
the Twelve-Factor App answers those questions and more.

Whether you are building new applications for the cloud or seeking
to migrate existing applications, Beyond the Twelve-Factor App is an
essential guide that should be on the shelf of every developer and
architect targeting the cloud.

— Dan Nemeth, Advisory
Solutions Architect, Pivotal

v

Preface

Buzzwords are the result of our need to build a shared language that
allows us to communicate about complex topics without having to
stop and do a review. Shared terminology isn’t just convenient, it’s
essential for decision making, architecture design, debates, and even
just friendly discussion.

The Twelve-Factor Application is one of these phrases that is gaining
traction and is being passed around during planning meetings, dis‐
cussions over coffee, and architecture review sessions.

The problem with shared context and common language like buzz‐
words is that not everyone has the same understanding. Twelve-
Factor to one person might mean something entirely different to
someone else, and many readers of this book might not have any
exposure to the 12 factors.

The goal of this book is to provide detail on what exactly Twelve-
Factor applications are so that hopefully everyone who has read the
book shares the same understanding of the factors. Additionally, this
book aims to take you beyond the 12 factors, expanding on the origi‐
nal guidelines to accommodate modern thinking on building appli‐
cations that don’t just function in the cloud, but thrive.

The Original 12 Factors
In the early days of the cloud, startups appeared that offered some‐
thing with which few developers or companies had any experience.
It was a new level of abstraction that offered IT professionals free‐
dom from a whole category of nonfunctional requirements. To

vii

1 For many people, cloud native and 12 factor are synonymous. One of the goals of this
book is to illustrate that there is more to being cloud native than just adhering to the
original 12 factors. In Heroku’s case, cloud native really meant “works well on Heroku.”

some, this was a dark and scary frontier. Others embraced this new
frontier as if all of their prayers had been answered.

One of the early pioneers laying claim to territory in the public
cloud market was Heroku. It offered to host your application for
you, and all you had to do was build your application and push it via
git, and then the cloud took over, and your application magically
worked online.

Heroku’s promise was that you no longer even needed to worry
about infrastructure; all you had to do was build your application in
a way that took advantage of the cloud, and everything would be just
fine.

The problem was that most people simply had no idea how to build
applications in a way that was “cloud friendly.” As I will discuss
throughout this book, cloud-friendly applications don’t just run in
the cloud; they embrace elastic scalability, ephemeral filesystems,
statelessness, and treating everything as a service. Applications built
this way can scale and deploy rapidly, allowing their development
teams to add new features and react quickly to market changes.

Many of the cloud anti-patterns still being made today will be dis‐
cussed throughout this book. Early adopters didn’t know what you
could and could not do with clouds, nor did they know the design
and architecture considerations that went into building an applica‐
tion destined for the cloud. This was a new breed of application, one
for which few people had a frame of reference.

To solve this problem (and to increase their own platform adop‐
tion), a group of people within Heroku developed the 12 Factors in
2012. This is essentially a manifesto describing the rules and guide‐
lines that needed to be followed to build a cloud-native1 application.

The goal of these 12 factors was to teach developers how to build
cloud-ready applications that had declarative formats for automation
and setup, had a clean contract with the underlying operating sys‐
tem, and were dynamically scalable.

viii | Preface

http://heroku.com
http://12factor.net

These 12 factors were used as guidelines to help steer development
of new applications, as well as to create a scorecard with which to
measure existing applications and their suitability for the cloud:

Codebase
One codebase tracked in revision control, many deploys

Dependencies
Explicitly declare and isolate dependencies

Configuration
Store configuration in the environment

Backing Services
Treat backing services as attached resources

Build, release, run
Strictly separate build and run stages

Processes
Execute the app as one or more stateless processes

Port binding
Export services via port binding

Concurrency
Scale out via the process model

Disposability
Maximize robustness with fast startup and graceful shutdown

Dev/prod parity
Keep development, staging, and production as similar as
possible

Logs
Treat logs as event streams

Admin processes
Run admin/management tasks as one-off processes

These factors serve as an excellent introduction to the discipline of
building and deploying applications in the cloud and preparing
teams for the rigor necessary to build a production pipeline around
elastically scaling applications. However, technology has advanced
since their original creation, and in some situations, it is necessary

Preface | ix

to elaborate on the initial guidelines as well as add new guidelines
designed to meet modern standards for application development.

Beyond the Twelve-Factor Application
In this book, I present a new set of guidelines that builds on the
original 12 factors. In some cases, I have changed the order of the
factor, indicating a deliberate sense of priority. In other cases, I have
added factors such as telemetry, security, and the concept of “API
first,” that should be considerations for any application that will be
running in the cloud. In addition, I may add caveats or exceptions to
the original factors that reflect today’s best practices.

Taking into account the changes in priority order, definition, and
additions, this book describes the following facets of cloud-native
applications:

1. One codebase, one application
2. API first
3. Dependency management
4. Design, build, release, and run
5. Configuration, credentials, and code
6. Logs
7. Disposability
8. Backing services
9. Environment parity

10. Administrative processes
11. Port binding
12. Stateless processes
13. Concurrency
14. Telemetry
15. Authentication and authorization

12factor.net provided an excellent starting point, a yardstick to
measure applications along an axis of cloud suitability. As you will
see throughout the book, these factors often feed each other. Prop‐
erly following one factor makes it easier to follow another, and so
on, throughout a virtuous cycle. Once people get caught up in this
cycle, they often wonder how they ever built applications any other
way.

Whether you are developing a brand new application without the
burden of a single line of legacy code or you are analyzing an enter‐

x | Preface

http://12factor.net

prise portfolio with hundreds of legacy applications, this book will
give you the guidance you need to get ready for developing cloud-
native applications.

Preface | xi

1 An immutable release is a build artifact that does not change. As will be discussed
throughout the book, this kind of artifact is required for testing, ensuring dev/prod
parity, and predicting deployment results.

2 See Building Microservices by Sam Newman (O’Reilly) for more guidance on splitting
monoliths.

CHAPTER 1

One Codebase, One Application

The first of the original factors, codebase, originally stated: “One
codebase tracked in revision control, many deploys.”

When managing myriad aspects of a development team, the organi‐
zation of code, artifacts, and other apparent minutia is often consid‐
ered a minor detail or outright neglected. However, proper
application of discipline and organization can mean the difference
between a one-month production lead time and a one-day lead
time.

Cloud-native applications must always consist of a single codebase
that is tracked in a version control system. A codebase is a source
code repository or a set of repositories that share a common root.

The single codebase for an application is used to produce any num‐
ber of immutable releases1 that are destined for different environ‐
ments. Following this particular discipline forces teams to analyze
the seams of their application and potentially identify monoliths
that should be split off into microservices.2 If you have multiple
codebases, then you have a system that needs to be decomposed, not
a single application.

1

http://shop.oreilly.com/product/0636920033158.do

The simplest example of violating this guideline is where your appli‐
cation is actually made of up a dozen or more source code reposito‐
ries. This makes it nearly impossible to automate the build and
deploy phases of your application’s life cycle.

Another way this rule is often broken is when there is a main appli‐
cation and a tightly coupled worker (or an en-queuer and de-
queuer, etc.) that collaborate on the same units of work. In scenarios
like this, there are actually multiple codebases supporting a single
application, even if they share the same source repository root. This is
why I think it is important to note that the concept of a codebase
needs to imply a more cohesive unit than just a repository in your
version control system.

Conversely, this rule can be broken when one codebase is used to
produce multiple applications. For example, a single codebase with
multiple launch scripts or even multiple points of execution within a
single wrapper module. In the Java world, EAR files are a gateway
drug to violating the one codebase rule. In the interpreted language
world (e.g., Ruby), you might have multiple launch scripts within
the same codebase, each performing an entirely different task.

Multiple applications within a single codebase are often a sign that
multiple teams are maintaining a single codebase, which can get
ugly for a number of reasons. Conway’s law states that the organiza‐
tion of a team will eventually be reflected in the architecture of the
product that team builds. In other words, dysfunction, poor organi‐
zation, and lack of discipline among teams usually results in the
same dysfunction or lack of discipline in the code.

