
Kubernetes for
Developers

 2

Table of Contents	

Containers and Kubernetes: Why Developers Should Care

Who should read this book?

Why Containers?

A Kubernetes Primer

Kubernetes controllers

Operators tailor Kubernetes to application needs

Why do developers like Kubernetes?

Kubernetes: A Developer’s Checklist

Kubernetes advantages for developers

How to develop for Kubernetes

How to create a build pipeline

How to manage a Kubernetes cluster in production

The right amount of visibility and control

Should I move my application to Kubernetes?

3

3

4

4

5

5

6

7

7

7

8

9

10

11

11

11

11

12

12

13

13

14

14

14

14

14

15

Migrating Applications to Kubernetes

Application audit

Containerizing your application

Breaking your application into pieces

Migration

Management

How to get started

Best Practices for Cloud Native Apps

Find the right tools

Use the patterns

Take full advantage of operators

Engage with the community

What Should I Do Next?

K U B E R N E T E S F O R D E V E L O P E R S

 3

Containers and Kubernetes:
Why Developers Should Care
Your company’s success increasingly depends on the ability of development
teams to deliver digital services and software more quickly and with higher
quality—and on the ability to operate applications and services reliably at
scale. You have likely already discovered that traditional methods don’t deliver
new applications quickly enough or achieve the necessary velocity. For most
teams, the answer is agile software development methods (sometimes called
DevOps) and cloud native technologies, including containers and Kubernetes.

If you’re a software developer, it’s likely that you’re already somewhat familiar
with these technologies. You might have kicked the tires, you might have done
your first project, or you might just be trying to figure out how to learn
enough to get started.

Cloud native technologies are new and evolving fast. A whole ecosystem of
solutions and services is emerging to address a wide variety of use cases and
needs. There’s a lot for everyone to learn, and it’s likely to stay that way for
quite a while.

The journey won’t always be an easy one. Kubernetes introduces additional
complexity to development and production environments. But the cost of
moving to Kubernetes is less than the value you get from it. That’s the whole
reason that Kubernetes has grown in popularity so quickly. The new tooling
and the learning curve are worthwhile because the efforts you make now will
save you time down the road.

There’s no lack of resources out there. You might even say that’s part of the
problem. This book will help you think more clearly about software development
for Kubernetes, whether you’re porting existing applications or doing new cloud
native development.

When we talk to software and application engineers, there’s frustration that
there’s no short reference that pulls together everything they need to know to
get started. This eBook is intended to fill that gap, helping you map your journey
to containers and Kubernetes.

Who should read this book?

No two development organizations are alike, and titles can vary widely
from one to the next. However, this book is targeted to people that
focus on application development. If that sounds like you, then read on.

However, we also think that infrastructure engineers, systems engineers,
and site reliability engineers (SRE)—anyone responsible for the
infrastructure on which Kubernetes will run—can benefit, too.

In addition, a separate eBook, Kubernetes for Operators, addresses
more of your specific needs.

K U B E R N E T E S F O R D E V E L O P E R S

https://k8s.vmware.com/kubernetes-for-operators

 4

Why Containers?
One of the big challenges that enterprise software teams face is difficulty
moving applications from one environment to another. You may need to move
an enterprise application from your data center to the public cloud, but the
effort necessary to refactor the application can make it impossible to justify.
This is where containers come into play. By encapsulating all of an application’s
dependencies, containers make applications much more portable.

A container can move from a developer’s laptop to QA to production—or
from one cloud environment to another—without requiring any changes to
the container, and without hardware and software reconfigurations in the
target environment. For developers, this translates to greater agility and
efficiency with less effort. You spend less time reworking existing code to
run in new environments and more time on new applications and features.

In large part, the shift to containers is being driven by developers at a
grassroots level, and containers are becoming an essential part of cloud
native development, microservices architecture and DevOps.

A Kubernetes Primer
Container environments tend to change more rapidly than VM environments.
Having a way to manage containerized applications effectively is an essential
element of cloud native and microservices architecture. Kubernetes has emerged
as the leading solution for orchestrating and managing containerized applications.

The components of Kubernetes play off each other to coordinate activities
and react to events like musicians playing jazz. At its core, Kubernetes is a
database with some interesting features layered on top of it. These features

Containers encapsulate an application in a form
that’s portable and easy to deploy. Containers
can run on any compatible system—in any cloud—
without changes. Containers consume resources
efficiently, enabling high density and utilization.

