

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevSecOps

 DevSecOps
 VMware Tanzu Special Edition

 by Brad Bock

01_9781119832560-ffirs.indd 3 11/9/2021 4:47:03 AM

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevSecOps For Dummies®, VMware Tanzu Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2022 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

ISBN 978-1-119-83256-0 (pbk); ISBN 978-1-119-83257-7 (ebk)

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/
custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com.

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the
following:

Project Editor: Elizabeth Kuball

Acquisitions Editor: Ashley Coffey

Editorial Manager: Rev Mengle

Business Development
Representative: Cynthia Tweed

Production Editor:
Tamilmani Varadharaj

Special Help: Jennifer Krazit,
Keith Lee, Faithe Wempen

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents v

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ... 1

About This Book ... 2
Foolish Assumptions .. 2
Icons Used in This Book ... 3
Beyond the Book .. 3

CHAPTER 1: Understanding DevSecOps .. 5
What Is DevOps? ... 5
Learning the Lingo ... 7
Defining a New Era for DevOps .. 12

CHAPTER 2: Fusing DevOps and Container Security 15
Building Secure, Optimized Code ... 16
Building Secure Containers ... 17

Secure container registries .. 19
Container scanning ... 20
Buildpacks .. 21
Secure application catalogs ... 22
Service meshes .. 24

Shifting Left Respectfully with Platform Operations 25

CHAPTER 3: Managing Kubernetes Clusters
with a DevSecOps Mindset .. 27
Standardizing on a Single Distribution .. 29
Managing All Your Clusters from a Single Interface 30

Automating Kubernetes management....................................... 31
Balancing control and flexibility .. 32

What Happens When a Kubernetes Vulnerability
Is Discovered? ... 33

CHAPTER 4: Ten More Resources to Guide
Your Journey .. 37

DevSecOps

Introduction 1

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

We talk a lot about DevSecOps inside VMware Tanzu, and
we’re not alone. In fact, in Gartner’s 2020 Hype Cycle
for Application Security, DevSecOps is the only technol-

ogy or process deemed “transformational,” and Gartner analysts
believe it will reach mainstream adoption in just two to five years.
But all this attention raises two big questions: Just what on Earth
does DevSecOps mean, and why is it critical that you get on board
with it now?

As the name implies, DevSecOps is the inclusion of security within
DevOps practices. But it’s more nuanced than just inserting “secu-
rity” at some predefined step in the application life cycle. Instead,
it’s about making security an inextricable, if not intrinsic, part of
the application life cycle. An organization embracing DevSecOps
is an organization that’s moving fast and not breaking things.

And why is now the time to incorporate DevSecOps into your
software development process? Because modern, cloud-native
applications are complex, and their life cycles are fast paced.
Traditional security practices — especially those involving human
intervention — often won’t cut it in a modern IT environment. In
order to keep up with the pace of change, security must be auto-
mated and built into the software development life cycle. Properly
materialized, teams and organizations embracing DevSecOps are
teams and organizations building great software and mitigating
risk simultaneously.

The best part: DevSecOps will almost certainly save you time
and money. DevOps practices should be standard operating pro-
cedures for modern applications, which are all about delivering
better digital experiences faster by improving development
speed, automating operations, and using open-source compo-
nents. DevSecOps is all about doing these things securely, because
security incidents typically cost many, many times more than the
relatively simple steps that could’ve been taken to avoid them.

2 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

About This Book
This book explains DevSecOps in the context of modern, con-
tainerized applications — most likely leveraging a microservices
architecture and running on top of Kubernetes, a very popu-
lar container orchestration platform. It provides the founda-
tional knowledge to get up to speed on core concepts (including
DevOps), and then shares the necessary requirements for safely
running applications in containers and managing them on Kuber-
netes clusters.

It’s also worth noting that DevSecOps is not a replacement for
other IT security practices, nor should it override efforts to auto-
mate other layers of the IT stack. Instead, this book focuses on
DevSecOps at the application runtime level (Kubernetes) and on
the building of applications themselves. Ideally, the two pri-
mary personas discussed in this book — software developers and
platform operators — will work in conjunction with their peers
across operations, security, and other teams as part of an
organization-wide effort to improve cybersecurity, while simulta-
neously increasing the pace and quality of software development.

Foolish Assumptions
In writing this book, we made some assumptions about who will
be reading it — including that your team or organization has
already adopted DevOps practices, or at least is aware of the ben-
efits they provide and the reasons for their popularity.

We’re also assuming that you fit one of these general profiles:

 » You’re a platform architect tasked with building and running
an application platform for your development team. You
either have settled on Kubernetes as the foundation of that
platform or are very seriously considering it, and you know
you need to improve the developer experience and security
for applications running on it.

 » You’re an application owner or line-of-business manager in
the process of modernizing your software development and
application architecture. You want to ensure your team
makes the right decisions to maximize velocity, performance,
and security.

Introduction 3

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » You’re an executive trying to get up to speed on the tech-
nologies and processes underpinning modern application
development. As IT evolves from “keeping the lights on” to
actually driving revenue, you know you’ll need to make
informed decisions to ensure the organization is able to
meet new business requirements while keeping sensitive
data secure.

Icons Used in This Book
This book uses icons in the margin to draw your attention to cer-
tain kinds of information. Here’s a guide to the icons:

We use the Tip icon to highlight anything that’ll save you time or
money or just make your life a little easier.

When we tell you something so important that you should commit
it to memory, we mark it with the Remember icon.

When we want you to avoid making a potentially costly mistake,
we mark that material with the Warning icon.

Sometimes we get into the weeds, providing some information
that’s a bit more technical in nature. When we do, we mark it with
the Technical Stuff icon.

Beyond the Book
After you read this book, you’ll probably have some questions!
Chapter 4 contains a list of resources to help educate you on some
core topics related to DevSecOps, as well as to help you get started
on your journey. For a thorough collection of blog posts, white
papers, analyst reports, and more content explaining the con-
cepts discussed in this book in more detail, visit https://tanzu.
vmware.com/content/devsecops-101.

https://tanzu.vmware.com/content/devsecops-101
https://tanzu.vmware.com/content/devsecops-101

CHAPTER 1 Understanding DevSecOps 5

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Getting a basic grip on DevOps

 » Understanding important key terms and
concepts

 » Revisiting the DevOps definition

Understanding
DevSecOps

The first and most important thing to understand about
DevSecOps is that there’s no magic bullet that will get you
to an ideal state overnight. DevSecOps is a collection of

technologies, techniques, and even mindsets that work together
to increase velocity, while also enhancing security, at every layer
of the software development process. Depending on how far an
organization is down the path of application modernization,
doing DevSecOps right could mean some fundamental changes to
how your organization approaches both software development
and IT operations.

What Is DevOps?
When preparing to implement DevSecOps, the first step is com-
mitting to the principles of DevOps — for which best practices
can be found in countless books, conference talks, and websites,
including https://tanzu.vmware.com/devops. In fact, the goal
of DevSecOps is that security becomes such an intrinsic part of
the application life cycle in a DevOps-centric environment that,
as a nerdy joke goes, the term is still pronounced DevOps because
the Sec is silent.

https://tanzu.vmware.com/devops

6 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

We share some of our practical assumptions about DevOps later
in this chapter, but a simple definition is that DevOps is what
happens when organizations stop treating software development
and operations as separate entities and start treating them like
complementary functions, working toward the shared goal of
better applications. Figure 1-1 shows the DevOps loop, a common
method of illustrating how these two previously distinct func-
tions have merged.