In situations where you have multiple teams and a single codebase,
you may want to take advantage of Conway’s law and dedicate
smaller teams to individual applications or microservices.

When looking at your application and deciding on opportunities to
reorganize the codebase and teams onto smaller products, you may
find that one or more of the multiple codebases contributing to your
application could be split out and converted into a microservice or
API that can be reused by multiple applications.

In other words, one codebase, one application does not mean you’re
not allowed to share code across multiple applications; it just means
that the shared code is yet another codebase.

2 | Chapter 1: One Codebase, One Application

https://en.wikipedia.org/wiki/Conway%27s_law

3 Bundled (or vendored) dependencies and dependency management are discussed in
Chapter 3.

This also doesn’t mean that all shared code needs to be a microser‐
vice. Rather, you should evaluate whether the shared code should be
considered a separately released product that can then be vendored3

into your application as a dependency.

One Codebase, One Application | 3

1 A traditional dependency graph looks very hierarchical, where A relies on B, which
relies on C. In modern service ecosystems, the graphs are much flatter and often far
more complicated.

CHAPTER 2

API First

This chapter discusses an aspect of modern application development
not covered by the original 12 factors. Regardless of the type of
application you’re developing, chances are if you’re developing it for
the cloud, then your ultimate goal is to have that application be a
participant in an ecosystem of services.

Why API First?
Assume for a moment that you have fully embraced all of the other
factors discussed in this book. You are building cloud-native appli‐
cations, and after code gets checked in to your repository, tests are
automatically run, and you have release candidates running in a lab
environment within minutes. The world is a beautiful place, and
your test environment is populated by rainbows and unicorns.

Now another team in your organization starts building services with
which your code interacts. Then, another team sees how much fun
you’re all having, and they get on board and bring their services.
Soon you have multiple teams all building services with horizontal
dependencies1 that are all on a different release cadence.

What can happen if no discipline is applied to this is a nightmare of
integration failures. To avoid these integration failures, and to for‐

5

mally recognize your API as a first-class artifact of the development
process, API first gives teams the ability to work against each other’s
public contracts without interfering with internal development pro‐
cesses.

Even if you’re not planning on building a service as part of a larger
ecosystem, the discipline of starting all of your development at the
API level still pays enough dividends to make it worth your time.

Building Services API First
These days, the concept of mobile first is gaining a lot of traction. It
refers to the notion that from the very beginning of your project,
everything you do revolves around the idea that what you are build‐
ing is a product to be consumed by mobile devices. Similarly, API
first means that what you are building is an API to be consumed by
client applications and services.

As I mentioned at the beginning of this book, cloud native is more
than just a list of rules or guidelines. It is a philosophy and, for some
of us, a way of life. As such, there are guidelines for cloud native that
might not necessarily map to specific physical requirements
imposed by the cloud but that are vitally important to the habits of
people and organizations building modern applications that will be
ready for future changes to the cloud landscape.

Built into every decision you make and every line of code you write
is the notion that every functional requirement of your application
will be met through the consumption of an API. Even a user inter‐
face, be it web or mobile, is really nothing more than a consumer of
an API.

By designing your API first, you are able to facilitate discussion with
your stakeholders (your internal team, customers, or possibly other
teams within your organization who want to consume your API)
well before you might have coded yourself past the point of no
return. This collaboration then allows you to build user stories,
mock your API, and generate documentation that can be used to
further socialize the intent and functionality of the service you’re
building.

All of this can be done to vet (and test!) your direction and plans
without investing too much in the plumbing that supports a given
API.

6 | Chapter 2: API First

2 Continuous integration servers can be used to exercise public APIs and integrations
between multiple services. Examples of CI servers include Jenkins, Team City, and
Wercker.

These days, you’ll find that there are myriad tools and standards to
support API-first development. There is a standard format for API
specification that uses a markdown-like syntax called API Blueprint.
This format is far more human readable than JSON (or WSDL, a
relic that belongs in a museum) and can be used by code to generate
documentation and even server mocks, which are invaluable in test‐
ing service ecosystems. Tool suites like Apiary provide things like
GitHub integration and server mocks. If someone wants to build a
client to your API, all you have to do is give her a link to your appli‐
cation on Apiary, where she can read your API Blueprint, see exam‐
ple code for consuming your service, and even execute requests
against a running server mock.

In other words, there is absolutely no excuse for claiming that API
first is a difficult or unsupported path. This is a pattern that can be
applied to noncloud software development, but it is particularly well
suited to cloud development in its ability to allow rapid prototyping,
support a services ecosystem, and facilitate the automated deploy‐
ment testing and continuous delivery pipelines that are some of the
hallmarks of modern cloud-native application development.

This pattern is an extension of the contract-first development pat‐
tern, where developers concentrate on building the edges or seams
of their application first. With the integration points tested continu‐
ously via CI servers,2 teams can work on their own services and still
maintain reasonable assurance that everything will work together
properly.

API first frees organizations from the waterfall, deliberately engi‐
neered system that follows a preplanned orchestration pattern, and
allows products to evolve into organic, self-organizing ecosystems
that can grow to handle new and unforeseen demands.

If you’ve built a monolith, or even an ecosystem of monoliths, that
all interact in tightly coupled ways, then your ability to adapt to new
needs or create new consumers of existing functionality is hindered.
On the other hand, if you adopt the mentality that all applications
are just backing services (more on those later in the book), and that
they should be designed API-first, then your system is free to grow,

Building Services API First | 7

https://apiblueprint.org
https://apiary.io

3 Check out ProgrammableWeb and API First, as well as the documentation at Apiary
and API Blueprint, for more details on the API-first lifestyle.

adapt to new load and demand, and accommodate new consumers
of existing services without having to stop the world to re-architect
yet another closed system.

Live, eat, and breathe the API-first3 lifestyle, and your investment
will pay off exponentially.

8 | Chapter 2: API First

http://bit.ly/1OTzSMX
http://api-first.com

1 The phrase has dubious origins, but pulling oneself up by one’s own bootstraps is the
leading candidate for the origin of the use of this phrase. In short, bootstrapping
involves carrying with you everything you need. Bootstrapping is the exemplar for hav‐
ing no external dependencies.

CHAPTER 3

Dependency Management

The second of the original 12 factors, dependencies, refers to the
management of application dependencies: how, where, and when
they are managed.

Reliance on the Mommy Server
In classic enterprise environments, we’re used to the concept of the
mommy server. This is a server that provides everything that our
applications need and takes care of their every desire, from satisfy‐
ing the application’s dependencies to providing a server in which to
host the app. The inverse of a mommy server, of course, is the
embedded, or bootstrapped,1 server, where everything we need to
run our application is contained within a single build artifact.

The cloud is a maturation of the classic enterprise model, and as
such, our applications need to grow up to take advantage of the
cloud. Applications can’t assume that a server or application con‐
tainer will have everything they need. Instead, apps need to bring
their dependencies with them. Migrating to the cloud, maturing
your development practices, means weaning your organization off
the need for mommy servers.

9

2 Isolated dependencies are dependencies that reside with, or near, the application that
needs them rather than in some central repository or shared location.

If you’ve been building applications in languages or frameworks that
don’t rely on the container model (Ruby, Go, Java with Spring Boot,
etc.), then you’re already ahead of the game, and your code remains
blissfully unaware of containers or mommy servers.

Modern Dependency Management
Most contemporary programming languages have some facility for
managing application dependencies. Maven and Gradle are two of
the most popular tools in the Java world, while NuGet is popular
for .NET developers, Bundler is popular for Ruby, and godeps is
available for Go programmers. Regardless of the tool, these utilities
all provide one set of common functionality: they allow developers
to declare dependencies and let the tool be responsible for ensuring
that those dependencies are satisfied.

Many of these tools also have the ability to isolate dependencies.2

This is done by analyzing the declared dependencies and bundling
(also called vendoring) those dependencies into some sub-structure
beneath or within the application artifact itself.

