
GET STARTED

Comprehensive Kubernetes
Observability at Scale
A guide to enterprise observability
for Kubernetes environment full-stack.

Table of Contents

6 What Can Go Wrong
with Kubernetes?

8 Kubernetes Observability vs.
Monitoring Kubernetes

15 Comprehensive Solution for All
Popular Kubernetes Implementations

20 Tanzu Observability for
VMware Tanzu

23 VMware Tanzu Kubernetes Grid
Built-In Integration with Tanzu
Observability for Holistic Visibility

26 OpenShift Observability
Automated, Full-Stack, and Unified

28 How Tanzu Observability Makes
Prometheus Enterprise-Ready

32 How to Use Tanzu Observability
for Kubernetes Observability

32 Alerting Across the Full Stack

33 Guided Troubleshooting

36 Optimizing with Deep
Understanding

39 Monitoring of Service Level
Objectives for All Teams

41 Observability for the Front
Internet Page

43 How VMware Cloud Engineering
Team Exceeds SLAs

48 What to Look for in an Enterprise
Observability Platform

49 What to Monitor in a
Kubernetes Environment

50 Want to Learn More?

What’s Needed for
Maintaining Kubernetes

How Tanzu Observability
Helps Developers, SREs
and Platform Operators

Real-World Kubernetes
Observability Case Studies

2

FIGURE 1: CI/CD Pipeline Workflow with Kubernetes Zero-Downtime Deployment and Full-Stack Observability

Introduction
One of the main forces of business innovation today are
modern applications. They are deployed in lightweight and
portable containers together with their dependencies and
configurations. As they scale quickly to meet the needs of
millions of users in milliseconds, they span multiple containers
across multiple hosts. Operating these huge number of
containers in real time becomes significantly more complex.

Kubernetes, an industry standard for container orchestration,
manages containerized applications’ complexities. It discovers
services, incorporates load balancing, tracks resource
allocation, scales based on utilization, and checks the health
of individual resources. It also enables applications to self-heal
by automatically restarting containers wherever applications
run—from public clouds (AWS, Azure, GCP) to private
(VMware) and hybrid clouds, on-premises, or any
combinations of infrastructures.

3

BUSINESS APPLICATION

K8S (EKS, GKE, AKS)/TANZU/PKS/OPENSHIFT

CLOUD (AWS, Azure, GCP), Hybrid, SDDC

CI/CD PIPELINE

E
nterp

rise O
b

servab
ility

Plan Code
Commit Code,
Push to Git Build New

Docker
Image Docker

Repository

Update
Kubernetes
Deployment

Run
Tests

Push New Docker Image
CI Server notices new
code in Git repo &

Pull new Docker Image

Y

N

Kubernetes receives request to use new image

Starts running through
its pipeline

Git
Repo

Commit

Create New Pod

Check Pod Health Restart New Pod

Let Old RunningHealthy?

Delete Old Pod

CI SERVER
Continuous
Integration Test Continuous Deployment

Create New Pod

However, Kubernetes also introduces new operational and
observability challenges. In this eBook, we will talk about what
can go wrong with Kubernetes, and what you, as Kubernetes
architect, operator, SRE, or developer, should monitor and
look for in an enterprise observability platform for Kubernetes.
We will provide you with real-world Kubernetes case studies
and show the implementation of automated Kubernetes

observability with Tanzu Observability. We hope that you
will find this eBook helpful, as it includes practical tips
on optimizing reliable performance, fast pinpointing
of performance issues, and minimizing the time for
troubleshooting and resolving the issues of microservices
deployed on Kubernetes.

4

What’s Needed for
Maintaining Kubernetes
Kubernetes simplifies deployment, scaling, and management of
applications, but is complex to install, configure, and manage.
You will quickly realize that observability and monitoring are
crucial for understanding relationships between infrastructure,
Kubernetes and application services of this dynamic
environment. There will be many questions and to answer
them, you will need to correlate Kubernetes with application
data, aggregate data across Kubernetes clusters, or isolate data
for each Kubernetes service. Sometimes, Kubernetes recovery
will work so well, that you would not have to isolate root cause
and quickly respond to an incident. For example, Kubernetes
might restart your application and you would not notice that
some of your containers crashed multiple times due to memory
leak. Still, you should know about this.

To keep track of how things are running, you should have
dashboards that monitor Kubernetes nodes, individual pods,
and all application’s services with load, throughput, application
errors, and other statistics. In the illustration on the right, the
components interact as follows:

Master Node—a gateway and brain for the cluster
• Kube-apiserver—allows a user to configure Kubernetes

workloads and organizational units

• Kube-scheduler—assigns workloads to specific worker nodes

• Controller—regulates the state of the cluster (a group of servers)

• Etcd—stores configuration data that is accessed by each
node of the cluster

Worker Node—a server that accepts and runs workloads
• Kubelet—interacts with master server components

• Kube-Proxy—forwards requests to the containers

• Pod—consists of main and helper containers that
operate closely together

• Container—deploys applications

UI
User

Interface

CLI
Command

User
Interface

API

Public Cloud Private CloudHybrid Cloud Multi-Cloud

Worker Node n
kubelet

kube-proxy
Pod

ContainerPod

Pod
Container

Master Node

Image Registry

kube-
apiserver

kube-
scheduler

controller

etcd

Worker Node 3
kubelet

kube-proxy
Pod

ContainerPod

Pod
Container

Worker Node 2
kubelet

kube-proxy
Pod

ContainerPod

Pod
Container

Pod
Container Pod

Container

Worker Node 1
kubelet

kube-proxy Pod

FIGURE 2: Kubernetes Cluster with Master and Worker Nodes Components

5

https://kubernetes.io/docs/concepts/overview/components/

What Can Go Wrong
with Kubernetes?
After making a change to the environment, SREs and
developers need to correlate the application and the
Kubernetes data in order to understand the impact of
those changes on the Kubernetes environment. They need
to understand the dependencies between their applications
and the Kubernetes environment on which they run.
Application performance depends on having enough
resources and on the successful operation of the Kubernetes
components and services on which the application runs.

For example, if some of the physical or virtual machines in the
Kubernetes clusters are overloaded or misconfigured, all other
operations within the cluster and the deployed application on
top may stop working as well. A Kubernetes API server outage
can affect running workloads. Similarly, if there are problems
with a service, those services that are upstream and
downstream of the application may have issues as well.

While SREs and platform engineers need to operate the
Kubernetes orchestration layer, developers must understand
the impact of the Kubernetes orchestration layer on their
applications and microservices. Therefore, their challenges
are different and are listed in the table below.

Though their challenges are different, both types of users
need to ingest, observe, be alert about, and understand
the data flow and the metrics exposed through Kubernetes.

SREs’ AND PLATFORM OPERATORS’ CHALLENGES

• Assure that the Kubernetes components operate as expected—e.g.,
over or under allocated resources may cause non-starting or crashing
pods under high workloads

• Run within cloud provider limits—e.g., if a container exceeds
its memory limit, Kubernetes might terminate it

• Use resources per bus network policies—e.g., traffic spikes can
be amplified by network latencies

• Pull images from trusted locations
• Understand etcd load per object and call because major etcd

failure will cripple or take down the container infrastructure
• Predict capacity across application load
• Manage components certification expiration, cluster version mismatch,

and updates—e.g., if blue-green deployments are not used, requests
can fail during the software update due to still coming upstream traffic
to already stopped service

• Avoid node hotspots—e.g., nodes with low memory or disk capacity

DEVELOPERS’ CHALLENGES

• Operate workloads within specified resource limits for their
applications or microservices—e.g., increased number of pods per
node can lead to service latencies or working in proximity of CPU
limit might significantly slow down the application

• Take care of upstream and downstream dependencies
• Resolve mismatch between desired and actual state (applications/

workloads, container images, number of replicas, network and disk
resources) for better resources usage and application performance

• Use all defined services and delete ones that connect to nothing
since when high-scaled, the kubelet might get bogged down

• Prevent pod failures

TABLE 1: Platform Operators’ vs. Developers’ Challenges in Monitoring Kubernetes Environment

6

Kubernetes Observability
vs. Monitoring Kubernetes
Monitoring Kubernetes shows you whether a Kubernetes
environment and all its layers—clusters, nodes, pods,
containers, and application workloads are operating as
expected. The most popular open-source solution for
monitoring Kubernetes is Prometheus.