Why do we need better applications? Because in 2021 and into the
foreseeable future, digital experiences will make or break organi-
zations. It’s applications — built in-house and designed uniquely
for specific tasks — that will draw in more customers, optimize
back-end processes, and otherwise help organizations compete.
The COVID-19 pandemic highlighted this reality; companies that
were prepared to step up their digital experiences were able to
weather the storm and even thrive — while also forever digitizing
some previously physical experiences.

Why do we need all that plus better security? Because if there’s a
vulnerability in your software, someone is likely to discover it and
possibly exploit it. Our increasing connectivity is breaking down
the traditional network barriers, meaning criminals don’t need
to breach the corporate network anymore. All they need in order
to get a toehold is an out-of-date component buried somewhere
in your software stack. And increasingly complex and dynamic
application architectures mean it’s more difficult than ever to
keep track of everything that’s running inside your network.

FIGURE 1-1:  The DevOps loop highlights the interconnected and continuous
nature of DevOps.

CHAPTER 1 Understanding DevSecOps 7

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Implementing the security techniques described in this book is a
largely preventive exercise, like taking vitamins or brushing your
teeth after every meal. You can’t always tell if it’s working in the
moment, because the whole point is that you’re getting ahead of
potential issues. Before we go deeper, though, let’s walk through
some of the fundamental concepts and terminology we’ll be using
throughout the rest of this book.

Learning the Lingo
Probably the most fundamental element of modern cloud-native
software development (and DevSecOps by proxy) is the container.
Whether you’re building applications with microservices archi-
tectures or just lifting and shifting existing applications onto a
new platform, the chances are good that they’ll be packaged as
containers.

A container is a self-contained unit of software that includes
all the elements necessary to run an application consistently
from one computing environment to the next. If you could peer
inside an application container, you would find things like appli-
cation code or binaries, language runtimes, dependencies, and
settings — everything needed for the application to run.

Developers build containers using configuration files that instruct
a container build system to gather these necessary parts and com-
bine them with an operating system (OS), similar to the way users
install an application on a desktop computer. Containers are then
run using what’s called a container runtime. A container runtime
is what enables containers to be portable and run consistently in
any computing environment. A container runtime is a mediator
between containers and the underlying compute infrastructure.

If containers sound similar to virtual machines (VMs), that’s
because they are. Figure 1-2 summarizes these differences. The
major difference is in how the resources are shared by each unit.
VMs are complete guest OS units that share physical host server
resources such as processing power, memory, and disk space. VMs
run on top of a virtualization layer called a hypervisor. Containers
are workload units that include dependencies and libraries but
share an OS kernel. As a result, containers are more efficient than
VMs because they don’t each require a complete guest OS. They

8 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

can start up quickly because they access already-running shared
OS resources instead of having to wait for those resources to ini-
tialize. But the two formats are not necessarily at odds with one
another: It’s quite common for containers to run on VMs to take
advantage of the dynamic, software-defined nature of both.

Technically, containers are only called “containers” when they’re
running and consuming resources. Otherwise, the file that details
what they are and what they need to run is called a container
image. Container images are often accessed, or pulled, from a
library called a container registry.

Containers are popular for many reasons, but a major one is that
developers can build and test them on their laptops and then
deploy them on any system running a compatible container run-
time. This capability cuts down the delta between development
and production environments and provides a standard method
of shipping software. Because containers share the OS with the
compute environment on which they run, they have smaller foot-
prints, meaning many containers can share a single machine.

An important related technology is the container registry, which is
basically a library that stores container images. The most popu-
lar public container registry is Docker Hub, from which you can
search among tens of thousands of container images ranging from

FIGURE 1-2:  Note that by running a container engine inside a VM (on the left
side of the diagram), the guest OS could support multiple containers.

CHAPTER 1 Understanding DevSecOps 9

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

obscure tools to popular databases. In addition, many large enter-
prises and other organizations choose to run private container
registries, which include images that have been built and vetted to
meet their specific needs. When someone downloads a container
image to run in their environment, it’s called pulling the image.

Although Docker used to be synonymous with containers and con-
tainer runtimes, that isn’t always the case anymore (for reasons
too complicated to explain in this book). Today, organizations
have a variety of systems to choose from, almost all of which con-
form to a common container image specification and container
runtime specification managed by the Open Container Initiative
(OCI). This means that they’re interoperable: Any OCI-compatible
container image can be run on any OCI-compatible container
runtime. However, Docker supports OCI container and runtime
specifications and is still the most widely used container-build
system.

Although containers only need a runtime in order to run, many
organizations prefer to bolster them with a container orches-
trator. Of those, Kubernetes is far and away the most popular
choice. A container orchestrator handles the operational aspects
of running applications in containers — things like service dis-
covery, restarting containers when they die, allocating system
resources, and managing groups of containers that must be
tightly coupled, to name just a few.

Here are a few Kubernetes-specific terms worth understanding:

 » Cluster: The set of machines (virtual or physical) on which
Kubernetes is installed.

 » Node: An individual machine in a Kubernetes cluster. A
cluster can be a single node, but clusters typically run across
multiple nodes for added resilience.

 » Pod: A container or group of containers that are managed as
a single entity and share storage and network resources.

 » Service: An application that’s exposed to the network.
Service discovery is the method by which services can locate
each other so they can send traffic or communicate.

10 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » YAML: The language through which humans define what’s
running on their Kubernetes clusters and container images.
(YAML is a recursive acronym, short for YAML Ain’t Markup
Language.) In Figure 1-3, the YAML file indicates a pod
consisting of two containers, as well as their memory and
CPU requirements.

OTHER DEVSECOPS TERMS TO
KNOW
Here are a few terms that won’t come up too much in this book but
that are still critical to understand:

• Application programming interfaces (APIs): The method (and
language) through which applications communicate with each
other. If it weren’t for APIs, all software would run in a vacuum and
would, therefore, be useless. Imagine, for example, having an OS
that couldn’t run applications.

• Continuous integration/continuous delivery (CI/CD): The pro-
cess of regularly writing new code and integrating it into the code-
base rather than shipping new updates quarterly, yearly, or on
some other prescribed timeline. CI typically involves a series of
automated tests to ensure new features or bug fixes work well
and are otherwise compliant before they’re integrated into the
codebase. Following CI, CD updates running applications with
those new features or bug fixes. Together, the process that begins
with a change to application code and ends with changes to pro-
duction applications is called a CI/CD pipeline.

• Authentication/authorization: Authentication (sometimes
referred to as AuthN or authn) is the act of verifying whether users
really are who they say they are or that processes (likely running
as microservices for the purpose of this book) really are what they
claim to be. Authorization (sometimes referred to as AuthZ or
authz) is the act of determining whether an authenticated entity is
allowed to access the resource in question. These problems can
be difficult in the context of DevSecOps because of design limita-
tions of microservices and because networks composed of con-
tainerized microservices can be complex and dynamic.

CHAPTER 1 Understanding DevSecOps 11

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Microservices are a big reason why container orchestration is so
popular. As opposed to traditional monolithic applications, where
a single codebase includes all the business logic, microservices
are loosely coupled and typically only serve a single function. So,
for example, a large monolith encompassing 400 different func-
tions might be broken down into 400 smaller microservices, each
running in its own container. We cover some other modern tech-
nologies for managing microservices in Chapters 2 and 3, but suf-
fice it to say that using a platform like Kubernetes is a critical
first step toward bringing order and automation to these complex
environments.