Kubernetes makes it possible to deploy and run
complex applications requiring multiple containers
by clustering physical or virtual resources for
application hosting. Kubernetes is extensible, self-
healing, scales applications automatically and is
inherently multi-cloud.

Microservices architecture breaks down an application
into multiple component services, enabling greater
parallelism during both development and execution.

enable a set of Controllers that each implement specific capabilities and
work together to produce the end result. Kubernetes components can be
ripped out and replaced to extend the system and adapt it to new
requirements and environments.

K U B E R N E T E S F O R D E V E L O P E R S

 5

Figure 1 shows the parts of a typical Kubernetes system. The core of the
system is the database, etcd. The state of the cluster is stored there (and
only there). In front of etcd is the API Server. Nothing else in Kubernetes talks
to etcd directly. The API Server exposes a RESTful interface and provides the
services necessary in a distributed system.

The Scheduler and the Controller Manager implement most of the orchestration
logic of Kubernetes. Together, etcd, the API Server, Scheduler and Controller
Manager make up the Kubernetes control plane; they can run on a single node
or across multiple nodes for availability.

Worker nodes make up the data plane of Kubernetes; each worker node runs
the container runtime (Docker in the diagram) and a local daemon called the
Kubelet that communicates with the API Server.

Figure 1. The Parts of a Typical Kubernetes System

Kubernetes controllers
Kubernetes Controllers ensure that the observed state of the cluster is as close
as possible to the desired state. Each Controller monitors its configuration,
stored as a resource in the API Server. It then looks at the state of the world
and tries to make the state of the world match its configuration. If a Controller
can’t fully achieve the desired state, it retries. Controllers are both patient and
diligent, resulting in a very stable distributed system pattern that is self-
healing. If something goes wrong, a Controller will work to fix it. If the desired
state changes while a Controller is working, it changes course and works
toward the new desired state. Controllers react to each other very quickly,
making Kubernetes extremely responsive. The actions of the system adapt to
the state of the world in real time.

Operators tailor Kubernetes to
application needs
Kubernetes Custom Resource Definitions (CRD) provide a way to extend the
resources the API Server can manage. CRD are usually paired with a custom
Controller called an Operator.

Operators allow you to encapsulate domain-specific knowledge for a specific
application. You can think of this as embodying the knowledge and logic that
might traditionally be captured in run books. By automating application-
specific tasks that otherwise have to be done manually, Operators allow you
to more easily deploy and manage applications on Kubernetes. The open-
source Operator Framework provides the necessary tools to facilitate
Operator creation.

K U B E R N E T E S F O R D E V E L O P E R S

NODE

MASTER NODE

KubletAPI Server

Controller
Manager

etcd

Scheduler

Docker

Kublet Docker

 6

Why do developers like Kubernetes?
•	 Resilience. Kubernetes is designed to be inherently resilient. You declare

the desired state, and Kubernetes works in the background to maintain that
state and recover from failures.

•	 Efficiency. Kubernetes makes your team more efficient. Once you get
through your first project, building and piecing together applications will
become comparatively easy for your team, enabling you to learn through
trial and error.

•	 Repeatability. With containers and Kubernetes, you can ensure that the
application configuration running in one cluster is identical to the
configuration running in another. Kubernetes makes it possible to run
instances of the same application across multiple environments with
minimum effort.

•	 Flexibility. Almost any type of application can be run inside a container
regardless of the language it’s written in. It’s easy to switch between
programming frameworks and deployment platforms.

•	 Visibility. You can increase observability and gain greater insight into how
an application can be improved.

•	 Building block approach. With Kubernetes, you can package, platforms,
systems, and applications into reusable building blocks. It’s an easy solution
for making development, testing, and production environments consistent.

Learn More

First Principles: Cloud Native Architecture and Kubernetes

A Deep Dive Into Kubernetes Controllers

Kubewatch, an Example of a Kubernetes Custom Controller

Guide to Cloud Native Microservices

K U B E R N E T E S F O R D E V E L O P E R S

https://assets.contentstack.io/v3/assets/blt58b49a8a0e43b5ff/blt166cc02f617215a6/5cfa9696c148e2da2c69b59e/first-principles-kubernetes.pdf
https://engineering.bitnami.com/articles/a-deep-dive-into-kubernetes-controllers.html
https://engineering.bitnami.com/articles/kubewatch-an-example-of-kubernetes-custom-controller.html
https://thenewstack.io/ebooks/microservices/cloud-native-microservices-2018/

 7

K U B E R N E T E S F O R D E V E L O P E R S

Kubernetes: A Developer’s Checklist
If you’re a developer learning about Kubernetes, there are three things you’re
probably most concerned with. The API Server exposes a RESTful interface and
provides the services necessary in a distributed system.