Prometheus provides real-time monitoring, alerting, and
time-series database functionalities for modern applications.
It can collect Kubernetes layers and is a simple and flexible
monitoring toolkit that measures symptoms and enables
you to determine what is wrong.

FIGURE 3: Monitoring Kubernetes with Prometheus

Kubernetes Cluster Prometheus

Prometheus Server

Pull Metrics

Alertmanager

Application
Prometheus Web UI

Local Storage

Service Discovery

Worker Node n
kubelet

kube-proxy
Pod

ContainerPod

Pod
Container

Master Node

Image Registry

kube-
apiserver

kube-
scheduler

controller

etcd

Worker Node 3
kubelet

kube-proxy
Pod

ContainerPod

Pod
Container

Worker Node 2
kubelet

kube-proxy
Pod

ContainerPod

Pod
Container

Pod
Container Pod

Container

Worker Node 1
kubelet

kube-proxy Pod

7

Monitoring is a great start. However, to get a context on how
Kubernetes components influence the performance of
Kubernetes applications, and correct problems before they
become end-user problems, you need Kubernetes
observability. Kubernetes observability provides engineers
with a complete picture and all the information necessary for
increasing performance and improving the stability and

resiliency of applications, the Kubernetes components, and
the underlying infrastructure. Kubernetes’s observability tools
include comprehensive overviews, intelligent summaries and
alerts, and ways to correlate metrics changes with Kubernetes
events. For example, they can provide more insight if a
container failure is caused by a Docker image pull up or
application issue.

8

How Tanzu Observability
Helps Developers,SREs
and Platform Operators
Tanzu Observability is an observability platform that is
specifically designed for enterprises that need monitoring,
observability, and analytics for their modern applications.
Tanzu Observability delivers full-stack observability for

Kubernetes with advanced analytics on metrics, traces,
histograms, and span logs that come from the applications
themselves, from application services, container services,
and your multi-cloud.

FIGURE 4: Tanzu Observability—Enterprise Observability Platform for Modern Applications on Kubernetes and Multi-Cloud

Tanzu Observability Ingestion Tanzu Observability Cloud Tanzu Observability UX

9

FIGURE 5: The Tanzu Observability Architecture of Kubernetes Observability with Automated Service Discovery and Full-Stack Analytics

With Tanzu Observability enterprise-grade observability for
Kubernetes, developers, SREs, and Kubernetes platform
operators get accelerated time to value with automated and
unified comprehensive insights into the health, state, and
performance of their application, Kubernetes and multi-cloud
environments. Engineers use Tanzu Observability to
proactively alert on problems so that they can troubleshoot

and optimize the performance of their modern applications
rapidly. They can get answers to questions such as:

• Was there a performance regression with the latest code
update?

• Are there any errors?

• Are there opportunities for performance optimization?

10

Tanzu Observability for Kubernetes starts with a zero-
configuration installation. Next, Tanzu Observability
automatically recognizes Kubernetes services, discovers, and
instruments Java-based services across any clouds. With the
proven scale of up to 200,000+ containers per cluster, Tanzu
Observability ingests and visualizes with no interruptions:

• Core Kubernetes metrics (CPU, memory, network, storage,
uptime, restarts)

• Host level metrics

• Application metrics from popular applications
(Redis, RabbitMQ, PostgreSQL, etc.)

• Prometheus endpoint data from the API Server,
NGINX and etcd

• Comprehensive metrics of the Tanzu Observability
Collector for Kubernetes.

Visualization is available through automatically populated
prebuilt dashboards with full-stack metrics from all Kubernetes
layers—clusters, nodes, pods, containers, and system metrics.
All this data is continuously available with per 1-second

granularity (or sub-second through histograms), no matter how
often the container fleet is refreshed because of code
deployments and updates. To meet dynamic end-user
demand, Tanzu Observability can also horizontally autoscale
Kubernetes pods based on ingested custom and external
metrics APIs using the Kubernetes HPA (Horizontal Pod
Autoscaler) adapter.

Engineering teams can rapidly identify root causes with
predefined Tanzu Observability alerts and events for
Kubernetes operation. Tanzu Observability gathers detailed
information about the operation of the Kubernetes
environment, such as utilization extremes, SLA violations,
excessive pod restarts, and paused or stuck deployments

Engineers can use the Tanzu Observability auto-configured
set of Kubernetes-related alerts but are also empowered
to configure instant real-time alerting across multi-cloud
Kubernetes environments at a large scale. All these alerts
enable engineers to detect and resolve issues proactively
before service disruption.

11

https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/d6a73808a32d72d9268e8c18204287f9515ad413/deploy/kubernetes/4-collector-config.yaml#L96
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/master/docs/metrics.md#kubernetes-source
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/master/docs/metrics.md#telegraf-source
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/825fda0a1251fd1d17fa03cb8c91deb7924c90de/plugins/sources/telegraf/all.go#L14
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/master/docs/metrics.md#collector-health-metrics
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/master/docs/metrics.md#collector-health-metrics
https://github.com/wavefrontHQ/wavefront-kubernetes-adapter
https://github.com/wavefrontHQ/wavefront-kubernetes-adapter

For fast and accurate troubleshooting, Tanzu Observability
offers packaged Kubernetes troubleshooting dashboards with
high fidelity metrics without roll-ups.

Kubernetes troubleshooting dashboards keep track of many
important metrics and events, such as memory utilization,
scheduling issues, and crash loop detection. If there are no
issues, these dashboards provide status only. When important

Kubernetes metrics are out of the range or a critical
Kubernetes event is fired, the dashboards will show the
metrics and information that engineers need to troubleshoot
the issue. By only focusing on relevant metrics in critical times,
Tanzu Observability protects engineering teams from being
overwhelmed, enabling them to focus on the issue at hand.

FIGURE 6: Kubernetes Observability Dashboards of One of the Top Two Transportation as a Service Companies12

BENEFIT DESCRIPTION

Automated Detection of
Kubernetes Clusters4

 1Autodiscovers all Kubernetes clusters
 1Gives one-liner for zero-configuration installation

Zero-configuration
Installation

 1 Installs Wavefront Collector for Kubernetes (WCK) for:
 – Open-source-based Kubernetes implementations (EKS, GKE, AKS) with Wavefront operator for Kubernetes
 – OpenShift environment with Red Hat Certified Wavefront operator for OpenShift 4.x
 – Hybrid environments
 – On-prem environments

Services Autodiscovery 1Recognizes what services are up with plugins:
 – Prometheus – for Prometheus metric endpoints
 – Telegraf – for applications supported by Telegraf
 – Systemd – for system components for Linux OS

 1Collects key metrics from containerized applications running within Kubernetes
 1 Instruments Java-based applications via Wavefront Java Tracing Agent

Automated Instrumentation of
Java-Based Applications

 1Automatically attaches the Wavefront Java Tracing Agent (WJTA) to a Java service running on
a pod inside Kubernetes
 1 Instruments Java-based applications and gathers traces

Pre-packaged Kubernetes
Dashboards

 1Populates pre-packaged Kubernetes dashboards:
 – Kubernetes Metrics
 – Kubernetes Metrics by Namespace
 – Kube-State Metrics
 – Wavefront Collector Metrics

TABLE 2: Key Functionalities of Tanzu Enterprise Observability for Kubernetes

13

https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/master/docs/discovery.md
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/825fda0a1251fd1d17fa03cb8c91deb7924c90de/plugins/sources/telegraf/all.go#L14

BENEFIT DESCRIPTION

Pre-packaged Kubernetes
Dashboards

 1Provides full-stack metrics from all Kubernetes layers:
 – Core Kubernetes
 – Clusters
 – Hosts/Worker Nodes
 – Pods
 – Systems
 – Custom Applications

 1Enables further Kubernetes dashboard customization

Annotated Relationships Between
Full-Stack Layers

 1Enables easier and quicker drill-downs for faster triaging and incident resolution