Before container orchestration platforms like Kubernetes were
widely available, managing microservices could be a very daunt-
ing task. Legacy techniques for managing them included using
spreadsheets to track IP addresses and manually mapping which
services connected to which other services.

FIGURE 1-3:  A YAML file declaring a pod consisting of two containers
(app and log-aggregator), their locations, and minimum and maximum
requirements for memory and CPU resources.

12 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

A final term worth defining in the context of DevSecOps is vul-
nerability or, even more broadly, security. We’ve all read stories
about scary exploits at every layer of the software stack, but in
this book we’re primarily concerned with vulnerabilities within
the application code and containerized components. We’re also
concerned with securing the communications between contain-
ers or microservices within the network, and between those same
services and the outside world.

The goal of DevSecOps is to automate as much of the container-
and microservice-security life cycle as possible, so that organi-
zations can meet their DevOps objectives without slowing down.
This applies while containers are being built and deployed, as well
as when managing them and their components while they’re run-
ning in production.

You’ve probably come across the acronym CVE when reading about
security incidents or patches. The term comes from the Common
Vulnerabilities and Exposures database (https://cve.mitre.
org), which is funded by the U.S. government and tracks known
vulnerabilities in software products and open-source projects.

Although the terms vulnerabilities and exposures technically have
different meanings, the distinctions are less relevant today, and
vulnerability is generally used as an umbrella term that covers
everything. Every vulnerability is assigned a label that includes
the year it was added and a unique identifying number (for exam-
ple, CVE-2019-5736), as well as a severity score (10 is the highest)
and details on the vulnerability itself and which software versions
or configurations are at risk.

Defining a New Era for DevOps
If you look at the definition of DevOps shared at the beginning of
this chapter, you may notice that it has a lot of wiggle room. This
is why the term means so many different things to so many dif-
ferent people. (If you don’t believe us, start asking your engineer-
ing team what it means!) There’s probably some programmable
infrastructure, some CI/CD, and, yes, some agile development
involved, but even those terms can be sliced a thousand different
ways given the wide array of available technologies.

https://cve.mitre.org/
https://cve.mitre.org/

CHAPTER 1 Understanding DevSecOps 13

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

So, perhaps it’s easier to begin with what DevOps is not — or, at
least, is not any longer. DevOps is not software development and
operations that exist as independent, siloed entities. That old way
of doing things inevitably led to the classic situation of develop-
ment and operations teams perpetually at odds with each other,
viewing the other team as an obstacle to overcome.

We probably also can agree that DevOps is not confined to the
popular “you build it, you run it” approach. That mentality can
work for small teams and those without much legacy IT to con-
tend with, but it can fall apart very quickly within large enter-
prises, where a more-centralized platform as a product or platform
operations approach may work better.

It’s also easier to talk about DevOps by locking into a specific
foundational technology — in this case, Kubernetes — because
although the primary goal of speeding up the application life cycle
may remain the same, choices around platform and the appli-
cation architecture will affect both development and operational
workflows. In exchange for the relative freedom of self-service
resources, for example, developers must deal with complicated
configuration templates. In exchange for the relative freedom of
microservices and continuous deployment, they must account for
service discovery, API gateways, service meshes, and CI/CD pipe-
lines. (CI/CD pipelines should be a core component of any DevOps
environment, and we explain service meshes in Chapter 2.)

INSERTING “SECURITY” INTO
DEVOPS
Security teams became yet another perceived obstacle as more work-
loads moved online and data breaches became commonplace. Better
security, of course, is very much a good thing, but stricter protocols
came at the expense of fast development cycles — which are one of
the driving factors behind DevOps and a big reason behind the steady
improvement of web applications. By bringing automation to DevOps
security, DevSecOps removes the friction between DevOps and secu-
rity teams, thus enabling faster and safer development cycles.

14 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Operators also must learn some new tricks in a Kubernetes
environment. In exchange for getting out of the business of
being infrastructure gatekeepers, they need to monitor an ever-
expanding network of containers, microservices, cloud instances,
and VMs. If they don’t want to manually configure and approve
application components, they need to give developers easy access
to the tools they need. In exchange for automating these pro-
cesses, they need to learn Kubernetes.

When it’s done well, the results are worth any additional effort.
DevOps teams running on all cylinders are shipping better code,
faster. Downtime is reduced and issues are resolved more quickly.
And, in the case of Kubernetes, everyone speaks the same lan-
guage. You can’t overstate the importance of employees in dif-
ferent roles and even different teams all working from the same
baseline of knowledge about how their systems work.

CHAPTER 2 Fusing DevOps and Container Security 15

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Discovering the keys to creating secure,
optimized code

 » Learning about the key technologies for
container security

 » Automating container security and life
cycle using DevSecOps techniques

Fusing DevOps and
Container Security

In Chapter 1, we explain the technologies that underpin modern
software development. In this chapter, we show you how to
build, deploy, and manage containers using a DevSecOps mind-

set. This means the containers will be secure at every step of the
life cycle and that security will be an integrated, if not automated,
part of the process. If you’ve heard people talk about “shifting
left” with regard to DevSecOps, this is it: Developers are working
with operations and security teams to integrate security earlier in
the application life cycle, thus taking on more responsibility for
application security as part of their workflow.

Figure 2-1 illustrates a typical application life cycle, in which
security review generally happens between the Release and Deploy
phases. An application life cycle following DevSecOps principles
includes security measures at every step. The more automated,
the better so they’re not ignored and they don’t slow down the
path to production.

16 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Building Secure, Optimized Code
Before you rush to start building containers and installing Kuber-
netes clusters, you’ll want to address the most important part of
any application: its code. You can have the world’s most secure
container environment, but bad decisions in the application itself
can still provide opportunities for bad actors (and, of course, poor
performance and user experience). The good news is that there
are multiple tried-and-true methods for ensuring that develop-
ers’ code is both secure and optimized for modern computing.

Application frameworks are an effective approach for developing
secure and high-performing applications. The beauty of using
application frameworks is that they often automate — or at least
greatly simplify — the process of incorporating best practices
around security (such as authentication and encryption), applica-
tion architecture (such as “circuit breaker” patterns and server-
less computing), and other capabilities (like testing and tracing)
that should be part of any modern application.

We strongly recommend the open-source Spring framework
(https://spring.io) for Java applications and the open-source
Steeltoe framework (https://steeltoe.io) for .NET applica-
tions. VMware manages both projects, which are designed for
cloud-native use cases. Millions of developers around the world
use them — from large traditional enterprises to companies such
as Netflix that were born in the cloud. These frameworks help
developers focus on business logic and incorporate advanced
functionality — sometimes with only a single line of code.

The tooling ecosystem that has built up around Spring handles
most of this legwork for developers, including by providing a
cloud-native application programming interface (API) gate-
way (https://spring.io/projects/spring-cloud-gateway) to
help manage interactions between microservices and the outside

FIGURE 2-1:  These are the same phases as in the DevOps loop. Although
DevOps aims to make this a continuous cycle, DevSecOps aims to embed
security throughout that cycle.

https://spring.io/
https://steeltoe.io/
https://spring.io/projects/spring-cloud-gateway

CHAPTER 2 Fusing DevOps and Container Security 17

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

world. An API gateway needs strong access control and authen-
tication, but it shouldn’t burden valid users or machines making
requests — so things like enterprise identity management and
single sign-on (SSO) become important. The API gateway must
also be able to adequately handle rate limiting across microser-
vices to help mitigate distributed denial-of-service (DDoS) or
brute-force attacks, and other methods for breaching or disrupt-
ing systems, with automated and repetitive actions.