•	 How do I develop for Kubernetes?
•	 How do I create a build pipeline?
•	 How do I manage a Kubernetes cluster once my

application is in production?

This section serves as a checklist for how to get started in these
“big three” areas.

How to develop for Kubernetes
Developing for Kubernetes is conceptually simple: You need a way to develop
your application, containerize it and then run it on Kubernetes. Each of these
steps is easy to understand, and if you’re motivated, you can accomplish all of
the steps yourself by writing a Bash script, creating a makefile, etc. Many
organizations have done it this way.

However, there are a number of open-source tools that make developing for
Kubernetes easier and more efficient. These tools automate the local
development workflow so that you can code and test applications more quickly,
either on your local machine or, in some cases, on a remote development

Draft

Skaffold

Garden

Website

Website

Website

Docs

Docs

Docs

GitHub

GitHub

GitHub

Developer: Azure

Developer: Google

Developer: Garden

Learn More

The Ultimate Guide for Local Development on Kubernetes: Draft vs.

Skaffold vs. Garden.io

Guide to Cloud Native DevOps

1 . B U I L D YO U R
A P P L I C AT I O N

2 . C O N TA I N E R I Z E I T 3 . R U N I T O N
K U B E R N E T E S

cluster. Consider choosing one of these tools as your entry point for developing
on Kubernetes.

These are not the only tools available for Kubernetes development, but
these three are a good place to start.

Kubernetes advantages for developers

• More productive and happier development teams

• Fewer impediments to development and deployment

• Greater velocity

https://draft.sh/
https://skaffold.dev/
https://garden.io/
https://github.com/Azure/draft/tree/master/docs
https://skaffold.dev/docs/
https://docs.garden.io/
https://github.com/Azure/draft
https://github.com/GoogleContainerTools/skaffold
https://github.com/garden-io/garden
https://medium.com/containers-101/the-ultimate-guide-for-local-development-on-kubernetes-draft-vs-skaffold-vs-garden-io-26a231c71210
https://medium.com/containers-101/the-ultimate-guide-for-local-development-on-kubernetes-draft-vs-skaffold-vs-garden-io-26a231c71210
https://thenewstack.io/ebooks/devops/cloud-native-devops-2019/.

 8

K U B E R N E T E S F O R D E V E L O P E R S

How to create a build pipeline
If you’ve been a software developer for a while, especially as part of an agile
development team, you’re probably familiar with the concepts of continuous
integration and continuous delivery (CI/CD). The basic idea is that CI/CD software
creates an automated pipeline to integrate, test and deploy code changes.

A recent survey of developers highlighted the importance of automation and CI/
CD for organizations as they move to a cloud native, microservices architecture.
However, the survey also found a very low level of automation for the CI/CD
process in most companies. Almost 40% of respondents reported that less than
10% of the process was automated and lack of automation was a major inhibitor
to faster code deployment.

Learn More

Why Do Engineering Teams Struggle to Deploy Faster? One Word: Automation

CI/CD with Kubernetes

CI/CD tools are a key part of developing software to run on Kubernetes. Existing
CI/CD tools like Jenkins can also be used in Kubernetes environments, and there
are newer tools emerging specifically for Kubernetes.

Jenkins: The most widely deployed
CI/CD tool; a Kubernetes plugin
supports CI/CD for Kubernetes

Jenkins X: A more opinionated version of
Jenkins specifically for Kubernetes

Bazel: A general-purpose, open-source
tool for building and testing software,
developed and used by Google internally

Travis CI: Simple, cloud-based CI/CD

Flux: CI/CD specifically for git version
control repositories

General CI/CD and Software Build Tools

Kubernetes-Specific CI/CD Tools

Website

Docs

Download

Website

Docs

GitHub

Website

Docs

GitHub

Website

Docs

Website

Docs

GitHub

https://codefresh.io/continuous-deployment/engineers-struggle-with-ci-cd-automation-to-deploy-more-often/
https://thenewstack.io/ebooks/kubernetes/ci-cd-with-kubernetes/
https://git-scm.com/book/en/v1/Getting-Started-Git-Basics
https://jenkins.io/
https://jenkins.io/doc/
http://jenkins.io/download/
https://jenkins-x.io/
https://jenkins-x.io/documentation/
https://github.com/jenkins-x
https://bazel.build/
https://docs.bazel.build/versions/0.25.0/bazel-overview.html
https://github.com/bazelbuild/bazel
https://travis-ci.com/
https://docs.travis-ci.com/
https://docs.fluxcd.io/
https://docs.fluxcd.io/
https://github.com/weaveworks/flux

 9

K U B E R N E T E S F O R D E V E L O P E R S

How to manage a Kubernetes
cluster in production
A final thing that software engineers need to understand is how to exert control
over an application running on a Kubernetes cluster in production. The importance
of this can depend somewhat on how your team is organized, but as a rule,
developers should understand the basics and be able to define how an application
is deployed and managed.