Autoscale of Kubernetes Pods 1Autoscales based on any custom or external metrics APIs in Tanzu Observability via horizontal pod autoscaler
(HPA) adapter so that end-user dynamic demand is met (see HPA-examples)

Metrics and Events Filtering 1 Filters metrics and events before they are reported to Tanzu Observability

High scale with up to 200,000+
Concurrently Running Containers
per Kubernetes Cluster

 1 Ingests, visualizes, and analyzes telemetry
 – Real-time, with up to 1-second resolution
 – Sub-second rsolution through histograms

 1 Solves high cardinality issues with indexing strategy, patented functionality, and high-performance database
 – Fast queries at high scale
 – Reliable and uninterrupted observability during code deployments and updates
 – Instant real-time alerting

Automated Kubernetes
Operational Intelligence

 1Provides Kubernetes troubleshooting dashboards with an auto-configured set of Kubernetes-related
events and alerts

TABLE 2: Key Functionalities of Tanzu Enterprise Observability for Kubernetes

14

https://github.com/wavefrontHQ/wavefront-kubernetes-adapter/tree/master/deploy/hpa-examples
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/master/docs/filtering.md

Comprehensive Solution for All
Popular Kubernetes Implementations
Tanzu Observability provides automated and unified enterprise
observability for Kubernetes, and applications for all the most
popular Kubernetes implementations: Tanzu, open-source
Kubernetes, Amazon EKS, Google Kubernetes Engine (GKE),
Azure Kubernetes Service (AKS), VMware Cloud PKS,
and OpenShift.

All these Kubernetes implementations are supported by the
Tanzu Observability enhanced Kubernetes Integration that uses:

• the Wavefront Collector for Kubernetes (WCK)
to collect metrics from Kubernetes clusters

• the Wavefront Java Tracing Agent (WJTA)
to automatically instrument Java-based applications

FIGURE 7: Tanzu Observability Platform for All Popular Kubernetes Implementations

Azure AKS

Amazon EKS

Google GKE

15

https://tanzu.vmware.com/tanzu
https://docs.wavefront.com/kubernetes.html
https://docs.wavefront.com/openshift.html
https://docs.wavefront.com/amazon_eks.html?utm_source=Website&utm_medium=referral&utm_campaign=integrations-page
https://docs.wavefront.com/wavefront_kubernetes.html
https://docs.wavefront.com/azure_aks.html
https://docs.wavefront.com/vmware_cloud_pks.html
https://docs.wavefront.com/openshift.html
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/wavefront-introduces-java-tracing-agent-delivering-out-of-the-box-application-observability

The Wavefront Collector for Kubernetes (WCK) makes it
fast and easy for Ops/SRE and DevOps/Dev to monitor
and manage Kubernetes environments. The collector is a
cluster-level agent that runs as a pod within a Kubernetes
cluster. It can be installed:

• Using Helm—for easy and consistent installation of the
WCK and Tanzu Observability proxies

• Manually—a 4-step procedure often used for testing
and development

Once deployed, the WCK discovers the nodes in the
Kubernetes cluster and starts collecting the metrics
from the Kubelet Summary API on each node.

RESOURCE METRICS

Cluster CPU, Memory

Namespace CPU, Memory

Nodes CPU, Memory, Network, Filesystem, Storage, Uptime

Pods CPU, Memory, Network, Filesystem, Storage, Uptime, Restarts

Pod Containers CPU, Memory, Network, Filesystem, Storage, Uptime

System Containers CPU, Memory

TABLE 3: Kubelet Summary of API Metrics Collected by the Wavefront Collector for Kubernetes on Each Node

16

https://docs.wavefront.com/kubernetes.html#kubernetes-quick-install-using-helm
https://docs.wavefront.com/kubernetes.html#kubernetes-manual-install

Additionally, the WCK collects kube-state-metrics about the
state of the Kubernetes objects (deployments, nodes, pods) to
provide total visibility into the state of Kubernetes resources.

The WCK also supports the auto-discovery of pods and
services that expose Prometheus metric endpoints based on
annotations (default) or discovery rules.

ANNOTATION DESCRIPTION

prometheus.io/scrape If true pod/service will be autodiscovered

prometheus.io/scheme Defaults to http

prometheus.io/path Defaults to /metrics

prometheus.io/port Defaults to a port-free target if omitted

prometheus.io/prefix Prefix for reported metrics: defaults to an empty string

prometheus.io/includeLabels Include pod/service labels as metric tags: defaults to true

prometheus.io/source Source for the reported metrics: defaults to the name of the Kubernetes resource

prometheus.io/collectionsInterval Custom collection interval; defaults to 1min

TABLE 4: The Wavefront Collector for Kubernetes (WCK) Annotations

17

https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/master/docs/discovery.md
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes/blob/master/docs/discovery.md

The WCK also supports:

• Rules that enable discovery, based on labels and
namespaces, by automatically detecting configuration
changes without the need to restart it. The rules support
Prometheus scrape. They are configured as a ConfigMap
and provided to the collector using the optional
-discovery-config flag.

• Scraping Prometheus targets based on static configurations
using the -source flag.

• Metrics about its internal health.

FIGURE 8: Out-Of-The-Box Kubernetes Application Performance Visibility provided by Wavefront Java Tracing Agent

18

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

The Wavefront Java Tracing Agent provides an easy,
automated experience for achieving application observability
without code changes. The Wavefront Java Tracing Agent is
based on the Java Special Agent, which is an open-source
tracing agent for Java. The Wavefront Java Tracing Agent
automatically instruments third-party libraries in Java,

providing out-of-the-box visibility into traces, RED metrics,
and span logs for Java-based applications. Tanzu Observability
unified observability for Kubernetes and applications results
in a more in-depth understanding and faster troubleshooting
of Kubernetes environments and the application workloads
running on them.

FIGURE 9: The Wavefront Kubernetes Collector Internal Health Dashboard

19

https://github.com/opentracing-contrib/java-specialagent#33-selecting-the-tracer-plugin

Tanzu Observability for
VMware Tanzu
VMware Tanzu is a portfolio of products and services
that helps enterprises build, run, and manage applications
on Kubernetes. Tanzu helps build modern applications
with the leading developer-centric platforms (Spring,
Build Service, Function Service, Application CI/CD Service)
and with Bitnami’s application packaging solution.
Bitnami has the most extensive catalog of click-to-deploy
applications and development stacks for major cloud
and Kubernetes environments.

With VMware Tanzu Kubernetes Grid (TKG), Tanzu enables
running Kubernetes across any infrastructure: vSphere, VMC

on AWS, public clouds, and edge. It runs Kubernetes
consistently with a fully integrated cluster lifecycle
management and open-source container image registry.

Through Tanzu Mission Control, VMware Tanzu manages the
entire Kubernetes footprint across clouds, clusters, and teams
from a single point of control. Tanzu empowers both
developers and Kubernetes operators. Developers have self-
service access to resources, and Kubernetes operators operate
multiple clusters running across multiple clouds easier and
faster and have more control over cost.

20

https://tanzu.vmware.com/tanzu
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid-Integrated-Edition/index.html

When using Tanzu with Tanzu Observability, developers, SREs,
and Kubernetes platform operators:

• Get full-stack observability into applications running across
clouds, as well as their associated namespaces, clusters,
pods, containers, and configuration code

• Release faster code updates with an automated
development CI/CD pipeline

FIGURE 10: Tanzu Observability for Tanzu: Proactive Applications and Kubernetes Observability

Troubleshooting
Across All Layers

Performance
Optimization

Performance
Alerting

Tanzu

Multi Cloud, Cluster &
Team Management

Build Modern
Apps

Run K8s Across Any
Infrastructure

For Alerting and
Deeper Drill-Downs

For Consistent Policies and
Operations

21

• Quickly identify abnormalities across cluster fleets
and applications with Tanzu Observability’s powerful
AI/ML-driven analytics

• Drill down, troubleshoot, and resolve issues faster with
Tanzu Observability-integrated metrics, distributed tracing,
histograms, and span logs

• Reduce MTTR to optimize code performance

• Predict future resource needs to meet customer demands
in a timely manner

• Collaborate better because of the unified applications and
Kubernetes observability

FIGURE 11: Use One-Click Drill-down on Tanzu Observability Dashboards for Troubleshooting and Faster Resolution of Issues

22

VMware Tanzu Kubernetes Grid
Built-In Integration with Tanzu
Observability for Holistic Visibility
VMware Tanzu Kubernetes Grid (TKG) enables provisioning,
operations, and management of enterprise-grade Kubernetes
clusters. It takes care of container deployments from the
application layer to the infrastructure layer with built-in high
availability, autoscaling, health-checks, self-healing, and rolling
upgrades for Kubernetes clusters.