Code-scanning tools are another useful piece of technology when
it comes to shipping secure applications. They come in various fla-
vors but share a common capability of alerting developers to vul-
nerabilities in their code, such as misconfigured user permissions
or misuse of keys and credentials that could allow hackers to access
sensitive data. Some scanning tools will also flag vulnerabilities
in open-source components and container images, a process we
discuss in the “Container scanning” section, later in this chapter.

A major goal of DevSecOps — and something the VMware Tanzu
Labs team (https://tanzu.vmware.com/labs) preaches — is to
make the right thing the easy thing. That applies to writing appli-
cations, managing production infrastructure, and everything in
between. Consistency and automation across tools and processes
go a long way toward delivering on this goal.

If you’re adopting this type of technology as part of a DevSecOps
transformation, you’ll want to ensure that scans happen in near
real time to minimize their impact on developers’ workflows. And
whatever tools and processes your organization chooses to use,
the important thing is that developers can ship the best, most
secure code possible with as little overhead as possible.

After the application code is written, the process of building con-
tainers begins.

Building Secure Containers
As we explain in Chapter 1, developers build container images
by creating a file that dictates what dependencies the applica-
tion needs to run and where to get those things. Creating this file
and using it to build a container is easy. However, doing this well
for complicated applications at any scale greater than a developer
workstation is easier said than done.

https://tanzu.vmware.com/labs

18 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

For starters, creating compliant and secure image files requires
writing accurate instructions for how to launch the container and
sourcing the operating system and all those other dependencies
from approved repositories. Because both the applications them-
selves and the operating systems and other required dependen-
cies evolve separately over time, applications can break or exhibit
unexpected behaviors that require continual fixing. Many devel-
opers would much rather focus on writing quality application
code than on learning the intricacies of building and maintaining
container images.

That learning curve can create issues if it results in poorly con-
figured container images. Issues that may arise include the
following:

 » Container bloat: Container images that include compo-
nents like compilers that are necessary for building, but not
running, the application end up much larger in size than
necessary. This results in containers that consume more
resources and take significantly more time to launch.

 » Vulnerable dependencies: The more dependencies an
application requires, and the more sources from which to
pull them, the greater the chances of downloading some-
thing that’s either infected already or will ultimately require a
security patch.

 » Troublesome rebuilds: Container images are built in
“layers” of dependencies, with each layer technically being
its own image stored in the registry. Depending on the
container-build system, updating an individual layer could
require just rebuilding the affected container, or it could
require a time-intensive rebuild of the entire application. An
additional issue with the latter approach is that the build
system may pull the latest versions of other, nonaffected
dependencies during the rebuild, resulting in failed builds or
images that behave differently than before.

Thankfully, organizations can use one of a number of methods
to mitigate the complexity of building and updating container
images. In the next few sections, we introduce you to secure con-
tainer registries, container scanning, buildpacks, secure appli-
cation catalogs, and service meshes. And, because this is a book
about DevSecOps, you can rest assured that these sections put an
emphasis on automation.

CHAPTER 2 Fusing DevOps and Container Security 19

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Secure container registries
As we mention earlier, container images are stored in repositories
called registries, which can be either publicly accessible or private
to a specific organization. The main security benefit of a private
registry — especially for custom applications (that is, applications
developed in-house rather than by a third party) — should be
obvious. Strangers from the Internet won’t be able to access your
container images and, as a result, the intellectual property con-
tained in the application code.

Private registries can also make it safer to use third-party appli-
cations that have been packaged as container images. (For the
purposes of this book, we’re talking largely about open-source
applications. Commercial vendors often maintain their own reg-
istries from which to pull their images.) Organizations can build
and update their own container images for open-source applica-
tions (such as databases, web servers, and monitoring tools) to
ensure they’re secure. What’s more, a private registry enables an
organization to enforce policies that specify who can pull which
images and whether developers are able to pull outdated versions.

As the name DevSecOps implies, the development, security, and
operations teams should work together to establish mutually
acceptable policies for using private registries. Policies that are too
lax can compromise security, while policies that are too strict may
drive developers to find ways around them. The goal is to ensure
secure containers without unduly impeding developers’ workflows.

You definitely want developers sticking to trusted images from a
private registry. According to a 2020 analysis of a popular public
container registry, carried out by a private cybersecurity company,
more than half of the available images contained vulnerabilities
and several thousand contained malware or potentially harmful
capabilities. That number may be a drop in the bucket compared
to the overall number of images hosted there, but it underscores
the threat of pulling images from sources outside your control.
If the build process for a popular container image by a trusted
source were compromised to include malware, the damage could
be wide-reaching.

VMware created the open-source Harbor private registry
(https://goharbor.io), which is now managed by the Cloud
Native Computing Foundation. Harbor secures artifacts with
policies and role-based access control (RBAC), ensures images
are scanned and free from vulnerabilities, and signs images as

https://goharbor.io/

20 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

trusted. It’s a core component of the VMware Tanzu approach to
container security.

Container scanning
In the same way that code-scanning tools analyze application
code for vulnerabilities, container-scanning tools analyze con-
tainer images to identify vulnerabilities. Those vulnerabilities
could be in the container image’s configuration (the instructions
for how to launch it) or in any of the components included as
dependencies that the application requires.

Scanning containers may seem redundant if you’re already utiliz-
ing a private and secure registry, but there’s still value in doing
it — especially for custom applications. A scanning process inte-
grated into the continuous integration/continuous delivery (CI/
CD) pipeline should catch misconfigured or vulnerable container
images during the build process, before they’re deployed in pro-
duction. Of course, the trick is to ensure those scans happen quickly
and automatically, without bogging down the build process.

You can also scan running containers to discover vulnerabilities
that have been disclosed since the affected image was built, or
to identify nefarious behavior (such as routing network traffic to
malware servers or cryptomining) that show themselves after the
container is live.

If you’re not already using secure container registries and vetting
third-party container images, you really must scan containers.
Even in third-party applications that have already been rebuilt
internally and/or vetted for security, scanning tools can catch
new vulnerabilities that your team may not have gotten around
to patching. As we explain in the “Buildpacks” section, later in
this chapter, keeping on top of patching can facilitate even faster
and more secure methods for building and deploying containers.

VMware Carbon Black Cloud Container (www.carbonblack.com/
products/vmware-carbon-black-cloud-container) provides
the necessary capabilities to integrate container scanning into
your DevSecOps pipeline, including identification of vulnerabili-
ties and misconfigurations. Policies can enforce compliance with
organizational rules, as well as with industry standards such as
Center for Internet Security (CIS) benchmarking.

https://www.carbonblack.com/products/vmware-carbon-black-cloud-container
https://www.carbonblack.com/products/vmware-carbon-black-cloud-container

CHAPTER 2 Fusing DevOps and Container Security 21

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Buildpacks
Buildpacks are an automated approach to building container
images, one that drastically reduces the effort and learning curve
involved with securely building containers and keeping them
compliant over time. Buildpacks simplify the process of con-
tainer building and maintenance by automatically identifying
dependencies from source code and pulling them from a central
registry. The result is that developers can build their source code
into an operable container image with a single command. Sev-
eral buildpack options are available, but in this book we use the
generic term to refer to a specific option, Cloud Native Buildpacks,
which is now a Cloud Native Computing Foundation project.