A cloud-native application never relies on implicit existence of
system-wide packages. For Java, this means that your applications
cannot assume that a container will be managing the classpath on
the server. For .NET, this means that your application cannot rely on
facilities like the Global Assembly Cache. Ruby developers cannot
rely on gems existing in a central location. Regardless of language,
your code cannot rely on the pre-existence of dependencies on a
deployment target.

Not properly isolating dependencies can cause untold problems. In
some of the most common dependency-related problems, you could
have a developer working on version X of some dependent library
on his workstation, but version X+1 of that library has been
installed in a central location in production. This can cause every‐
thing from runtime failures all the way up to insidious and difficult
to diagnose subtle failures. If left untreated, these types of failures
can bring down an entire server or cost a company millions through
undiagnosed data corruption.

10 | Chapter 3: Dependency Management

3 I don’t intend to start a religious war over languages. I only assert that the simplest
applications are often the easiest to maintain, and containers add a level of complexity
that often leads to more effort spent in diagnosis than development.

Properly managing your application’s dependencies is all about the
concept of repeatable deployments. Nothing about the runtime into
which an application is deployed should be assumed that isn’t auto‐
mated. In an ideal world, the application’s container is bundled (or
bootstrapped, as some frameworks called it) inside the app’s release
artifact—or better yet, the application has no container at all.3

However, for some enterprises, it just isn’t practical (or possible,
even) to embed a server or container in the release artifact, so it has
to be combined with the release artifact, which, in many cloud envi‐
ronments like Heroku or Cloud Foundry, is handled by something
called a buildpack.

Applying discipline to dependency management will bring your
applications one step closer to being able to thrive in cloud environ‐
ments.

Modern Dependency Management | 11

CHAPTER 4

Design, Build, Release, Run

Factor 5, build, release, run, of the original 12 factors, calls for the
strict separation of the build and run stages of development. This is
excellent advice, and failing to adhere to this guideline can set you
up for future difficulties. In addition to the twelve-factor build,
release, run trio, the discrete design step is crucial.

In Figure 4-1, you can see an illustration of the flow from design to
run. Note that this is not a waterfall diagram: the cycle from design
through code and to run is an iterative one and can happen in as
small or large a period of time as your team can handle. In cases
where teams have a mature CI/CD pipeline, it could take a matter of
minutes to go from design to running in production.

Figure 4-1. The design, build, release, run cycle

A single codebase is taken through the build process to produce a
compiled artifact. This artifact is then merged with configuration
information that is external to the application to produce an immut‐

13

1 For a number of reasons, WAR (and EAR) files are looked upon as less cloud native
than JAR files, as they imply reliance upon an externally provided server or container.

able release. The immutable release is then delivered to a cloud envi‐
ronment (development, QA, production, etc.) and run. The key
takeaway from this chapter is that each of the following deployment
stages is isolated and occurs separately.

Design
In the world of waterfall application development, we spend an
inordinate amount of time designing an application before a single
line of code is written. This type of software development life cycle
is not well suited to the demands of modern applications that need
to be released as frequently as possible.

However, this doesn’t mean that we don’t design at all. Instead, it
means we design small features that get released, and we have a
high-level design that is used to inform everything we do; but we
also know that designs change, and small amounts of design are part
of every iteration rather than being done entirely up front.

The application developer best understands the application depen‐
dencies, and it is during the design phase that arrangements are
made to declare dependencies as well as the means by which those
dependencies are vendored, or bundled, with the application. In
other words, the developer decides what libraries the application is
going to use, and how those libraries are eventually going to be bun‐
dled into an immutable release.

Build
The build stage is where a code repository is converted into a ver‐
sioned, binary artifact. It is during this stage that the dependencies
declared during the design phase are fetched and bundled into the
build artifact (often just simply called a “build”). In the Java world, a
build might be a WAR1 or a JAR file, or it could be a ZIP file or a
binary executable for other languages and frameworks.

Builds are ideally created by a Continuous Integration server, and
there is a 1:many relationship between builds and deployments. A
single build should be able to be released or deployed to any number

14 | Chapter 4: Design, Build, Release, Run

of environments, and each of those unmodified builds should work
as expected. The immutability of this artifact and adherence to the
other factors (especially environment parity) give you confidence
that your app will work in production if it worked in QA.

If you ever find yourself troubleshooting “works on my machine”
problems, that is a clear sign that the four stages of this process are
likely not as separate as they should be. Forcing your team to use a
CI server may often seem like a lot of upfront work, but once run‐
ning, you’ll see that the “one build, many deploys” pattern works.

Once you have confidence that your codebase will work anywhere it
should, and you no longer fear production releases, you will start to
see some of the truly amazing benefits of adopting the cloud-native
philosophy, like continuous deployment and releases that happen
hours after a checkin rather than months.

Release
In the cloud-native world, the release is typically done by pushing to
your cloud environment. The output of the build stage is combined
with environment- and app-specific configuration information to
produce another immutable artifact, a release.

Releases need to be unique, and every release should ideally be tag‐
ged with some kind of unique ID, such as a timestamp or an auto-
incrementing number. Thinking back to the 1:many relationship
between builds and releases, it makes sense that releases should not
be tagged with the build ID.

Let’s say that your CI system has just built your application and
labeled that artifact build-1234. The CI system might then release
that application to the dev, staging, and production environments.
The scheme is up to you, but each of those releases should be unique
because each one combined the original build with environment-
specific configuration settings.

If something goes wrong, you want the ability to audit what you
have released to a given environment and, if necessary, to roll back
to the previous release. This is another key reason for keeping relea‐
ses both immutable and uniquely identified.

There are a million different types of problems that arise from an
organization’s inability to reproduce a release as it appeared at one

Release | 15

point in the past. By having separate build and release phases, and
storing those artifacts, rollback and historical auditing is a piece of
cake.

Run
The run phase is also typically done by the cloud provider (although
developers need be able to run applications locally). The details vary
among providers, but the general pattern is that your application is
placed within some kind of container (Docker, Garden, Warden,
etc.), and then a process is started to launch your application.

It’s worth noting that ensuring that a developer can run an applica‐
tion locally on her workstation while still allowing it to be deployed
to multiple clouds via CD pipeline is often a difficult problem to
solve. It is worth solving, however, because developers need to feel
unhindered while working on cloud-native applications.

When an application is running, the cloud runtime is then responsi‐
ble for keeping it alive, monitoring its health, and aggregating its
logs, as well as a mountain of other administrative tasks like
dynamic scaling and fault tolerance.

Ultimately, the goal of this guidance is to maximize your delivery
speed while keeping high confidence through automated testing and
deployment. We get some agility and speed benefits out of the box
when working on the cloud; but if we follow the guidelines in this
chapter, we can squeeze every ounce of speed and agility out of our
product release pipeline without sacrificing our confidence in our
application’s ability to do its job.

16 | Chapter 4: Design, Build, Release, Run

CHAPTER 5

Configuration, Credentials,
and Code

Factor 3 of the original 12 factors only states that you should store
configuration in the environment. I believe the configuration guid‐
ance should be more explicit.

Configuration Chemistry

Treat configuration, credentials, and code as volatile
substances that explode when combined.

That may sound a bit harsh, but failing to follow this rule will likely
cause you untold frustration that will only escalate the closer you get
to production with your application.

In order to be able to keep configuration separate from code and
credentials, we need a very clear definition of configuration. Config‐
uration refers to any value that can vary across deployments (e.g.,
developer workstation, QA, and production). This could include:

• URLs and other information about backing services, such as
web services, and SMTP servers

• Information necessary to locate and connect to databases
• Credentials to third-party services such as Amazon AWS or

APIs like Google Maps, Twitter, and Facebook

17

• Information that might normally be bundled in properties files
or configuration XML, or YML

Configuration does not include internal information that is part of
the application itself. Again, if the value remains the same across all
deployments (it is intentionally part of your immutable build arti‐
fact), then it isn’t configuration.