VMware TKG delivers a built-in integration with Tanzu
Observability for complete Kubernetes at-scale observability.
This integration uses the Tanzu Observability Collector for
Kubernetes and kube-state-metrics to collect detailed metrics
about containers, namespaces, nodes, pods, deployments,
services, and the cluster itself. It also provides a set of
predefined monitoring alerts for important KPIs across TKG
Kubernetes clusters and several predefined dashboards that
you can further customize.

Tanzu Observability built-in integration with TKG enables
developers and DevOps teams to:

• Find leading problem indicators of containerized
applications—at any scale—using real-time analytics

• Improve productivity with self-serving, customizable
Kubernetes container and applications dashboards
and metrics

• Detect containerized cloud service resource bottlenecks
proactively with intelligent, query-driven alerts

• Correlate top-level application metrics with
Kubernetes orchestration metrics, down to the container
and resource level

23

https://docs.wavefront.com/integrations_pks.html
https://github.com/kubernetes/kube-state-metrics

FIGURE 12: Tanzu Observability Built-In Integration Dashboard—Complete Visibility into Each Level of VMware TKG Cluster24

FIGURE 13: The Architecture of Tanzu Observability for VMware TKG—Tanzu Observability Runs as a Wavefront Proxy Pod with Four Containers Inside Each TKG-Created Kubernetes Cluster.

Kubernetes
Cluster namespace=kube-system

pod=wavefront-proxy

wavefront-proxy

Resource UsageNode/Pod/
Container Status

kube-state-metrics

kube-apiserver

Master Node Worker Node Worker Node Worker Node

kubelet kubelet kubelet

Wavefront Kubernetes
Collector

2
NODES

4
NAMESPACE

ACTIVE

0
NAMESPACE
TERMINATING

9
PODS

RUNNING

3
PODS

FAILED

3
PODS

PENDING

25

OpenShift Observability—
Automated, Full-Stack, and Unified
Red Hat OpenShift is a hybrid cloud, enterprise Kubernetes
application platform for the development, deployment, and
management of modern applications on any cloud
infrastructure. It includes software-defined networking,
integrated private container registry, streamlined workflows,
and easy access to services (service brokers, validated third-
party solutions, and Kubernetes operators).

The Tanzu Observability OpenShift integration gives operators,
SRE, and DevOps teams complete insight into the health
and performance of their large scale OpenShift Kubernetes
implementation across containerized applications, Kubernetes,
and the underlying infrastructure. As a result of Tanzu
Observability’s collaboration with Red Hat, automated
enterprise observability for OpenShift is now available as
part of the Red Hat Certified Tanzu Observability Operator
for OpenShift 4.x in Operator Hub, a registry for finding
Kubernetes operator-backed services. This operator installs,
upgrades, and continuously checks the health of the
Wavefront Collector for Kubernetes. It reduces costs and risks
of managing observability for OpenShift environments and
applications at scale. It also improves time-to-value by
pretesting and expediting the Wavefront Collector
for Kubernetes deployment and configuration.

With the Tanzu Observability OpenShift observability and the
Red Hat OpenShift Certified Tanzu Observability Operator,
engineers, developers, and OpenShift operators get:

• Accelerated and automated transition into Kubernetes and
application observability

• Streamlined Day-2 observability operations—from
deployments of the Wavefront Collector for Kubernetes
and Tanzu Observability proxies to managed configurations
and upgrades

• Automated full-stack enterprise observability and deep
insight analytics across OpenShift environments

• Uninterrupted data ingestion during the spin up and down
of hundreds of containers with new IDs

• No running blind during a major update/code deployment
that refreshes the container fleet

• Instant alert using fast metric queries across multiple clouds
and at a large scale

• Quick and correct troubleshooting without pre-aggregation
or inline aggregation of the containers’ data26

https://www.openshift.com/learn/what-is-openshift
https://operatorhub.io/
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes
https://docs.wavefront.com/wavefront_kubernetes.html

FIGURE 14: Tanzu Observability Provides Complete Visibility into OpenShift Clusters, Nodes, Namespaces, Pods, Containers

27

How Tanzu Observability Makes
Prometheus Enterprise-Ready
As mentioned above, Prometheus is an open-source tool to
get started with metrics monitoring quickly. It was designed to
handle ephemeral Kubernetes workloads. It is freely available
on GitHub as well as sponsored and maintained by the Cloud
Native Computing Foundation (CNCF). Prometheus scrapes
HTTP endpoints to collect metrics from Kubernetes along with
instrumented services and applications. The Prometheus

server collects metrics, stores them locally, and provides a
simple web UI. Alerts and dashboards have to be managed
through separate service or different tool.

Running Prometheus at scale is challenging. It doesn’t provide
a single place for all your metrics, persistent data storage,
robust data analysis tools, smart-flexible alerting, or high
availability configuration.

FEATURE PROMETHEUS TANZU OBSERVABILITY

Maintenance
Requires dedicated HW &
engineering resources to run

No HW or engineering resources for Tanzu Observability as a
hosted solution—ingests data from both on-prem and multi-cloud

Enterprise Ready No

 1Granular RBAC and detailed policy control
 1 Supports 1,000s users/tenant
 1Per team usage consumption metering & reporting
 1 Fully managed with ultra-high reliability and fail-over
redundancy (multi-zone, multi-region)

UI Simple

Enterprise-grade:

 1Automatic metrics discovery
 1Drag-and-drop chart creation
 1Widget-based dashboard customization

Dashboards Simple Rich, analytics-driven

Scope Kubernetes Full stack: from applications to infrastructure

TABLE 5: Prometheus vs. Tanzu Observability Features Comparison

28

FEATURE PROMETHEUS TANZU OBSERVABILITY

Scale For a few components Up to 2,000,000 pps, 200,000+ containers

Granularity Limited Up to 1 sec (sub-second with histograms)

Data Retention

• 15 days
• 2-hours block compaction
• Local on-disk storage:

 0 Not clustered
 0 Not replicated

• 18 months
• 100% full fidelity (no downsampling)
• Up to petabytes of retained data:

 1Clustered
 1Replicated

Configuration Prometheus server
• Telegraf agent with Prometheus plugin (replacement)
• Prometheus storage adapter (extension)

Telemetry Metrics Metrics, traces, histograms, span logs

Analytics PromQL (39 functions) 110+ analytical functions, flexible query-builder

Alerting Basic Smart, analytics-driven, and flexible

Environments Static Static and dynamic

Security

Completely lacking, with:

 0 No authentication
 0 No authorization
 0 No data encryption

Enterprise-ready security with:

 1Authentication
 1Authorization
 1Encryption

Performance

Unoptimized:

 0 Data blackouts on a large scale
 0 Slow queries on a large scale
 0 Must be provisioned for burst peak loads

Optimized:

 1Uninterrupted on a large scale
 1 Fast queries on a large scale (high cardinality resilience)
 1High availability (HPA included)

TABLE 5: Prometheus vs. Tanzu Observability Features Comparison

29

https://www.youtube.com/watch?v=8wKPkrIiXKw&feature=youtu.be

Tanzu Observability can quickly resolve these problems.
You can replace the Prometheus server (static integration) or
extend Prometheus into an enterprise-grade and hyper-scale
solution (dynamic integration). Both Tanzu Observability
integrations treat Prometheus metrics the same as any
other data, and they offer access to a reliable database
that supports fast querying, analytics-driven dashboards,
and a powerful alerting interface.

• Static integration is excellent for monitoring static
environments where the list of HTTP endpoints does

not change often. It replaces the Prometheus server with
a Telegraf agent (and the Prometheus input plug-in for
Telegraf), which scrapes the HTTP end points directly,
converts the data to the Wavefront format, and sends
those data to the Tanzu Observability service.