Apart from automating the container-building process, build-
packs also bolster DevSecOps environments by automating the
update process when dependencies change. As an oversimplified
example, let’s say your organization uses CentOS as a standard
operating system for containerized applications. If you’re follow-
ing good security practices, you’ll have a base CentOS image every
container shares. (It will be its own layer of every application’s
container image.) When a CentOS vulnerability becomes known
and someone within your organization patches and rebuilds that
base image, a buildpack-based system will automatically rebuild
every container with the updated base OS layer. The OS will then
be secure, and the container can replace the vulnerable appli-
cations running in production environments. All that happens
without any developer involvement.

Figure 2-2 illustrates how the process works: A dependency
update is released. A build service rebuilds containers based on
that update and updates the container registry. Updated images
are pushed live via a CI/CD pipeline.

As you may have guessed from the preceding paragraph,
buildpacks — like all DevSecOps technologies — work best when
paired with a secure container registry. If you’re automatically
rebuilding containers, you’ll want to know where the updated
images came from and that they meet your organization’s secu-
rity requirements. Using a secure registry in combination with
buildpacks also enables you to ensure that your developers aren’t
pulling sketchy components, because the automated build pro-
cess will only pull approved container images from the private
registry.

22 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The VMware Tanzu Build Service (https://tanzu.vmware.com/
build-service) is an enterprise-grade product for automating
container builds and updates, based on the Cloud Native Build-
packs technology. It’s designed to work with Kubernetes, so oper-
ators can manage their build service using the same APIs they use
to manage their Kubernetes clusters.

To see the potential benefits of container scanning and buildpacks
on security, consider the not-so-hypothetical example of a major
credit-rating bureau running an outdated web application frame-
work as part of its software stack. In a DevSecOps environment
like the one this book promotes, the component would be run-
ning in a container, and a regularly scheduled scan would likely
have flagged the vulnerable version. At that point, the appro-
priate team could update the web framework’s container image
and upload it to a secure registry. In an application environment
using buildpacks, a pipeline process would automatically update
all affected containers instead of waiting months for a patch to be
applied manually (or not at all).

Secure application catalogs
We’ve already discussed how organizations use private registries
to store and secure their container images, so you may be won-
dering why they would also need an application catalog. After all,
many organizations have been using “service catalogs” for years
to provide vetted and secure applications to their developers.

The answer is that in a world of open source and containers, a
well-designed application catalog acts as a trusted supplier to
the registry — much like how toy manufacturers supplied the
wares for the JCPenney holiday catalogs of yore, or how software

FIGURE 2-2:  Using buildpacks to build container images saves time and
improves security via automation.

https://tanzu.vmware.com/build-service
https://tanzu.vmware.com/build-service

CHAPTER 2 Fusing DevOps and Container Security 23

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

vendors supply the applications that populate an organization’s
service catalog.

Figure 2-3 illustrates how a complete application catalog lets
users select and customize open-source components, which are
automatically updated and pushed to their chosen destinations.

There are multiple benefits to this arrangement, the primary one
being that organizations and teams aren’t responsible for building
their own known-secure images for open-source applications. A
good application catalog will maintain secure images for popular
technologies and enable users to customize them to some degree
to meet their specific requirements. Because DevSecOps centers
around automation, the application catalog should also routinely
update images as new versions become available and then push
them to container registries and code repositories.

We highlight the open-source nature of the applications here
because that’s what makes an application catalog possible. Pro-
viders can serve many users by focusing on a curated collection
of popular technologies, with most of the user-specific custom-
ization coming at the operating system level. Container images
for software built in-house are still managed in-house, and con-
tainer images for commercial software are still managed by those
vendors.

VMware Tanzu Application Catalog (https://tanzu.vmware.com/
application-catalog) integrates with your private container
registry and offers more than 100 prebuilt and regularly updated
container images for popular open-source applications. It also
provides Helm files for direct deployment to Kubernetes clusters,

FIGURE 2-3:  Finding container images for open-source tools is easy. Good
application catalogs ensure they’re up to date and secure.

https://tanzu.vmware.com/application-catalog
https://tanzu.vmware.com/application-catalog

24 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

as well as detailed metadata around what’s running inside contain-
ers, so users can meet audit and compliance requirements. Tanzu
Application Catalog is the enterprise offering of Bitnami, a trusted
source of secure, prebuilt, and easy-to-use open-source applica-
tions in a variety of formats. VMware acquired Bitnami in 2019.

A large aerospace company that takes software development
and security very seriously manages several dozen containers
using Tanzu Application Catalog, including a custom version of
the Postgres database designed for high availability. It updates
those images daily with the latest operating system packages and
upstream code, after which they’re pushed to its Harbor registry
and Git repository and are available to developers. Maintaining
control of the provenance of its container images also enables the
company to comply with government regulations.

Service meshes
Building and maintaining secure containers is only part of the
DevSecOps puzzle, especially if you’re also adopting microser-
vices. In that case, you want to secure the communication between
those services and the containers in which they’re running. This
is in addition to load balancing and other methods of ensuring
performance for distributed applications. Today, many Kuber-
netes users do that by implementing a service mesh.

As shown in Figure 2-4, a service mesh works by deploying “side-
car” proxies in containers that (for lack of a better phrase) sit
alongside application containers in the same Kubernetes pods. In
a Kubernetes cluster with a service mesh installed, all network
traffic between services running in the cluster goes through these
proxies. This enables the service mesh to manage communica-
tion between the services and enforce policies. Those policies can
cover a wide range of rules around traffic management, includ-
ing security-specific concerns such as encryption, authentication,
and access control.

One major benefit of this approach is that developers don’t have
to hard-code networking rules into their business logic. Another
is improved application performance, because the individual con-
tainers can limit their resource usage to processing their primary
tasks. In the case of a security incident or other error, service
meshes log interactions between services, making it easier to
track down the root cause or series of events that triggered the
issue.

CHAPTER 2 Fusing DevOps and Container Security 25

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

VMware Tanzu Service Mesh (https://tanzu.vmware.com/
service-mesh) combines standard service-mesh capabilities,
based on the open-source Istio project, with advanced network-
ing features that support applications running at a global scale.
It allows for encrypted communications among services and load
balancing across cloud regions, as well as autoscaling for services
that reach capacity limits.

Shifting Left Respectfully with
Platform Operations

As noted at the beginning of this chapter, the idea of “shifting
left” refers to developers taking more responsibility than they
historically have for application security.

You can think about the application life cycle as a spectrum that
begins with planning and ends with monitoring production appli-
cations. In between are any number of steps (depending on the
organization) that include writing code, building containers,

FIGURE 2-4:  The service mesh proxies manage policies, logging, and other
tasks, freeing up developers (and their application code) to focus on business
logic.

https://tanzu.vmware.com/service-mesh
https://tanzu.vmware.com/service-mesh

26 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

testing, and deploying applications. In many legacy environments,
developers’ responsibilities stop after building their application
packages and testing to ensure they work locally. This leaves
security testing, production deployment, and the entire right half
of the spectrum to security and operations teams. DevOps shifted
certain operational tasks onto developers, and DevSecOps contin-
ues that trend by also shifting the security concerns we’ve dis-
cussed thus far onto developers.