Credentials are extremely sensitive information and have absolutely
no business in a codebase. Oftentimes, developers will extract cre‐
dentials from the compiled source code and put them in properties
files or XML configuration, but this hasn’t actually solved the prob‐
lem. Bundled resources, including XML and properties files, are still
part of the codebase. This means credentials bundled in resource
files that ship with your application are still violating this rule.

Treat Your Apps Like Open Source

A litmus test to see if you have properly externalized
your credentials and configuration is to imagine the
consequences of your application’s source code being
pushed to GitHub.

If the general public were to have access to your code, have you
exposed sensitive information about the resources or services on
which your application relies? Can people see internal URLs, cre‐
dentials to backing services, or other information that is either sen‐
sitive or irrelevant to people who don’t work in your target
environments?

If you can open source your codebase without exposing sensitive or
environment-specific information, then you’ve probably done a
good job isolating your code, configuration, and credentials.

It should be immediately obvious why we don’t want to expose cre‐
dentials, but the need for external configuration is often not as obvi‐
ous. External configuration supports our ability to deploy
immutable builds to multiple environments automatically via CD
pipelines and helps us maintain development/production environ‐
ment parity.

18 | Chapter 5: Configuration, Credentials, and Code

Externalizing Configuration
It’s one thing to say that your application’s configuration should be
externalized, but it’s a whole different matter to actually do it. If
you’re working with a Java application, you might be bundling your
release artifact with properties files. Other types of applications and
languages tend to favor YAML files, while .NET applications tradi‐
tionally get configuration from XML-based web.config and
machine.config files.

You should consider all of these things to be anti-patterns for the
cloud. All of these situations prevent you from varying configura‐
tion across environments while still maintaining your immutable
release artifact.

A brute-force method for externalizing your configuration would be
to get rid of all of your configuration files and then go back through
your codebase and modify it to expect all of those values to be sup‐
plied by environment variables. Environment variables are consid‐
ered the best practice for externalized configuration, especially on
cloud platforms like Cloud Foundry or Heroku.

Depending on your cloud provider, you may be able to use its
facility for managing backing services or bound services to expose
structured environment variables containing service credentials and
URLs to your application in a secure manner.

Another highly recommended option for externalizing configura‐
tion is to actually use a server product designed to expose configura‐
tion. One such open source server is Spring Cloud Configuration
Server, but there are countless other products available. One thing
you should look for when shopping for a configuration server prod‐
uct is support for revision control. If you are externalizing your con‐
figuration, you should be able to secure data changes as well as
obtain a history of who made what changes and when. It is this
requirement that makes configuration servers that sit on top of ver‐
sion control repositories like git so appealing.

Externalizing Configuration | 19

CHAPTER 6

Logs

In this chapter, I discuss the 11th factor, logs.

Logs should be treated as event streams, that is, logs are a sequence
of events emitted from an application in time-ordered sequence.
The key point about dealing with logs in a cloud-native fashion is, as
the original 12 factors indicate, a truly cloud-native application
never concerns itself with routing or storage of its output stream.

Sometimes this concept takes a little bit of getting used to. Applica‐
tion developers, especially those working in large enterprises, are
often accustomed to rigidly controlling the shape and destination of
their logs. Configuration files or config-related code set up the loca‐
tion on disk where the log files go, log rotation and rollover policies
to deal with log file size and countless other minutiae.

Cloud applications can make no assumptions about the file system
on which they run, other than the fact that it is ephemeral. A cloud-
native application writes all of its log entries to stdout and stderr.
This might scare a lot of people, fearing the loss of control that this
implies.

You should consider the aggregation, processing, and storage of logs
as a nonfunctional requirement that is satisfied not by your applica‐
tion, but by your cloud provider or some other tool suite running in
cooperation with your platform. You can use tools like the ELK
stack (ElasticSearch, Logstash, and Kibana), Splunk, Sumologic, or
any number of other tools to capture and analyze your log emis‐
sions.

21

Embracing the notion that your application has less work to do in
the cloud than it does in the enterprise can be a liberating experi‐
ence.

When your applications are decoupled from the knowledge of log
storage, processing, and analysis, your code becomes simpler, and
you can rely on industry-standard tools and stacks to deal with logs.
Moreover, if you need to change the way in which you store and
process logs, you can do so without modifying the application.

One of the many reasons your application should not be controlling
the ultimate destiny of its logs is due to elastic scalability. When you
have a fixed number of instances on a fixed number of servers, stor‐
ing logs on disk seems to make sense. However, when your applica‐
tion can dynamically go from 1 running instance to 100, and you
have no idea where those instances are running, you need your
cloud provider to deal with aggregating those logs on your behalf.

Simplifying your application’s log emission process allows you to
reduce your codebase and focus more on your application’s core
business value.

22 | Chapter 6: Logs

CHAPTER 7

Disposability

Disposability is the ninth of the original 12 factors.

On a cloud instance, an application’s life is as ephemeral as the infra‐
structure that supports it. A cloud-native application’s processes are
disposable, which means they can be started or stopped rapidly. An
application cannot scale, deploy, release, or recover rapidly if it can‐
not start rapidly and shut down gracefully. We need to build applica‐
tions that not only are aware of this, but also embrace it to take full
advantage of the platform.

Those used to developing in the enterprise world with creatures like
application containers or large web servers may be used to
extremely long startup times measured in minutes. Long startup
times aren’t limited to just legacy or enterprise applications. Soft‐
ware written in interpreted languages or just written poorly can take
too long to start.

If you are bringing up an application, and it takes minutes to get
into a steady state, in today’s world of high traffic, that could mean
hundreds or thousands of requests get denied while the application
is starting. More importantly, depending on the platform on which
your application is deployed, such a slow start-up time might
actually trigger alerts or warnings as the application fails its health
check. Extremely slow start-up times can even prevent your app
from starting at all in the cloud.

If your application is under increasing load, and you need to rapidly
bring up more instances to handle that load, any delay during

23

startup can hinder its ability to handle that load. If the app does not
shut down quickly and gracefully, that can also impede the ability to
bring it back up again after failure. Inability to shut down quickly
enough can also run the risk of failing to dispose of resources, which
could corrupt data.

Many applications are written such that they perform a number of
long-running activities during startup, such as fetching data to pop‐
ulate a cache or preparing other runtime dependencies. To truly
embrace cloud-native architecture, this kind of activity needs to be
dealt with separately. For example, you could externalize the cache
into a backing service so that your application can go up and down
rapidly without performing front-loaded operations.

24 | Chapter 7: Disposability

CHAPTER 8

Backing Services

Factor 4 states that you should treat backing services as bound resour‐
ces.

This sounds like good advice, but in order to follow this advice, we
need to know what backing services and bound resources are.

A backing service is any service on which your application relies for
its functionality. This is a fairly broad definition, and its wide scope
is intentional. Some of the most common types of backing services
include data stores, messaging systems, caching systems, and any
number of other types of service, including services that perform
line-of-business functionality or security.

When building applications designed to run in a cloud environment
where the filesystem must be considered ephemeral, you also need
to treat file storage or disk as a backing service. You shouldn’t be
reading to or writing from files on disk like you might with regular
enterprise applications. Instead, file storage should be a backing ser‐
vice that is bound to your application as a resource.

Figure 8-1 illustrates an application, a set of backing services, and
the resource bindings (connecting lines) for those services. Again,
note that file storage is an abstraction (e.g., Amazon S3) and not
direct OS-level access to a disk.

25

Figure 8-1. An application relying on backing services

A bound resource is really just a means of connecting your applica‐
tion to a backing service. A resource binding for a database might
include a username, a password, and a URL that allows your appli‐
cation to consume that resource.

I mentioned earlier in the book that we should have externalized
configuration (separated from credentials and code) and that our
release products must be immutable. Applying these other rules to
the way in which an application consumes backing services, we end
up with a few rules for resource binding:

• An application should declare its need for a given backing ser‐
vice but allow the cloud environment to perform the actual
resource binding.

• The binding of an application to its backing services should be
done via external configuration.

• It should be possible to attach and detach backing services from
an application at will, without re-deploying the application.