• Dynamic integration preserves existing service discovery by
keeping the Prometheus server as a collector agent that
forwards metrics into Tanzu Observability through the
Prometheus storage adapter.

FIGURE 15: Tanzu Observability Static and Dynamic Integrations for Upgrading Prometheus Monitoring into Enterprise-Ready Observability

Wavefront Proxy

Tanzu
Observability

Telegraf Agent

Metrics Endpoints

Tanzu
Observability

Prometheus Server 1

Tanzu Observability Dynamic
Prometheus Integration

Tanzu Observability Static
Prometheus Integration

Application

Metrics Endpoints
Local Storage

Application

Prometheus Server 2
Pull Metrics

Pull Metrics

Service Discovery

Wavefront Proxy

Wavefront Prometheus
Storage Adapter Storage Adapter

Wavefront Prometheus

Metrics Endpoints

Service Discovery

Local Storage

30

https://docs.wavefront.com/prometheus.html
https://docs.wavefront.com/prometheus.html
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/prometheus
https://docs.wavefront.com/wavefront_data_format.html
https://github.com/wavefrontHQ/prometheus-storage-adapter

With the Tanzu Observability integrations, engineers can take
advantage of hyper-scale clustering, long-term storage, and
enterprise readiness controls. They also have access to
intelligent dashboards, powerful querying, and smart, flexible

alerting. Most importantly, no matter whether it’s a few
Prometheus endpoints or hundreds of Prometheus servers,
Tanzu Observability reliably scales with your growing
monitoring and observability needs.

FIGURE 16: Enterprise Observability of Tanzu Observability

Scale (built-in) beyond
monitoring 100s

containers/hosts with HA

Perform 100x better at
handling inherent

cardinality

Use the past to help predict
and troubleshoot the future

High-fidelity monitoring of
ALL metrics in one place

w/context

Customers who matured their observability from Prometheus to Tanzu Observability Enterprise

31

How to Use Tanzu Observability
for Kubernetes Observability
Alerting Across the Full Stack
Alerting is one of the main pillars of Kubernetes observability.
Alerts fire when KPI Kubernetes metrics and Kubernetes
events of interest indicate issues or potential issues, as
and when they occur. If the Kubernetes problem is noticed
only when the user is complaining about failures of an
application running on Kubernetes, there is a Kubernetes
monitoring and alerting gap. Incidents are inevitable,
but customer-reported incidents should not exist in a
Kubernetes that is observed continuously.

For effective Kubernetes environment monitoring, you can
alert on the following metrics:

• Application layer metrics—service response time, service
availability up or down, SLA compliance, successful or error
requests per second

• API metrics such as error, request, and latency—high
response time, dropped requests, and large variance in
response time point to service component degradation

• REST API requests on the services load balancers

• Services running on Kubernetes—HTTP requests,
database connections and replication, threads/file
descriptors/connections, middleware specific metrics
such as JVM heap size

• Kubernetes infrastructure—meeting requirements,
up and running

• Host/Node layer—up & down/unreachable, resources
availability (CPU, memory, disk)

• High disk usage—the most common, usually indicating an
application issue

• Master nodes degradation—points to DNS bottlenecks,
network overload, etcd issues

• Pod’s lifecycle—pending, running, succeeded, failed,
CrashLoopBackoff

• Pattern changes on the set of containers—it’s noisy to
measure individual container resources

Tanzu Observability gathers detailed information about
the operation in the Kubernetes environment. For example,
Tanzu Observability informs engineering teams about
utilization extremes, SLA violations due to increased latency
or error rate per service, excessive pod restarts, and paused
or stuck deployments. Tanzu Observability auto-configures
a set of Kubernetes-related alerts. These alerts enable
engineering teams to detect and resolve issues before
they can impact production.

32

With Tanzu Observability, engineers can create alerts that
dynamically filter noise and capture true anomalies:

• Smart streaming real-time alerts—for faster automation

• Regular multi-threshold alerts—for aggregating data across
different hosts or time series

Upon receiving an alert, engineers are directed to the Tanzu
Observability alert viewer—a single landing page for an alert—
for fast incident triaging and resolution. Tanzu Observability
alert viewer powered by AI/ML algorithms surfaces related
alerts and tags. It automatically highlights point tags shared
by affected time series, giving a clear indication of what
might be going wrong, and empowers developers and SREs
to spot dependencies across firing alerts instantly. Based
on correlation and AI/ML algorithms, it also lists and ranks
other synchronously-firing alerts and events across the
full stack in application services, Kubernetes, and the
enterprise multi-cloud. This enables engineers to easily
search and filter through key evidence and quickly find
the root cause of the incident.

 “Wavefront has a great UI for creating truly intelligent,
dynamic alerts. Its query language is the best out there,
and we love how alert creation is so well integrated right
within the dashboard, not as some separate tool within the
platform.”

JULIEN LEMOINE
CO-FOUNDER AND CTO
ALGOLIA

Guided Troubleshooting
Troubleshooting Kubernetes is complex, and it is difficult
to account for all situations. Kubernetes API may not be
reachable, etcd may fail on one or more master nodes,
the Kubernetes cluster may not see persistent volumes,
the deployment service may not be reachable at all, or only
internally, and the pod may run, but be unresponsive.
For all these situations, the Tanzu Observability curated out-of-
the-box Kubernetes dashboards can help you understand the
status of your services and to resolve incidents faster.

33

https://www.youtube.com/watch?v=qWBP6PrkUrU&feature=youtu.be

 “Wavefront’s powerful query language allows us to visualize
and debug our time series telemetry data easily. It’s well-
tuned alerting helps us lower the MTTD. Our engineers
customize their metrics to monitor the health and
performance of their systems fully.”

JING ZHAO
DEVOPS SOFTWARE ENGINEER
DOORDASH

Tanzu Observability out-of-the-box Kubernetes dashboards
provide Kubernetes platform operators, SREs and
developers with:

• Resource metrics—important for investigating
and diagnosing utilization, saturation, errors,
and availability issues

• Events—provides a context for understanding changes
in the system’s behavior such as code releases, builds,
and scaling. They are used for troubleshooting issues and
correlating information across systems

• Labeling—enables filtering and aggregating data across
different time zones, instance types, software versions,
services, roles, etc.

These metrics and events, which are labeled for important
dimensions (regions, software versions, etc.), are simple
to understand, they capture system behavior and are
retained, making it possible to define seasonality and
standard behavior.

Engineers usually start with the high-level metrics that point to
the issue in the system. The next step is to examine the
physical system resources: physical resources, software, and
external services. Tanzu Observability Kubernetes dashboards
display high-level and resource key metrics of each subsystem/
component layer with overlaid relevant events. Easy navigation
makes it possible to investigate the issue quickly. While
investigating Tanzu Observability users can examine related
alerts and events that are reported in the same time window—
they might be correlated and connected with the problem they
are troubleshooting.

The Tanzu Observability Kubernetes troubleshooting
dashboards leverage the data that Tanzu Observability already
collects. When certain important metrics are out of predefined
thresholds or when a known event occurs, Tanzu Observability
surfaces the metrics and data engineers need to troubleshoot
the issue. By only displaying relevant information, Tanzu
Observability protects users from being overwhelmed in times
of crisis; therefore, they can focus on the problem at hand.34

FIGURE 17: Tanzu Observability Packaged Kubernetes Troubleshooting Dashboard Surfacing Information in Time of Crisis

35

Optimizing with Deep Understanding
When dealing with a complex Kubernetes-based infrastructure,
performance tuning must be done all across the stack,
including the host, cluster, container, networking, and the
applications on top. For example, all containers and pods
are usually not of the same nature. Some need more

CPU-optimized instances, and others may run more effectively
on I/O-optimized instances. Because Kubernetes does not
optimize performance on its own, engineers have to identify
the types of instances.