As you saw earlier, Kubernetes enables you to create custom Operators that
encapsulate the logic necessary for important application management operations,
like deploying application instances, scaling the application, upgrading and so on.
Depending on the application, an Operator is something you may want to consider
investing effort in. You may also find that Operators have already been created for
services you may use in conjunction with your application, such as service meshes
and databases.

Infrastructure-level management is an area of rapid evolution for Kubernetes.
Cluster API is a Kubernetes project to bring declarative, Kubernetes-style APIs
to cluster creation, configuration and management. It provides optional, additive
functionality on top of core Kubernetes. VMware is actively contributing to the
development of a Kubernetes Cluster API.

One of the goals is to provide a way to let developers declaratively define what a
cluster should look like. For example, using the Cluster API, you might declare that
you want seven servers running in your Kubernetes cluster. If you later decide that
you want eight servers running, you use the Cluster API to change the number to
eight and it will automatically spin up another virtual machine, applying Kubernetes
logic to infrastructure. If one of those servers fails, Kubernetes automatically spins
up a new one to take its place, using self-healing to return to the desired state.

To make Cluster API work for a particular type of environment, you need a
provider for that environment. Provider implementations are already available for
major public clouds, as well as VMware vSphere. GitHub has a list of many of the
available providers.

Learn More

The What and the Why of the Cluster API

Cluster API Gitbook

https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://github.com/kubernetes-sigs/cluster-api/blob/master/README.md#provider-implementations
https://github.com/kubernetes-sigs/cluster-api/blob/master/README.md#provider-implementations
https://blogs.vmware.com/cloudnative/2019/03/14/what-and-why-of-cluster-api/
https://cluster-api.sigs.k8s.io/

 1 0

K U B E R N E T E S F O R D E V E L O P E R S

The Right Amount of Visibility
and Control
If your organization is going cloud native, visibility and control are
essential. We surveyed almost 400 IT and technology decision
makers and found:

The ability to orchestrate efforts across multiple clouds is the
number one driver for Kubernetes and that requires visibility and
control across teams and clusters.

What parts of your application environment are currently
opaque? Keep visibility in mind as you choose K8s tooling.

58% 65%
wanted greater visibility

into performance
needed better access to
audit logs and forensics

https://k8s.vmware.com/state-of-kubernetes/

 1 1

Migrating Applications
to Kubernetes
For many of us, one of the first projects we’re
asked to take on is moving a large enterprise
application to Kubernetes. Every enterprise has
monolithic applications, often written in Java or
PHP, that are hard to maintain and manage. The
first question you have to ask yourself is whether
to move the application at all. (See sidebar.)
Assuming the answer is yes, the process
proceeds through a number of stages: application
audit, containerizing your app, breaking your app
into pieces, migration and management.

Application audit
Once you’ve made the decision to migrate, the first
step is a careful audit of the application to make
sure you know what you’re dealing with. (You may
learn things that make you rethink your migration
decision.)

Here are the important questions to ask:

•	 What are the dependencies for this
application? The list of things that will break
your monolithic application if they suddenly go
away can often be quite surprising. Can all the
necessary pieces be migrated?

Should I move my application
to Kubernetes?

The decision to move an application comes
down to three factors: value, risk and time.

The value of Kubernetes for development
teams is the subject of this book, but it’s
up to you to evaluate each application to
understand the potential benefits for that
application.

Migrating an application to a new platform
always entails technical risk and cost.
Kubernetes is young as IT technologies go, as
are the associated tools.

The migration effort can take significant time
on the part of developers and operators.

Before you jump in, look for ways to
concretely measure the gained value,
understand the amount of risk and determine
how much time you can afford to spend.

•	 Does the application have configuration files?
Where are they kept? Are they stored on the
system? How do they get changed?

•	 Does your application make assumptions
about the OS and hardware it’s running on?
Your existing software may include hardcoded
assumptions about underlying hardware and
software that aren’t documented.