As an example, assume that you have an application that needs to
communicate with an Oracle database. You code your application
such that its reliance on a particular Oracle database is declared (the
means of this declaration is usually specific to a language or toolset).
The source code to the application assumes that the configuration of
the resource binding takes place external to the application.

26 | Chapter 8: Backing Services

This means that there is never a line of code in your application that
tightly couples the application to a specific backing service. Like‐
wise, you might also have a backing service for sending email, so
you know you will communicate with it via SMTP. But the exact
implementation of the mail server should have no impact on your
application, nor should your application ever rely on that SMTP
server existing at a certain location or with specific credentials.

Finally, one of the biggest advantages to treating backing services as
bound resources is that when you develop an application with this
in mind, it becomes possible to attach and detach bound resources
at will.

Let’s say one of the databases on which your application relies is not
responding. This causes a cascading failure effect and endangers
your application. A classic enterprise application would be helpless
and at the mercy of the flailing database.

Circuit Breakers
There is a pattern supported by libraries and cloud offerings called
the circuit breaker that will allow your code to simply stop commu‐
nicating with misbehaving backing services, providing a fallback or
failsafe path. Since a circuit breaker often resides in the binding
area between an application and its backing services, you must first
embrace backing services before you can take advantage of circuit
breakers.

A cloud-native application that has embraced the bound-resource
aspect of backing services has options. An administrator who noti‐
ces that the database is in its death throes can bring up a fresh
instance of that database and then change the binding of your appli‐
cation to point to this new database.

This kind of flexibility, resilience, and loose coupling with backing
services is one of the hallmarks of a truly modern, cloud-native
application.

Backing Services | 27

1 “Everywhere” here deserves some air quotes, or at least an asterisk. By everywhere, I
actually mean all of the approved target environments, not all possible environments in
all possible locations.

CHAPTER 9

Environment Parity

The tenth of the 12 factors, dev/prod parity, instructed us to keep all
of our environments as similar as possible.

While some organizations have done more evolving, many of us
have likely worked in an environment like this: the shared develop‐
ment environment has a different scaling and reliability profile than
QA, which is also different than production. The database drivers
used in dev and QA are different than production. Security rules,
firewalls, and other environmental configuration settings are also
different. Some people have the ability to deploy to some environ‐
ments, but not others. And finally, the worst part of it all, is people
fear deployment, and they have little to no confidence that if the
product works in one environment, it will work in another.

When discussing the design, build, release, run cycle, I brought up
the notion that the “It works on my machine” scenario is a cloud-
native anti-pattern. The same is true for other phrases we’ve all
heard right before losing hours or days to firefighting and trouble‐
shooting: “It works in QA” and “It works in prod.”

The purpose of applying rigor and discipline to environment parity
is to give your team and your entire organization the confidence
that the application will work everywhere.1

29

While the opportunities for creating a gap between environments
are nearly infinite, the most common culprits are usually:

• Time
• People
• Resources

Time
In many organizations, it could take weeks or months from the time
a developer checks in code until the time it reaches production. In
organizations like this, you often hear phrases like “the third-quarter
release” or “the December 20xx release.” Phrases like that are a warn‐
ing sign to anyone paying attention.

When such a time gap occurs, people often forget what changes
went into a release (even if there are adequate release notes), and
more importantly, the developers have forgotten what the code
looked like.

Adopting a modern approach, organizations should strive to reduce
the time gap from check-in to production, taking it from weeks or
months to minutes or hours. The end of a proper CD pipeline should
be the execution of automated tests in different environments until
the change is automatically pushed to production. With the cloud
supporting zero-downtime deployment, this pattern can become the
norm.

This idea often scares people, but once developers get into the habit
of coding knowing their code will be in production the same day as
a check in, discipline and code quality often skyrocket.

People
Historically, the types of people deploying applications were directly
related to the size of the company: in smaller companies, developers
are usually involved in everything from coding through deployment;
whereas in larger organizations, there are more handoffs, and more
people and teams involved.

The original 12 factors indicate that the developers and deployers
should be the same people, and this makes a lot of sense if your tar‐

30 | Chapter 9: Environment Parity

get is a black-box public cloud like Heroku; but this practice falls
down when your target is a private cloud within a large enterprise.

Further, I contend that humans should never be deploying applica‐
tions at all, at least not to any environment other than their own
workstations or labs. In the presence of a proper build pipeline, an
application will be deployed to all applicable environments automat‐
ically and can manually be deployed to other environments based
on security restrictions within the CI tool and the target cloud
instance.

In fact, even if you are targeting a public cloud provider, it is still
possible to use cloud-hosted CD tools like CloudBees or Wercker to
automate your testing and deployments.

While there are always exceptions, I contend that if you cannot
deploy with a single press of a button, or automatically in response
to certain events, then you’re doing it wrong.

Resources
When we’re sitting at our desks and we need to get something up
and running quickly, we all make compromises. The nature of these
compromises can leave us with a little bit of technical debt, or it can
set us up for catastrophic failure.

One such compromise is often in the way we use and provision
backing services. Our application might need a database, and we
know that in production we’ll be hooking it up to an Oracle or a
Postgres server, but it’s too much of a pain to set that up to be avail‐
able locally for development, so we’ll compromise and use an in-
memory database that is kind of like the target database.

Every time we make one of these compromises, we increase the gap
between our development and production environments; and the
wider that gap is, the less predictability we have about the way our
application works. As predictability goes down, so does reliability;
and if reliability goes down, we lose the ability to have a continuous
flow from code check-in to production deployment. It adds a sense
of brittleness to everything we do; and the worst part is, we usually
don’t know the consequences of increasing the dev/prod gap until
it’s too late.

Resources | 31

These days, developers have a nearly infinite set of tools at their dis‐
posal. There are so few good excuses left for not using the same
resource types across environments. Developers can be granted their
own instances of databases (this is especially easy if the database is
itself a brokered service on a PaaS instance), or if that’s not an
option, container tools like Docker can help make “prod like” envi‐
ronments more accessible to developer workstations.

As you evaluate every step in your development life cycle while
building cloud-native applications, every decision that increases the
functional gap between your deployment environments needs to be
flagged and questioned, and you need to resist the urge to mitigate
this problem by allowing your environments to differ, even if the
difference seems insignificant at the time.

Every Commit Is a Candidate for Deployment
It’s been discussed at length in this chapter, and you’ll see this partic‐
ular rule mentioned a number of times throughout this book. Every
commit is a candidate for deployment.

When building applications in a cloud-first way, every time you
commit a change, that change should end up in production after
some short period of time: basically the amount of time it takes to
run all tests, vet that change against all integration suites, and deploy
to pre-production environments.

If your development, testing, and production environments differ,
even in ways you might think don’t matter, then you lose the ability
to accurately predict how your code change is going to behave in
production. This confidence in the code heading to production is
essential for the kind of continuous delivery, rapid deployment that
allows applications and their development teams to thrive in the
cloud.

32 | Chapter 9: Environment Parity

1 Such shells are referred to as REPLs, which is an acronym for read-eval-print loop.

CHAPTER 10

Administrative Processes

The twelfth and final factor originally stated, “Run admin/manage‐
ment tasks as one-off processes.” I feel that this factor can be mis‐
leading. There is nothing inherently wrong with the notion of an
administrative process, but there are a number of reasons why you
should not use them.

The problem with the original twelve-factor recommendation is that
it was written in an opinionated way with a bias toward interpreted
languages like Ruby that support and encourage an interactive pro‐
gramming shell.1 Administrative processes were a feature the
authors wanted customers to utilize.

I contend that, in certain situations, the use of administrative pro‐
cesses is actually a bad idea, and you should always be asking your‐
self whether an administrative process is what you want, or whether
a different design or architecture would suit your needs better.
Examples of administrative processes that should probably be refac‐
tored into something else include:

• Database migrations
• Interactive programming consoles (REPLs)
• Running timed scripts, such as a nightly batch job or hourly

import
• Running a one-off job that executes custom code only once

33

2 Another chapter, Telemetry, actually covers more aspects of application monitoring
that even further negate the need for interactive access to a cloud process.