TABLE 4: Scaling and Optimizing a Kubernetes Cluster and its Components

Scaling/Tuning Description

Horizontal Cluster Scaling Adding nodes

Vertical Cluster Scaling Using a different type of EC2 instances

Horizontal Pods Scaling Increasing the replica count

Vertical Pod Scaling Increasing CPU and memory limits

Horizontal Ingress Scaling Increasing the replica count

Vertical Ingress Scaling Increasing CPU and memory limits

Tuning NGINX Tuning parameters: timeouts, worker processes logs, HTTP

Optimizing Databases Optimizing queries and indexes

36

To address optimization, Kubernetes operators and architects
must understand Kubernetes performance features and how
to work with them. They want to know the answer to questions
such as:

• Do some pods have more latency than their peers
in a cluster?

• Are there hotspots?

• Are there performance hits from multitenancy?

• Is autoscaling the reason behind performance lag?

• Is my overall CPU usage fine, but are some nodes
CPU starved?

• Are my applications and underlying dependencies
hampering performance?

Engineers perform ramp-up tests to adjust resource limits
close to optimal performance and duration tests to identify
memory leaks and hidden queuing. Engineers perform all
these tests to understand an application’s different failure
modes before reaching production.

Also, one part of optimization is related to changing the
system of service to avoid problems that have been previously
troubleshooted and corrected. Engineer teams want to
prevent similar issues in the future.

 “Wavefront handles high-velocity metrics with relative ease.
It retains and visualizes historical data with full fidelity
together with real-time data, helping us track and anticipate
seasonalities. These unique capabilities allow us to be even
more operationally responsive to our business.”

KEVIN CANTONI
VP PRODUCT DEVELOPMENT
WORKDAY

37

Tanzu Observability automated and unified enterprise
observability for Kubernetes and applications running on
multi-cloud environments, enabling developers, SREs, and
Kubernetes operators to get the most from their environments
while providing the best user experience:

• See the real-time impact of code in production—deliver
faster high-quality code with full-stack visibility of released
code by examining the impact of changes on every aspect of
Kubernetes environment

• Run the Kubernetes environment with tighter margins—
scale and optimize your Kubernetes cluster and its
components dynamically with no performance degradation

• Map Kubernetes cloud resources to pricing and cut your
public cloud bill—get visibility and optimize Kubernetes
cloud resources through Tanzu Observability integrations
with leading cloud providers

• Improve Kubernetes capacity forecasting with AI Genie
automation—auto-detect anomalies and hidden trends, and
get automatic prediction with no parameter tune-up

• Discover Kubernetes applications performance bottlenecks
—get instant visibility into request flow, service
dependencies and performance bottlenecks with OOTB
application observability with the Wavefront Java
Tracing Agent

Tanzu Observability provides support for optimization of your
Kubernetes environment by delivering observability during all
stages of Kubernetes adoption, from Day-0 getting CI/CD
pipeline ready and Day-1 mapping performance to resource
needs to Day-2 scaling reliably and efficiently in production.

38

https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/wavefront-introduces-java-tracing-agent-delivering-out-of-the-box-application-observability
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/wavefront-introduces-java-tracing-agent-delivering-out-of-the-box-application-observability

Monitoring of Service Level
Objectives for All Teams
It’s the joint responsibility of all engineering teams to
make sure that overall Service Level Objectives (SLOs)
are being met.

• Developers translate business requirements from new
features and bug fixes into a code. For improving software
quality, developers define SLOs using metrics such as
page load times, caching behavior, and transaction times

• Kubernetes operators and SREs take care of platform
services, such as workload orchestration and database
operations that are critical dependencies to applications
and services on top. They use SLOs to support a requested
quality of high-velocity software release lifecycle

Data-driven decisions to meet end-user expectations, are
made based on correlating developers, SREs, and Kubernetes

operators SLOs with business SLOs based on metrics such as
new customer registrations or active time spent with
the application.

To achieve a good Kubernetes application SLO, i.e., clear
target around Kubernetes application performance, which
will balance feature development with platform stability,
an nterprise observability platform like Tanzu Observability
is essential.

With Tanzu Observability, SLOs are comprehensively
monitored and shared as a service across all teams in the
enterprise. They give service providers the information they
need to control product enhancements, maintenance, and
cost efficiency within the error budget.

39

 “Wavefront products provide unparalleled visibility across
all of our Kubernetes-enabled, containerized apps, helping
all of our developers become more productive focusing on
innovation, while enabling 8x8 to deliver exceptional SLAs
and eliminate any issues with our cloud services.”

DEJAN DEKLICH,
CHIEF PRODUCTS OFFICER
8X8

Tanzu Observability enables Kubernetes platform operators,
SREs, and developers to track, manage, and monitor
Kubernetes application SLOs such as the ratio of successful
requests for availability or the 99th percentile of request times
for latency in one place.

Histograms are a variation of metrics that record the detailed
metric distribution over set time periods. Histograms are ideal

for high-velocity metrics and for situations where it is essential
to retain outlier information that becomes lost in averages,
e.g., latencies, and percentile metrics used to track service
level indicators/objectives. The Tanzu Observability histogram
is the most accurate solution for monitoring high-velocity data
from different sources without compromising scale or losing
valuable reporting data. With Tanzu Observability histograms,
engineers can reliably measure and aggregate quantiles/
percentiles of high-velocity metrics such as application
response times and service SLOs.

Finally, Tanzu Observability SLO alerts can be set for different
burn rates or how fast a service consumes the error budget
together with multiple time windows—shorter for immediate
alerts and longer for long-term observations that lead to SLO
breaches over time.

40

https://www.youtube.com/watch?v=syIKQ2oZk9s
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/slo-alerting-with-wavefront

Real-World Kubernetes
Observability Case Studies
Observability for the Front Internet Page
A company known for its social news aggregation, web
content rating, and discussion website, which has over
hundreds of millions of monthly visitors and ranks within the
top 10 most visited websites in the United States and

worldwide, recently migrated to containerized microservices
and Kubernetes recently and hired a team of new software
engineers that wanted more visibility into their production
code. The migration led to a massive increase for metrics and
a realization that its open source-based monitoring platform
was not scaling and wasn’t easy to support.

FIGURE 18: Tanzu Observability Unified Kubernetes and Applications Observability for Well-Known Social News Aggregation, Web-Content
Rating, and Discussion Website Company

41

The company transitioned to Tanzu Observability because they
needed Tanzu Observability’s powerful and flexible handling of
metrics time series data. All metrics from Tanzu Observability
integrations, custom application metrics reported through
Telegraf or StatsD, and a mix of Prometheus/Kubernetes
system metrics from multiple Kubernetes clusters running on
AWS and GCP are fed through a Tanzu Observability proxy
into Tanzu Observability for visualization and storage.

Engineers find different ways of data visualization that help
identify potential issues. For example, color-node maps for
Kubernetes health allow them to monitor a farm of machines
and at a glance, identify which nodes have potential issues.
Tanzu Observability also helps manage complexity and the
sheer amount of Kubernetes metrics by making metrics useful
and more understandable with layered, connected dashboards
with more granularity as engineers drill down deeper. Tanzu
Observability standardized dashboards simplify dealing with
unfamiliar environments, services, and dependency, making
debugging edge cases easier and faster. Also, Tanzu
Observability’s advanced analytics engine and query language
accelerate anomaly detection for alerting and troubleshooting
their Kubernetes environment of tens of thousands of pods.

The powerful Tanzu Observability query language was
instrumental in calculating complex SLAs. Engineers have

specific procedures for keeping all their services within SLAs.
When developers want to launch a new service, they follow
the best practices for generating SLA charts and alerts that
they have to monitor. SREs review the Tanzu Observability SLA
dashboards as well to identify hot spots in Kubernetes
environments. Increased team confidence resulted in taking
more ownership of performance and monitoring SLAs.

Tanzu Observability metrics dashboards for developers, SREs,
and Kubernetes operators have overlaps. All these users
monitor systems’ Kubernetes-based metrics such as CPU,
memory, I/O, the number of instances, network metrics, and
Kubernetes metrics. However, SREs are interested in behavior
across the whole fleet, while developers want to understand
which changes might be caused by issues with the code.

Developers own unique sets of application microservices
metrics that depend on business logic, and they want to know
if resource spikes are due to more load or an introduced bug.
For example, if developers are running a web server and
serving many requests per second, and then they do a code
release, and the size of Kubernetes infrastructure goes up, but
the request performance doesn’t, then they know that the
release code increased the resources used.