Containerizing your
application
There are a lot of tools that can help with the
process of containerizing an existing application.
Several of these were described in the Checklist
Section. Tools to create a CI/CD pipeline are
described there as well.

Many monolithic apps include Java code. Before
Java SE 10, which came out in 2018, containerizing
Java code was problematic. Running Java inside a
container is no longer a problem—one less thing to
worry about.

K U B E R N E T E S F O R D E V E L O P E R S

 1 2

Breaking your application into pieces
Of course, it may be possible to run your monolithic application on Kubernetes
in a single container, and you may start out that way, but the real goal is
usually to decompose your application into logical pieces (microservices) that
fit nicely into Kubernetes and allow you to parallelize continuing development
activities with more clearly defined areas of responsibility.

Every application is different, and only you can decide where the dividing lines
should be drawn. One guideline is to consider the network as the new
application interface. Any time an application transfers large, complete data
structures, that’s a good indicator of a possible break point.

If you’re just not sure where to begin breaking up your application, the big
three application components—user interface, data access layer, and data
store—are always good starting points.

If your application relies on a back-end database as its data store—maybe SQL
Server or Oracle running in a VM or on bare metal—these databases can now
be containerized. There is also a variety of open-source alternatives that are
amenable to containerization.

Migration
Migrating an application to Kubernetes is in many respects the same as every
other application migration you’ve ever been involved with. You have to
consider how much downtime will occur during the migration and protect
against data loss. There are almost always unforeseen problems that arise.
Then you have to decide what the whole migration process will look like. Do
you do an A/B deployment? A DNS rollover? All those decisions have to be
made and orchestrated by humans.

One of the biggest concerns when you’re migrating a monolithic application is
migrating state information. One option is to leave the state information alone.
If you’re dealing with a back-end database, you may decide to leave it as is.
The drawback with that is it can leave you straddling two worlds, leaving you
with a fragmented system. An alternative, as mentioned in the previous
section, is to containerize the database as well so that everything you depend
on runs under Kubernetes. Naturally, you may decide to migrate the front-end
application first and tackle the database later.

U S E R I N T E R FAC E

DATA AC C E S S

DATA S T O R E

K U B E R N E T E S F O R D E V E L O P E R S

 1 3

Management
A final important consideration is how you will manage your application stack
once it’s running under Kubernetes. As you’ve already learned, Operators are
becoming a preferred way for managing domain-specific knowledge to
simplify managing your application under Kubernetes, but that may represent
a significant effort in terms of learning and coding.

Whether you use an Operator or not, it’s important to note that the
Kubernetes environment is likely to be significantly different than the
environment your application came from. That means things like backup,
logging and monitoring are all going to be difficult. Plenty of open-source
solutions exist in all these areas, and Kubernetes has the added advantage of
being built from the core for resiliency with liveness and readiness probes and
other health checks.

Learn More

Best Practices for Migrating Your Apps to Containers and Kubernetes

How Kubernetes Became the Solution for Migrating Legacy Applications

Docker Tools for Modernizing Traditional Applications

Migrating a Monolithic/Legacy App and DB to Docker and Kubernetes

Migrate a SQL Server Database from Windows to Kubernetes

Tools

Kompose is a tool to help users familiar with docker-compose move

to Kubernetes. It takes a Docker Compose file and translates it into

Kubernetes resources.

How to get started
The good news is, if you’re migrating a monolithic application today, lots of
people have gone before you. Do everything you can to learn from their
mistakes—instead of making them yourself. There are plenty of good writeups
on ways teams have succeeded—and failed. For example, GitHub has a fairly
detailed blog on its approach to migrating the applications that run github.com
and api.github.com. A little searching is likely to turn up examples that are
relevant to your situation.

M A N A G E M E N T ?

D ATA
M A N A G E D
B Y K U B E R N E T E S

A P P L I C AT I O N

H A R D WA R E

K U B E R N E T E S F O R D E V E L O P E R S

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://mapr.com/blog/best-practices-for-migrating-your-apps-to-containers-and-kubernetes/
https://opensource.com/article/18/2/how-kubernetes-became-solution-migrating-legacy-applications
https://blog.docker.com/2019/06/docker-tools-for-modernizing-traditional-applications/
https://medium.com/faun/migrating-a-monolithic-legacy-app-and-db-to-docker-and-kubernetes-efb314af6656
https://medium.com/@milesibastos/migrate-a-sql-server-database-from-windows-to-kubernetes-3cb89b75390f
http://kompose.io/
https://github.blog/2017-08-16-kubernetes-at-github/
https://github.blog/2017-08-16-kubernetes-at-github/

 1 4

Best Practices for Cloud Native Apps
The great thing about taking on the migration of a legacy application as one
of your first Kubernetes projects is that it can really clarify your thinking
about what not to do when it comes to developing cloud native applications
from scratch. That hard-won knowledge may serve you well. Either way, here
are some additional guidelines to help you get your greenfield efforts off the
ground with minimal pain.

Find the right tools
Taking the time to identify the right tools will help you get started on the
right foot. The earlier Developer’s Checklist introduced three Kubernetes
development tools: Draft, Skaffold, and Garden. Choosing one of these or
a similar Kubernetes-focused tool will help you start out on the right foot
and avoid wasting too much time while you gain familiarity with Kubernetes.

Use the patterns
Kubernetes application design patterns are different than for other
environments. If you’re architecting applications for Kubernetes, it’s extremely
useful to understand and use established patterns whenever possible. This
Usenix paper from Kubernetes co-founder Brendan Burns introduces many of
the common patterns.

Take full advantage of operators
If the application you’re building is stateful, you should strongly consider
whether you need to create an operator. To refresh your memory, Operators

encapsulate the application-specific logic necessary for data protection, high
availability, and other management functions. As you think about Operators,
remember that open-source Operators already exist for common databases
and other services you may be using with your application. You may be able
to use these as is or modify them to suit your needs.

A recent blog post from Google details best practices for building Operators.

Engage with the community
If you’re only going to follow one best practice, it should be this one:
engage with the Kubernetes community. One of the things that differentiates
Kubernetes from many other open-source projects is the vibrancy of the
community around it. No matter what problem you’re trying to solve, chances
are good that there is someone out there who’s either already solved it or is
working to solve the same challenge.

Learn More

Design Practices for Container-Based Distributed Systems

Best Practices for Migrating Your Apps to Containers and Kubernetes

Best Practices for Building Kubernetes Operators and Stateful Apps

Top 5 Kubernetes Best Practices

Architecting Applications for Kubernetes

Best Practices and Anti-Patterns for Containerized Deployments

K U B E R N E T E S F O R D E V E L O P E R S

https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_burns.pdf
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps
https://kubernetes.io/community/
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_burns.pdf
https://mapr.com/blog/best-practices-for-migrating-your-apps-to-containers-and-kubernetes/
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps
https://www.weave.works/blog/kubernetes-best-practices
https://www.digitalocean.com/community/tutorials/architecting-applications-for-kubernetes
https://techbeacon.com/enterprise-it/best-practices-anti-patterns-containerized-deployments

 1 5

What Should I Do Next?
If you’re a developer starting out with Kubernetes, the most important thing is to get
started. Use the resources links in this eBook to learn more, watch videos and engage
with your peers. In addition to connecting online, you may find local Kubernetes meetups
in your area, and there are annual KubeCon and CloudNativeCon conferences in North
America, Europe, and China.

Consider downloading one of the development tools mentioned earlier and kick the
tires, or install minikube on your local machine to get more familiar with Kubernetes. In
addition, VMware has a variety of resources for everyone on the Kubernetes journey:

TGIK
Every Friday at 1 PM Pacific, VMware holds an informal hangout session focusing on a
specific Kubernetes-related topic. You can see the archive of past sessions on YouTube
and subscribe to view the live sessions.

Cloud Native Apps Blog
Read our regular blog to find out the latest. Posts cover diverse topics and new
blogs are posted regularly.

Watch a webinar on Cluster API
Learn about Cluster API, how it works, its current state, and why it’s crucial for the
future of Kubernetes.

KubeAcademy
KubeAcademy provides an accessible learning path to advance your skill set,
regardless of where you are on your Kubernetes journey. Courses are designed
and delivered by Kubernetes experts, for free.

And be sure and follow @VMware on Twitter to keep up with all the latest cloud
native developments.

K U B E R N E T E S F O R D E V E L O P E R S

https://kubernetes.io/community/
https://kubernetes.io/community/
https://kubernetes.io/community/#events
https://github.com/kubernetes/minikube
https://www.youtube.com/channel/UCdkGV51Nu0unDNT58bHt9bg
https://www.youtube.com/channel/UCjQU5ZI2mHswy7OOsii_URg/featured
https://blogs.vmware.com/cloudnative/
https://www.youtube.com/watch?v=sCD50fO95hI
https://kube.academy/
https://twitter.com/VMware