However — and this is a huge however — DevSecOps really needs
to be a partnership between developers and their peers in security
and operations. Simply pushing more responsibility onto devel-
opers, very few of whom are also security experts, will likely lead
to animosity and shadow IT (employees using unapproved tools or
deploying applications in unmanaged public cloud accounts), as
well as security issues. Instead, the ideal situation is one in which
organizations and application teams take on a platform operations
approach, also called platform as a product.

A platform operations team manages the application platform and
treats it as a product for which developers are the customers. It’s
a shift in mindset, if not in job function, that helps ensure devel-
opers’ concerns are considered when making decisions around
tooling, processes, and changes. The goal is to implement guard-
rails that help ensure security and conformity to certain stan-
dards, while otherwise getting out of developers’ way and letting
them focus on their code.

In the context of DevSecOps, this means working with develop-
ers to determine which security measures they need to take on
and how best to implement them. The more automatic those pro-
cesses are, and the less troubleshooting the tools and systems
require, the better the results will be for everybody involved.

Also, because the move to DevSecOps will likely be a learning
experience for everyone — and because no system is perfect —
developers and platform operations teams should plan for bumps
in the road. There’s a shift happening in IT toward eliminating
blame and keeping open lines of communication about issues that
arise. Those goals should certainly extend to the teams tasked
with delivering DevSecOps. The alternative is an environment
where security risks go unnoticed or unreported because people
are afraid to admit mistakes or ask for help.

CHAPTER 3 Managing Kubernetes Clusters with a DevSecOps Mindset 27

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Learning the importance of Kubernetes
for DevSecOps

 » Standardizing on a Kubernetes
distribution

 » Automating and managing clusters
across clouds

Managing Kubernetes
Clusters with a
DevSecOps Mindset

In Chapters 1 and 2, we talk mostly about technologies and pro-
cesses that reside above the infrastructure layer. That’s only
logical considering how much of a DevSecOps workflow falls to

developers. Even when a platform operations team installs the
relevant tooling and keeps it all up to date, developers are the
ones using it to build applications. However, operations staff still
play an important role in keeping applications secure.

As you probably guessed, managing Kubernetes clusters is a big
part of those responsibilities. It’s important to remember that
Kubernetes is software. Virtual machines, physical machines,
and/or cloud instances exist to provide the underlying resources
and must be kept patched. However, developers no longer deploy
to those resources. Developers build container images by declar-
ing dependencies and then deploy them to Kubernetes (which is
installed on those machines and handles resource management
between them and the containers).

28 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

For the platform team, the beauty of Kubernetes infrastructure
abstraction is that it gives them more flexibility in how they pro-
vision resources for developers. They can improve security before
DevSecOps even comes into play. A simple but effective example
of this is choosing which kinds of resources a developer can access
based on their level of expertise with Kubernetes. Developers or
teams with limited knowledge might get a namespace (a pool of
isolated resources on a shared cluster). More experienced devel-
opers or teams might get their own clusters. The difference is the
degree of freedom they have; cluster-level access opens the doors
to more controls and more opportunities to implement insecure
configurations or neglect necessary patches.

Working at the Kubernetes level of abstraction results in a common
language between developers and platform operations, wherever
they’re running workloads. Deploying to Kubernetes on the public
cloud should be the same process as deploying to Kubernetes in
a local data center or even on a laptop. And although operations
staff need to understand the intricacies of each environment on
which Kubernetes is installed, their interactions with developers
can remain primarily at the Kubernetes layer.

Figure 3-1 provides a very high-level overview of a Kubernetes
architecture, omitting many components necessary for running
and managing a cluster. As you can see, however, Kubernetes
provides a runtime for “pods” of containers and manages the
interaction with the underlying infrastructure.

FIGURE 3-1:  Individual teams can manage their own clusters or have access
to a namespace on a multi-tenant, centrally managed cluster.

CHAPTER 3 Managing Kubernetes Clusters with a DevSecOps Mindset 29

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Standardizing on a Single Distribution
Not all Kubernetes distributions are created equal. If your organi-
zation isn’t too deep down the Kubernetes path, it’s worth weigh-
ing the options among upstream (or vanilla) Kubernetes, various
vendor distributions, and managed services from cloud providers.
The core application programming interfaces (APIs) and devel-
oper experience may be largely the same, but installation and
management can be very different. From a security viewpoint, the
lack of a standard Kubernetes distribution means more opportu-
nity for configuration errors (with Kubernetes itself, as well as
with its surrounding components) and a limited ability to imple-
ment organization-wide policies.

You can think about it like driving a car: Most people can perform
the basic functions of driving in any car, but each car also comes
with its own quirks that surface only when you’re trying to adjust
its settings, determine the meaning of a warning light, or make
repairs. The results range from annoying to dangerous, depend-
ing on what goes wrong and where and when it happens. Like-
wise, it may be easy enough to install any Kubernetes cluster and
start deploying applications to it, but you run into trouble with
Day 2 concerns like configuration, management, and trouble-
shooting. When something breaks at the platform level, it’s better
to have a broad group of people who can fix it instead of needing
to call in a specialist.

A less obvious benefit of choosing a standard Kubernetes distri-
bution is that it limits the number of software vendors (or cloud
providers) you need to manage. Despite its violent imagery,
the old “single throat to choke” cliché still rings true for many
organizations and probably rings even truer when talking about
a platform-level technology. It’s often necessary to work with
many different vendors for application-specific components such
as databases, but managing multiple vendors at the runtime or
container-orchestration layer can add undue complexity and pos-
sibly cost. There are real benefits to consistency in terms of sup-
port, pricing, features, and integrations.

VMware Tanzu Kubernetes Grid (https://tanzu.vmware.com/
kubernetes-grid) is an enterprise-grade distribution that checks
a lot of important boxes for many organizations. It’s especially
well-suited to organizations already running VMware vSphere

https://tanzu.vmware.com/kubernetes-grid
https://tanzu.vmware.com/kubernetes-grid

30 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

(whether internally or on public clouds), because administra-
tors can provision Kubernetes clusters for developers using the
vSphere interface. VMware Tanzu Advanced edition includes
Tanzu Kubernetes Grid, as well as many other necessary compo-
nents for DevSecOps and modern applications in general.

Workload portability is another major benefit of running Kuber-
netes, in general, that is amplified by also choosing a standard
Kubernetes distribution. Although being able to move applications
relatively freely across environments (public cloud, private cloud,
edge, and so on) is not a core component of DevSecOps per se, it
is an important consideration in many broader IT modernization
efforts. The ease of moving workloads will vary based on your spe-
cific situation. Architecture, tooling, data gravity, and other factors
will contribute to this. However, choosing to use the same Kuber-
netes distribution in every environment at least provides a consis-
tent experience around installation, deployment, and maintenance.

In Chapter 2, we mention that a big goal for DevSecOps, for devel-
opers, is to make the right thing the easy thing. The same holds
true for operations. Kubernetes is the part of the DevSecOps stack
over which operations has the most control, and they should seek
out a distribution that meets their requirements around portabil-
ity, security, integrations, and whatever else they deem important.