42

https://docs.wavefront.com/telegraf.html
https://docs.wavefront.com/statsd.html
https://docs.wavefront.com/prometheus.html
https://docs.wavefront.com/integrations_aws_metrics.html
https://docs.wavefront.com/gcp_pubsub.html
https://docs.wavefront.com/query_language_getting_started.html

With Tanzu Observability engineers have the metrics and
ability to monitor their services within the Kubernetes
environment. They extensively use Tanzu Observability’s
programmatic application of dashboards, alert backtesting,
alert customization, and integration with PagerDuty and
Slack. They use Wavefront CLI to see what metrics are
used within the Tanzu Observability ecosystem and what
percentage is relevant for developers on a daily basis.
They also find the URL share mechanism very helpful for
communicating with the team during incident response.

The company has rolled out Tanzu Observability to all
software engineering teams of several hundred engineers
and operations teams. With Tanzu Observability’s
comprehensive dashboards, powerful analytics, and
intelligent summaries and alerts, engineers have a
complete picture and all the information they need to
increase performance, stability, and resiliency of applications,
Kubernetes components, and underlying infrastructure.

How VMware Cloud Engineering
Team Exceeds SLAs
The VMware cloud engineering team is responsible for
delivering critical cloud services with strict SLAs to internal and
external stakeholders. They are using Tanzu Observability to
observe their environment:

• 650 cloud and on-prem pipelines

• Multiple GEOs

• 5,000 daily-deployed containers across 12+ Kubernetes
clusters with 100+ application microservices

Their Tanzu Observability instance includes 600 alerts and
over 500 dashboards.

FIGURE 19: Enterprise Observability of Tanzu Observability for Cloud Management Platform at Scale

Users Dashboards

Containers Alerts

400 100+

5,000 60012+

Application
Services

Kubernetes
Clusters

500

43

https://docs.wavefront.com/wavefront_api.html
https://docs.wavefront.com/alerts.html
https://github.com/snltd/wavefront-cli

Full-Stack
Observability

Metrics
Traces
Histograms
Span Logs

Applications: SpringBoot, DropWizard, Xenon

API + Web UI

Kubernetes, AWS EKS: Clusters, Pods, Containers

Hybrid Cloud, AWS

Rich
Dashboards

Smart
Alerts

Deep Problem
Solving

powering

Tanzu Observability is their primary platform for unified
applications and Kubernetes’s full-stack observability. They
use Tanzu Observability for reliability and health analysis
across all microservices, the build pipelines, and the hybrid
cloud infrastructure. They use the Kubernetes integration
to observe Kubernetes on-prem and on cloud performance
health and to correlate across containerized microservices
and underlying infrastructure.

With 900 pipeline executions per day, the SRE team
automated the entire pipeline. Now they need constant
visibility to make sure that nothing is stuck at any point.
Tanzu Observability dashboards show all the pipeline metrics
such as Jenkins server and worker metrics and Gerrit code
review metrics. By analyzing services, Kubernetes, and
supporting infrastructure, the SRE team can guarantee
continuous running while hitting SLAs.

FIGURE 20: Tanzu Observability Kubernetes and AWS EKS Observability Full Stack

44

Symphony Services Workload

CI/CD PIPELINE

Private Cloud
Service Dev

Leader

Gerrit Server CMS Token System vRealize Code Stream Tango Code Stream

Followers

Public Cloud
Dev & Test

Public Cloud
Staging

Public Cloud
Production

Recently, the team has used Tanzu Observability to compare
the success rate of Python scripts deployments and Helm
charts deployments. The results allowed the teams to agree
to switch to Helm on EKS. Tanzu Observability dashboards
enabled them to go and look at pipeline failure runs, drill into

the most frequently failing jobs, and figure out the root cause
of failures. They were able to find out if failures were across the
board, and if the problems were in the Kubernetes clusters or
with the particular service.

FIGURE 21: CI/CD On-Prem and Cloud Pipeline Observability with Tanzu Observability

45

The Tanzu Observability Kubernetes integration enables
Kubernetes operators and SREs to understand how
Kubernetes behaves across all levels and to perform guided
root cause analysis (RCA). For example, they can easily drill
down and find out if a pod restart is due to an uncaught
exception, CPU/memory limit, or restart of the node itself.

Developers see what happens with the service they own from
code check-in through production under load. With Tanzu
Observability, all engineering teams have full insight into the
Kubernetes application environment, and can easily
collaborate, and find issues quickly.

FIGURE 22: Switching to Helm on EKS Based on Tanzu Observability Tracked Success Rate

46

FIGURE 23: A Glance into the Health of All Deployed Kubernetes Services

47

What to Look for in an
Enterprise Observability Platform
To confidently deliver observability across the organization,
Kubernetes Operators, SREs, and developers should look
for several features:

Real-Time Performance at Scale:
The Tanzu Observability patented architecture is proven to
scale to millions of metrics per second. Many customers with
thousands of active users use Tanzu Observability to set alerts,
run queries, and view dashboards. The platform is optimized
to handle high cardinality metrics at scale, delivering real-time
visibility regardless of the telemetry volume.

Detailed Platform Self-Reporting:
Tanzu Observability provides a real-time portal on its service
status and usage. Track how Tanzu Observability is consumed
by team, project, and domain. Set usage quotas per team
report to maintain cost budgets.

User Customization at Scale:
Tanzu Observability enables user teams to self-service their
telemetry and create their alerts and dashboards at scale.
Intuitive query builders and creation tools for alerts and
dashboards make it easy for all teams to deliver on SLOs
for their services.

High Availability Architecture:
Tanzu Observability has a high availability architecture with a
99.95% SLA using multiple availability zones across multiple
regions. It keeps 4 copies of your data at all times, and the
proxy queues your data even if your WAN link goes down.
The Tanzu Observability Cloud auto-indexes and shards,
adapting to your data shape.

Granular Policy Control:
Tanzu Observability enables DevOps teams to support 100s
of teams based on policy, define access to assets with granular
user groups, protect sensitive metrics with permission controls,
encrypt data at multiple levels, and support multi-tenant SSO.

Full Programmable Automation:
Tanzu Observability provides a complete API and CLI for all
its UX capabilities, with version control, facilitating automation
and monitoring as code. Tanzu Observability integrates with
run-book automation and continuous delivery platforms to
automate remediation and rollbacks.

48

https://www.youtube.com/watch?v=8wKPkrIiXKw&feature=youtu.be

User Experience Metrics:
Get insight into the user experience by monitoring
response time, errors, load time, and availability of
mobile applications and browsers.

Application Metrics:
Gain insight into the health and performance of
Kubernetes applications by monitoring custom
metrics (requires deep application understanding)
and RED (Rate, Errors, Duration) metrics.

Network I/O Metrics:
Monitor bytes and errors received and transmitted
because they are good indicators of an
underperforming network that influences
application performance.

Kubernetes Metrics:

Clusters—CPU and memory usage,
pod/container counts
Nodes—CPU and memory usage,
network, storage, uptime, filesystem
Pods—CPU and memory usage,
network, storage, uptime
Containers—CPU and memory usage,
storage, uptime, filesystem

Infrastructure Metrics:
Put the accent on the utilization of resources
by monitoring USE (Utilization, Saturation,
Errors) metrics.

What to Monitor in a
Kubernetes Environment
Kubernetes is not self-monitoring, and all the components in
the Kubernetes environment, from user experience to
infrastructure need to be included for effective monitoring of
Kubernetes deployments. A layered approach to monitoring
makes it easy to identify the problem by drilling down through
the layers until the issues are identified.

Finally, a different level of aggregation is essential for getting
comprehensive observability and successful troubleshooting.
For example, when aggregating per node, infrastructure
issues might easier surface, while aggregation per application
allows easier microservices root causing.