First, let’s take a look at the issue of timers (usually managed with
applications like Autosys or Cron). One thought might be to just
internalize the timer and have your application wake itself up every
n hours to perform its batch operations. On the surface, this looks
like a good fix, but what happens when there are 20 instances of
your application running in one availability zone, and another 15
running in the other zone? If they’re all performing the same batch
operation on a timer, you’re basically inciting chaos at this point,
and corrupt or duplicate data is going to be just one of the many ter‐
rible things that arise from this pattern.

Interactive shells are also problematic for a number of reasons, but
the largest of those is that even if it were possible to reach that shell,
you’d only be interacting with the temporary memory of a single
instance. If the application had been built properly as a stateless pro‐
cess, then I would argue that there is little to no value in exposing a
REPL for in-process introspection.2

Next, let’s take a look at the mechanics of triggering a timed or batch
administrative process. This usually happens with the execution of a
shell script by some external timer stimulus like cron or Autosys. In
the cloud, you can’t count on being able to invoke these commands,
so you need to find some other way to trigger ad hoc activity in your
application.

In Figure 10-1, you can see a classic enterprise architecture of an
application that has its regular duties and supports batch or timed
operation via the execution of shell scripts. This is clearly not going
to work in the cloud.

Figure 10-1. Classic enterprise app with batch components

34 | Chapter 10: Administrative Processes

There are several solutions to this problem, but the one that I have
found to be most appealing, especially when migrating the rest of
the application to be cloud native, is to expose a RESTful endpoint
that can be used to invoke ad hoc functionality, as shown in
Figure 10-2.

Figure 10-2. App refactored to expose REST endpoint for ad hoc func‐
tionality

Another alternative might be to extract the batch-related code from
the main application and create a separate microservice, which
would also resemble the architecture in the preceding diagram.

This still allows at-will invocation of timed functionality, but it
moves the stimulus for this action outside the application. Moreover,
this method also solves the at most once execution problem that you
would have from internal timers on dynamically scaled instances.
Your batch operation is handled once, by one of your application
instances, and you might then interact with other backing services to
complete the task. It should also be fairly straightforward to secure
the batch endpoint so that it can only be operated by authorized per‐
sonnel. Even more useful is that your batch operation can now scale
elastically and take advantage of all the other cloud benefits.

Even with the preceding solution, there are several application
architecture options that might make it completely unnecessary to
even expose batch or ad hoc functionality within your application.

If you still feel you need to make use of administrative processes,
then you should make sure you’re doing so in a way that is in line
with the features offered by your cloud provider. In other words,
don’t use your favorite programming language to spawn a new pro‐
cess to run your job; use something designed to run one-off tasks in
a cloud-native manner. In a situation like this, you could use a solu‐
tion like Amazon Web Services Lambdas, which are functions that
get invoked on-demand and do not require you to leave provisioned
servers up and running like you would in the preceding microser‐
vice example.

Administrative Processes | 35

When you look at your applications, whether they are green field or
brown field, just make sure you ask yourself if you really need
administrative processes, or if a simple change in architecture could
obviate them.

36 | Chapter 10: Administrative Processes

CHAPTER 11

Port Binding

Factor 7 states that cloud-native applications export services via port
binding.

Avoiding Container-Determined Ports
Web applications, especially those already running within an enter‐
prise, are often executed within some kind of server container. The
Java world is full of containers like Tomcat, JBoss, Liberty, and Web‐
Sphere. Other web applications might run inside other containers,
like Microsoft Internet Information Server (IIS).

In a noncloud environment, web applications are deployed to these
containers, and the container is then responsible for assigning ports
for applications when they start up.

One extremely common pattern in an enterprise that manages its
own web servers is to host a number of applications in the same
container, separating applications by port number (or URL hierar‐
chy) and then using DNS to provide a user-friendly facade around
that server. For example, you might have a (virtual or physical) host
called appserver, and a number of apps that have been assigned
ports 8080 through 8090. Rather than making users remember port
numbers, DNS is used to associate a host name like app1 with app
server:8080, app2 with appserver:8081, and so on.

37

Avoiding Micromanaging Port Assignments
Embracing platform-as-a-service here allows developers and devops
alike to not have to perform this kind of micromanagement any‐
more. Your cloud provider should be managing the port assignment
for you because it is likely also managing routing, scaling, high avail‐
ability, and fault tolerance, all of which require the cloud provider to
manage certain aspects of the network, including routing host
names to ports and mapping external port numbers to container-
internal ports.

The reason the original 12 factor for port binding used the word
export is because it is assumed that a cloud-native application is self-
contained and is never injected into any kind of external application
server or container.

Practicality and the nature of existing enterprise applications may
make it difficult or impossible to build applications this way. As a
result, a slightly less restrictive guideline is that there must always be
a 1:1 correlation between application and application server. In other
words, your cloud provider might support a web app container, but
it is extremely unlikely that it will support hosting multiple applica‐
tions within the same container, as that makes durability, scalability,
and resilience nearly impossible.

The developer impact of port binding for modern applications is
fairly straightforward: your application might run as http://local
host:12001 when on the developer’s workstation, and in QA it
might run as http://192.168.1.10:2000, and in production as
http://app.company.com. An application developed with exported
port binding in mind supports this environment-specific port bind‐
ing without having to change any code.

Applications are Backing Services
Finally, an application developed to allow externalized, runtime port
binding can act as a backing service for another application. This
type of flexibility, coupled with all the other benefits of running on a
cloud, is extremely powerful.

38 | Chapter 11: Port Binding

1 “Single” in this case refers to a single conceptual process. Some servers and frameworks
might actually require more than one process to support your application.

CHAPTER 12

Stateless Processes

Factor 6, processes, discusses the stateless nature of the processes
supporting cloud-native applications.

Applications should execute as a single, stateless process. As men‐
tioned earlier in the book, I have a strong opinion about the use of
administrative and secondary processes, and modern cloud-native
applications should each consist of a single,1 stateless process.

This slightly contradicts the original 12 factor discussion of stateless
processes, which is more relaxed in its requirement, allowing for
applications to consist of multiple processes.

A Practical Definition of Stateless
One question that I field on a regular basis stems from confusion
around the concept of statelessness. People wonder how they can
build a process that maintains no state. After all, every application
needs some kind of state, right? Even the simplest of application
leaves some bit of data floating around, so how can you ever have a
truly stateless process?

A stateless application makes no assumptions about the contents of
memory prior to handling a request, nor does it make assumptions
about memory contents after handling that request. The application

39

can create and consume transient state in the middle of handling a
request or processing a transaction, but that data should all be gone
by the time the client has been given a response.

To put it as simply as possible, all long-lasting state must be external
to the application, provided by backing services. So the concept isn’t
that state cannot exist; it is that it cannot be maintained within your
application.

As an example, a microservice that exposes functionality for user
management must be stateless, so the list of all users is maintained
in a backing service (an Oracle or MongoDB database, for instance).
For obvious reasons, it would make no sense for a database to be
stateless.

The Share-Nothing Pattern
Processes often communicate with each other by sharing common
resources. Even without considering the move to the cloud, there
are a number of benefits to be gained from adopting the share-
nothing pattern.

Firstly, anything shared among processes is a liability that makes all
of those processes more brittle. In many high-availability patterns,
processes will share data through a wide variety of techniques to
elect cluster leaders, to decide on whether a process is a primary or
backup, and so on.

All of these options need to be avoided when running in the cloud.
Your processes can vanish at a moment’s notice with no warning,
and that’s a good thing. Processes come and go, scale horizontally
and vertically, and are highly disposable. This means that anything
shared among processes could also vanish, potentially causing a cas‐
cading failure.

It should go without saying, but the filesystem is not a backing ser‐
vice. This means that you cannot consider files a means by which
applications can share data. Disks in the cloud are ephemeral and, in
some cases, even read-only.

If processes need to share data, like session state for a group of pro‐
cesses forming a web farm, then that session state should be exter‐
nalized and made available through a true backing service.

40 | Chapter 12: Stateless Processes

Data Caching
A common pattern, especially among long-running, container-
based web applications, is to cache frequently used data during pro‐
cess startup. This book has already mentioned that processes need to
start and stop quickly, and taking a long time to fill an in-memory
cache violates this principle.

Worse, storing an in-memory cache that your application thinks is
always available can bloat your application, making each of your
instances (which should be elastically scalable) take up far more
RAM than is necessary.

There are dozens of third-party caching products, including Gem‐
fire and Redis, and all of them are designed to act as a backing ser‐
vice cache for your applications. They can be used for session state,
but they can also be used to cache data your processes may need
during startup and to avoid tightly coupled data sharing among pro‐
cesses.

Data Caching | 41

CHAPTER 13

Concurrency

Factor 8, concurrency, advises us that cloud-native applications
should scale out using the process model. There was a time when, if
an application reached the limit of its capacity, the solution was to
increase its size. If an application could only handle some number of
requests per minute, then the preferred solution was to simply make
the application bigger.

Adding CPUs, RAM, and other resources (virtual or physical) to a
single monolithic application is called vertical scaling, and this type
of behavior is typically frowned upon in civilized society these days.

A much more modern approach, one ideal for the kind of elastic
scalability that the cloud supports, is to scale out, or horizontally.
Rather than making a single big process even larger, you create mul‐
tiple processes, and then distribute the load of your application
among those processes.

Most cloud providers have perfected this capability to the point
where you can even configure rules that will dynamically scale the
number of instances of your application based on load or other run‐
time telemetry available in a system.

If you are building disposable, stateless, share-nothing processes
then you will be well positioned to take full advantage of horizontal
scaling and running multiple, concurrent instances of your applica‐
tion so that it can truly thrive in the cloud.

43

CHAPTER 14

Telemetry

The concept of telemetry is not among the original 12 factors. Tele‐
metry’s dictionary definition implies the use of special equipment to
take specific measurements of something and then to transmit those
measurements elsewhere using radio. There is a connotation here of
remoteness, distance, and intangibility to the source of the teleme‐
try.

While I recommend using something a little more modern than
radio, the use of telemetry should be an essential part of any cloud-
native application.

Building applications on your workstation affords you luxuries you
might not have in the cloud. You can inspect the inside of your
application, execute a debugger, and perform hundreds of other
tasks that give you visibility deep within your app and its behavior.

You don’t have this kind of direct access with a cloud application.
Your app instance might move from the east coast of the United
States to the west coast with little or no warning. You could start
with one instance of your app, and a few minutes later, you might
have hundreds of copies of your application running. These are all
incredibly powerful, useful features, but they present an unfamiliar
pattern for real-time application monitoring and telemetry.

Treat Apps Like Space Probes

I like to think of pushing applications to the cloud as
launching a scientific instrument into space.

45

If your creation is thousands of miles away, and you can’t physically
touch it or bang it with a hammer to coerce it into behaving, what
kind of telemetry would you want? What kind of data and remote
controls would you need in order to feel comfortable letting your
creation float freely in space?

When it comes to monitoring your application, there are generally a
few different categories of data:

• Application performance monitoring (APM)
• Domain-specific telemetry
• Health and system logs

The first of these, APM, consists of a stream of events that can be
used by tools outside the cloud to keep tabs on how well your appli‐
cation is performing. This is something that you are responsible for,
as the definition and watermarks of performance are specific to your
application and standards. The data used to supply APM dash‐
boards is usually fairly generic and can come from multiple applica‐
tions across multiple lines of business.

The second, domain-specific telemetry, is also up to you. This refers
to the stream of events and data that makes sense to your business
that you can use for your own analytics and reporting. This type of
event stream is often fed into a “big data” system for warehousing,
analysis, and forecasting.

The difference between APM and domain-specific telemetry may
not be immediately obvious. Think of it this way: APM might pro‐
vide you the average number of HTTP requests per second an appli‐
cation is processing, while domain-specific telemetry might tell you
the number of widgets sold to people on iPads within the last 20
minutes.

Finally, health and system logs are something that should be pro‐
vided by your cloud provider. They make up a stream of events,
such as application start, shutdown, scaling, web request tracing,
and the results of periodic health checks.

The cloud makes many things easy, but monitoring and telemetry
are still difficult, probably even more difficult than traditional, enter‐
prise application monitoring. When you are staring down the fire‐
hose at a stream that contains regular health checks, request audits,
business-level events, and tracking data, and performance metrics,
that is an incredible amount of data.

46 | Chapter 14: Telemetry

When planning your monitoring strategy, you need to take into
account how much information you’ll be aggregating, the rate at
which it comes in, and how much of it you’re going to store. If your
application dynamically scales from 1 instance to 100, that can also
result in a hundredfold increase in your log traffic.

Auditing and monitoring cloud applications are often overlooked
but are perhaps some of the most important things to plan and do
properly for production deployments. If you wouldn’t blindly
launch a satellite into orbit with no way to monitor it, you shouldn’t
do the same to your cloud application.

Getting telemetry done right can mean the difference between suc‐
cess and failure in the cloud.

Telemetry | 47

1 Wikipedia has more information on RBAC, including the NIST RBAC model.

CHAPTER 15

Authentication and Authorization

There is no discussion of security, authentication, or authorization
in the original 12 factors.

Security is a vital part of any application and cloud environment.
Security should never be an afterthought.

All too often, we are so focused on getting the functional require‐
ments of an application out the door that we neglect one of the most
important aspects of delivering any application, regardless of
whether that app is destined for an enterprise, a mobile device, or
the cloud.

A cloud-native application is a secure application. Your code,
whether compiled or raw, is transported across many data centers,
executed within multiple containers, and accessed by countless cli‐
ents—some legitimate, most nefarious.

Even if the only reason you implement security in your application
is so you have an audit trail of which user made which data change,
that alone is benefit enough to justify the relatively small amount of
time and effort it takes to secure your application’s endpoints.

In an ideal world, all cloud-native applications would secure all of
their endpoints with RBAC (role-based access control).1 Every
request for an application’s resources should know who is making
the request, and the roles to which that consumer belongs. These

49

https://en.wikipedia.org/wiki/Role-based_access_control

roles dictate whether the calling client has sufficient permission for
the application to honor the request.

With tools like OAuth2, OpenID Connect, various SSO servers and
standards, as well as a near infinite supply of language-specific
authentication and authorization libraries, security should be some‐
thing that is baked into the application’s development from day one,
and not added as a bolt-on project after an application is running in
production.

50 | Chapter 15: Authentication and Authorization

1 Communication and the development of shared context is a rich subject about which
many books have been written.

CHAPTER 16

A Word on Cloud Native

Now that you have read through a discussion that goes beyond the
twelve-factor application and have learned that people often use “12
factor” and “cloud native” interchangeably, it is worth taking a
moment for a discussion on the term cloud native.

What Is Cloud Native?
Buzzwords and phrases like “SOA,” “cloud native,” and “microservi‐
ces” all start because we need a faster, more efficient way to commu‐
nicate our thoughts on a subject. This is essential to facilitating
meaningful conversations on complex topics, and we end up build‐
ing a shared context or a common language.

The problem with these buzzwords is that they rely on mutual or
common understanding between multiple parties. Like the classic
game of telephone1 on an epic scale, this alleged shared understand‐
ing rapidly deteriorates into mutual confusion.

We saw this with SOA (service-oriented architecture), and we’re see‐
ing it again with the concept of cloud native. It seems as though
every time this concept is shared, the meaning changes until we
have as many opinions about cloud native as we do IT professionals.

51

https://en.wikipedia.org/wiki/Chinese_whispers

To understand “cloud native,” we must first understand “cloud.”
Many people assume that “cloud” is synonymous with public, unfet‐
tered exposure to the Internet. While there are some cloud offerings
of this variety, that’s far from a complete definition.

In the context of this book, cloud refers to Platform as a Service.
PaaS providers expose a platform that hides infrastructure details
from the application developer, where that platform resides on top
of Infrastructure as a Service (IaaS). Examples of PaaS providers
include Google App Engine, Redhat Open Shift, Pivotal Cloud
Foundry, Heroku, AppHarbor, and Amazon AWS.

The key takeaway is that cloud is not necessarily synonymous with
public, and enterprises are setting up their own private clouds in
their data centers, on top of their own IaaS, or on top of third-party
IaaS providers like VMware or Citrix.

Next, I take issue with the word “native” in the phrase “cloud native.”
This creates the mistaken impression that only brand-new, green
field applications developed natively within a cloud can be consid‐
ered cloud native. This is wholly untrue, but since the “cloud native”
phrase is now ubiquitous and has seen rapid proliferation through‐
out most IT circles, I can’t use phrases like “cloud friendly,” “cloud
ready,” or “cloud optimized” because they’re neither as catchy nor as
widely recognized as the original phrase that has now made its way
into our vernacular. The following is what I’ve come up with as a
simple definition for a cloud-native application to be:

A cloud-native application is an application that has been designed
and implemented to run on a Platform-as-a-Service installation
and to embrace horizontal elastic scaling.

The struggle with adding any more detail is you then start to tread
on other people’s perspective of what constitutes cloud native, and
you potentially run afoul of the “pragmatism versus purism” argu‐
ment (discussed later in this chapter).

Why Cloud Native?
Not too long ago, it would have been considered the norm to build
applications knowing they would be deployed on physical servers—
anything from big towers in an air-conditioned room to slim 1U
devices installed in a real data center.

52 | Chapter 16: A Word on Cloud Native

Bare metal deployment was fraught with problems and risk: we
couldn’t dynamically scale applications, the deployment process was
difficult, changes in hardware could cause application failures, and
hardware failure often caused massive data loss and significant
downtime.

This led to the virtualization revolution. Everyone agreed that bare
metal was no longer the way to go, and thus the hypervisor was born.
The industry decided to put a layer of abstraction on top of the
hardware so that we could make deployment easier, to scale our
applications horizontally, and to hopefully prevent large amounts of
downtime and susceptibility to hardware failure.

In today’s always-connected world of smart devices and even
smarter software, you have to look long and hard to find a company
that doesn’t have some kind of software development process as its
keystone. Even traditional manufacturing industries, where compa‐
nies make hard, physical things, manufacturing doesn’t happen
without software. People can’t be organized to build things effi‐
ciently and at scale without software, and you certainly cannot par‐
ticipate in a global marketplace without it.

Regardless of what industry you’re in, you cannot compete in today’s
marketplace without the ability to rapidly deliver software that sim‐
ply does not fail. It needs to be able to dynamically scale to deal with
volumes of data previously unheard of. If you can’t handle big data,
your competitors will. If you can’t produce software that can handle
massive load, remain responsive, and change as rapidly as the mar‐
ket, your competitors will find a way to do it.

This brings us to the essence of cloud native. Gone are the days
where companies could get away with being diverted by spending
inordinate amounts of time and resources on DevOps tasks, on
building and maintaining brittle infrastructures, and fearing the
consequences of production deployments that only happen once
every blue moon.

Today, we need to be able to focus squarely on the one thing that we
do better than our competitors and let platforms take care of our
nonfunctional requirements. In his book Good to Great (HarperBus‐
iness), Jim Collins asks the question: are you a hedgehog, or are you a
fox?

Why Cloud Native? | 53

http://bit.ly/1OU3JF8

The Greek poet and mercenary Archilochus actually first discussed
this concept by saying, “The fox knows many things, but the hedge‐
hog knows one big thing.” The core of this quote forces us to look at
where we spend our time and resources and compare that to the one
big thing that we want to do. What does your company or team want
to accomplish? Chances are, you didn’t answer this question with
things like failover, resiliency, elastic scalability, or automated
deployment. No, what you want to build is the thing that distin‐
guishes you from all the others. You want to build the thing that is
the key to your business, and leave all the other stuff to someone (or
something) else.

This is the age of the cloud, and we need to build our applications in
a way that embraces this. We need to build our applications so that
we can spend the majority of our time working on the hedgehog
(the one big thing) and let someone or something else take care of
the fox’s many small things. Super fast time to market is no longer a
nice-to-have; it’s a necessity to avoid being left behind by our com‐
petition. We want to be able to devote our resources to our business
domain, and let other experts deal with the things they do better
than us.

By embracing cloud-native architecture, and building our applica‐
tions on the assumption that everything is a service and that they will
be deployed in a cloud environment, we can get all of these benefits
and much more. The question isn’t why cloud-native? The question
you have to ask yourself is why are you not embracing cloud native?

The Purist vs the Pragmatist
With all patterns from SOA to REST and everything in between,
there are the shining ideals held atop ivory towers, and then there is
the reality of real-world development teams, budgets, and con‐
straints. The trick is in determining which ideals on which you will
not budge, and which ideals you will allow to get a little muddy in
service of the pragmatic needs to get products shipped on time.

Throughout this book, I have mentioned where compromises
against the ideal are possible or even common, and was also clear
where experience shows we simply cannot acquiesce. The decision is
ultimately yours, and we would all be extremely happy if every
application we created was a pure cloud-native application that
never violated a single guideline from this book, but reality and

54 | Chapter 16: A Word on Cloud Native

experience shows that compromise on purist ideals is as ever-
present as death and taxes.

Rather than adopting an all-or-nothing approach, learning where
and when to compromise on the guidelines in this book is probably
the single most important skill to have when planning and imple‐
menting cloud-native applications.

The Purist vs the Pragmatist | 55

CHAPTER 17

Summary

Twelve-factor applications are an excellent start toward building
applications that operate in the cloud, but to build cloud-native
applications that truly thrive in the cloud, you need to look beyond
the 12 factors.

My challenge to you is this: evaluate your existing applications
against the guidelines set forth in this book and start planning what
it would take to get them to run in a cloud. All other benefits aside,
eventually, everything is going to be cloud-based the way everything
today runs on virtualization.

When you’re building a new application, force a decision as to why
you should not build your application in a cloud-native way.

Embrace continuous integration, continuous delivery, and the pro‐
duction of applications designed to thrive in the cloud, and you will
reap rewards far and above just what you get from a cloud-native
world.

57

About the Author
Kevin Hoffman is an Advisory Solutions Architect for Pivotal
Cloud Foundry where he helps teach organizations how to build
cloud native apps, migrate applications to the cloud, and embrace all
things cloud and microservice. He has written applications for just
about every type of industry, including autopilot software for quad‐
copters, waste management, financial services, and biometric secu‐
rity.

In his spare time, when not coding, tinkering, or learning new tech,
he also writes fantasy and science fiction books.

	Cover
	Pivotal
	Copyright
	Table of Contents
	Foreword
	Preface
	The Original 12 Factors
	Beyond the Twelve-Factor Application

	Chapter 1. One Codebase, One Application
	Chapter 2. API First
	Why API First?
	Building Services API First

	Chapter 3. Dependency Management
	Reliance on the Mommy Server
	Modern Dependency Management

	Chapter 4. Design, Build, Release, Run
	Design
	Build
	Release
	Run

	Chapter 5. Configuration, Credentials, and Code
	Externalizing Configuration

	Chapter 6. Logs
	Chapter 7. Disposability
	Chapter 8. Backing Services
	Chapter 9. Environment Parity
	Time
	People
	Resources
	Every Commit Is a Candidate for Deployment

	Chapter 10. Administrative Processes
	Chapter 11. Port Binding
	Avoiding Container-Determined Ports
	Avoiding Micromanaging Port Assignments
	Applications are Backing Services

	Chapter 12. Stateless Processes
	A Practical Definition of Stateless
	The Share-Nothing Pattern
	Data Caching

	Chapter 13. Concurrency
	Chapter 14. Telemetry
	Chapter 15. Authentication and Authorization
	Chapter 16. A Word on Cloud Native
	What Is Cloud Native?
	Why Cloud Native?
	The Purist vs the Pragmatist

	Chapter 17. Summary
	About the Author