Managing All Your Clusters
from a Single Interface

Life is often a little more complex than we’d like, and standard-
ization isn’t always possible. Although it might be obvious that
running a single Kubernetes distribution on a single cloud plat-
form would make life easier, for any given organization there may
be a million reasons why it can’t be done — acquisitions, dif-
ferent teams’ needs, competitive concerns, and existing vendor
contracts, to name just a few.

Truth be told, though, managing clusters isn’t always a walk in
the park even when standardization is possible. Differences among
the teams that own those clusters are a big part of why this is so.
For example, those with more experience may be better equipped
to handle updates and general cluster maintenance, while those
with less experience may need more handholding. Unfortunately

CHAPTER 3 Managing Kubernetes Clusters with a DevSecOps Mindset 31

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

for platform operations teams, they’re expected to maintain the
security of the platform and its applications regardless of each
team’s relative Kubernetes skill set.

That burden can quickly become overwhelming as Kubernetes
usage grows within an organization. Ops teams must track
dozens — possibly hundreds — of individual clusters and name-
spaces to account for their compliance with security policies and
to ensure that the Kubernetes runtime, operating systems, and
other key components are kept up to date. If there’s a vulner-
ability in Kubernetes itself, the platform ops team must patch
each affected cluster as soon as possible. The more regulated the
industry, the greater the potential damage of falling back into
legacy timelines where it could take months to roll out patches
across all of an organization’s systems.

As one platform architect at a large brokerage firm (and VMware
Tanzu customer) put it (only half-jokingly), “I can only run the
Kubernetes commands across all the clusters so many times.
I only have so many keystrokes in life, and they’re running low.”

Automating Kubernetes management
Addressing this problem with a DevSecOps approach means cen-
tralizing cluster management responsibilities within the platform
operations team, and then automating and simplifying as much of
the management process as possible. Ideally, you’re working with a
system that can handle clusters regardless of where they’re hosted,
what distribution they’re running, and who owns them. This way,
you can push updates and otherwise act accordingly depending on
what Kubernetes runtime version a cluster is running, where a vul-
nerability resides (for example, at the distribution, server, or cloud
provider layer), or, in the case of new security policies or regulatory
requirements, which business units they affect.

Centralizing control of identity management and authentication
is also critical. It only takes a single misconfigured permission
to give attackers access to sensitive resources or data. Although
sophisticated, well-funded attacks make headlines, criminals
are still able to breach targets via loose permissions or, in far too
many cases, resources exposed to the Internet without so much
as a password. This is why it’s important to ensure that in addi-
tion to being easy to deploy for development teams, Kubernetes
clusters also utilize approved identity and access management
systems by default.

32 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Automatic cluster backup is an increasingly important capability
as well. The recent spate of ransomware attacks is certainly a big
reason to ensure that you can recover clusters, but ransomware is
not the only threat. Cloud-computing platforms are getting more
reliable by the day, but they’re incredibly complex systems run-
ning workloads for, in some cases, millions of users. Outages can
knock clusters offline for days and even result in data loss; regular
backups can help mitigate the damage.

Balancing control and flexibility
A platform ops teams will ideally have as much control as possible
over everything from cluster configuration to network rules, as
well as the flexibility to enforce those policies as necessary. That
latter part may seem contradictory to the stated goals of DevSec-
Ops, but sometimes the best way to improve is to see what mis-
takes are happening. If most teams follow best practices around a
certain configuration option, and if auto-enforcing it would cause
unnecessary friction, then the status quo probably can hold. But if
teams are ignoring critical policies even after warnings, it’s prob-
ably time to step up enforcement.

Again, everything comes back to the make the right thing the easy
thing mantra. Kubernetes can be a powerful piece of your modern-
ization strategy, enabling you to prioritize the easy provisioning
of resources to developers who want them. However, Kubernetes
is a complex system in an increasingly complex IT landscape, and
it’s easy for vulnerabilities to creep in as usage expands across
teams, clouds, and geographies. Using it safely means pairing

DON’T OVERLOOK
AUTHENTICATION
In 2017 and 2018, hackers were able to access Kubernetes clusters
belonging to several companies, including some household names,
via unsecured administrative consoles. The attackers used their
access to mine cryptocurrency using corporate resources, but the
damage could’ve been much worse. This is also the kind of thing that
should never happen in a well-run DevSecOps environment, because
enforcing passwords should be Step 1 in any security protocol.

CHAPTER 3 Managing Kubernetes Clusters with a DevSecOps Mindset 33

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

ease of access with guardrails and the ability to enforce policies
with minimal manual effort.

VMware Tanzu Mission Control (https://tanzu.vmware.com/
mission-control), shown in Figure 3-2, is a centralized man-
agement platform for consistently operating and securing your
Kubernetes infrastructure across teams, clouds, and distributions.
It’s based on open-source technologies and, in addition to secu-
rity and management capabilities, it supports the provisioning,
scaling, and deletion of Kubernetes clusters.

What Happens When a Kubernetes
Vulnerability Is Discovered?

Although Kubernetes has proved remarkably secure over the
course of its existence (around seven years as of the publication
of this book), no software is perfect. As we explain earlier in this
chapter, in the example of Kubernetes clusters without passwords
inside large organizations, user error is a very real concern. Like
all software, Kubernetes is not immune to vulnerabilities. In fact,
the number has been growing each year as its codebase expands
and more vendors build products around it. (In 2020, there were
a few dozen vulnerabilities discovered that involved Kubernetes
to some degree.)

Vulnerabilities aren’t the real problem, though. The vast majority
of software contains vulnerabilities, and their discovery can often

FIGURE 3-2:  The Tanzu Mission Control user interface (in mid-2021). Note
the ability of administrators to view and manage Kubernetes clusters across
multiple platforms and to set security policies.

https://tanzu.vmware.com/mission-control
https://tanzu.vmware.com/mission-control

34 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

be correlated with popularity. As more people use a given tech-
nology, it becomes more interesting to both cybercriminals and
security researchers. More eyes on a codebase means more eyes
to discover problems.

As we’ve noted a couple of times already, a major problem with
vulnerabilities is the time it can take to patch them. This problem
is made worse in an organization that runs multiple Kubernetes
clusters, because different teams may be running different release
versions and different distributions, and they may differ in how
quickly they update after a patch is released. Kubernetes — and
many popular open-source projects — can further exacerbate
the issue because updates are often released at a pace faster than
what many organizations are used to. This type of situation can
be mitigated when platform operations teams can enforce update
policies across any number of Kubernetes environments.

Let’s take, for example, CVE-2020-8555, which affects the
Kubernetes kube-controller-manager component and could
result in unauthorized data leakage. As shown in Figure 3-3, the
vulnerability has a severity score of 6.3 and affects versions v1.0–
1.14, versions prior to v1.15.12, v1.16.9, v1.17.5, and version v1.18.0.
A platform operations team, upon learning of this vulnerability
and assessing the risk it poses, could use a tool like Tanzu Mission
Control to identify which versions each team is running, update
any vulnerable clusters under its control (or request that cluster
owners perform those updates), or apply any security policies that
might resolve the issue prior to a full upgrade.

FIGURE 3-3:  A sample of information for CVE-2020-8555, as provided by the
National Vulnerability Database (https://nvd.nist.gov).

https://nvd.nist.gov/

CHAPTER 3 Managing Kubernetes Clusters with a DevSecOps Mindset 35

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

By contrast, an operations team without that level of visibility and
control must rely on more manual methods to track and update
clusters. In a worst-case scenario, the team may have to rely on
organization-wide communications imploring cluster owners to
verify the releases they’re running and update if necessary, or
they may have to manually update each cluster on a case-by-case
basis. Manual updates can be prone to error and possibly unin-
tended downtime.

On a related note, it’s worth mentioning that the Kubernetes proj-
ect releases a new minor version about once a year (for example,
1.19 or 1.20). They limit long-term support for each version to
one year. Prior to version 1.19, that support window was only nine
months. So, it’s easy for teams still operating on more traditional
upgrade schedules to fall behind and continue running unsup-
ported versions. This is another issue that an organization can
mitigate by embracing DevSecOps and enabling platform opera-
tions teams to maintain a modern upgrade schedule.

CHAPTER 4 Ten More Resources to Guide Your Journey 37

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4
Ten More Resources to
Guide Your Journey

We hope that this book is a useful introduction to the prin-
ciples behind DevSecOps and some of the pieces that
you’ll want to make sure are part of your organization’s

environment. Just remember that the technologies that enable
DevSecOps are complementary to the technological, procedural,
and cultural changes that come along with a broader move to
DevOps. If you’re going to meaningfully improve software devel-
opment, along with application quality and application security,
you’ll want to embrace change up, down, and across your IT
organization.

With that in mind, here are some additional reading materials
that add context around DevOps, cloud-native computing, and
the benefits of partnering with VMware Tanzu on your DevSecOps
journey:

 » 3 Transformations That Are Remaking Enterprise IT
(https://tanzu.vmware.com/three-transformations):
A curated collection of resources about how changes at the
infrastructural, architectural, and operational levels are
evolving how we build and interact with applications. Learn

https://tanzu.vmware.com/three-transformations

38 DevSecOps For Dummies, VMware Tanzu Special Edition

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

more about DevSecOps concepts such as Kubernetes,
microservices, and a lot more.

 » 11 Recommended Security Practices to Manage the
Container Lifecycle (https://tanzu.vmware.com/
content/white-papers/11-recommended-security-
practices-to-manage-the-container-lifecycle):
More-technical dives into some of the topics and technolo-
gies discussed in this book, as well as additional guidance on
container security as a whole.

 » Defining and Delivering DevSecOps Across Your IT
Organization (https://tanzu.vmware.com/content/
webinars/aug-5-defining-and-delivering-across-
your-it-organization): This webinar features experts in
the area of DevSecOps — development, security, and
operations — discussing strategies for making sure everyone
has a seat at the table when rolling it out. The bigger the
organization, the easier it is to overlook important voices.

 » KubeAcademy (https://kube.academy): Free courses that
cover Kubernetes from the ground up, taught by cloud-
native experts. Dig deeper into some of the ideas in this
book by taking the seven-lesson Kubernetes Platform
Security course (https://kube.academy/courses/
kubernetes-platform-security).

 » Paving the Road to Modern Apps (https://tanzu.
vmware.com/modern-apps): An introduction to the people,
products, and vision behind VMware Tanzu, as well as case
studies from a wide range of customers. It’s a good place to
get a sense of what’s possible when organizations embrace
not just DevSecOps, but modernization in general.

 » SpringOne (https://springone.io): In name, SpringOne
is an annual conference exploring best practices for software
development using the Spring framework. In practice, it’s
that plus an invaluable collection of talks covering DevOps,
management strategies, and everything that goes into
running a modern business. Watch sessions from the most
recent event on the SpringOne website, or find previous
years’ sessions on the VMware Tanzu YouTube channel
(www.youtube.com/c/VMwareTanzu/playlists).

 » Tanzu Developer Center (https://tanzu.vmware.com/
developer): Guides, demos, and other technical material
designed to educate readers on all things cloud native and

https://tanzu.vmware.com/content/white-papers/11-recommended-security-practices-to-manage-the-container-lifecycle
https://tanzu.vmware.com/content/white-papers/11-recommended-security-practices-to-manage-the-container-lifecycle
https://tanzu.vmware.com/content/white-papers/11-recommended-security-practices-to-manage-the-container-lifecycle
https://tanzu.vmware.com/content/webinars/aug-5-defining-and-delivering-across-your-it-organization
https://tanzu.vmware.com/content/webinars/aug-5-defining-and-delivering-across-your-it-organization
https://tanzu.vmware.com/content/webinars/aug-5-defining-and-delivering-across-your-it-organization
https://kube.academy/
https://kube.academy/courses/kubernetes-platform-security
https://kube.academy/courses/kubernetes-platform-security
https://tanzu.vmware.com/modern-apps
https://tanzu.vmware.com/modern-apps
https://springone.io
https://www.youtube.com/c/VMwareTanzu/playlists
https://tanzu.vmware.com/developer
https://tanzu.vmware.com/developer

CHAPTER 4 Ten More Resources to Guide Your Journey 39

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevSecOps. Good starting points for expanding on this book
include guides on containers (https://tanzu.vmware.com/
developer/guides/containers/) and microservices
(https://tanzu.vmware.com/developer/guides/
microservices/).

 » Tanzu Talk and Cloud & Culture (https://tanzutalk.
com): Two podcasts sharing a single stream, covering
application modernization and digital transformation from
every angle. Guests range from VMware Tanzu experts —
including on this episode about securing your software
supply chain (www.tanzutalk.com/222) — to customers
who have successfully evolved their software development
for the cloud-native era.

 » TGIK (https://tanzu.vmware.com/developer/tv/
tgik/): The K stands for Kubernetes in this weekly video
series targeting Kubernetes practitioners, often hosted by
one of the technology’s creators. If you’re interested in
learning more about the Harbor container registry, for
example, there’s an episode for that (https://tanzu.
vmware.com/developer/tv/tgik/138/).

 » VMware Tanzu Labs (https://tanzu.vmware.com/labs):
Although its name has changed over the years, the
techniques — and even some of the team — at VMware
Tanzu Labs helped some of the world’s most well-known
organizations implement the right techniques and culture
for delivering better software and happier employees. Tanzu
Labs experts engage deeply with clients on everything from
modernizing specific applications to data center migration.

https://tanzu.vmware.com/developer/guides/containers/
https://tanzu.vmware.com/developer/guides/containers/
https://tanzu.vmware.com/developer/guides/microservices/
https://tanzu.vmware.com/developer/guides/microservices/
https://tanzutalk.com
https://tanzutalk.com
https://www.tanzutalk.com/222
https://tanzu.vmware.com/developer/tv/tgik/
https://tanzu.vmware.com/developer/tv/tgik/
https://tanzu.vmware.com/developer/tv/tgik/138/
https://tanzu.vmware.com/developer/tv/tgik/138/
https://tanzu.vmware.com/labs

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2022 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Chapter 1 Understanding DevSecOps
	What Is DevOps?
	Learning the Lingo
	Defining a New Era for DevOps

	Chapter 2 Fusing DevOps and Container Security
	Building Secure, Optimized Code
	Building Secure Containers
	Secure container registries
	Container scanning
	Buildpacks
	Secure application catalogs
	Service meshes

	Shifting Left Respectfully with Platform Operations

	Chapter 3 Managing Kubernetes Clusters with a DevSecOps Mindset
	Standardizing on a Single Distribution
	Managing All Your Clusters from a Single Interface
	Automating Kubernetes management
	Balancing control and flexibility

	What Happens When a Kubernetes Vulnerability Is Discovered?

	Chapter 4 Ten More Resources to Guide Your Journey
	EULA