49

Want to Learn More?
Videos and Webinars:
• Tanzu Observability and Kubernetes

• Tanzu Observability and Kubernetes: The Next Generation

• The Next Generation Kubernetes Experience in
Tanzu Observability

• Container Monitoring Best Practices

Docs and GitHub:
• Monitor and Scale Kubernetes with Tanzu Observability

• Kubernetes Integration

• GitHub: Wavefront Collector for Kubernetes

• VMware TKG Integration

Blogs:
• Tanzu Observability’s Next-Gen Collector for Kubernetes

• Tanzu Observability Automates Observability for
Enterprise Kubernetes

• Tanzu Observability’s Kubernetes Observability Extends
Beyond PKS, Cloud TKG, Amazon EKS, Now to OpenShift,
GKE, AKS and More

• How to Instrument and Monitor Your Spring Boot 2
Application in Kubernetes Using Tanzu Observability

• Got penShift? Need Observability That’s Automated, Full
Stack, and Unified? Make a Shift to Tanzu Observability!

• Application Metrics Collection in Kubernetes via Telegraf
Sidecars and Tanzu Observability

• How to Make Prometheus Monitoring Enterprise Ready

• How Moving From Prometheus Monitoring to Enterprise
Observability Helped Secure State Deliver Exceptional
Cloud Security Services

• Integrating Prometheus with Tanzu Observability for
Easy Scaling and Failover

50

https://www.youtube.com/watch?v=jbmUKPSIguQ
https://www.youtube.com/watch?v=nZnbdNHFNyU&width=640&height=480
https://www.youtube.com/watch?v=1gX_Hv_lWJ4&feature=youtu.be
https://www.youtube.com/watch?v=1gX_Hv_lWJ4&feature=youtu.be
https://www.youtube.com/watch?v=_XYr1hlQqfI&width=640&height=480
https://docs.wavefront.com/wavefront_kubernetes.html
https://docs.wavefront.com/kubernetes.html
https://github.com/wavefrontHQ/wavefront-collector-for-kubernetes
https://docs.wavefront.com/tkgi.html
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/wavefront-s-next-gen-collector-for-kubernetes-now-with-auto-discovery-and-expanded-deployment-options
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/wavefront-automates-observability-for-enterprise-kubernetes
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/wavefront-automates-observability-for-enterprise-kubernetes
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/wavefront-s-kubernetes-observability-extends-beyond-pks-cloud-pks-amazon-eks-now-to-openshift-gke-aks-and-more
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/wavefront-s-kubernetes-observability-extends-beyond-pks-cloud-pks-amazon-eks-now-to-openshift-gke-aks-and-more
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/wavefront-s-kubernetes-observability-extends-beyond-pks-cloud-pks-amazon-eks-now-to-openshift-gke-aks-and-more
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/how-to-instrument-and-monitor-your-spring-boot-2-application-in-kubernetes-using-wavefront
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/how-to-instrument-and-monitor-your-spring-boot-2-application-in-kubernetes-using-wavefront
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/got-openshift-need-observability-that-s-automated-full-stack-and-unified-make-a-shift-to-wavefront
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/got-openshift-need-observability-that-s-automated-full-stack-and-unified-make-a-shift-to-wavefront
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/application-metrics-collection-in-kubernetes-via-telegraf-sidecars-and-wavefront
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/application-metrics-collection-in-kubernetes-via-telegraf-sidecars-and-wavefront
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/how-to-make-prometheus-monitoring-enterprise-ready
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/how-moving-from-prometheus-monitoring-to-enterprise-observability-helped-secure-state-deliver-exceptional-cloud-security-services
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/how-moving-from-prometheus-monitoring-to-enterprise-observability-helped-secure-state-deliver-exceptional-cloud-security-services
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/how-moving-from-prometheus-monitoring-to-enterprise-observability-helped-secure-state-deliver-exceptional-cloud-security-services
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/integrating-prometheus-with-wavefront-for-easy-scaling-and-failover
https://tanzu.vmware.com/content/vmware-tanzu-observability-blog/integrating-prometheus-with-wavefront-for-easy-scaling-and-failover

Alert Automation alerts life-cycle management, i.e., creating
and maintaining alerts

Annotations metadata attached to Kubernetes objects

Auto-Remediation self-healing, resolving alerts automatically

Availability perform as expected at a given point in time

Burn Rate how fast relative to SLO the service consumes
the error budget

Canary testing a new release on small subset of typical
workload

Capacity Cache a cache that serves precomputed results for
API calls/queries to a service

Cardinality a number of values in a set

ConfigMap handles configuration data

Container Image a collection of all the files that make up an
executable application

Control Manager daemon process that implements Kubernetes
control loops (rolling deployments, replica sets,
number of worker nodes)

CRD
(Custom Resource
Definition)

an extension of Kubernetes API for storing and
retrieving data

Deployments manages ReplicaSet, pod definitions etc.

Etcd key-value store of all Kubernetes objects

Endpoint source of metrics that can be scraped

Error Budget determines how unreliable the service is
allowed to be i.e. the number of errors within
SLO

Exporter exports metrics from third-party systems as
desired metrics

Failover handling failure by automatically routing
incoming requests to a different instance

Fallback alternative source when given component is
unavailable

Helm Chart Kubernetes specific package manager

Histograms shows data distribution

Ingress manager of external HTTP traffic to hosted
service

Glossary

51

Instrumentation metrics endpoint is embedded within an
existing application for measuring and
recording quantities and states

Kube-APIServer gateway to Kubernetes cluster

Kubectl command line for Kubernetes

Kube-DNS resolves DNS of all services in Kubernetes
cluster

Kube-State Metrics monitor state of Kubernetes Objects
(nodes, pods, jobs, deployments)

Kubelet initiates pods, interacts with containers

Kube-Proxy network proxy and load balancer for
Kubernetes services

Namespace virtual segmentation of single clusters

Nodes host of Kubernetes worker or master
components

Operator domain specific controller

Pods group of one or more containers

ReplicaSet continuous loop that ensures that requested
number of pods are running

Rollback revert of a set of previously rolled out changes
(configurations/services)

Rollout service/configuration deployment

RPC remote procedure call

Saturation % of maximum capacity

Scheduler assigns workloads to specific nodes

Service logical layer that provides IP, DNS etc.
persistence to dynamic pos

Sharding splitting a data structure/service into shards

SLA
(Service Level
Agreement)

legally binding of keeping certain SLO over
certain period; if not penalties paid

SLI
(Service Level
Indicator)

key metrics as a measurement of service health
and performance

SLO
(Service Level
Objective)

target level of SLIs

Tail latency a long tail of very large outlier

Traffic the amount of use of a service per unit of time

Glossary

52

Get Started Today

Try Tanzu Observability By VMware For Free
Join us online:

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 vmware.com Copyright © 2021 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at
vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. Item No: Kubernetes Observability at Scale 5/21

Learn More

https://tanzu.vmware.com/observability/free-trial-popup
www.vmware.com
https://www.vmware.com/download/patents.html
https://www.linkedin.com/company/3827017
https://tanzu.vmware.com/observability/free-trial-popup
https://www.facebook.com/vmwaretanzu/
https://twitter.com/wavefronthq?lang=en

	How it Helps
	Intro
	Real World
	What's Needed

	Forward Arrow 5:
	Button 77:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 47:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:

	Button 78:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 47:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:

	Nav 2:
	Page 2:
	Page 3:
	Page 4:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 47:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:

	Nav 3:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 47:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:

	Nav 4:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:

	Nav 5:
	Nav 49:
	Nav 9:
	Nav 1:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 47:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:

	Nav 6:
	Nav 51:
	Nav 53:
	Nav 54:
	Nav 57:
	Nav 56:
	Nav 55:
	Nav 52:
	Nav 24:
	Nav 22:
	Nav 16:
	Nav 17:
	Nav 18:
	Nav 19:
	Nav 20:
	Nav 21:
	Nav 58:
	Nav 23:
	Nav 59:
	Nav 25:
	Nav 26:
	Nav 27:
	Nav 28:
	Nav 29:
	Nav 30:
	Nav 31:
	Nav 33:
	Nav 34:
	Nav 35:
	Nav 36:
	Nav 37:
	Nav 38:
	Nav 15:
	Nav 32:
	Nav 41:
	Nav 42:
	Nav 7:
	Nav 8:
	Nav 10:
	Nav 11:
	Nav 46:
	Nav 12:
	Nav 13:
	Nav 14:
	Button 75:
	Page 53:

