

Build software
a smarter way
Jumpstart app development in an iterative, results-driven way. We
help you deliver great apps with proven practices and simple tools.
You'll have working software in days, thanks to an approach that
starts small and scales fast. Build new apps your customers love
and update the ones they already rely on.

https://tanzu.vmware.com/labs

Modernize your existing apps
Build innovative new products
Collaborate in a culture of continuous learning

Michael Coté

Monolithic Transformation
Using DevOps, Agile, and Cloud

Platforms to Execute a Digital
Transformation Strategy

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04977-7

[LSI]

Monolithic Transformation
by Michael Coté

Copyright © 2019 Michael Coté. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or cor‐
porate@oreilly.com.

Acquisitions Editor: Mary Treseler
Developmental Editors: Alicia Young and
Melissa Duffield
Production Editor: Nan Barber
Copyeditor: Octal Publishing, LLC

Proofreader: Nan Barber
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2019: First Edition

Revision History for the First Edition
2019-02-15: First Release
2019-04-05: Second Release

Figures 1-2 and 1-3 are copyright © 2019 VMware, Inc.

This work is part of a collaboration between O’Reilly and VMware. See our state‐
ment of editorial independence.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Monolithic Trans‐
formation, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

http://oreilly.com
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Introduction: Why Change?. v

1. Fostering Change. 1
Small-Batch Thinking 1
Shift to User-Centric Design 4
From Functional Teams to Product Teams 5
Case Study: No One Wants to Call the IRS 12
Transforming Is Easy...Right? 13

2. Leadership’s Cloud-Native Cookbook. 15
Establishing a Vision and Strategy 17
Communicating the Vision and Strategy 22
Creating a Culture of Change, Continuous Learning, and

Comfort 26
Building Your Business Case 38
Considering the Enterprise Architect 42
Tackling a Series of Small Projects 47
Assemble the Right Team 54
Building Trust with Internal Marketing, Large and Small 59
Tracking Your Improvement with Metrics 61
Tending to Compliance and Regulation 71
Building Your Pipeline and Choosing Your Platform 77
Own Your Role 89

iii

Introduction: Why Change?

“We’re in the technology business. Our product happens to be banking,
but largely that’s delivered through technology.”

—Brian Porter, CEO, Scotiabank

The phrase “digital transformation” is mostly useless, but, then
again, it’s perfect. By my reckoning, the phrase has come to mean
doing anything with new technologies, especially emerging technol‐
ogies. When those new technologies span marketing efforts in Insta‐
gram to replatforming mainframe applications to containerized, 12-
factor applications, it’s not precise enough to be useful. But, there’s
utility in the phrase if it’s narrowed. To me, the phrase means inno‐
vating new business models and fixing under-performing ones using
rapidly delivered and well-designed software. For many businesses,
fixing their long-dormant, lame software capabilities is an urgent
need: companies like Amazon loom as overpowering competitors in
most every industry. Competitive threats from these so-called “tech
companies” are real, but some traditional enterprises are becoming
even fiercer competitors.

Liberty Mutual, for example, entered a new insurance market on the
other side of the world in six months, doubling the average close
rate. Home Depot grew its online business by around $1 billion each
of the past four years, is the number two-ranked digital retailer, and
is adding more than 1,000 technical hires in 2018. The US Air Force
created an air tanker scheduling app in 120 days, driving $1 million
in fuel savings each week, and canceled the traditional, $745 million
contract that hadn’t delivered a single line of code in five years.

Though there are some exceptions, many organizations do not have
the software capabilities needed to survive in this environment.

v

https://tgam.ca/2UXeqSj
http://bit.ly/2tjZxxK
http://bit.ly/2tjZxxK
http://bit.ly/2GJHWr8
http://bit.ly/2GJHWr8
http://bit.ly/2tmbcfx
http://bit.ly/2tmbcfx
http://bit.ly/2DCjlRK
http://bit.ly/2V3d74B

They’ve let their IT capabilities wither, too comfortable with low
expectations and defensible business differentiation that ensured
steady cash flows. Now they’re trapped with slow, often calcified
software. This makes the overall organization a sitting duck for mer‐
ciless business predators. Organizations like those just mentioned
show, however, that such fat ducks can become lean, quick, and
profitable businesses if they transform how they do software.

I spend most of my time studying how large organizations plan for,
initially fail at, and then succeed at this kind of transformation is—
I’m super-fun at parties! This report documents what I’ve found so
far, drawing on the experiences of companies that are suffering
through the long journey to success. The ideas in this report are
centered on the principles of small-batch thinking, user-centric
design, and moving from functional teams to product teams, which
we cover in Chapter 1. Chapter 2 then provides you with a playbook
for applying these principles across your organization, from the first
steps of creating and communicating your strategy all the way
through building your pipeline and choosing the right cloud plat‐
form.

As you’ll see, this report is built from the direct experience and
research of others. I’ve tried to maximally cite these sources, primar‐
ily through linking to the source, presentation, book, article, or just
the person. This means many citations are not available in print and
only in the electronic version. If you find I’m missing a citation or a
link, please send it along to me so that I can correct it in future ver‐
sions and the errata.

vi | Introduction: Why Change?

CHAPTER 1

Fostering Change

“If you aren’t embarrassed by the first version of your product, you
shipped too late.”

—Reid Hoffman, LinkedIn cofounder and former PayPal COO

Over the past 20 years, I’ve seen successful organizations use the
same general process: shipping small batches of software in short
iterations, using the resulting feedback loop to drive improvements
to their software. These teams continuously learn and change their
software to match user needs.

IT organizations that follow this process are delivering a different
type of outcome rather than implementing a set of requirements.
They’re giving their organization the ability to adapt and change
monthly, weekly, even daily. This is the outcome of Agile software
development, and it’s at the core of how IT can drive innovation for
their organization.

Small-Batch Thinking
By “small batches,” I mean identifying the problem to solve, formu‐
lating a theory of how to solve it, creating a hypothesis that can
prove or disprove the theory, doing the smallest amount of coding
necessary to test your hypothesis, deploying the new code to pro‐
duction, observing how users interact with your software, and then
using those observations to improve your software. The cycle, of
course, repeats itself, as illustrated in Figure 1-1.

1

https://read.bi/2UXimm7

Figure 1-1. Small-batch thinking is a cyclical process.

This entire process should take at most a week—and hopefully just a
day. All of these small batches, of course, add up over time to large
pieces of software, but in contrast to a “large batch” approach, each
small batch of code that survives the loop has been rigorously vali‐
dated with actual users.

Schools of thought such as Lean Startup reduce this practice to help‐
fully simple sayings like “think, make, check.” People like to prepend
“lean” to various software roles, as well: lean production manage‐
ment, lean designer, or just lean on its own. What you call the pro‐
cess is up to you, as long as you actually follow it.

This discipline gives you a tremendous amount of insight into deci‐
sions about your software. A small-batch process gives you a much
richer, fact-based ability to drive decisions about features to add,
remove, or modify. In turn, this creates much better software. No

2 | Chapter 1: Fostering Change

http://bit.ly/2GJuROg
http://bit.ly/2BBuBO2

1 In Lean terms, you can think of this as Work In Process (WIP), the unfinished work or
just idle inventory sitting in your warehouse, wasting time and money.

matter how many tests run green or schedule milestones are cleared,
your software isn’t done until a user validates your assumptions.

Liberty Mutual’s Chris Bartlow describes the core benefit of small
batches:

When you get to the stoplight on the circle [the end of a small-
batch loop] and you’re ready to make a decision on whether or not
you want to continue, or whether or not you want to abandon the
project, or experiment [more], or whether you want to pivot, I
think [being hypothesis driven] gives you something to look back
on and say, “okay, did my hypothesis come true at all? Is it right on
or is it just not true at all?”

The record of your experiments also serves as an ongoing report of
your progress. Auditors will cherish this log of decision making and
validation. These well-documented and tracked records are also
your ongoing design history. This makes even your failures valuable
because you’ve proven what doesn’t work and, thus, what you should
avoid in the future. You avoid the cost and risk of repeating bad
decisions; these are savings that can be passed on to other teams
who can now avoid those invalidated decisions, as well.

In contrast, a large-batch approach follows a different process.
Teams document a pile of requirements up front, developers code
away at implementing those features, perhaps creating “golden
builds” each week or two (but not deploying those builds to produc‐
tion!), and only after all of the requirements are implemented and
QA’ed is the code finally deployed to production. With the large-
batch approach, this pile of unvalidated code creates a huge amount
of risk.1

This is the realm of multiyear projects that either underwhelm or
are consistently late. As one manager put it, “[w]e did an analysis of
hundreds of projects over a multiyear period. The ones that deliv‐
ered in less than a quarter succeeded about 80% of the time, while
the ones that lasted more than a year failed at about the same rate.”

No stranger to lengthy projects with big upfront analyses, the US Air
Force is beginning to think in terms of small batches for its software,
as well. “A [waterfall] mistake could cost $100 million, likely ending

Small-Batch Thinking | 3

http://bit.ly/2BAVlOB
http://bit.ly/2BAVlOB
http://bit.ly/2SBCpdg
http://bit.ly/2X3J6mM
http://bit.ly/2SyU4lz

the career of anyone associated with that decision. A smaller mistake
is less often a career-ender and thus encourages smart and informed
risk-taking,” said M. Wes Haga in “Defense One: Future of the
Navy”.

Shift to User-Centric Design
The small-batch loop enables a highly effective, user-centric
approach to software design. The simplest, most accurate definition
I’ve seen is from VMware Tanzu Labs:

User-centric design ensures that the software solves a real problem
for real users in a desirable and usable product.

There’s little new about taking a user-centric approach to software.
What’s different now is how much more efficient and fast it is
thanks to highly networked applications and cloud-automated plat‐
forms.

In the past, studying and refining desktop software was difficult,
costly, and slow. Outside of their labs, designers knew very little
about how people used their software. Well, they knew when there
were errors because users fumed about bugs. But, users rarely
reported how well things were going when software functioned as
planned. Worse, users didn’t report when things were just barely
good enough and could be improved. Without this type of knowl‐
edge, designers were left to, more or less, just make it up as they
went along. Slow, multimonth, if not year, release cycles made this
situation even worse. Even if designers knew how to structure the
software better, they would need to wait through each release cycle
to test their theories.

Starting in the mid-2000s, networked applications, released fre‐
quently, finally gave designers a rich trove of data to continually ana‐
lyze and use to improve their software design quality. For example, a
2009 Microsoft study found that only about a third of its applica‐
tions’ features achieved the team’s original goals—that is, were useful
and considered successful. This allowed the team to adjust its focus
accordingly, improving the software but also removing time wasted
working on and supporting underused features.

Good design is worth spending time on. Maxie Schmidt-
Subramanian and Laura Garvin Tramm at Forrester, for example,
estimate that car manufacturers improving customer experience

4 | Chapter 1: Fostering Change

http://bit.ly/2TTALQU
http://bit.ly/2TTALQU
https://stanford.io/2SNAH7Y
http://bit.ly/2DClNHW

2 The exact numbers from the 2018 model are $48.82 per customer for “mass market”
auto manufactures, and $104.54 for luxury, spread across the average number of cus‐
tomers per company, resulting in $879 million and $37 million in revenue increase per
company. For banking: multichannel at $8.19 per customer and $9.82 for direct, result‐
ing in $123 million and $29 million per company.

could bring $49 to $100 uplift in per customer revenue, and $8 to
$10 in the banking industry. Those might seem small per person,
but multiplied across millions of customers, it adds up: $879 million
for car manufacturers, and $123 million for banking.2 Without a
doubt, good design creates differentiation and drives revenue.

From Functional Teams to Product Teams
Traditional staffing and organization models are a poor fit for the
small-batch process. Most organizations are grouped into functional
silos: developers are in one bucket and project managers are in
another bucket. The same goes for QA, security staff, database
administrators, architects, and so on.

A small-batch approach, however, moves too fast for this type of
organization. Communication and handoffs between each silo takes
time: business analysts must communicate and explain require‐
ments to developers; developers need to document features for QA
and get the approval of architects; project managers need to spelunk
in email and interview people to update project status; and DBAs,
well, they’re a deep, deep silo to cross.

When you’re making weekly, if not daily, decisions about the prod‐
uct, all of this coordination also loses fidelity between each silo.
Additionally, as Lean Manufacturing has discovered, those closest to
the work are the best informed to make decisions about the product.
Business analysts, enterprise architects, and, worst of all, executives
simply don’t have the week-to-week knowledge about the applica‐
tion and the people who use it.

Functional organizations also encourage local optimization: each
group is focused on doing its part instead ensuring that the overall
outcome is good.

To address these problems, you need to rearrange your organization
chart to favor product teams. Let’s look inside these teams and see
what they’re made of.

From Functional Teams to Product Teams | 5

http://bit.ly/2DClNHW
http://bit.ly/2DClNHW
http://bit.ly/2DClNHW

3 Much of the role descriptions in this section are taken from and based on Tanzu Labs’
guides and experience.

Product Teams3

Each team is dedicated to one application, service, or sizable compo‐
nent of the overall system. Unless you use the First National Bank of
Mattresses, you likely understand a retail banking system and its
subcomponents: a ledger, a transfer service, a bill-paying service,
new service sign-ups, loan applications, and so on. The backend will
have numerous services like single sign-on, security checks, and so
forth. Each of these areas maps to a product, as shown in Figure 1-2.

Enterprise architects are well positioned to define these groups. One
method is to use domain-driven design (DDD) to discover the
“bounded contexts” that define these teams. The entity and event
trails described by a DDD analysis also help define the team’s data
models, dependencies, and methods of interacting with other teams
(e.g., APIs and events). “Forming those teams allows us to distill to
the heart of the problem we’re focused on in order to gain competi‐
tive advantage,” says Jakub Pilimon. As we discuss later, this inter‐
section of business strategy and technical acuity is exactly the role of
the enterprise architect.

After a product team is formed, its goal is to focus on the end-to-
end process of delivering quality software. Instead of spreading that
responsibility across many different groups, all of the roles needed
to “own” the software are put on one team. That team is dedicated to
the product full-time and given the trust and authority to decide on
features, schedules, and most everything related to that product. In
turn, they’re responsible for running the software and its outcomes.
This is analogous to how a software vendor works: the vendor’s core
business is delivering a product, not the implementation of a bunch
of requirements from a distant third party.

6 | Chapter 1: Fostering Change

http://bit.ly/2DEzBBG
https://twitter.com/JakubPilimon

Fi
gu

re
 1

-2
. E

xa
m

pl
es

 o
f p

ro
du

ct
 te

am
s b

y a
pp

lic
at

io
n

an
d

se
rv

ice
.

From Functional Teams to Product Teams | 7

As illustrated in Figure 1-3, each product team has three key roles:
developers, designers, and product managers. In addition to these
might be supporting roles that come and go as needed—testers,
architects, DBAs, security staff, data scientists, and other specialists.

Figure 1-3. Any given product team has three major roles: developers,
designers, and product managers.

Developers
These are the programmers. Developers also give technical input to
the team, directing which technologies and architectural models to
follow and build. They also determine the feasibility of various solu‐
tions: can we really do instant dog-breed recognition in real time on
a PalmPilot?

Through the practice of pairing, knowledge is quickly spread among
developers, ensuring that there are no empires built and addressing
the risks of a low bus factor. Developers are encouraged to rotate
through various roles, from frontend to backend, to get good expo‐
sure to all parts of a project. By using a cloud platform, like VMware
Tanzu Application Service, developers also use continuous integra‐
tion and continuous delivery (CI/CD) tools to deploy code on their
own, removing release management wait times.

8 | Chapter 1: Fostering Change

http://bit.ly/2GrXjEX
http://bit.ly/2LQFqiL
http://bit.ly/2GJv7g8
http://bit.ly/2GJv7g8
http://bit.ly/2SwGn6V
http://bit.ly/2SwGn6V

Developers are closely involved with estimating the length of time
that stories in your backlog will take to implement as well as in scop‐
ing stories. Similarly, developers can help product managers and
designers walk through the technical trade-offs involved in deciding
how to implement and design features.

Applying the principle of owning the product end to end, develop‐
ers also ensure that their software runs well and can be managed in
production. Some very advanced teams even have developers man‐
age and remediate applications in product—a practice of orthodox
DevOps. Having that kind of skin in the game motivates developers
to write production-ready code.

You shouldn’t expect developers to be mythical “full-stack develop‐
ers”; that is, experts in all programming and operational concerns.
Instead, they rely on a cloud platform’s self-service and automation
capabilities for most operations needs. This means, for example, that
developers don’t need to wait for operations staff to requisition
development environments, set up middleware, deploy releases, or
perform other configuration and release management tasks.

There will, of course, be operations knowledge that developers need
to learn, especially when it comes to designing highly networked,
distributed applications. Initially, prescriptive patterns help here as
well as embedded operations staff. By relying on their organization’s
cloud platform to automate and enforce routine operations tasks,
over time developers often gain enough operations knowledge to
work without dedicated operations support.

The number of developers on each team is variable, but so far, you’ll
typically see anywhere from two to six developers, and sometimes
more. Too many more and you risk reintroducing communications
overhead; this is also often the sign of decadent scoping.

Product manager
At its core, the product manager is the “owner” of the team’s soft‐
ware, the product. More accurately, product managers set the vision
week-to-week, pointing the team in the right direction.

It’s best to approach the product owner role as a breadth-first role:
these individuals must understand the business, the customer, and
the technical capabilities. This broad knowledge helps product man‐
agers make the right prioritization decisions. It also gives them the

From Functional Teams to Product Teams | 9

http://bit.ly/2GIzA2P
http://bit.ly/2GIzA2P
http://bit.ly/2EcWhuj
http://bit.ly/2tojVxE

knowledge needed to work with the rest of the organization and rel‐
evant stakeholders like auditors and “the business.”

In organizations that are transitioning, this role also serves as a bar‐
rier between the all-too-fragile new teams and the existing, legacy
teams. The product owner becomes the gatekeeper that keeps all of
the “helpful” interest and requests at bay so that the teams can focus
on their work.

Designer
One of the major lessons of contemporary software is that design
matters a tremendous amount more than previously believed...or, at
least, budgeted for. Although nice-looking UIs are all well and good,
effective software design is much more than looks. The designer
takes responsibility for deeply understanding the user’s needs and
challenges and how to create solutions to overcome these chal‐
lenges. Designers are the architects of the conceptual workflows that
make users productive.

The designer focuses on identifying the feature set for the applica‐
tion and translating that to a user experience for the development
team. As some put it, design is how it works, not (just) how it looks.
Activities might include completing the information architecture,
user flows, wireframes, visual design, and high-fidelity mock-ups
and style guides.

Most important, designers need to get out of the building and not
only see what users are doing with the software, they need to
become intimately familiar with those users and their needs. Peripa‐
teticism is helpful for all roles, of course, but vital for designers.

As discussed earlier, supported by platforms like Tanzu Application
Service, the small-batch process gives the designers more feedback
on their design theories than ever. This makes it feasible and worth‐
while to embed designers on product teams.

Design has long been neglected by most organizations, which often
find design skill severely lacking. The design role is critical to good
software, however, so leaders need to quickly budget for and find
designers.

10 | Chapter 1: Fostering Change

Pairing Roles
Many of the high-performing teams I’ve seen pair across each role.
There are always two people working on the same thing from prod‐
uct managers, designers, and developers. This practice increases
work quality, educates and level-sets knowledge across the team, and
builds trust and collaboration. Later on, pairing is used to spread
your transformation throughout the rest of the organization by
seeding new teams with people from paired teams.

Pairing might seem ridiculous at first: you’ve just halved production
and doubled costs. However, almost 20 years of study and results
from enterprises that practice pairing prove that it’s an effective
technique. For example, DBS Bank’s CEO, Piyush Gupta, describes
the bank’s pairing policy, motivation, and strategic benefits:

Mostly, we believe in pairing employees who need to be trained
with others who are native to those capabilities; we have found this
to be one of the most effective methods of transforming people. We
hire people with the required capabilities and pair them up with the
incumbents, and the result is that those capabilities are multiplied
across the organization. This is rooted in the simple belief that in
order to learn something, you must experience and practice it
rather than hear about it in a classroom setting.

To take a look at pairing, let’s use developers as an example. With
rare exception, when programming, two developers always work
together, following the maxim that two heads are better than one.
Developers regularly rotate to a new partner, usually at least once a
day. With two sets of eyes, quality rises and writing unit tests goes
faster: one developer might write a unit test first followed by the
other writing the corresponding code.

Knowledge spreads quickly and developers end up teaching each
other, not only senior to junior, but from junior to senior, as well. In
fact, after a while, the team’s skills tend to level. Spreading knowl‐
edge across the team also improves risk management. A lone devel‐
oper can’t build specializations, becoming the only one who knows
how “their” part of the system works. This means that staff churn
has less negative effect. It also reduces the type of “hero culture” that
can lead to staff burnout and mistakes.

“Part of the goal is to not have siloed knowledge,” says Matt Curry
(then at Allstate), “So we’re kind of getting away from this world of
optimizing for one person to show up on the scene and make every‐

From Functional Teams to Product Teams | 11

http://bit.ly/2IfhlVb
http://bit.ly/2UT0zfY
http://bit.ly/2DDgQia
http://bit.ly/2SPcFcB

thing okay.” Instead, he goes on, “Anybody on the team can make it
okay or can get us over this barrier.” That’s a much more reliable
team than a set of heroes with unique knowledge that only they can
deploy to solve problems.

As you begin to spread change across your organization, you rotate
key developers out of existing teams into new teams. These develop‐
ers seed the new team with knowledge, skills, and trust in the new
process. As we discuss later, this is one of the key methods for scal‐
ing change beyond the initial teams.

Case Study: No One Wants to Call the IRS
You wouldn’t think a big government agency, particularly a tax-
collecting organization, would be a treasure trove of good design
stories, but the IRS provides a great example of how organizations
are reviving their approach to software.

The IRS historically used call centers to provide basic account infor‐
mation and tax payment services. Call centers are expensive and
error prone: one study found that only 37% of calls were answered.
That is, the IRS hung up on more than 60% of people calling for
help! With the need to continually control costs and deliver good
service, the IRS had to do something.

In the consumer space, solving this type of account management
problem has long been taken care of. It’s pretty easy in fact. Just
think of all the online banking systems you use and how you pay
your monthly phone bills. But at the IRS, paying delinquent taxes
had yet to be digitized.

When putting software around this, the IRS first thought that it
should show you your complete history with the agency, over multi‐
ple years and types of transactions. This confused users and most of
them still wanted to pick up the phone. Think about what a perfect
failure that is: the software worked exactly as designed and intended,
it was just the wrong way to solve the problem.

Thankfully, because the IRS was following a small-batch process, it
caught this very quickly and iterated through different hypotheses of
how to solve the problem. Finally, developers hit on a simple find‐
ing: when people want to know how much money they owe the IRS,
they want to know only how much money they owe the IRS. The
team removed all the lavish extra history from the UI. When this

12 | Chapter 1: Fostering Change

http://bit.ly/2SwHFPj
http://bit.ly/2SwHFPj

version of the software was tested, most people didn’t want to use
the phone.

Now, if the IRS was on a traditional 12- to 18-month cycle (or
longer!), think of how poorly this would have gone. The business
case would have failed, and you would probably have a dim view of
IT and the IRS. But, by thinking about software in an Agile, small-
batch way, the IRS did the right thing, not only saving money, but
also solving people’s actual problems.

This project had great results: after some onerous upfront red-tape
transformation, the IRS put an app in place that allows people to
look up their account information, check payments due, and pay
them. As of October 2017, there have been more than 2 million
users, and the app has processed more than $440 million in pay‐
ments. Clearly, a small-batch success.

Transforming Is Easy...Right?
Putting small-batch thinking in place is no easy task: how long
would it take you, currently, to deploy a single line of code, from a
whiteboard to actually running in production? If you’re like most
people, following the official process, it might take weeks—just get‐
ting on the change review board’s schedule would take a week or
more, and hopefully key approvers aren’t on vacation. This thought
experiment will start to flesh out what you need to do—or, more
accurately, fix—to switch over to doing small batches.

Transforming one team amd one piece of software isn’t easy, but it’s
often very possible. Improving two applications usually works. How
do you go about switching 10 applications over to a small batch pro‐
cess? How about 500?

Supporting hundreds of applications and teams, plus the backing
services that support these applications, is a horse of a different
color, rather, a drove of horses of many different colors. There’s no
comprehensive manual for doing small batches at large scale, but in
recent years several large organizations have been stampeding
through the thicket. Thankfully, many of them have shared their
successes, failures, and, most important, lessons learned. We look at
their learnings next, with an eye, of course, at taming your organiza‐
tion’s big-batch bucking.

Transforming Is Easy...Right? | 13

CHAPTER 2

Leadership’s Cloud-Native
Cookbook

“[T]he role of leadership on technology transformation has been one of
the more overlooked topics in DevOps, despite the fact that transforma‐
tional leadership is essential”

—Accelerate: The Science of Lean Software and DevOps

In large organizations, higher-level executives are the only ones
given the authority to make organizational change at a scale that
matters and are, thus, key to any meaningful transformation. These
executives must do more than update the “the slides” as so many
corporate strategy groups seem to do. They must actually change the
organization’s structure, processes, norms, and rules—the organiza‐
tion’s “culture.”

The work won’t be easy. “I’ve found that changing culture is by far
more complicated than any software project I’ve worked on,” Great
American Insurance Company’s Jon Osborn says, “partly because
you have to deal with people and personalities.” Managers rarely
focus on “transformation,” spending most of their time enforcing
the status quo. “Management’s mandate is to minimize risk and to
keep the current system operating,” as John Kotter summarized
more than 20 years ago. This situation hasn’t changed over the past
two decades.

Changing how one team, or even five teams work is a neat trick and
can even be done “bottoms up.” But, changing, for example, JP Mor‐
gan Chase’s 19,000 developers work requires big-time leadership

15

http://bit.ly/2SwXG7Q
http://bit.ly/2SAfnn1
http://bit.ly/2GpHHC1
http://bit.ly/2X31rk4
http://bit.ly/2X31rk4

support and effort. This kind of challenge is something that only the
leadership team can address. They’re the ones responsible for the
organizations’ architecture and daily operation. Leading digital
transformation is, to put it in developer terms, programming the
organization.

In large organizations, the most sustainable, scalable change begins
and ends with management. As the name would suggest, “digital
transformation” requires transforming, which includes how the
organization functions, its structure, and also how “things are done
around here.” Gardening all these are management’s job. Just as IT
and product teams must go through the failing-as-learning trials to
transform and then iteratively create better software, management
needs to continuously run through the small-batch loop, as well, to
systematically transform their organization.

Next, let’s look at some of the leadership and management tactics
I’ve seen from successful organizations. These cover most major
aspects of implementing a successful cloud-native leadership strat‐
egy, including the following:

• Establishing and communicating your vision and strategy
• Fostering a culture of change and continuous learning
• Planning your finances
• Valuing the role of enterprise architects in your transformation
• Creating successful projects
• Building strong teams
• Addressing change-averse leadership
• Creating trust with teams through internal marketing
• Tracking improvement with the right metrics
• Addressing compliance in every level of your business
• How to choose a strong platform and create efficient build pipe‐

lines

16 | Chapter 2: Leadership’s Cloud-Native Cookbook

Establishing a Vision and Strategy
Start your project on Monday and ship it on Friday. It’s no longer that
it’s going to take nine months.

—Andy Zitney, Allstate (at the time), and now McKesson

When you’re changing, you need to know what you’re changing to.
It’s also handy to know how you’re going to change and, equally,
how you’re not going to change. In organizations, vision and strat‐
egy are the tools management uses to define why and how change
happens.

Use Vision to Set Your Goals and Inspiration
“Vision” can be a bit slippery. Often it means a concise phrase of
hope that can actually happen, if only after a lot of work. Andy Zit‐
ney’s vision of starting on Monday and shipping on Friday is a clas‐
sic example of vision. Vision statements are often little more than a
sentence, but they give the organization a goal and the inspiration
needed to get there. Everyone wants to know “why I’m here,” which
the vision should provide, helping stave off any corporate malaise
and complacency.

Kotter has an excellent description of vision as ever divided into a
list:

Vision refers to a picture of the future with some implicit or explicit
commentary on why people should strive to create that future. In a
change process, a good vision serves three important purposes.
First, by clarifying the general direction for change, by saying the
corporate equivalent of “we need to be south of here in a few years
instead of where we are today,” it simplifies hundreds or thousands
of more detailed decisions. Second, it motivates people to take
action in the right direction, even if the initial steps are personally
painful. Third, it helps coordinate the actions of different people,
even thousands and thousands of individuals, in a remarkably fast
and efficient way.

Creating and describing this vision is one of the first tasks a leader,
and then their team, needs to do. Otherwise, your staff will just keep
muddling through yesterday’s success, unsure of what to change, let
alone why to change. In IT, a snappy vision also keeps people
focused on the right things instead of focusing on IT for IT’s sake.
“Our core competency is ‘fly, fight, win’ in air and space,” says the US

Establishing a Vision and Strategy | 17

http://bit.ly/2WVVIwe
http://bit.ly/2S5w9Fi

Air Force’s Bill Marion, for example, “It is not to run email servers
or configure desktop devices.”

The best visions are simple, even quippy sentences. “Live more,
bank less” is a great example from DBS Bank. “[W]e believe that our
biggest competitors are not the other banks,” DBS’s Siew Choo Soh
says. Instead, she continues, competitive threats are coming from
new financial tech companies “who are increasingly coming into the
payment space as well as the loan space.”

DBS Bank’s leadership believes that focusing on the best customer
experience in banking will fend off these competitors and, better,
help DBS become one of the leading banks in the world. This isn’t
just based on rainbow whimsey, but strategic data: in 2017, 63% of
total income and 72% of profits came from digital customers. Focus‐
ing on that customer set and spreading whatever magic brought in
that much profit to the “analog customers” is clearly a profitable
course of action.

“We believe that we need to reimagine banking to make banking
simple, seamless, as well as invisible to allow our customers to live
more and bank less,” Soh says. A simple vision like that is just the tip
of the iceberg, but it can easily be expanded into strategy and spe‐
cific, detailed actions that will benefit DBS Bank for years to come.
Indeed, DBS has already won several awards, including Global
Finance magazine’s best bank in the world for 2018.

Instilling “a sense of urgency,” as Kotter describes it, is also very use‐
ful. Put cynically, you need people to be sufficiently freaked out to
willingly suffer through the confusing and awkward feels of change.
With companies like Amazon entering new markets right and left,
urgency is easy to find nowadays. Taking six months to release com‐
petitive features isn’t much use if Amazon can release them in two
months.

Be judicious with this sense of urgency, however, lest you become
chicken little. Executives and boards seem to be most susceptible to
industry freaking out, but middle management and staff have grown
wary to that tool over the years.

Create an Actionable Strategy
“Strategy” has many, adorably nuanced and debated definitions.
Like enterprise architecture, it’s a term that at first seems easily

18 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2S5w9Fi
http://bit.ly/2UXgWbd
http://bit.ly/2UXgWbd
http://bit.ly/2UT0zfY
http://bit.ly/2S1BWMb
http://bit.ly/2V0C1lf
http://bit.ly/2SOCd9M
http://bit.ly/2DBMKLQ

knowable but becomes more obtuse as you stare into the abyss. A
corporate strategy defines how a company will create, maintain, and
grow business value. At the highest level, the strategy is usually
increasing investor returns, generally through increasing the compa‐
ny’s stock price (via revenue, profits, or investor’s hopes and dreams
thereof), paying out dividends, or engineering the acquisition of the
company at a premium. In not-for-profit organizations, “value”
often means how effectively and efficiently the organization can exe‐
cute its mission, be that providing clean water, collecting taxes, or
defending a country. The pragmatic part of strategy is cataloging the
tools that the organization has at its disposal to achieve, maintain,
and grow that value. More than specifying which tools to use, strat‐
egy also says what the company will not do.

People often fail at writing down useful strategy and vision. They
want to serve their customers, be the best in their industry, and
other such thin bluster. The authors of Winning Through Innovation
provide a more practical recipe for defining your strategy:

1. Who are your customers and what are their needs?
2. Which market segments are you targeting?
3. How broad or narrow is your product or service offering?
4. Why should customers prefer your product or service to a com‐

petitor’s?
5. What are the competencies you possess that others can’t easily

imitate?
6. How do you make money in these segments?

Strategy should explain how to deliver on the vision with your
organization’s capabilities, new capabilities enabled by technologies,
customers’ needs and jobs to be done, your market, and your com‐
petitors. “This is where strategy plays an important role,” Kotter
says, “Strategy provides both a logic and a first level of detail to show
how a vision can be accomplished.”

There are endless tools for creating your strategy, including hiring
management consulting firms, focusing on cost or better mouse
traps, eating nothing but ramen noodles, drawing on napkins, and
playing the boardroom version of The Oregon Trail. If you don’t
already have a strategy definition method, it doesn’t really matter

Establishing a Vision and Strategy | 19

http://bit.ly/2IgZeOy
http://bit.ly/2DDbWSd
http://bit.ly/2WVVIwe
http://bit.ly/2WVVIwe
http://bit.ly/2DExFcl
http://bit.ly/2DExFcl
http://bit.ly/2NaEMOg
http://bit.ly/2TQjqIf
http://bit.ly/2SAgqmX

which one you choose. They’re all equally terrible if you do nothing
and lack an actionable strategy.

Case study: a strategy for the next 10 years of growth at Dick’s Sporting
Goods
Dick’s Sporting Goods, the largest sporting goods retailer in the US,
provides a recent example of putting a higher-level vision and strat‐
egy into action. As described by Jason Williams, over the past 10
years Dick’s rapidly built out its ecommerce and omni-channel
capabilities—an enviable feat for any retailer. As always, success cre‐
ated a new set of problems, especially for IT. It’s worth reading Wil‐
liams’s detailed explanation of these challenges:

With this rapid technological growth, we’ve created disconnects in
our overall enterprise view. There were a significant number of
store technologies that we’ve optimized or added on to support our
ecommerce initiatives. We’ve created an overly complex technology
landscape with pockets of technical debt, we’ve invested heavily in
on premise hardware—in the case of ecommerce, you have to plan
for double peak, that’s a lot of hardware just for one or two days of
peak volume. Naturally, this resulted in a number of redundant
services and applications; specifically, we have six address verifica‐
tion services that do the same thing. And not just technical issues,
we often had individuals and groups that have driven for perfor‐
mance, but it doesn’t align to our corporate strategy. So why did we
start this journey? Because of our disconnect in enterprise view, we
lack that intense product orientation that a lot of our competitors
already had.

These types of “disconnects” and “pockets of technical debt” are uni‐
versal problems in enterprises. Just as with Dick’s, these problems
are usually not the result of negligence and misfeasance, but of the
actions needed to achieve and maintain rapid growth.

To clear the way for the next 10 years of success, Dick’s put in place a
new IT strategy, represented by four pillars:

Product architecture
Creating an enterprise architecture based around the business;
for example, pricing, catalog, inventory, and other business

20 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2DzNnp2

1 Domain Driven Design (DDD) is often used to define these “bounded contexts.” Simi‐
larly, on the product side, the jobs to be done (JTBD) methodology can define the busi‐
ness architecture.

functions.1 This focus helps shift from a function- and service-
centric mindset to a product-centric mindset.

Modern software development practices
Using practices like test-driven development (TDD), pairing,
continuous integration and continuous delivery (CI/CD), lean
design, and all the proven, Agile best practices.

Software architecture
Using a microservices architecture, open source, following 12-
factor principles to build cloud-native applications on top of
Tanzu Application Service. This defines how software will be
created, reducing the team’s toil so that they can focus on prod‐
uct design and development.

Balanced teams
Finally, as Williams describes it, having a unified, product-
centric team is the “the most critical part” of Dick’s strategy. The
preceding three provide the architectural and infrastructural
girding to shift IT from service delivery over to product deliv‐
ery.

Focusing on these four areas gives staff very clear goals that easily
translate into next steps and day-to-day work. Nine months after
executing this strategy, Dick’s achieved tangible success: the com‐
pany created 31 product teams, increased developer productivity by
25%, ramped up its testing to 70% coverage, and improved the cus‐
tomer experience by increasing page load time and delivering more
features, more frequently.

Keep Your Strategy Agile
Finally, keep your strategy Agile. Even though your vision is likely to
remain more stable year to year, how you implement it might need
to change. External forces will put pressure on a perfectly sound
strategy: new government regulations or laws could change your
organization’s needs, Amazon might finally decide to bottom out
your market. You need to establish a strategy review cycle to check

Establishing a Vision and Strategy | 21

http://bit.ly/2BBynXw
http://bit.ly/2BC0G8t
http://bit.ly/2TPXHQI

your assumptions and make course corrections to your strategy as
needed. That is, apply a small-batch approach to strategy.

Organizations usually review and change strategy on an annual basis
as part of corporate planning, which is usually little more than a
well-orchestrated fight between business units for budget. Although
this is an opportunity to review and adjust strategy, it’s at the whim
of finance’s schedule and the mercurial tactics of other business
units.

Annual planning is also an unhelpfully Waterfall-centric process, as
pointed out by Mark Schwartz in The Art of Business Value (IT Rev‐
olution). “The investment decision is fixed,” he writes, but “the
product owner or other decision maker then works with that invest‐
ment and takes advantage of learnings to make the best use possible
of the investment within the scope of the program. We learn on the
scale of single requirements, but make investment decisions on the
scale of programs or investment themes—thus the impedance mis‐
match.”

A product approach doesn’t thrive in that annual, fixed mindset. Do
at least an additional strategy review each year and many more in
the first few years as you’re learning about your customers and
product with each release. Don’t let your strategy become hobbled
by the fetters of the annual planning and budget cycle.

Communicating the Vision and Strategy
If a strategy is presented in the boardroom but employees never see
it, is it really a strategy? Obviously not. Leadership too often believes
that the strategy is crystal clear, but staff usually disagree. For exam‐
ple, in a survey of 1,700 leaders and staff, 69% of leaders said their
vision was “pragmatic and could be easily translated into concrete
projects and initiatives.” Employees had a glummer picture: only
36% agreed.

Your staff likely doesn’t know the company’s vision and strategy.
More than just understanding it, they rarely know how they can
help. As Boeing’s Nikki Allen put it:

22 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2GFsgoG
http://bit.ly/2GFsgoG
http://bit.ly/2BAYrSJ
http://bit.ly/2DDC0wD

2 “Just 16% of all respondents say regular access to information on the effort’s progress is
an effective way to engage the front line. But nearly twice the share of frontline
respondents say the same.” —Dana Maor, Angelika Reich, Lara Yocarini, McKinsey
Global Survey, June, 2016.

In order to get people to scale, they have to understand how to con‐
nect the dots. They have to see it themselves in what they do—
whether it’s developing software, or protecting and securing the
network, or provisioning infrastructure—they have to see how the
work they do every day connects back to enabling the business to
either be productive or generate revenue.

Use Internal Channels
There’s a little wizardry to communicating strategy. First, it must be
compressible. But you already did that when you established your
vision and strategy (see “Establishing a Vision and Strategy” on page
17...right? Next, you push it through all the mediums and channels
at your disposal to tell people over and over again. Chances are, you
have “town hall” meetings, email lists, and team meetings up and
down your organization. Recording videos and podcasts of you
explaining the vision and strategy is helpful. Include strategy over‐
views in your public speaking because staff often scrutinizes these
recordings. Even though “Enterprise 2.0” fizzled out several years
ago, Facebook has trained us all to follow activity streams and other
social flotsam. Use those habits and the internal channels that you
have to spread your communication.

Show Your Strategy in Action
You also need to include examples of the strategy in action: what
worked and what didn’t work. As with any type of persuasion, get‐
ting people’s peers to tell their stories are the best. Google and others
find that celebrating failure with company-wide post mortems is
instructive, career-ending crazy as that might sound. Stories of suc‐
cess and failure are valuable because you can draw a direct line
between high-level vision to fingers on keyboard. If you’re afraid of
sharing too much failure, try just opening up status metrics to staff.
Leadership usually underestimates the value of organization-wide
information radiators, but staff usually wants that information to
stop prairie dogging through their 9 to 5.2

Communicating the Vision and Strategy | 23

https://mck.co/2Gro90b
https://mck.co/2Gro90b
http://bit.ly/2UXWO92
http://bit.ly/2J2Po2W
http://bit.ly/2J2Po2W
http://bit.ly/2Sx2ASh

Gather Feedback
As you’re progressing, getting feedback is key: do people understand
it? Do people know what to do to help? If not, it’s time to tune your
messages and mediums. Again, you can apply a small batch process
to test out new methods of communicating. Although I find them
tedious, staff surveys help: ask people whether they understand your
strategy. Be sure to also ask whether they know how to help execute
the strategy.

Create a Manifesto
Manifestos can help decompose a strategy into tangible goals and
tactics. The insurance industry is on the cusp of a turbulent compet‐
itive landscape. To call it “disruptive” would be too narrow. To pick
one sea of chop, autonomous vehicles are “changing everything
about our personal auto line and we have to change ourselves,” says
Liberty Mutual’s Chris Bartlow. New technologies are only one of
many fronts in Liberty’s new competitive landscape. All existing
insurance companies and cut-throat competitors like Amazon are
using new technologies to optimize existing business models and
introduce new ones.

“We have to think about what that’s going to mean to our products
and services as we move forward,” Bartlow says. Getting there
required reengineering Liberty’s software capabilities. Like most
insurance companies, mainframes and monoliths drove its success
over past decades. That approach worked in calmer times, but now
Liberty is refocusing its software capability around innovation more
than optimization. Liberty is using a stripped-down set of three
goals to make this urgency and vision tangible.

“The idea was to really change how we’re developing software. To
make that real for people we identified these bold, audacious moves,
or ‘BAMS,’” says Liberty Mutual’s John Heveran:

• 60% of computing workloads to the cloud
• 75% of technology staff writing code
• 50% of code releasing to production in a day

24 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2SyYAk1
http://bit.ly/2UZ5j3w
http://bit.ly/2GqfKKu

These BAMs grounded Liberty’s strategy, giving staff very tangible,
if audacious, goals. With these in mind, staff could begin thinking
about how they’d achieve those goals. This kind of manifesto makes
strategy actionable.

So far, it’s working. “We’re just about across the chasm on our
DevOps and CI/CD journey,” says Liberty’s Miranda LeBlanc. “I can
say that because we’re doing about 2,500 daily builds, with over
1,000 production deployments per day,” she adds. These numbers
are tracers of putting a small-batch process in place that’s used to
improve the business. They now support around 10,000 internal
users at Liberty and are better provisioned for the long ship ride into
insurance’s future.

Choosing the right language is important for managing IT transfor‐
mation. For example, most change leaders suggest dumping the
term “Agile.” At this point, near 25 years into “Agile,” everyone feels
like they’re Agile experts. Whether that’s true is irrelevant. You’ll
faceplam your way through transformation if you’re pitching
switching to a methodology people believe they’ve long mastered.

It’s better to pick your own branding for this new methodology. If it
works, steal the buzzwords du jour, such as “cloud native”, DevOps,
or serverless. Creating your own brand is even better. As we discuss
later, Allstate created a new name, CompoZed Labs, for its transfor‐
mation effort. Using your own language and branding can help
bring smug staff onboard and involved. “Oh, we’ve always done that,
we just didn’t call it ‘Agile,’” sticks-in-the-mud are fond of saying as
they go off to update their Gantt charts.

Make sure people understand why they’re going through all of this
“digital transformation.” And make even more sure that they know
how to implement the vision and strategy, or, as you start thinking,
our strategy.

Communicating the Vision and Strategy | 25

http://bit.ly/2X42joD
http://bit.ly/2DP6N9V
http://bit.ly/2S3mAqC
http://bit.ly/2N51N4Y

3 I should note that Jon, far from being yet another cackling ITSM embalmer, goes on to
explain how ITSM has adapted and changed in response to DevOps.

Creating a Culture of Change, Continuous
Learning, and Comfort

In banking, you don’t often get a clean slate like you would at some of
the new tech companies. To transform banking, you not only need to
be equipped with the latest technology skills, you also need to trans‐
form the culture and skill sets of existing teams, and deal with legacy
infrastructure.

—Siew Choo Soh, Managing Director, DBS Bank

Most organizations have a damaging mismatch between the culture
of service management and the strategic need to become a product
organization. In a product culture, you need the team to take on
more responsibility, essentially all of the responsibility, for the full
life cycle of the product. Week to week, they need to experiment
with new features and interpret feedback from users. In short, they
need to become innovators.

Service delivery cultures, in contrast, tend more toward a culture of
following upfront specification, process, and verification. Too often
when put into practice, IT Service Management (ITSM) becomes a
governance bureaucracy that drives project decision. This
governance-driven culture tends to be much slower at releasing soft‐
ware than a product culture.

The sadly maligned architectural change advisory boards (CABs)
are an example, well characterized by Jon Hall:

[A] key goal for DevOps teams is the establishment of a high
cadence of trusted, incremental production releases. The CAB
meeting is often seen as the antithesis of this: a cumbersome and
infrequent process, sucking a large number of people into a room
to discuss whether a change is allowed to go ahead in a week or
two, without in reality doing much to ensure the safe implementa‐
tion of that change.3

Recent studies have even suggested that too much of this process, in
the form of CABs, actually damages the business. Most ITSM
experts don’t so much disagree as suggest that these governance

26 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2WVZdTo
http://bit.ly/2EbshPu
http://bit.ly/2SyJQlw

bureaucracies are doing it wrong. ITSM has been evolving and can
evolve more to fit all this new-fangled product think, they add.

Despite the best intentions of ITSM adherents, IT organizations that
put service management into practice tend to become slow and inef‐
fective, at least when it comes to change and innovation.

The most difficult challenge for leaders is changing this culture.

What Even Is Culture?
“Culture” is a funny word in the DevOps, Agile, and digital transfor‐
mation world. I don’t particularly like it, but it’s the word we have.
Being soft and squishy, it’s easy to cargo cult culture by providing 10
ways to make coffee, ping-pong tables, and allowing people to wear
open-toed shoes in the office. These things are, for better or worse,
often side effects of a good software culture, but they won’t do any‐
thing to actually change culture.

Mainstream organizational management work has helpful defini‐
tions of culture: “Culture can be seen in the norms and values that
characterize a group or organization,” O’Reilly and Tushman write,
“that is, organizational culture is a system of shared values and
norms that define appropriate attitudes and behaviors for its mem‐
bers.”

Jez Humble points out another definition, from Edgar Schein:

[Culture is] a pattern of shared tacit assumptions that was learned
by a group as it solved its problems of external adaptation and
internal integration, that has worked well enough to be considered
valid and, therefore, to be taught to new members as the correct
way to perceive, think, and feel in relation to those problems.

We should take “culture,” then, to mean the mindset used by people
in the organization to make day-to-day decisions, policy, and best
practices. I’m as guilty as anyone else of dismissing “culture” as sim‐
ple, hollow acts like allowing dogs under desks and ensuring that
there’s six different ways to make coffee in the office. Beyond trivial
pot-shots, paying attention to culture is important because it drives
how people work and, therefore, the business outcomes they ach‐
ieve.

For many years, the DevOps community has used the Westrum
spectrum to describe three types of organizational culture, the worst
of which ring too true with most people, as shown in Table 2-1.

Creating a Culture of Change, Continuous Learning, and Comfort | 27

http://bit.ly/2X5ng2f
http://bit.ly/2X5ng2f
http://bit.ly/2EcggcJ
http://bit.ly/2V3hLj3
http://bit.ly/2EbOUn4
http://bit.ly/2IefTCv
http://bit.ly/2IefTCv
http://bit.ly/2IefTCv
http://bit.ly/2EbOUn4
http://bit.ly/2EbOUn4

4 Simon Wardley’s Pioneers, Settlers, and Town Planners categories are another, useful
cultural descriptor.

Table 2-1. The three major kinds of organizational cultures: pathological,
bureaucratic, and generative

Pathological Bureaucratic Generative
Power-oriented Rule-oriented Performance-oriented
Low cooperation Modest cooperation High cooperation
Messengers shot Messengers neglected Messengers trained
Responsibilities shirked Narrow responsibilities Risks are shared
Bridging discouraged Bridging tolerated Bridging encouraged
Failure leads to scapegoating Failure leads to justice Failure leads to enquiry
Novelty crushed Novelty leads to problems Novelty implemented

Year after year, the DevOps reports show that “high performing”
organizations are much more generative than pathological—as you
would suspect from the less-than-rosy words chosen to describe
“power-oriented” cultures. It’s easy to identify your organization as
pathological and equally easy to realize that doing that alone is
unhelpful. Moving from the bureaucratic column to the generative
column, however, is where most IT organizations struggle.4

The Core Values of Product Culture
There are two layers of product culture, at least that I’ve seen and
boiled down over the years. The first layer describes the attitudes of
product people, the second the management tactics you put in place
to get them to thrive.

Regarding the first layer, product people should be the following:

Innovative
They’re interested in discovering problems, solving problems,
and coming up with new ways to accomplish inefficient tasks.
These kinds of people also value continuous learning, without
which innovation can’t happen except by accident: you don’t
want to depend on accidentally dropping a burrito into a deep
fryer to launch your restaurant chain.

Risk takers
I don’t much like this term, but it means something very helpful
and precise in the corporate world; namely, that people are will‐

28 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2DJDUfg
http://bit.ly/2N6Xw11
http://bit.ly/2N6Xw11

ing to do something that has a high chance of failing. The side
that isn’t covered enough is that they’re also focused on safety.
“Don’t surf if you can’t swim,” as Andrew Clay Shafer summed it
up. Risk takers ensure they know how to “swim” and they build
safety nets into their process. They follow a disciplined
approach that minimizes the negative consequences of failure.
The small-batch process, for example, with its focus on a small
unit of work (a minimal amount of damage if things go wrong
and an easier time diagnosing what caused the error) and study‐
ing the results, good and bad, creates a safe, disciplined method
for taking risks.

People focused
Products are meant to be used by people, whether as “custom‐
ers” or “employees.” The point of this report is to make software
that better helps people, be that delivering a product they like
using or one that allows them to be productive—getting bank‐
ing done as quickly as possible so that they can get back to liv‐
ing their life, to lengthen DBS Bank’s vision. Focusing on
people, then, is what’s needed. Too often, some people are
focused on process and original thinking, sticking to those pre‐
cepts even if they prove to be ineffective. People-focused staff
will instead be pragmatic, looking to observe how their software
is helping or hindering the people we call “users.” They’ll focus
on making people’s lives better, not achieving process excel‐
lence, making schedules and dates, or filling out request tickets
correctly.

Finding people like this can seem like winning the lottery. Product-
focused people certainly are difficult to find and valuable, but
they’re a lot less rare than you’d think. More important, you can cre‐
ate them by putting the right kind of management policy and
nudges in place. A famous quip by Adrian Cockcroft (then at Net‐
flix, now at Amazon) illustrates this. As he recounts:

[A]t a CIO summit I got the comment, “we don’t have these Netflix
superstar engineers to do the things you’re talking about,” and
when I looked around the room at the company names my
response was “we hired them from you and got out of their way.”

There is no talent shortage, just a shortage of management imagina‐
tion and gumption.

Creating a Culture of Change, Continuous Learning, and Comfort | 29

http://bit.ly/2BBgKr0
http://bit.ly/2UXj9U3

5 Most recently as studied and described in DORA’s 2018 Accelerate: “State of DevOps”
report.

As for the second, management-focused layer of product culture,
over and over again, research5 finds that the following gumptions
give you the best shot at creating a thriving, product-centric culture:
autonomy, trust, and voice. Each of these three support and feed
into one another, as you’ll see.

Autonomy
People who are told exactly what to do tend not to innovate. Their
job is not to think of new ways to solve problems more efficiently
and quickly, or solve them at all. Instead, their job is to follow the
instructions. This works extremely well when you’re building IKEA
furniture, but following instructions is a poor fit when the problem
set is unknown, when you don’t even know whether you know that
you don’t know.

Your people and the product teams need autonomy to study their
users, theorize how to solve their problems, and fail their way to
success. Pour on too much command-and-control, and they’ll do
exactly what you don’t want: they’ll follow your orders perfectly. A
large part of a product-centric organization’s ability to innovate is
admitting that the people closest to the users—the product team—
are the most informed about what features to put into the software
and even what the user’s problems are. You, the manager, should be
overseeing multiple teams and supporting them by working with the
rest of the organization. You’ll lack the intimate, day-to-day knowl‐
edge of the users and their problems. Just as the business analysts
and architects in a Waterfall process are too distant from the actual
work, you will be too and will make the same errors.

The 2018 DORA DevOps report suggests a few techniques for help‐
ing product teams gain autonomy:

• Establishing and communicating goals, but letting the team
decide how the work will be done

• Removing roadblocks by keeping rules simple

• Allowing the team to change rules if the rules are obstacles to
achieving the goals

30 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2S3xAUO
http://bit.ly/2S3xAUO
http://bit.ly/2BC0G8t
http://bit.ly/2S3xAUO

• Letting the team prioritize good outcomes for customers, even
if it means bending the rules

This list is a good start. As ever, apply a small-batch mentality to
how you’re managing this change and adapt according to your find‐
ings.

There are some direct governance and technology changes needed
to give teams this autonomy. The product teams need a platform
and production tools that allow them to actually manage the full life
cycle of their product. “[I]f you say to your team that ‘when you
build it you also run it,’” says Rabobanks’ Vincent Oostindië, “you
cannot do that with a consolidated environment. You cannot say to a
team, ‘you own that stuff, and by the way somebody else can also
break it.’”

While it might seem trivial, even the simple act of adding a new field
in an address form can limit the team’s autonomy if they’re reliant
on a database administrator to add the field...whenever the DBA has
time to get around it. This type of autonomy relies on management
giving the team autonomy, but it also requires the transformational
benefits of using a cloud platform to give teams self-service access to
everything they need and, then, monitor and manage their applica‐
tions in production as much as possible.

Trust
We often celebrate the idea of “risk takers,” but we rarely celebrate
“failures.” Confidently, we forget that a high chance of failure is
exactly what risk taking is: often, an assurance of failure. Meaningful
innovation requires a seemingly endless amount of failure. This
means taking risks trying new features, resolving problems in pro‐
duction, and, especially, changing “how things are done around
here.” Leadership is the only part of the organization that creates
effective, long-term trust, every other part of the organization will
follow their management’s lead. The DORA report defines trust in
this context as “how much a person believes their leader or manager
is honest, has good motives and intentions, and treats them fairly.”

To succeed at digital transformation, the people in the product
teams must trust management. Changing from a services-driven
organization of a product organization requires a great deal of
upheaval and discomfort. Staff are being asked to behave much dif‐
ferently than they’ve been accustomed to in the past. The new orga‐

Creating a Culture of Change, Continuous Learning, and Comfort | 31

http://bit.ly/2BA2wqs

6 The exact words were closer to, “It’s OK to screw it up. Just don’t screw it up a second
time.” But I prefer to remember it in the more sparkly DevOps wording.

nization can seem threatening to careers, and why should we trust
what management is saying, anyway? It almost sounds too good to
be true.

Management needs to first demonstrate that its desire to change can
be trusted. Doing things like celebrating failures, rewarding people
for using the new methods, and spending money on the trappings of
the new organization (like free breakfast, training, and, indeed, 10
different ways of making coffee) will demonstrate management’s
commitment.

The “blameless postmortem” is the most popular representation of
this trust. In this approach, after a failure in production, in design,
or maybe even in coffee grinding is resolved, the team that commit‐
ted the failure and fixed it gives its story to the wider organization.
First, the goal is to build up trust that failure is OK. Of course, as
one former boss used to say, “It’s OK to screw up. But please screw
up in only new ways next time.”6 Second, a blameless postmortem is
actually educational and will allow you to put in place practices and
safeguards to better prevent another, or even similar failures. Pretty
quickly, you want to start “blaming” the process and policy that you
have in place, not the people working in that context. This will force
you to fix the process and create the right kind of work context peo‐
ple need to succeed at innovation and problem solving.

Just as staff must trust management, managers must trust the prod‐
uct teams to be responsible and independent. This means managers
can’t constantly check in on and meddle in the day-to-day affairs of
product teams. Successful managers will find it all too tempting to
get their hands dirty and volunteer to help out with problems. Get‐
ting too involved on a day-to-day basis is likely to hurt more than
help, however.

Felten Buma suggests an exercise to help transform “helicopter
managers.” In a closed meeting of managers, ask them to each share
one of their recent corporate failures. Whether you discuss how it
was fixed is immaterial to the exercise, the point is to have the man‐
agers practice being vulnerable and then show them that their career
doesn’t end. Then, to practice giving up control, ask them to dele‐
gate an important task of theirs to someone else. Buma says that,

32 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2N5oje8

surprisingly, most managers find these two tasks very difficult, and
some outright reject it. Those managers who can go through these
two exercises are likely mentally prepared to be effective, transfor‐
mational leaders.

Voice
The third leg of transformative leadership is giving product teams a
voice. When teams trust management and begin acting more auton‐
omously, they’ll need to have the freedom to speak up and suggest
ways to improve not only the product, but the way they work. A
muzzled product team is much less valuable than one that can speak
freely. As the DORA report defines it:

Voice is how strongly someone feels about their ability and their
team’s ability to speak up, especially during conflict; for example,
when team members disagree, when there are system failures or
risks, and when suggesting ideas to improve their work.

Put another way, you don’t want people to be “courageous.” Instead,
you want open discussions of failure and how to improve to be com‐
mon and ordinary, “boring,” not “brave.” The opposite of giving
your team’s voice is suppressing their suggestions, dismissing the
team’s suggestions because “that’s not your job,” and explaining why
such thinking is dangerous or “won’t work here.”

Traditional managers tend to be deeply offended when “their” staff
speaks to the rest of the organization independently, when they “go
around” their direct line managers. This kind of thinking is a good
indication that the team lacks true voice. Although it’s certainly
more courteous to involve your manager in such discussions, man‐
agement should trust teams to be autonomous enough to do the
right thing.

In an organization like the US Air Force, in which you literally must
ask permission to “speak freely,” giving product teams voice can
seem impossible. To solve this problem, the Kessel Run team devised
a relatively simple fix: it asked the airmen and women to wear civil‐
ian clothes when they were working on their products. Without the
explicit reminder of rank that a uniform and insignia enforce, team
members found it easier to talk freely with one another, regardless
of rank. Of course, managers also are explicitly told and encouraged
this behavior. Other organizations such as Allstate have used this
same sartorial trick, encouraging managers to change from button-

Creating a Culture of Change, Continuous Learning, and Comfort | 33

http://bit.ly/2S3xAUO
http://bit.ly/2tm98Ed
http://bit.ly/2tm98Ed

up shirts and suits to t-shirts and hoodies, instead. Dress can be sur‐
prisingly key for changing culture. Matt Curry, then at Allstate, lays
out the case:

T-shirts are a symbol. Since I have given that talk, I have received
probably 10 emails from Allstate people asking for a shirt. Like I
said in the talk, the shirt gives people permission to dress differ‐
ently, which surprisingly enough makes them act differently. It is
really interesting how much more collaborative and conversational
people are when they are in casual dress. At the end of the day, we
are just looking to start by changing one behavior, which can get
the momentum spinning to drive a much larger cultural change. T-
shirts and hoodies are a very fun and non-confrontational way to
get that change started and begin a discussion about how things
should be.

As you can see, culture changes can sometimes start with something
as simple as a T-shirt. Better get some printed.

Case study: the line worker knows best at Duke Energy
One of Duke Energy’s first product-centric applications is a good
example of autonomy, trust, and voice in action. Duke wanted to
improve how line workers coordinated their field work. At first, the
unit’s vice president reckoned that a large map showing each line
workers’ location would help him improve scheduling and work
queues. The executive would have more visibility and, thus, more
control to optimize truck rolls.

Working autonomously, the product team went further than just
trusting the VP’s first instincts, deciding that it should do field
research with the actual line workers. After getting to know the line
workers, the team discovered a solution that redefined the problem
and the solution. Even though the VP’s map would be a fine dash‐
board and give more information to the central office, what really
helped was developing a much more automated job assignment
application for line workers. This app would also let line workers
locate their peers to, for example, let line workers elect to partner on
larger jobs, and avoid showing up at the same job. The app also
introduced an Uber-like queue of work within which line workers
could self-select which job to do next.

The organization trusted the product team to come up with the
right solution, and as the team worked with the line workers
through changes each week, some features working and some not,

34 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2UX4PuX
http://bit.ly/2UX4PuX
http://bit.ly/2SXgCMB

management trusted that the team would get it right, eventually. The
team was also given the voice needed to first question and even
upend the original request from the VP. If the team had lacked
autonomy, trust, and voice, they likely would have ended up with a
very functional map that showed the location of each line worker, a
solution that would have likely been much less effective.

Monitoring Culture Change
Improving culture is a never-ending, labor-intensive process. There
are several ways to monitor the progress of building a new culture:

Surveys
Employee surveys are a good way to monitor progress. You
should experiment with what to put in these surveys, and even
other means of getting feedback on your organization’s culture.
Dick’s Sporting Goods narrowed down to Employee Net Pro‐
moter Score (ENPS) as small and efficient metric.

Silence
Whatever you ask, a huge warning sign is if people tell you
nothing and just say everything is fine. All this change should
be stressful and dramatic for people: a lack of problems is a
troubling sign and a lack of people telling you about those prob‐
lems means they don’t trust you to give them a voice.

Losing people
Most change leaders say some people aren’t interested in the
new culture, choosing to leave instead of change. Experiencing
some staff departures is normal, and maybe even feedback that
you’re actually changing enough to ruffle their feathers.

Regaining people
On the other hand, you might pick up more people on the other
side of this, though. Dick’s Jason Williams says that they’ve seen
some former employees come back to their team; this is another
good piece of feedback for how well you’re managing your
organization’s cultural change.

The ultimate feedback, of course, will be whether you achieve the
business goals derived from your strategy. But, you need to make
sure that success isn’t at the cost of incurring cultural debt that will
come due in the future. This debt often comes due in the form of
stressed out staff leaving or, worse, going silent and no longer telling

Creating a Culture of Change, Continuous Learning, and Comfort | 35

http://bit.ly/2tpa3UA
http://bit.ly/2tpa3UA

7 For a much better overview and handbook for putting OKRs in place, see Christina
Wodtke’s book on the topic, Introduction to OKRs (O’Reilly).

you about what they’re learning from failures. Then, you’re back in
the same situation from which you were trying to escape all this dig‐
ital transformation, an organization that’s scared and static, rather
than savvy and successful.

Giving Feedback
Product teams have several, frequent feedback mechanisms built
into each release cycle and daily: unit tests, automated governance
and policy tests, releases to production, and actual user feedback on
its design choices. Teams typically, however, have little feedback
from management that indicates how well they’re adapting to the
new culture. This is especially true of teams that are just starting to
change.

This means that you’ll more than likely need to change how and
when you give feedback to teams and people in your organization.
Traditional performance plans and reviews are a very poor place to
give feedback and set expectations. They’re the Waterfall equivalent
of management, a 12-month cycle that too often fails to meet real
needs.

Switching from traditional performance reviews and plans to track‐
ing Objectives and Key Results (OKRs) is a popular tactic to
improve the review process. An OKR states a very clear objective
that’s time-bound (usually to a quarter) and one or more metrics
that measure success.7 These OKRs are also shared with the relevant
groups in the organization, allowing people to collaborate and part‐
ner on OKRs. Typically, OKRs are on a much shorter cycle than
annual performance reviews, at the most a quarter, if not monthly.

Finally, because metrics are built into the OKR, each individual and
team can self-monitor its progress and remove vague performance
evaluations. No performance measurement is perfect, of course.
Without a blameless culture that seeks to fix systemic problems
instead of blaming individuals, OKRs can be equally abused when
metrics aren’t reached. However, as a tool, they fit well with a small-
batch-minded organization.

36 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2GonXil

You might need to improve how you give casual feedback, as well. A
product-driven culture benefits from a generative mindset: an
approach that emphasizes learning and discovery, not perfection.
Again, this is the groundwork for innovation. The words you use
and the questions you ask can discourage or encourage an innova‐
tive culture. Clearly, removing blame-storming from conversations
is key, as we discussed earlier.

What management says and asks has a huge effect on how staff
behave. Linda Rising suggests several ways to improve how you talk
with staff:

• Instead of praising people for their smarts, praise the effort they
put in and the solution they discovered. You want to encourage
their energy and the use of problem-solving strategies instead of
relying on innate perfection or trusting a preset process. “How
did you solve that bug?” you might say, rather than “you’re so
clever!”

• Instead of asking for just schedule progress, ask what the team
has learned in recent releases. This demonstrates that getting
better is the goal, not just achieving goals.

• If staff are discouraged, share your own stories of failing and
learning. Also refocus them on the failings of the system you
have in place and discuss what changes could be put in place to
prevent future failures.

There are plenty more tactics for giving generative feedback to staff.
Spend a sizable chunk of time thinking about, and then experiment‐
ing with, how to be not only encouraging in your conversations with
staff, but also more caring. Among many other things, this will help
build the trust and rapport needed to change old behaviors.

Managing ongoing culture change
How you react to this feedback is even more important than gather‐
ing the feedback. Just as you expect your product teams to go
through a small-batch process, reacting to feedback from users, you
should cycle through organizational improvement theories, paying
close attention to the results.

Your ongoing small batching will also demonstrate to staff that you
mean what you say, that you can be trusted, that you actually care
about improving, and that it’s safe for them to take risks. All this

Creating a Culture of Change, Continuous Learning, and Comfort | 37

http://bit.ly/2BEb6Er
http://bit.ly/2BEb6Er

small batching will let you also participate in the blameless postmor‐
tems as you innovate.

Building Your Business Case
The mystic protocols of corporate budgeting are always situational.
The important thing to know is when to start prewiring for the
annual finance cycle, when it’s due, and the culture of approval and
revisions. If you don’t know the budget cycles of your company, fig‐
ure that out from your manager and other managers. Make sure that
you’re participating in the cycle instead of just being told what your
budget is.

After that, there are two budgets to garden.

First, your initial proposal to transform and the expenses incurred
like training, facilities, cloud, platform software, and other tools.
This is often called a business case.

Second, and the one you’ll spend the rest of your time on: the ongo‐
ing budget, or the ongoing business case. Hopefully you have busi‐
ness input about goals and expected returns. If the business side
lacks firm financials or, worse, doesn’t include you in those conver‐
sations, start worrying. The point of all this transformation suffering
is to drive growth, to help the business side.

The Business Case
When you’re pitching a new idea, you need to show that the costs
and benefits will be worth it, that it will be profitable and fit within
budget. For innovation-driven businesses, “budget” can be nebu‐
lous. Often, there’s no exact budget specified, and the business case
builds a rationale for how much money is needed. At the very least,
it’s often good to ask for more, backed up with proof that it might be
a good idea.

A digital transformation business case is a tool for getting cash, but
also a tool for discovering the work to be done and educating the
organization about the goals of transformation.

First, you want to show all the costs involved: staff salary, cloud
hosting costs or private cloud build-out expenses, training and con‐
sulting, changes to facilities and other capital expenses like laptops

38 | Chapter 2: Leadership’s Cloud-Native Cookbook

and chairs, and even snacks for all those ping pong balls and foos‐
ball tournaments. This is the baseline; the “before” set of numbers.

The second set of numbers you create are savings estimates. These
estimates are based on the expected productivity gains you’ll realize
by improving staff productivity, replacing aged platforms and mid‐
dleware, reducing time spent fixing bugs and addressing security
issues, and the overall reduction of waste in your organization.

Where do these estimates come from, though?

• You can use industry norms for improvement, although finding
trustworthy ones can be difficult. Every vendor and proponent
of “The New Way” will have numbers at the ready; but they, of
course, are biased to prove that their solution results in the best
numbers. With that vendor disclaimer in your mind, you could
start with a Forrester study that VMware Tanzu commissioned
to baseline before and after improvements.

There are the costs of software licensing (or “subscriptions,” to be
technically correct, in most cases now) for platforms and tools as
well as infrastructure costs. Some of these costs might seem high on
their own, but compared to maintenance costs of older systems and
lacking the savings from staff productivity, these new costs usually
turn out to be worth it.

You need to account for the costs of transformation. This will be
variable but should include things like training, consulting, initial
services needed, and even facility changes.

With these numbers you have a comparison between doing nothing
new and transforming. If the traditional way is cheaper, perhaps it’s
more efficient and you should not actually change. But, it must be
cheaper and get you the productivity, time to market, and software
design improvements, as well, not just be cheaper than improving.
More than likely, your transformation case will be better.

If you’re lucky enough to have business revenue projections, you can
show how you contribute to revenue generation. Additionally, you
should try to model some of the less tangible benefits. For example,
because you’ll be delivering software faster and more frequently,
your time-to-market will decrease. This means that your organiza‐
tion could begin earning money sooner, affecting time-based budg‐
eting calculations like net present value (NPV) and cash flows.

Building Your Business Case | 39

http://bit.ly/2N5pcTU

The small-batch feedback loop, which quickly corrects for incorrect
requirements, will improve your risk profile. Delivering weekly also
means that you’ll begin putting value on the balance sheet sooner
rather than, for example, delivering by batch in an annual release.
These “value soon, not later” effects might be useful, for example,
when comparing internal rate of return (IRR) calculations to other
options: your budget might be higher, but it could be less risky than
even lower budgeted programs.

There are many other fun and baroque budgeting dances to do with
Agile-driven software. For example, you could do real options anal‐
ysis to put a dollar figure around the agility you’ll gain. If you have
the time and interest from finance to do such things, go ahead. For
your initial business cases, however, that’ll likely be too much work
for the payoff. The business case on sophisticated business cases is
often poor.

The Ongoing Business Case
As soon as you get rolling, your ongoing business case will adjust,
sometimes dramatically and sometimes just incrementally. Organi‐
zations often change how they do budgets—hopefully not every
year. But new executives, boards, and regulations might require new
budget models. A private equity firm will have different expectations
than the public markets, both of which will be much different than
operating in startup mode.

In addition to creating high-quality and well-designed software,
when calibrated over several months, the small-batch process should
result in more stability and predictability. A calibrated product team
knows how many stories it can release each week and is familiar
with its ongoing costs. As you create more product teams by slowly
scaling up your product-centric approach, you’ll see similar calibra‐
tions which should, hopefully, be similar to the first few baselines.

This calibration can then be applied back to the budget to test the
original assumptions behind the business case. Just as you can verify
your theories about features with a small-batch approach, improving
the software week to week, you can test your budgeting assumptions
and correct them.

This means that feedback from each small-batch budgeting cycle
adds more knowledge and gives finance more control. For finance,
this is hopefully appealing because it adds more discipline into

40 | Chapter 2: Leadership’s Cloud-Native Cookbook

budgeting and addresses one of the primary responsibilities of the
CFO: to ensure that money is spent wisely and responsibly. Even
better, it puts a reliable process in place that ensures that money is
well spent.

From the CFO’s perspective, a small-batch budgeting will be a
refreshing take on traditional IT budgets. Rather than wrangling
over a large sum of money and then being given just one chance per
year to course correct, the CFO will have more accurate estimates,
transparency throughout the process, and the ability to adjust budg‐
ets up or down throughout the year.

Finance teams can also use these new controls to stop projects that
are obviously failing, reducing losses and reallocating unspent
budget to new programs. This might seem bad for you—the one get‐
ting less budget—which arguably it is if you work at a company that
punishes such failure. But don’t worry! There are always new organ‐
izations eager to hire ambitious, innovative people like yourself!

Gated Funding as a Defensive Tactic
Most people don’t like living with “gated funding.” This means that
you’re not given a lump annual sum, but instead have to prove your‐
self many times during the course of the year. That lump sum might
be allocated, at least in a spreadsheet, but you’re running the risk of
not making it through the gates and increasing your chances of suf‐
fering from budget cuts.

But gated funding is often advantageous at first. In fact, it better
matches the spirit of a small batch process. First, it’s easier to get the
cash for just one or two teams to try out your transformation pro‐
gram. In the context of the entire corporate budget, the amount
needed is likely a “rounding error,” allowing you to start the process
of scaling up with a series of small projects and building up trust.

Rather than asking for a giant, multiyear bundle, asking for less
might actually yield success—and that bigger budget—sooner. As
Allstate’s Opal Perry explains, “By the time you got permission, ideas
died.” But with a start-small approach, she contrasts, “A senior man‐
ager has $50,000 or $100,000 to do a minimum viable product,”
allowing them to get started sooner and prove out the new
approach.

Building Your Business Case | 41

https://yhoo.it/2DEXtFl

8 The pool can be widened by outside funding, but even then, your organization likely
has a cap on the amount of outside funding it wants to take on.

You still need to prove that the new methods work, of course. This is
why, as discussed elsewhere, it’s important to pick a small series of
products to build up success and win over organizational trust with
internal marketing.

Jon Osborn came across a second tactical benefit of gated funding:
holding executive sappers at bay. Annual budgeting is a zero-sum
game: there’s a fixed pool of cash to allocate.8 In the annual squabble
for budgeting, most of your peers view your budget wins as budget
they lost. Rolling over a bit by accepting gated funding can help
muzzle some of your opponents in the budgeting dog fight.

Considering the Enterprise Architect
We had assumed that alignment would occur naturally because teams
would view things from an enterprise-wide perspective rather than
solely through the lens of their own team. But we’ve learned that this
only happens in a mature organization, which we’re still in the process
of becoming.

—Ron van Kemenade, ING

The enterprise architect’s role in all of this deserves some special
attention. Traditionally, in most large organizations, enterprise
architects define the governance and shared technologies. They also
enforce these practices, often through approval processes and review
boards. An enterprise architect (EA) is seldom held in high regard
by developers in traditional organizations. Teams (too) often see
EAs as “enterprise astronauts,” behind on current technology and
methodology, meddling too much in day-to-day decisions, sucking
up time with CABs, and forever working on tasks that are irrelevant
to “the real work” done in product teams. Yet, although traditional
EAs might do little of value for high-performing organizations, the
role does play a significant part in cloud-native leadership.

First, and foremost, EAs are part of leadership, acting something
like the engineer to the product manager on the leadership team. An
EA should intimately know the current and historic state of the IT
department, and also should have a firm grasp on the actual busi‐
ness IT supports.

42 | Chapter 2: Leadership’s Cloud-Native Cookbook

https://on.bcg.com/2N5bIYh
http://bit.ly/2TJZN4J
http://bit.ly/2TJZN4J

Even though EAs are made fun of for ever-defining their enterprise
architecture diagrams, that work is a side effect of meticulously
keeping up with the various applications, services, systems, and
dependencies in the organization. Keeping those diagrams up to
date is a hopeless task, but the EAs who make them at least have
some knowledge of your existing spaghetti of interdependent sys‐
tems. As you clean up this bowl of noodles, EAs will have more
insight into the overall system. Indeed, tidying up that wreckage is
an underappreciated task.

Gardening the Organization
I like to think of the work EAs do as “gardening” the overall organi‐
zation. This contrasts with the more top-down idea of defining and
governing the organization, down to technologies and frameworks
used by each team. Let’s look at some of an EAs gardening tasks.

Setting technology and methodology defaults
Even if you take an extreme developer-friendly position, saying that
you’re not going to govern what’s inside each application, there are
still numerous points of governance about how the application is
packaged and deployed, how it interfaces and integrates with other
applications and services, how it should be instrumented to be man‐
aged, and so on. In large organizations, EAs should play a substan‐
tial role in setting these “defaults.” There can be reasons to deviate,
but these are the prescribed starting points.

As VMware Tanzu’s Stuart Charlton explains:

I think that it’s important that as you’re doing this you do have to
have some standards about providing a tap, or an interface, or
something to be able to hook anything you’re building into a
broader analytics ecosystem called a data lake—or whatever you
want to call it—that at least allows me to get at your data. It’s not,
you know, like, “hey I wrote this thing using a gRPC and golang
and you can’t get at my data!” No, you got to have something where
people can get at it, at the very least.

Beyond software, EAs can also set the defaults for the organization’s
“meatware”—all the process, methodology, and other “code” that
actual people execute. Before the Home Depot began standardizing
its process, Tony McCully, the company’s Senior Manager for Engi‐
neering Enablement, says, “everyone was trying to be agile and there
was this very disjointed fragmented sort of approach to it… You

Considering the Enterprise Architect | 43

http://bit.ly/2SwaQSq
http://bit.ly/2SCkkvu

know I joke that we know we had 40 scrum teams and we were
doing it 25 different ways.” Clearly, this is not ideal, and standardiz‐
ing how your product teams operate is better.

It can seem constricting at first, but setting good defaults leads to
good outcomes like Allstate reporting going from 20% developer
productivity to more than 80%. As someone once quipped: they’re
called “best practices” because they are the best practices.

Gardening product teams
First, someone needs to define all the applications and services that
all those product teams form around. At a small scale, the teams
themselves can do this, but as you scale up to thousands of people
and hundreds of teams, gathering together a Star Wars–scale Galac‐
tic Senate is folly. EAs are well suited to define the teams, often using
DDD to first find and then form the domains and bounded contexts
that define each team. A DDD analysis can turn quickly into its own
crazy wall of boxes and arrows, of course. Hopefully, EAs can keep
the lines as helpfully straight as possible.

Rather than checking in on how each team is operating, EAs should
generally focus on the outcomes these teams have. Following the
rule of team autonomy (described elsewhere in this report), EAs
should regularly check on each team’s outcomes to determine any
modifications needed to the team structures. If things are going
well, whatever’s going on inside that black box must be working.
Otherwise, the team might need help, or you might need to create
new teams to keep the focus small enough to be effective.

Rather than policing compliance to rules and policy, an EA’s work is
more akin to the never ending, but pleasurable, activity of garden‐
ing.

Gardening microservices
Most cloud-native architectures use microservices; hopefully, to
safely remove dependencies that can deadlock each team’s progress
as they wait for a service to update. At scale, it’s worth defining how
microservices work, as well, for example: are they event based, how
is data passed between different services, how should service failure
be handled, and how are services versioned?

Again, a senate of product teams can work at a small scale, but not
on the galactic scale. EAs clearly have a role in establishing the guid‐

44 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2EaQ5D1
http://bit.ly/2EaQ5D1
http://bit.ly/2N7TJAk
http://bit.ly/2N7TJAk
http://bit.ly/2BBynXw

ance for how microservices are done and what type of policy is fol‐
lowed. As ever, this policy shouldn’t be a straightjacket. The era of
service-oriented architecture (SOA) and enterprise service buses
(ESBs) has left the industry suspicious of EAs defining services.
Those systems became cumbersome and slow moving, not to men‐
tion expensive in both time and software licensing. We’ll see if
microservices avoid that fate, but keeping the overall system light‐
weight and nimble is clearly a gardening chore for which EAs are
well suited.

Platform operations
As we discuss later, at the center of every cloud-native organization
is a platform. This platform standardizes and centralizes the runtime
environment, how software is packaged and deployed and how it’s
managed in production, and otherwise removes all the toil and slop‐
piness from traditional, bespoke enterprise application stacks. Most
of the platform cases studies I’ve been using, for example, are from
organizations using Tanzu Application Service.

Occasionally, EAs become the product managers for these plat‐
forms. The platform embodies the organization’s actual enterprise
architecture and developing the platform; thus evolves the architec‐
ture. Just as each product team orients its weekly software releases
around helping its customers and users, the platform operations
team runs the platform as a product.

EAs might also become involved with the tools groups that provide
the build pipeline and other shared services and tools. Again, these
tools embody part of the overall enterprise architecture—more of
the running cogs behind all those boxes and arrows.

“They enable us,” Discover’s Dean Parke says, describing the enter‐
prise architect’s new roles. “They provide a lot of these core architec‐
tural libraries that we can utilize. They help out a lot with our
CI/CD pipeline and making those base components available to us,”
he goes on.

As a side effect of product managing the platform and tools, EAs
can establish and enforce governance. The packaging, integration,
runtime, and other “opinions” expressed in the platform can be craf‐
ted to force policy compliance. That’s a command-and-control way
of putting it, and you certainly don’t want your platform to be
restrictive. Instead, by implementing the best possible service or

Considering the Enterprise Architect | 45

http://bit.ly/2SAskgo

tool, you’re getting product teams to follow policy and best practices
by bribing them with ease of use and toil reduction.

Think of it as a governance as code. EAs in this scheme “provide
guardrails and enable the teams to move forward,” Parke says, “so it’s
less of an oversight on how we should do design and governance
model. There’s still that there, obviously, but it’s also more of a push‐
ing forward of the architecture and enabling the teams.”

The Shifting yet Never-Changing Role of the EA
I’ve highlighted just three areas EA contribute to in a cloud-native
organization. There are more, many of which will depend on the
peccadilloes of your organization; for example:

• Identifying and solving sticky cultural change issues is one such
situational topic. EAs will often know individuals’ histories and
motivations, giving them insight into how to deal with grumps
that want to stall change.

• EA groups are well positioned to track, test, and recommend
new technologies and methodologies. This can become an
“enterprise astronaut” task of being too far afield of actual needs
and not understanding what teams need day to day, of course.
But, coupled with being a product manager for the organiza‐
tion’s platform, scouting out new technologies can be grounded
in reality.

• EAs are well positioned to negotiate with external stakeholders
and blockers. For example, as covered later, auditors often end
up liking the new, small-batch and platform-driven approach to
software because it affords more control and consistency. Some‐
one needs to work with the auditors to demonstrate this and be
prepared to attend endless meetings for which product team
members are ill suited and ill tempered.

What I’ve found is that EAs do what they’ve always done. But, as
with other roles, EAs are now equipped with better process and
technology to do their jobs. They don’t need to be forever struggling
eyes in the sky and can actually get to the job of designing, refactor‐
ing, and programming the enterprise architecture. Done well, this
architecture becomes a key asset for the organization—often the key
asset of IT.

46 | Chapter 2: Leadership’s Cloud-Native Cookbook

Though he poses it in terms of the CIO’s responsibility, Mark
Schwartz describes the goals of EAs well:

The CIO is the enterprise architect and arbitrates the quality of the
IT systems in the sense that they promote agility in the future. The
systems could be filled with technical debt but, at any given
moment, the sum of all the IT systems is an asset and has value in
what it enables the company to do in the future. The value is not
just in the architecture but also in the people and the processes. It’s
an intangible asset that determines the company’s future revenues
and costs and the CIO is responsible for ensuring the performance
of that asset in the future.

Hopefully the idea of designing and then actually creating and gar‐
dening that enterprise asset is attractive to EAs. In most cases, it is.
Like all technical people, they pine for the days when they actually
wrote software. This is their chance to get back to it.

Tackling a Series of Small Projects
Every journey begins with a single step, according to Lao Tzu. What
they don’t tell you is that you need to pick your first step wisely. And
there’s also step two, and three, and then all of the n + 1 steps. Pick‐
ing your initial project is important because you’ll be learning the
ropes of a new way of developing and running software and, hope‐
fully, of running your business.

When it comes to scaling change, choosing your first project wisely
is also important for internal marketing and momentum purposes.
The smell of success is the best deodorant, so you want your initial
project to be successful. And...if it’s not, you quietly sweep it under
the rug so that no one notices. Few things will ruin the introduction
of a new way of operating into a large organization than initial fail‐
ure. Following Larman’s Law, the organization will do anything it
can—consciously and unconsciously—to stop change. One sign of
weakness early, and your cloud journey will be threatened by status
quo zombies.

In contrast, let’s look at how the series of small projects strategy
played out at the US Air Force.

The US Air Force had been working for at least five years to mod‐
ernize the 43 applications used in Central Air Operations Com‐
mand, going through several hundreds of millions of dollars. These
applications managed the daily air missions carried out by the Uni‐

Tackling a Series of Small Projects | 47

http://bit.ly/2DI4OUH
http://bit.ly/2DI4OUH
https://bbc.in/2tj0E0K
http://bit.ly/2IcIZlF

ted States and its allies throughout Iraq, Syria, Afghanistan, and
nearby countries. No small task of import. The applications were in
sore need of modernizing, and some weren’t even really applica‐
tions: the tanker refueling scheduling team used a combination of
Excel spreadsheets and a whiteboard to plan the daily jet refueling
missions.

Realizing that their standard 5- to 12-year cycle to create new appli‐
cations wasn’t going to cut it, the US Air Force decided to try some‐
thing new: a truly Agile, small-batch approach. Within 120 days, a
suitable version of the tanker refueling application was in produc‐
tion. The tanker team continued to release new features on a weekly,
even daily basis. This created valuable cultural and trust changes
between IT and its end users, as recounted in a paper that highlights
the transformation:

As functional capabilities were delivered weekly, warfighter confi‐
dence grew. And through regular weekly feedback sessions, the col‐
laboration process became stronger. Each week, the warfighter
received a suitable feature to complete the overall mission. Perhaps
more importantly, the new version did not sacrifice capability….
This process enhanced the confidence of the warfighter in using the
application and communicating additional feature requests. What’s
more, it established a rhythm for continuous fielding across the
complete development, test, accredit and deploy cycle.

The project was considered a wild success: the time to make the
tanker schedule was reduced from 8 hours to 2, from 8 airmen to 1,
and the US Air Force ended up saving more than $200,000 per day
in fuel that no longer needed to be flown around as backup for error
in the schedule.

The success of this initial project, delivered in April of 2017 and
called JIGSAW, proved that a new approach would work, and work
well. This allowed the group driving that change at the US Air Force
to start another project, and then another one, eventually getting to
13 projects in May of 2018 (5 in production and 8 in development).
As of this writing, the team estimates that in January 2019, they
should have 15 to 18 applications in production, as shown in
Figure 2-1.

48 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2SxbvD6
http://bit.ly/2SxbvD6
http://bit.ly/2tk4ZRe

Figure 2-1. The number of US Air Force CAOC transformed applica‐
tions over time, starting with 0 and ending with an estimated 18.
(Sources from several US Air Force presentations and write-ups.)

The team’s initial success, though just a small part of the overall 43
applications, gave them the momentum to begin scaling change to
the rest of the organization and more applications.

Choosing Projects
Picking the right projects to begin with is key. Here are some key
characteristics:

• They should be material to the business, but low risk.
• They should be small enough that you can quickly show success

in the order of months.
• They need to be technically feasible for using cloud technolo‐

gies.

These shouldn’t be science projects or automation of low-value
office activities—no augmented reality experiments or conference
room schedulers (unless those are core to your business). On the
other hand, you don’t want to do something too big, like move
the .com site. Christopher Tretina recounts Comcast’s initial cloud
native ambitions:

We started out with a very grandiose vision... And it didn’t take us
too long to realize we had bitten off a little more than we could
chew. So around mid-year, last year, we pivoted and really tried to

Tackling a Series of Small Projects | 49

http://bit.ly/2TWVJOs
http://bit.ly/2GJMQEf
http://bit.ly/2GJMQEf

9 The strangler pattern and how it’s applied to moving legacy services is covered in “A
Note on Labs and Legacy Organizations” on page 57.

hone in and focus on what were just the main services we wanted
to deploy that’ll get us the most benefit.

Your initial projects should also enable you to test out the entire
software life cycle—all the way from conception to coding to
deployment to running in production. Learning is a key goal of
these initial projects, and you’ll do that only by going through the
full cycle.

The Home Depot’s Anthony McCulley describes the applications his
company chose in the first six or so months of its cloud-native roll-
out. “They were real apps. I would just say that they were just, sort
of, scoped in such a way that if there was something wrong, it
wouldn’t impact an entire business line.” In the Home Depot’s case,
the applications were projects like managing (and charging for!) late
tool rental returns and running the in-store, custom paint desk.

Microservices: A Special Case for Choosing
Initial Projects

A special case for initial projects is picking a microservice to deploy.
Usually, such a service is a critical backend service for another
application. A service that’s taken forever to actually deliver or has
been unchanged and ancient for years is an impactful choice. This
is not as perfect a use case as a full-on, human-facing project, but it
will allow you to test out cloud-native principals and rack up a suc‐
cess to build momentum. The microservice could be something like
a fraud detection or address canonicalization service. Citi, for
example chose a payment validation service as one of its initial
projects: the perfect mix of size and business value to begin with.
This is one approach to moving legacy applications in reverse order,
a strangler9 from within!

Picking Projects by Portfolio Pondering
There are several ways to select your initial projects. Many Tanzu
Labs customers use a method perfected over the past 25 years by
Tanzu Labs called discovery. In the abstract, it follows the usual Bos‐
ton Consulting Group (BCG) matrix approach, flavored with some

50 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2UYpvCB
http://bit.ly/2UYpvCB
http://bit.ly/2tmdhbf
http://bit.ly/2BC59YN

10 This is based on the answer to a question that I asked Jeffrey Liker at the 2016 Agile
and Beyond conference, related to how lean manufacturing organizations choose
which products to build that, in some sense, define their strategy.

Eisenhower matrix. This method builds in intentional scrappiness to
do a portfolio analysis with the limited time you can secure from all
of the stakeholders. The goal is to get a ranked list of projects based
on your organization’s priorities and the easiness of the projects.

First, gather all of the relevant stakeholders. This should include a
mix of people from the business and IT sides as well as the actual
team that will be doing the initial projects. A discovery session is
typically led by a facilitator, preferably someone familiar with coax‐
ing a room through this process.

The facilitator typically hands out stacks of sticky notes and mark‐
ers, asking everyone to write down projects that they think are val‐
uable. What “valuable” means will depend on each stakeholder. We’d
hope that the more business minded of them would have a list of
corporate initiatives and goals in their heads (or a more formal one
they brought to the meeting). One approach used in Lean method‐
ology is to ask management this question: “If we could do one thing
better, what would it be?”10 Start from there, maybe with some five-
whys spelunking.

After the stakeholders have listed projects on their sticky notes, the
discovery process facilitator draws or tapes up a 2×2 matrix that
looks like the one shown in Figure 2-2.

Participants then place their sticky notes in one of the quadrants;
they’re not allowed to weasel out and put the notes on the lines.
When everyone finishes, you get a good sense of projects that all
stakeholders think are important, sorted by the criteria I mentioned,
primarily that they’re material to the business (important) and low
risk (easy). If all of the notes are clustered in one quadrant (usually,
in the upper right, of course), the facilitator will redo the 2x2 lines to
just that quadrant, forcing the decision of narrowing down to just
projects to do now. The process might repeat itself over several
rounds. To enforce project ranking, you might also use techniques
like dot voting, which will force the participants to really think about
how they would prioritize the projects, given limited resources.

Tackling a Series of Small Projects | 51

http://bit.ly/2GvNru2
http://bit.ly/2N5vYJk
http://bit.ly/2SSdwcz
http://bit.ly/2SSdwcz
http://bit.ly/2GJ2YWx
http://bit.ly/2N560pi

11 Although written to help organizations pick advanced analytics projects to pursue,
BCG has a good article that captures this general type of thinking, especially with
respect to how leadership can think through the strategic parts of this process.

12 Whether you use “stories” or not, you’ll have some unit of work, be they use cases,
requirements, or what have you. Stories have emerged as one of the more popular and
proven useful ways to encapsulating these units of work with an extensive body of work
and tools to support their creation and management. See also a description of using
stories with Pivotal Tracker.

Figure 2-2. A 2x2 decision-making matrix that can help you to sort
through your portfolio when choosing projects.

At the end, you should have a list of projects, ranked by the consen‐
sus of the stakeholders in the room.11

Planning Out the Initial Project
You might want to refine your list even more, but to get moving,
pick the top project and start breaking down what to do next. How
you proceed to do this is highly dependent on how your product
teams breaks down tasks into stories,12 iterations, and releases. More
than likely, following the general idea of a small-batch process, you’ll
do the following:

52 | Chapter 2: Leadership’s Cloud-Native Cookbook

https://on.bcg.com/2UWVJOE
http://bit.ly/2ImFuJA
http://bit.ly/2ImFuJA
http://bit.ly/2X3h4YJ
http://bit.ly/2X2YBeY

1. Create an understanding of the user(s) and the challenges
they’re trying to solve with your software through personas and
approaches like scenarios or Jobs to be Done.

2. Come up with several theories for how those problems could be
solved.

3. Distill the work to code and test your theories into stories.
4. Add in more stories for nonfunctional requirements (like set‐

ting up build processes, CI/CD pipelines, testing automation,
etc.).

5. Arrange stories into iteration-sized chunks without planning
too far ahead (lest you’re not able to adapt your work to the user
experience and productivity findings from each iteration).

Starting small ensures steady learning and helps to contain the risk
of a fail-fast approach. But as you learn the cloud-native approach
better and build up a series of successful projects, you should expect
to ramp up quickly. Figure 2-3 shows the Home Depot’s ramp up in
the first year.

The chart measures application instances in Tanzu Application Ser‐
vice, which does not map exactly to a single application. As of
December 2016, the Home Depot had roughly 130 applications
deployed in Tanzu Application Service. What’s important is the gen‐
eral shape and acceleration of the curve. By starting small, with real
applications, the Home Depot gained experience with the new pro‐
cess and at the same time delivered meaningful results that helped it
scale its transformation.

Tackling a Series of Small Projects | 53

http://bit.ly/2SMyOZ9
http://bit.ly/2tlje8e
http://bit.ly/2TKqRki
http://bit.ly/2GPziaB
http://bit.ly/2SxlPek
http://bit.ly/2SxlPek
http://bit.ly/2SPwJvy
http://bit.ly/2EaiQQm
http://bit.ly/2EaiQQm

Figure 2-3. This chart shows the number of application instances,
which is not 1:1 to applications. The end point represents about 130
applications, composed of about 900 services. (Sources: “From 0 to
1000 Apps: The First Year of Cloud Foundry at The Home Depot,”
Anthony McCulley, The Home Depot, Aug 2016. “Cloud Native at The
Home Depot, with Tony McCulley,” Pivotal Conversations #45.)

Assemble the Right Team
I met a programmer with 10x productivity once. He was a senior per‐
son and required 10 programmers to clean up his brilliant changes.

—Anonymous on the c2 wiki

Skilled, experienced team members are obviously valuable and can
temper the risk failure by quickly delivering software. Everyone
would like the mythical 10x developer, and would even settle for a 3
to 4x “full-stack developer.” Surely, management often thinks doing
something as earth shattering as “digital transformation” only works
with highly skilled developers. You see this in surveys all the time:
people say that lack of skills is a popular barrier to improving their
organization’s software capabilities.

54 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2EaaVSW
http://bit.ly/2EaaVSW
http://bit.ly/2EaiQQm
http://bit.ly/2EaiQQm
http://bit.ly/2toy2TP
http://bit.ly/2IfmkFh
http://bit.ly/2DHnt2G

13 Of course, “rockstars” are often temperamental and a handful. They have a bad habit of
destroying hotel rooms and themselves. That label is also often situational and the
result of a culture that awards the lone wolf hero instead of staff that helps and supports
one another.

This mindset is one of the first barriers to scaling change. Often, an
initial, team of “rockstars”13 has initial success, but attempts to clone
them predictably fails and scaling up change is stymied. It’s that
“lack of skills” chimera again. It’s impossible to replicate these peo‐
ple, and companies rarely want to spend the time and money to
actually train existing staff.

Worse, when you use the “only ninjas need apply tactic,” the rest of
the organization loses faith that they could change, as well. “When
your project is successful,” Jon Osborn explains, “and they look at
your team, and they see a whole bunch of rockstars on it, then the
excuse comes out, ‘well, you took all the top developers, of course
you were successful.’”

Instead of recruiting only elite developers (whatever that bravado
diction means), also staff your initial teams with a meaningful dose
of regular developers. This will not only help win over the rest of the
organization as you scale, but also means that you can actually find
people. A team with mixed skill levels also allows you train your
“junior” people on the job, especially when they pair with your so-
called rockstars.

Volunteers
When possible, recruiting volunteers is the best option for your ini‐
tial projects, probably for the first year. Forcing people to change
how they work is a recipe for failure, especially at first. You’ll need
motivated people who are interested in change or, at least, will go
along with it instead of resisting it.

Osborn describes this tactic at Great American Insurance Company:

We used the volunteer model because we wanted excited people
who wanted to change, who wanted to be there, and who wanted to
do it. I was lucky that we could get people from all over the IT orga‐
nization, operations included, on the team...it was a fantastic suc‐
cess for us.

Assemble the Right Team | 55

http://bit.ly/2DFa8bl
http://bit.ly/2BBsCsV
http://bit.ly/2UXj9U3
http://bit.ly/2EbqMB2
http://bit.ly/2Ebqjig
http://bit.ly/2Ebqjig
http://bit.ly/2GJRYbt

This might be difficult at first, but as a leader of change, you need to
start finding and cultivating these change-ready volunteers. Again,
you don’t necessarily want rockstars so much as open-minded peo‐
ple who enjoy trying new things.

Sadly, some of your staff won’t make the transition. You can often
find ways of motivating them to get genuinely excited, but some
people resist change to the end. Over the years, executives I’ve
talked with say that anywhere between 30 to 70% of staff will fall
into this well of obstinacy. “You will lose people, not everybody’s
gonna be on board,” Dick’s Sporting Good’s Jason Williams says.
“You will have some attrition but one of the key things that’s hap‐
pened to us recently, we’ve actually had engineers that have come
back to us and rejoined our organization because they like the way
we’re going.”

Of course, this problem isn’t confined to staff. Management and
leadership can be just as resistant, as discussed in “Communicating
the Vision and Strategy” on page 22.

Rotating Teams to Spread Digital Transformation
Few organizations have the time or budget-will to train their staff.
Management seems to think that a moist bedding of O’Reilly books
in a developer’s dark room will suddenly pop up genius skills like
mushrooms. Rotating pairing in product teams addresses this prob‐
lem in a minimally viable way within a team: team members learn
from one another on a daily basis. Event better, staff is actually pro‐
ducing value as they learn instead of sitting in a neon-light buzzing
conference room working on dummy applications.

To scale this change, you can selectively rotate staff out of a well-
functioning team into newer teams. This seeds their expertise
through the organization, and when you repeat this over and over,
knowledge will spread faster. One person will work with another,
becoming two skilled people, who each work with another person,
become four skilled people, and then eight, and so on. Organiza‐
tions like Synchrony go so far as the randomly shuffle desks every
six months to ensure that people are moving around. Discover has
institutionalized this practice with a dedicated group that works
with a new team for six weeks to experience the new culture, send‐
ing them back into the organization to seed those new skills.

56 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2DHqH6r
http://bit.ly/2GpwaTf
http://bit.ly/2GpwaTf
http://bit.ly/2GJ7FzD

More than just skill transfer and on-the-job training, rotating other
staff through your organization will help spread trust in the new
process. People tend to trust their peers more than leaders throwing
down change from high, and much more than external “consultants”
and, worse, vendor shills like myself. As ever, building this trust
through the organization is key to scaling change.

Orange France is one of the many examples of this strategy in prac‐
tice. After the initial success revitalizing its server message block
(SMB) customer service app, Orange began rotating developers to
new teams. Developers who worked on the new mobile application
pair with Orange developers from other teams, the website team. As
ever with pairing, they both teach their peers how to apply Agile and
improve the business with better software at the same time. Talking
about his experience with rotating pairing, Orange’s Xavier Perret
says that “it enabled more creativity in the end. Because then you
have different angles, [a] different point of view. As staff work on
new parts of the system, they get to know the big picture better and
engage in in “more creative problem solving” to each new challenge,
Perret adds.

Even though you might start with ninjas, you can take a cadre of
volunteers and slowly but surely build up a squad of effective staff
that can spread transformation throughout your organization. All
with less throwing stars and trashed hotel rooms than those 10x
rockstars leave in their wake.

A Note on Labs and Legacy Organizations
At this point, you might be thinking that changing a large, existing
organization sounds difficult. Well, it is! People and processes are in
place, and often no one wants to change themselves or revise those
processes. To get around this, many organizations create new
groups, usually called “labs.” Product by product, and team by team,
new software and people are moved to the new group. Volunteers
are accepted in the initial stages (remember: team composition mat‐
ters), and only favorable products are picked. As news of teams’ suc‐
cesses spreads, this new organization is given corporate permission
to take on new products and reluctant staff are more trusting that
changing their work habits is a good idea.

The existing—now “legacy”—organization continues to operate as
needed, but projects and people are slowly moved to the new orga‐

Assemble the Right Team | 57

http://bit.ly/2IcX7ex
http://bit.ly/2S3FCgq

nization. Service dependencies from new to old are mediated and
hidden behind APIs and facades, trying to decouple the two into a
sort of reverse-quarantine: the old organization is blocked off from
infecting the new group.

The new organization follows all the new-fangled notions and
norms, from the pedestrian practice of free lunches and massages to
paired programming to fully automated build pipelines—all ena‐
bling the magic of small batches that result in better software.

Synchrony Financial, for example, used this approach to shift from a
functional to a product organization. The trick here is to begin with
a blank slate across the board, including organization structure, gov‐
ernance, culture, and tools used. Getting to that point takes high-
level support; in Synchrony’s case, support came directly from the
CEO. You don’t always need that high a level of support, but if things
go well, it can be easier to climb up the authority ladder to ask for
that support. What’s important is to somehow carve out the permis‐
sion and space for a new organization, no matter how small, and put
in place a strategy to grow that organization.

The magic of this method is that it avoids having to unfreeze the gla‐
cier, namely, the people who don’t want to work in a new way.
Instead of doing the difficult work of changing the old organization,
management slowly moves over willing people, reassembling them
into new teams and reporting structures. The old organization,
though perhaps de-peopled, is left to follow its Waterfall wont.

After some initial success, you might even consider naming and
branding the new organization to give the people in it a sense of
identity. Allstate did this with its CompoZed Labs, creating a new
logo and name. As of 2017, CompoZed was handling 40% of All‐
state’s software development, following the new, small-batch
approach to software.

The important thing to remember is that even people and processes
that seem immutable can be changed. It’s just going to take plan‐
ning, patience, and finesse.

58 | Chapter 2: Leadership’s Cloud-Native Cookbook

https://yhoo.it/2DEXtFl
https://yhoo.it/2DEXtFl

Building Trust with Internal Marketing, Large
and Small
As you build up initial successes, internal marketing is a key tool for
scaling up digital transformation. And it’s a lot more than most peo‐
ple anticipate.

Beyond Newsletters
After you nail down some initial successful applications, start a pro‐
gram to tell the rest of the organization about these projects. This is
beyond the usual email newsletter mention. Instead, your initial
content-driven marketing should quickly evolve to internal “sum‐
mits” with speakers from your organization going over lessons
learned and advice for starting new cloud-native projects.

You have to promote your change, educate, and overall “sell” it to
people who either don’t care, don’t know, or are resistant. These
events can piggyback on whatever monthly “brown-bag” sessions
you have and should be recorded for those who can’t attend. Some‐
what early on, management should set aside time and budget to
have more organized summits. You could, for example, do a half-
day event with three to four talks by team members from successful
projects, having them walk through the project’s history and provide
advice on getting started.

My colleagues and I are often asked to speak at these events, and we
of course delight in doing so. However, don’t be too reliant on exter‐
nal speakers: there’s only so much trust a smooth talking, self-
deprecating vendor like me can instill in an organization. Make sure
you have speakers who work at your company. Fellow employees,
especially peers in the career hierarchy, are very powerful agents for
change on the dais.

Fostering Trust
This internal marketing works hand in hand with starting small and
building up a collection of successful projects. As you’re working on
these initial projects, spend time to document the “case studies” of
what worked and didn’t work, and track the actual business metrics
to demonstrate how the software helped your organization. You
don’t so much want to just show how fast you can now move, but
you want to show how doing software in this new way is strategic

Building Trust with Internal Marketing, Large and Small | 59

for the business as well as individuals’ compensation, career, reputa‐
tion, and personal happiness. You know: motivate them.

Content-wise, what’s key in this process is for staff to talk with one
another about your organization’s own software, market, and chal‐
lenges faced. This is a good chance to kick up that Kotterian “sense
of urgency,” as well, if you think things have become too languid.

Also, you want to demonstrate that change is possible, despite how
intractable people might think the status quo is. I find that organiza‐
tions often think that they face unique challenges. Each organization
does have unique hang-ups and capabilities, so people in those
organizations tend to be most interested in how they can apply the
wonders of cloud native to their jobs, regardless of whatever success
they might hear about at conferences or, worse, vendors with an
obvious bias (that would be me!). Hearing from one another often
passes beyond this sentiment that “change can’t happen here.”

After your organization begins hearing about these successes, you’ll
be able to break down some of the objections that stop the spread of
positive change. As Amy Patton at SPS Commerce put it, “Having
enough wins, like that, really helped us to keep the momentum
going while we were having a culture change like DevOps.”

Winning Over Process Stakeholders
The IRS provides an example of using release meetings to slowly
win over resistant middle-management staff and stakeholders.
Stakeholders felt uncomfortable letting their usually detailed
requirements evolve over each iteration. As with most people who
are forced—er, “encouraged—to move from Waterfall to Agile, they
were skeptical that the final software would have all the features they
initially wanted.

While the team was, of course, verifying these evolving require‐
ments with actual, in-production user testing, stakeholders were
uncomfortable. These skeptics were used to comforting, thick
upfront analysis and requirements, exactly spelling out which fea‐
tures would be implemented. To begin getting over this skepticism,
the team used its release meetings to show off how well the process
was working, demonstrating working code and lessons learned
along the way. These meetings went from five skeptics to packed,
standing-room-only meetings with more than 45 attendees. As suc‐

60 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2TX2aB6
http://bit.ly/2BC1jit

cess was built up and the organizational grapevine filled with tales of
wins, interest grew as well as trust in the new system.

The Next Step: Training by Doing
As the organizations I’ve mentioned earlier and others like Verizon
and Target demonstrate, internal marketing must be done “in the
small,” like this IRS case and, eventually, “in the large” with internal
summits.

Scaling up from marketing activities is often done with intensive,
hands-on training workshops called dojos. These are highly struc‐
tured, guided, but real release cycles that give participants the
chance to learn the technologies and styles of development. And
because they’re working on actual software, you’re delivering busi‐
ness value along the way: it’s training and doing.

These sessions also enable the organization to learn the new pace
and patterns of cloud-native development, as well as set manage‐
ment expectations. As Verizon’s Ross Clanton put it recently:

The purpose of the dojo is learning, and we prioritize that over
everything else. That means you have to slow down to speed up.
Over the six weeks, they will not speed up. But they will get faster as
an outcome of the process.

Scaling up any change to a large organization is mostly done by win‐
ning over the trust of people in that organization, from individual
contributors, to middle-management, to leadership. Because IT has
been so untrustworthy for so many decades—how often are projects
not only late and over budget, but then anemic and lame when
finally delivered?—the best way to win over that trust is to actually
learn by doing and then market that success relentlessly.

Tracking Your Improvement with Metrics
Tracking the health of your overall innovation machine can be both
overly simplified and overly complex. What you want to measure is
how well you’re doing at software development and delivery as it
relates to improving your organization’s goals. You’ll use these met‐
rics to track how your organization is doing at any given time and,
when things go wrong, get a sense of what needs to be fixed. As ever
with management, you can look at this as a part of putting a small

Tracking Your Improvement with Metrics | 61

http://bit.ly/2GLvEOL
http://bit.ly/2BC1fPL

14 To get more into technical metrics, see Brendan Gregg’s discussion of the USE method,
a deep, but brief start on health metrics. Also, check out the relevant chapter in the
Google SRE book and Steve Mushero’s overview of how to exactly gather SRE-type
metrics. Finally, the Tanzu Application Service monitoring documents will give you a
good idea for cloud-native platform metrics.

batch process in place: coming up with theories for how to solve
your problems and verifying if the theory worked in practice or not.

Monitoring
In IT, most of the metrics you encounter are not actually business
oriented and instead tell you about the health of your various IT sys‐
tems and processes: how many nodes are left in a cluster, how much
network traffic customers are bringing in, how many open bugs
development has, or how many open tickets the help desk is dealing
with on average.

All of these metrics can be valuable, just as all of them can be worth‐
less in any given context. Most of these technical metrics, coupled
with ample logs, are needed to diagnose problems as they come and
go. In recent years, there have been many advances in end-to-end
tracing thanks to tools like Zipkin and Spring Sleuth. Log manage‐
ment is well into its newest wave of improvements, and monitoring
and IT management analytics are just ascending another cycle of
innovation—they call it “observability” now; that way, you know it’s
different this time!

Instead of looking at all of these technical metrics,14 I want to look at
a few common metrics that come up over and over again in organi‐
zations that are improving their software capabilities.

Six Common Cloud-Native Metrics
Certain metrics come up consistently when measuring cloud-native
organizations. Let’s take a look at each of them.

Lead time
Lead time is how long it takes to go from an idea to running code in
production; it measures how long your small-batch loop takes. It
includes everything in between, from specifying the idea, writing the
code and testing it, passing any governance and compliance needs,

62 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2IboR3e
http://bit.ly/2KNCD9F
http://bit.ly/2KNCD9F
http://bit.ly/2GION3V
http://bit.ly/2GION3V
http://bit.ly/2SQRmqV

planning for deployment and management, to getting it up and run‐
ning in production, as shown in Figure 2-4.

Figure 2-4. This diagram shows the elements that you need to consider
when calculating lead time.

If your lead time is consistent enough, you have a grip on IT’s capa‐
bility to help the business by creating and deploying new software
and features. As such, you want to monitor your lead closely. Ideally,
it should be a week. Some organizations go longer, up to two weeks,
and some are even shorter, like daily. Target and then track an inter‐
val that makes sense for you. If you see your lead time growing, you
should stop everything, find the bottlenecks, and fix them. If the
bottlenecks can’t be fixed, you probably need to do less each release.

Value-stream mapping is a common tool for measuring lead time. A
value-stream map shows all of the activities needed, from thinking
of a new feature to a person using that feature. Functional organiza‐
tions often focus on just one group’s contribution to that overall
task, which too often leads to locally optimizing each part of the
value stream instead of the whole.

A value-stream map will also help you find wasted time in your
release cycle, helping you to reduce lead time. “Waste” can be vague,
but in general anything that the end user doesn’t value or care about
is waste. You can’t always get rid of waste, but you should try to
remove as much as possible. For example, using a value-stream map,
one of Daimler’s product teams identified time spent ordering, con‐
figuring, and deploying servers as waste. People walking into a
Mercedes-Benz dealership rarely started the conversation with,
“Boy, I want to get a Mercedes because you provision servers so
well!” After this was identified, the team prioritized automating this
and other waste in its value stream and brought its lead time down
from 30 days to 3 days.

Tracking Your Improvement with Metrics | 63

http://bit.ly/2GPb0NZ

Velocity
Velocity shows how many features are typically deployed each
release, for example, weekly. Whether you call features “stories,”
“story points,” “requirements,” or whatever else, you want to meas‐
ure how many the team can complete each week; I’ll use the term
“story.” Velocity is used to create realistic schedule and roadmap
expectations and then monitor the health of the team’s ability to
deliver each week.

After you establish how many features a team can deliver each week,
you can plan more reliability. If a team can deliver, for example, only
3 stories each week, asking it to deliver 20 stories in a month is
absurd. The team simply is not capable of doing that. Ideally, this
means that your estimates are no longer, well, always wrong. In most
cases, organizations find reliability far more valuable than being lied
to (knowingly or not) about how much work can actually be done.

Tracking velocity over time also gives you an early warning sign that
something’s wrong. If the team’s velocity begins to drop, it means
that the team is scoping its stories incorrectly: it’s taking on too
much work or someone is forcing the team to do so. On the other
hand, if the team is suddenly able to deliver more stories each week
or finds itself with lots of extra time each week, this means that it
should take on more stories each week.

There are numerous ways to calibrate the number of stories a team
can deliver each week, and managing that process at first is very
important. The best method is to simply track how many stories are
released each week for a month or so and use that number to cali‐
brate. During this calibration process, your teams will, no doubt, get
it wrong for many releases, which is to be expected (and will provide
motivation for picking small projects at first instead of big, impor‐
tant ones). Other reports like burn-down charts can help illustrate
progress toward major milestones and help you monitor any devia‐
tion from what’s normal.

Latency
Speed drives a large part of customer satisfaction. Few people con‐
sider slow software good software. It’s tempting to just measure the
raw speeds of various components, but thinking about speed in
terms of the end user is better. Latency measures just that, continu‐

64 | Chapter 2: Leadership’s Cloud-Native Cookbook

ally measuring how long a request takes, end to end, to process and
return it back to the user.

Latency is different than the raw “speed” of the network. For exam‐
ple, a fast network will send a static file very quickly, but if the
request requires connecting to a database to create and then retrieve
a custom view of last week’s Austrian sales, it will take a while and,
thus, the latency will be much longer than downloading an already
made file.

From a user’s perspective, latency is important because an applica‐
tion that takes three minutes to respond versus three milliseconds
might as well be “unavailable.” As such, latency is often the best way
to measure whether your software is working. Latency won’t specify
what’s wrong with your application, but it will very quickly alert you
that something is wrong, kicking off further analysis.

Measuring latency can be tricky...or really simple. Because it spans
the entire transaction, you often need to rely on patching together a
full view, or “trace,” of any given user transaction. You can do this by
looking at locks, doing real or synthetic user-centric tracing, and
using any number of application performance monitoring (APM)
tools. Ideally, the platform you’re using will automatically monitor
all user requests and also catalog all of the subprocesses and sub-
subprocesses that make up the entire request. That way, you can
begin to determine why things are so slow.

Error rates
Your systems and software will report when there’s an error: an
exception is thrown in the application layer because the email ser‐
vice is missing; an authentication service is unreachable so the user
can’t login; a disk is failing to write data. In addition to production
errors, also pay attention to error rates in development and testing.
You can look at failed tests as error rates as well as broken builds and
failed compliance audits. In production and development, looking at
ongoing error rates will give you a quick health check and show you
where to begin drilling down and troubleshooting.

Fixing errors in development can be easier and more straightfor‐
ward, whereas triaging and sorting through errors in production is
an art. What’s important to track with errors is not just that they
happened, but the rate at which they happen, perhaps as errors per
second. You’ll need to establish an acceptable level of errors because

Tracking Your Improvement with Metrics | 65

http://bit.ly/2SUdjpa

there will be many of them. What you do about all these errors will
be driven by your service targets. These targets might be foisted on
you in the form of heritage Service-Level Agreements (SLAs) or you
might have been lucky enough to negotiate some sane targets à la
SREs.

Chances are, a certain rate of errors will be acceptable. (Have you
ever noticed that sometimes, you just need to reload a web page?)
Each part of your stack will throw off and generate different errors
that you should handle differently:

• Errors can be meaningless. For example, warnings about using
deprecated code or the inability to print framework banners in
the logs. Perhaps those errors should be reclassified as a lower
priority or, better still, turned off altogether.

• Errors can be too costly or even impossible to fix. For example,
“1% of user’s audio uploads fail because their upload latency and
bandwidth are too slow.” You have no control over the user’s
internet connection, so you can’t do much to improve it.

• Errors can be important above all else, demanding all of your
attention. If an email server is losing emails every five minutes,
something is terribly wrong.

Ideally, developers will write good error detection, logging, and even
remediation. There’s a reason I used the word “ideally” there: devel‐
opers are rarely this meticulous. If you’re putting orthodox DevOps
in place, your developers will be responsible for diagnosing and
remediating problems in production. At this point, they’ll be the
ones who suffer from their bad error reporting, hopefully leading to
much better error reporting and even remediation into their soft‐
ware.

Mean-time-to-repair
Your software will break, there’s no way around it. Tracking how
often it breaks is important, but tracking how quickly you can fix
those problems is a key metric. It’s bad when an error happens, but
it’s really bad if it takes you a long time to fix it. Tracking mean-
time-to-repair (MTTR) is the ongoing measurement of how quickly
you can recover from errors. As with most metrics, as you establish
an acceptable baseline, you can monitor MTTR to ensure that the
problem is not getting worse.

66 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2szBKsK
http://bit.ly/2szBKsK

If you’re following cloud-native practices and using a good platform,
you can usually shrink your MTTR by adding the ability to roll back
changes. If a release goes bad, you can back it out quickly, remove
the problem, and restore the previous working version of the soft‐
ware.

Measuring MTTR might require tracking support tickets and other‐
wise manually tracking the time between incident detection and fix.
As you automate remediations, you might be able to easily capture
those rates. What’s important in the long term is tracking changes to
your acceptable MTTR and identifying why negative changes are
happening.

Costs
Everyone wants to measure cost, and there are many costs to meas‐
ure. In addition to the time spent developing software and the
money spent on infrastructure, there are ratios that you’ll want to
track, like the number of applications to platform operators. Typi‐
cally, these kinds of ratios give you a quick sense of how efficiently
IT runs. If each application takes one operator, something is proba‐
bly missing from your platform and process. T-Mobile, for example,
manages 11,000 containers in production with just 8 platform oper‐
ators.

Costs are typically measured in terms of staff time; infrastructure
and networking; and any tools, software licenses, and subscriptions
needed. There are also less-direct costs like opportunity and value
lost due to waiting on slow release cycles. You need to obviously
track the direct costs of what you’re doing, but you also need to
track the costs of doing nothing, which might be much higher.

Business Value
Of course, none of the metrics so far has measured the most valua‐
ble but difficult metric: value delivered. How do you measure your
software’s contribution to your organization’s goals? Measuring how
the process and tools you use contribute to those goals is usually
more difficult.

Somehow, you need to come up with a scheme that shows and
tracks how all this cloud-native stuff you’re spending time and
money on is helping the business grow. You want to measure value
delivered over time to do the following:

Tracking Your Improvement with Metrics | 67

http://bit.ly/2RZ5E4B
http://bit.ly/2RZ5E4B

• Prove that you’re valuable and should keep living and get more
funding.

• Recognize when you’re failing to deliver so that you can fix it.

There are a few prototypes of linking cloud-native activities to busi‐
ness value delivered. Let’s look at a few examples:

• As described in the earlier case study of when the IRS replaced
call centers providing limited availability with software, IT
delivered clear business value. Latency and error rates decreased
dramatically (with phone banks, only 37% of calls made it
through) and the design improvements it discovered led to
increased usage of the software, pulling people away from the
phones. The business value was clear: by the fall of 2017, this
application had collected $440 million in back taxes.

• Running existing businesses more efficiently is a popular goal,
especially for large organizations. In this case, the value you
deliver with cloud native will usually be speeding up businesses’
processes, removing wasted time and effort, and increasing
quality. Duke Energy’s line worker case is a good example here.
Duke gave line workers a better, highly tuned application that
queues and coordinates field work. The software increased line
workers’ productivity and reduced waste, directly creating busi‐
ness value in efficiencies.

• The US Air Force’s tanker scheduling case study is another good
example here: by improving its software capabilities, the US Air
Force was able to ship the first version in 120 days and began
saving $100,000’s in fuel costs each week. Accuracy and speed in
scheduling delivered clear business value, as well.

• Then, of course, there comes raw competition. This most easily
manifests itself as time-to-market, either to match competitors
or get new features out before them. Liberty Mutual’s ability to
enter the Australian motorcycle market from scratch in only six
months is a good example. Others such as Comcast demon‐
strate competing with major disruptors like Netflix.

It’s easy to become very nuanced and detailed when you’re mapping
IT to business value. To avoid spiraling into a nuance vortex, man‐
agement needs to keep things as simple as possible, or, put another
way, only as complex as needed. As with the previous example,

68 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2TO2phT
http://bit.ly/2TO2phT
http://bit.ly/2SXgCMB
http://bit.ly/2GrIQcu
http://bit.ly/2GrIQcu

clearly link your cloud-native efforts to straight forward business
goals. Simply “delivering on our commitment to innovation” isn’t
going to cut it. If you’re suffering under vague strategic goals, make
them more concrete before you begin using them to measure your‐
self. On the other end, just lowering costs might be a bad goal to
shoot for. I talk with many organizations who used outsourcing to
deliver on the strategic goal of lowering costs and now find them‐
selves incapable of creating software at the pace their business needs
to compete.

Fleshing Out Metrics
The preceding sections provided a simplistic start at metrics. Each
layer of your organization will want to add more detail to get better
insights into itself. Creating a comprehensive, umbrella metrics sys‐
tem is impossible, but there are many good templates with which
you can start. Platform operators, for example, should probably
begin by learning how the Google SRE team measures and manages
Google.

The five S’s
VMware Tanzu’s five S’s is one such template. The S’s stand for
speed, stability, scalability, security, and savings. These metrics cover
platform operations, product, and business metrics. Not all organi‐
zations will want to use all of the metrics, and there’s usually some
that are missing. But, this five S’s template is a good place to begin.
You might not need all the metrics, and there might be others not
included. Nonetheless, it’s good to have something more detailed
than “it depends” when it comes to metrics.

IT metrics

Speed
Latency, number of deploys to production, number of bugs,
bug-fix duration, new release duration, number of code check-
ins, number of tickets, time-to-deployment

Stability
MTTR, platform failures, release failures, error rates, number of
incidents, avg. release time, minutes of development, produc‐
tion outages per year

Tracking Your Improvement with Metrics | 69

http://bit.ly/2DIzpBm
http://bit.ly/2DIzpBm

Scalability
Transaction throughput, transaction latency, container scaling,
CPU usage, memory usage, disk capacity

Security
Time to patch, downtime due to security, security VSM time

Savings
Number of tickets, dollar savings, time-to-resolution-gain,
increase in deployments, number of bugs

Business metrics

Speed
Time-to-market, lead time, deployment frequency (velocity)

Stability
Volatility, number of bugs/dev/year, change fail rate, velocity

Scalability
Products in development versus production, dev-to-ops spend,
hiring and staff churn rates, resource elasticity

Security
Number of incidents, percent using CI/CD, production patch
frequency

Savings
VSM waste, products-to-dev, number of design failures, dev-to-
ops spend, legacy middleware licensing, cost of delay

Metrics’ Utility
Whatever the case, make sure the metrics you choose are 1) target‐
ing the end goal of putting in place a small-batch process to create
better software, 2) reporting on your ongoing improvement toward
that goal, and 3) alerting you that you’re slipping and need to begin
addressing the problem before it becomes worse.

Metrics are not only useful for day-to-day operations. You can also
start using them to demonstrate to the rest of the organization that
your transformation strategy is working and can be trusted. Show‐
ing, for example, that your team’s velocity is reliable and stable will
demonstrate a level of professionalism that’s usually not expected by
teams that have historically delivered late and over budget. When it

70 | Chapter 2: Leadership’s Cloud-Native Cookbook

15 This is a shallow definition of compliance, there are numerous, better explanations
including Dmitry Didovicher’s overview in a recent talk. Also, of note, is that I don’t
cover a huge swatch of compliance woes: project management compliance. That’s a
deep well.

comes time to ask for more budget, reporting on business value
delivered will be most helpful.

Tending to Compliance and Regulation
“Compliance” will be one of your top bugbears as you improve how
your organization does software. As numerous organizations have
been finding, however, compliance is a solvable problem. In most
cases, you can even improve the quality of compliance and risk man‐
agement with your new processes and tools, introducing more, reli‐
able controls than traditional approaches.

But First, What Exactly Is “Compliance”?
If you’re a large organization, the chances are that you’ll have a set of
regulations with which you need to comply. These are both self- and
government-imposed. In software, the point of regulations is often
to govern the creation of software, how it’s managed and run in pro‐
duction, and how data is handled. The point of most compliance is
risk management; for example, making sure developers deliver what
was asked for, making sure they follow protocol for tracking changes
and who made them, making sure the code and the infrastructure is
secure, and making sure that people’s personal data is not needlessly
exposed.15

Compliance often takes the form of a checklist of controls and veri‐
fications that must be passed. Auditors are staff that go through the
process of establishing those lists, tracking down their status in your
software, and also negotiating whether each control must be fol‐
lowed. The auditors are often involved before and after the process
to establish the controls and then verify that they were followed. It’s
rare that auditors are involved during the process, which unfortu‐
nately ends up creating more wasted time, it turns out. Getting audi‐
tors involved after your software has been created requires much
compliance archaeology and, sadly, much cutting and pasting
between emails and spreadsheets, paired with infinite meeting
scheduling.

Tending to Compliance and Regulation | 71

http://bit.ly/2N75Aih
http://bit.ly/2SF8Rvq
http://bit.ly/2NaT95a
http://bit.ly/2NaT95a
http://bit.ly/2S1LM0z

When you’re looking to transform your software capabilities, these
traditional approaches to compliance, however, often end up hurt‐
ing businesses more than helping them. As Liberty Mutual’s David
Ehringer describes it:

The nature of the risk affecting the business is actually quite differ‐
ent: the nature of that risk is, kind of, the business disrupted, the
business disappearing, the business not being able to react fast
enough and change fast enough. So, this is not to say that some of
those things aren’t still important, but the nature of that risk is
changing.

Ehringer says that many compliance controls are still important, but
there are better ways of handling them without worsening the larg‐
est risk: going out of business because innovation was too late.

Avoiding that risk requires tweaking your compliance processes. I’ve
seen three approaches to dealing with compliance, often used
together as a sort of maturity model: compliance unchained, mini‐
mum viable compliance, and transform compliance. Let’s take a look
at each.

Compliance Unchained
Although it’s just a quick fix, engineering a way to avoid compliance
is a common first approach. Early on, when you’re learning a new
mindset for software and build up a series of small successes, you’ll
likely work on applications that require little to no compliance.
These kinds of applications often contain no customer data, don’t
directly drive or modify core processes, or otherwise touch anything
that’d need compliance scrutiny.

These might seem disconnected from anything that matters and
thus not worth working on. Early on, though, the ability to get mov‐
ing and prove that change is possible often trumps any business
value concerns. You don’t want to eat these “empty calories” projects
too much, but it’s better than being killed off at the start.

Minimal Viable Compliance
Part of what makes compliance seem like toil is that many of the
controls seem irrelevant. Over the years, compliance builds up like
plaque in your steak-loving arteries. The various controls might
have made sense at some time—often responding to some crisis that
occurred because this new control wasn’t followed. At other times,

72 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2Eaz6ks
http://bit.ly/2Eaz6ks

the controls simply might not be relevant to the way you’re doing
software. If that’s the case, you’ll have some work to do to determine
and fulfill minimum viable compliance.

Clearing away old compliance
When you really peer into the audit abyss, you’ll often find out that
many of the tasks and time bottlenecks are caused by too much cere‐
mony and processes no longer needed to achieve the original goals
of auditability. Target’s Heather Mickman recounts her experience
with just such an audit abyss clean-up in The DevOps Handbook (IT
Revolution Press):

As we went through the process, I wanted to better understand why
the TEAP-LARB [Target’s existing governance] process took so
long to get through, and I used the technique of “the five whys,”
which eventually led to the question of why TEAP-LARB existed in
the first place. The surprising thing was that no one knew, outside
of a vague notion that we needed some sort of governance process.
Many knew that there had been some sort of disaster that could
never happen again years ago, but no one could remember exactly
what that disaster was, either.

Finding your path to minimal viable compliance means you’ll
actually need to talk with auditors and understand the compliance
needs. You’ll likely need to negotiate if various controls are needed
or not, more or less proving that they’re not.

Boston Scientific’s CeeCee O’Connor described one method for
reviewing such controls. When working with auditors on an appli‐
cation that helped people manage a chronic condition, O’Connor’s
group first mapped out what they called “the path to production.”

This was a value-stream-like visual that showed all of the steps and
processes needed to get the application into production, including,
of course, compliance steps. Representing each of these as sticky
notes on a wall allowed the team to quickly work with auditors to go
through each step—each sticky note—and ask whether it was
needed. Answering such a question requires some criteria, so apply‐
ing Lean, the team asked the question, “Does this process add value
for the customer?”

This mapping and systematic approach allowed the team and audi‐
tors to negotiate the actual set controls needed to get to production.
At Boston Scientific, the compliance standards had built up over 15

Tending to Compliance and Regulation | 73

http://bit.ly/2GIXGdR
http://bit.ly/2SSdwcz
http://bit.ly/2V10K98
http://bit.ly/2V10K98

years, growing thick, and this process helped thin them out, speed‐
ing up the software delivery cycle.

You’re already helping compliance
The opportunity to work with auditors will also let you demonstrate
how many of your practices are already improving compliance. For
example, pair programming means that all code is continuously
being reviewed by a second person and detailed test suite reports
show that code is being tested. When you understand what your
auditors need, there are likely other processes that you’re following
that contribute to compliance.

Discussing his work at Boston Scientific, VMware Tanzu’s Chuck
D’Antonio describes a happy coincidence between lead design and
compliance. When it comes to pacemakers and other medical devi‐
ces, you’re supposed to build only exactly the software needed,
removing any extraneous software that might bring bugs. This
requirement matches almost exactly with one of the core ideas of
minimum viable products and Lean: deliver only the code needed.
Finding these happy coincidences, of course, requires that you work
closely with auditors, from day one. It will be worth a day or two of
meetings and tours to show your auditors how you do software and
ask them if anything lines up already.

Transform Compliance
Although you might be able to avoid compliance or eliminate some
controls, regulations are more likely unavoidable. Speeding up the
compliance bottleneck, then, requires changing how compliance is
done. Thankfully, using a build pipeline and cloud platforms pro‐
vides a deep set of tools to speed up compliance. Even better, you’ll
find cloud-native tools and processes improve the actual quality and
accuracy of compliance.

Compliance as code
Many of the controls that auditors need can be satisfied by adding
minor steps into your development process. For example, as Boston
Scientific found, one of its auditors’ controls specified that a require‐
ment had to be tracked through the development process. Instead of
having to verify this after the team was code complete, it made sure
to embed the story ID into each Git commit, automated build, and

74 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2GubwRY
http://bit.ly/2GubwRY
http://bit.ly/2GJF25q
http://bit.ly/2GJF25q

deploy. Along these lines, the OpenControl project has put several
years of effort into automating even the most complicated govern‐
ment compliance regimes. Chef ’s InSpec project is also being used
to automate compliance.

Proactively putting in these kinds of tracers is a common pattern for
organizations that are looking to automate compliance. There’s often
a small amount of scripting required to extract these tracers and
present them in a human readable format, but that work is trivial in
comparison to the traditional audit process.

Put compliance in the platform
Another common tactic is to put as much control enforcement into
your cloud platform as possible. In a traditional approach, each
application comes with its own set of infrastructure and related con‐
figuration: not only the “servers” needed, but also systems and pol‐
icy for networking, data access, security settings, and so forth.

This makes your entire stack of infrastructure and software a single,
unique unit that must be audited each release. This creates a huge
amount of compliance work that needs to be done even for a single
line of code: everything must be checked, from dirt to screen. As
Raytheon’s Keith Rodwell lays out, working with auditors, you can
often show them that by using the same, centralized platform for all
applications you can inherit compliance from the platform. This
allows you to avoid the time taken to reaudit each layer in your
stack.

The US federal government’s cloud.gov platform provides a good
example of baking controls into the platform. 18F, the group that
built and supports cloud.gov described how its platform, based on
Cloud Foundry, takes care of 269 controls for product teams:

Out of the 325 security controls required for moderate-impact sys‐
tems, cloud.gov handles 269 controls, and 41 controls are a shared
responsibility (where cloud.gov provides part of the requirement,
and your applications provide the rest). You only need to provide
full implementations for the remaining 15 controls, such as ensur‐
ing you make data backups and using reliable DNS (Domain Name
System) name servers for your websites.

Organizations that bake controls into their platforms find that they
can reduce the time to pass audits from months (if not years!) to just
weeks or even days. The US Air Force has had similar success with

Tending to Compliance and Regulation | 75

http://bit.ly/2BA9Cv6
http://bit.ly/2ByKpBa
http://bit.ly/2SyzP7S
http://bit.ly/2SyzP7S
http://bit.ly/2BxFYXe
http://bit.ly/2tpRLSQ
http://bit.ly/2TP0DgD

this approach, bringing security certification down from 18 months
to 30 days, and sometimes even just 10 days.

Compliance as a service
Finally, as you get deeper into dealing with compliance, you might
even find that you work more closely with auditors. It’s highly
unlikely that they’ll become part of your product team; though that
could happen in some especially compliance-driven government
and military work where being compliant is a huge part of the busi‐
ness value. However, organizations often find that auditors are
involved closely throughout their software life cycle. Part of this is
giving auditors the tools to proactively check on controls first hand.

The Home Depot’s Tony McCulley suggests giving auditors access to
your continuous delivery process and deployment environment.
This means auditors can verify compliance questions on their own
instead of asking product teams to do that work. Effectively, you’re
letting auditors peer into and even help out with controls in your
software.

Of course, self-service compliance works only if you have a well-
structured, standardized platform supporting your build pipeline
with good UIs that nontechnical staff can access. As Discover’s
Dean Parke explains, describing how they handle separation of
duties, “Make it easy and make it where it’s just a click of a button
for people to advance the pipeline to move it forward.”

Improving Compliance
Compliance is easier with automation because it is repeatable and I
can let the compliance people do self-service. They can stop scheduling
meetings to look at information they now have access to.

—Jon Osborn, Great American Insurance Company.

The net result of all of these efforts to speed up compliance often
improves the quality of compliance itself:

• Understanding and working with auditors gives the product
team the chance to write software that more genuinely matches
compliance needs.

• The traceability of requirements, authorization, and automated
test reports gives auditors much more of the raw materials
needed to verify compliance.

76 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2TP0DgD
http://bit.ly/2N75fMz
https://youtu.be/Nh7Y8mDNI90?t=16m35s
https://youtu.be/Nh7Y8mDNI90?t=16m35s
http://bit.ly/2TPk8Wh

• Automating compliance reporting and baking controls into the
platform create much more accurate audits and can give so
called “controls” actual programmatic control to enforce regula‐
tions.

As with any discussion that includes the word “automation,” some
people take all of this to mean that auditors are no longer needed.
That is, we can get rid of their jobs. This sentiment then gets stacked
up into the eternal “they” antipattern: “well, they won’t change, so
we can’t improve anything around here.

But, also as with any discussion that includes the word “automation,”
things are not so clear. What all of these compliance optimizations
point to is how much waste and extra work there is in the current
approach to compliance.

This often means auditors working overtime, on the weekend, and
over holidays. If you can improve the tools auditors use, you don’t
need to get rid of them. Instead, as we can do with previously over‐
worked developers, you end up getting more value out of each audi‐
tor and, at the same time, they can go home on time. As with
developers, happy auditors mean a happier business.

Building Your Pipeline and Choosing Your
Platform
“The technology is the least important thing,” you’ll often hear. I
might have even typed that here! There’s truth to that: a tool without
the skills to use it, let alone the human to wield it, isn’t that useful.
However, there are two technologies that are vital for improving
how your organization does software: pipelines and platforms.
Without them, you would have a much more difficult, if impossible
time of transforming.

The Build Pipeline
Your build pipeline is one of your most important software delivery
tools. It’s the connection between a developer committing code and
adding new functionality to the application in production. Between
these two points, the code is built into software, verified with multi‐
ple types of tests, checked against audit and security controls, pre‐
pared for deployment, and, in some cases, even automatically

Building Your Pipeline and Choosing Your Platform | 77

deployed to production. You’ll likely hear the pipeline referred to as
“CI/CD”; that is, continuous integration and continuous delivery.

Getting a build pipeline in place is key. If you don’t have one already
—let alone just continuous integration—drop everything and put a
pipeline in place. Gary Gruver summarizes how critical a pipeline is
in his short, excellent book Start and Scaling Devops in the Enterprise
(BookBaby):

[Deployment pipelines] address the biggest opportunity for
improvement that does exist in more large traditional organizations
which is coordinating the work across teams. In these cases, the
working code in the deployment pipeline is the forcing function
used to coordinate work and ensure alignment across the organiza‐
tion. If the code from different teams won’t work together or it
won’t work in production, the organization is forced to fix those
issues immediately before too much code is written that will not
work together in a production environment. Addressing these
issues early and often in a deployment pipeline is one of the most
important things large traditional organizations can and should be
doing to improve the effectiveness of their development and
deployment processes.

Now, let’s briefly look at each component of a build pipeline.

Continuous integration
Many organizations are not enjoying the benefits of continuous inte‐
gration (CI), nevermind continuous delivery (CD). CI has been
around since the early 1990s; it took hold especially with Extreme
Programming. The idea is that at least once per day, if not for each
code check-in, you build the entire system and run tests. That is, you
integrate all code from all developers together.

By integrating smaller chunks of code more frequently, teams reduce
the amount of time it takes to integrate new changes into their prod‐
uct. This also reduces the risk of delaying releases because the build
is broken and requires a fix. Thus, having the ability to build and
test multiple times each day is key to keeping the release schedule
running smoothly. This is the “continuous integration” part of
CI/CD.

78 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2EaKsoz
http://bit.ly/2EaKsoz
http://bit.ly/2J9F19p
http://bit.ly/2J9F19p

16 These reports have found that “working off trunk”—that is, not branching code for
more than a day—is indicative of high performance, as well.

There are numerous tools and practices to automate and make this
feasible. The DevOps reports have found a strong correlation
between CI and high-performing organizations each year.16

Continuous deployment
After your release is built, tested, and properly logged for compli‐
ance and security checks, you need to somehow get it to production.
One of the key insights of DevOps is that the tested, certified build is
only half of the work. Releasing to production is the other half, and
it’s just as much the team’s responsibility as writing and building the
code. You’re not done until your code is running in production.

Here, CD works hand-in-hand with your cloud platform. As illus‐
trated in Figure 2-5, the pipeline takes the packaged build through a
series of tests on staging and, ideally, production environments. To
do this, the pipeline relies on another DevOps principal: treating
infrastructure as code. All of the configuration and processes needed
to deploy the release to production are managed as if they were
application code: checked into version control, tested, and tracked
as they should be, as part of the release.

Your pipeline takes this production configuration and bundles it
with the release. It is then ready for your platform’s automated
deployment capabilities to do the final release. This entire process
should take minutes. Great American Insurance Company, as
reported by Jon Osborn, can do pipeline releases in about 10
minutes. Sometimes, the cycle is longer due to complexity or com‐
pliance concerns, but it should take less than a day; otherwise, your
small-batch process will dramatically slow down.

Building Your Pipeline and Choosing Your Platform | 79

http://bit.ly/1v70LcY
http://bit.ly/2DA5QSo
http://bit.ly/2X2g7zP
https://pivotal.io/platform

Fi
gu

re
 2

-5
. A

n
ill

us
tra

tio
n

sh
ow

in
g t

he
 el

em
en

ts
of

 yo
ur

 b
ui

ld
 p

ip
eli

ne
. (

Fr
om

 “S
pe

ed
 Th

ril
ls,

” B
en

 K
am

ys
z a

nd
 Ja

re
d

Ru
ck

le,
 A

ug
20

17
.)

80 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2TTLXwU

17 Some people distinguish between “continuous deployment” and “continuous delivery.”
Deployment means the build is automatically deployed each time, hopefully multiple
times a day. Delivery means a human could choose to deploy it but you’re not automati‐
cally deploying it. There’s some more nuance to the distinction if you’re into precision.

With a fully automated build pipeline, the only human fingers
involved are in that first commit. The pipeline does everything else.
This amount of automation isn’t practical for some organization’s
compliance policies. In such cases, that button gets moved down the
pipeline. The release pauses right before deploying to production
when a human gets the chance to approve the deploy.17

Properly done, a pipeline will automate the vast majority of the
work required to get a build in production, including compliance
and security checks. When you can be ready to deploy to produc‐
tion in minutes, you’ll rely on a fully automated cloud platform like
Tanzu Application Service at the end of the pipeline. The two
together will have you speeding up your software development life
cycle and quickly improving how your organization functions. As
VMware Tanzu’s Matthew Parker puts it “[a] team that can’t ship,
can’t learn. And the longer you’re not learning, the greater the risk
that you’re wasting time and money building the wrong thing.”

Putting a pipeline in place
Many people report a simple process to start putting a pipeline in
place: figure out all the tasks needed to put just one new line of code
into production. This could be something like changing the font or
color used for a print button. Look through all of the activities
needed and the time it takes and begin ruthlessly automating each
activity as much as possible, or eliminating them entirely if they
seem to “do nothing.”

VMware Tanzu’s Jamie O’Meara suggests an even simpler and more
telling test: what would it take to simply release the current version
of your software, with no configuration or code changes? “If you tell
me it still takes you three to six months,” he says, “then that’s pure
process that’s just sitting in front of the delivery mechanism.” Many
of those activities will just be governance ceremony and things that
actually don’t need to happen or can be drastically cut back or auto‐
mated.

Building Your Pipeline and Choosing Your Platform | 81

http://bit.ly/2Sz9sP2
http://bit.ly/2DPgvsT
http://bit.ly/2X4MZYA
http://bit.ly/2X4MZYA

“You’re going to find out that if it still takes you that time to deliver,”
he goes on, “there’s a bunch of nonvalue added [work] that’s block‐
ing you, that’s in your way.” When you’re building your pipeline,
start by removing that “waste” from your pipeline and then keep up
the work of removing waste from your pipeline with automation.

You’re Gonna Need a Platform
The amount of automation, standardization, and controls required
to deploy on a weekly, let alone daily, basis requires a degree of auto‐
mation that’s completely foreign, and even fantastical, to most IT
organizations. You’ll need a cloud platform to meet those needs. To
prove this out, a common first parlor trick is to chart out all of the
activities, approvals, and time that it takes to deploy just one line of
code to production. Even better, assume that there’s no new code
and you’re just deploying the current version from scratch. This is
the simplest value-stream map a software-driven organization could
make.

In this exercise, you can’t cheat...er, rather, optimize and go against
existing policy, bringing in your own infrastructure and SCP’ing a
PHP file to a server with some purloined credentials. The goal is to
see how long it takes to deploy one line of code following all of the
official procedures for starting a new project, getting the necessary
infrastructure, doing the proper documentation and policy reviews,
and so forth all the way up to running the line of code in produc‐
tion.

The results, as you can imagine, are often shocking. It usually takes
at least a month, or even years for some government organizations.
Some organizations find that just gathering together all the activities
and wait times to put a value-stream map together is interminable.

The ability to deploy code on a small-batch loop requires a platform
that takes care of most all of the infrastructure needs—across
servers, storage, networking, middleware, and security—removing
the time drag associated with provisioning and caring for infrastruc‐
ture. Gaining the trust of auditors, security experts, and other third-
party gatekeepers requires building up trust in a repeatable,
standardized stack of software.

It gets worse! These are just the day one problems of getting the first
version of your software out the door into production. After that
come the day 2+n problems of managing that application in produc‐

82 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2IfF5by

tion, updating all your applications weekly, and then updating the
platform itself.

Cloud platform reference architecture
When you put together a reference architecture of all of the capabili‐
ties needed to support all of the days of your cloud-native life, you
quickly realize how much the platform does. Figure 2-6 shows one
reference architecture based on conversations my company,
VMware, has had with organizations executing their cloud-native
transformations.

Any good cloud platform has deep capabilities in these five domains
(taken directly from the VMware whitepaper referenced in
Figure 2-6).

Infrastructure
Infrastructure is provided as a service, commonly thought of as
IaaS, whether public or private. The platform requests, manipu‐
lates, and manages the health of this infrastructure via APIs and
programmatic automation on behalf of the developers and their
applications. In addition, the platform should provide a consis‐
tent way to address these APIs across providers. This ensures
that the platform and its applications can be run on and even
moved across any provider.

Operations
Metrics and data are the lifeblood of a successful operations
team. They provide the insights required to assess the health of
the platform and applications running on it. When issues arise,
operational systems help troubleshoot the problem. Log files,
metrics, alerts, and other types of data guide the day-to-day
management of the platform.

Deployment
Deployment tooling enables continuous building, testing, inte‐
gration, and packaging of both application and platform source
code into approved, versioned releases. It provides a consistent
and durable means to store build artifacts from these processes.
Lastly, it coordinates releasing new versions of applications and
services into production in a way that is automated, nondisrup‐
tive, and doesn’t create downtime for consumers during the
process.

Building Your Pipeline and Choosing Your Platform | 83

Fi
gu

re
 2

-6
. A

n
ex

am
pl

e o
f w

ha
t c

lo
ud

 p
la

tfo
rm

 re
fer

en
ce

 a
rc

hi
te

ct
ur

e c
an

 lo
ok

 li
ke

. (
Fr

om
 “Th

e U
ps

id
e-

D
ow

n
Ec

on
om

ics
 o

f
Bu

ild
in

g Y
ou

r O
w

n
Pl

at
fo

rm
,” J

ar
ed

 R
uc

kl
e,

Br
ya

n
Fr

ied
m

an
, a

nd
 M

at
t W

al
bu

rn
, 2

01
8

ed
.)

84 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2SONC9A
http://bit.ly/2SONC9A

Runtime, middleware, and data
The components of the stack interact with custom code directly.
This includes application runtimes and development frame‐
works, in addition to commercial and open source versions of
databases, HTTP proxies, caching, and messaging solutions.
Both closed and open source stacks must have highly standard‐
ized and automated components. Developers must access these
features via self-service, eschewing cumbersome, manual ticket‐
ing procedures. These services must also consume API-driven
infrastructure, operations tooling for ongoing health assess‐
ment, and CD tooling.

Security
The notions of enterprise security compliance and rapid veloc‐
ity have historically been at odds, but that no longer needs to be
the case. The cloud-native era requires their coexistence. Plat‐
form security components ensure frictionless access to systems,
according to the user’s role in the company. Regulators might
require certain security provisions to support specific compli‐
ance standards.

Building your own cloud platform is probably a bad idea
There are numerous—maybe even too many!—options out there for
each component in the platform reference architecture. Selecting the
tools, understanding them, integrating them with the platform, and
then managing the full life cycle of each pillar in the reference archi‐
tecture ends up requiring a team of people. And this isn’t just a one-
time build. The platform is a product itself requiring resolution of
ongoing issues, road maps for adding new capabilities, and just basic
maintenance of the code. What you have in front of you is a whole
new product: your cloud platform, made up of many components,
each requiring a dedicated team.

Building your own platform is, of course, technically feasible and an
option. Many organizations start off building their own platform,
sometimes because several years ago when they started, there were
no other options. Other times, it’s a result of the fallacy of free soft‐
ware (if we can download open source software, it’s free!), misjudg‐
ing the total effort required, or giving in to the inescapable urge
young developers have to build frameworks and platforms (every
developer I know, including myself, has submitted to this siren
many times).

Building Your Pipeline and Choosing Your Platform | 85

http://bit.ly/2TO0Bp7

18 In recent years, the capabilities and fame of Kubernetes have called many organizations
to the do it yourself rocks. Although the core of Kubernetes is nothing to sniff at, all of
the add-on layers needed to make a full platform tend to steer you back to those rocks.

For just $14 million, you too, can have your very own platform in two years
The decision to build or buy a platform shouldn’t be driven by engi‐
neering thinking, but by business needs. Are time and money spent
building and maintaining a platform the best use of those resources
relative to, say, building the actual business applications?

In my experience, organizations that decide to roll their own plat‐
form realize a pesky truth quickly: it’s more expensive than they
thought. Their investment in platform engineers grows faster and
higher than projected. First, selecting and understanding which
components to use for each part of the platform takes time, and
hopefully you pick the right ones the first time. Then, those compo‐
nents must be integrated with one another. And, of course, you’ll
need to keep them updated and patched—and you’ll need a process
and system to do that. To support all of this, you’ll need multiple
teams dedicated full time to developing each part of the platform.

Each subsystem demands multiple engineers and a product man‐
ager, and also staff to coordinate the entire effort—just like a real
product! In working with numerous large organizations, even a
minimal do-it-yourself platform team will consume something like
2 years of time and $14 million in payroll, across 60 engineers.18

Worse, these organizations may need to wait up to two years to start
their cloud-native transformation in earnest because they need to
build the platform first, then they can get back to the original prob‐
lem of building business applications.

Platform-as-a-product with the platform engineering team
There’s a team of people who own and run your platform. At
VMware Tanzu, we call this role “platform engineers,” others might
call them Site Reliability Engineers (SRE), “DevOps,” or any number
of titles. As ever, what they’re called doesn’t matter. What they do
and how they do it is the thing to focus on.

The platform engineering team’s key principal is to treat the plat‐
form like a product, with the product teams as their customers.

86 | Chapter 2: Leadership’s Cloud-Native Cookbook

Standing up a platform isn’t a one-time project, a static service to be
delivered with SLAs. It’s the same never-ending series of small
batches discussed earlier that takes in requirements from customers,
prioritizes which ones to implement this week, develops and releases
the software, and verifies that the customer’s life was improved—
trying it all over again if not. That continuous improvement is the
product part of platform-as-a-product.

Platform engineers are typically more operations centric in their
day-to-day work; however, they apply a programmer’s mindset to
solving problems: can this task be coded, automated so that people
no longer need to deal with it directly? In SRE, that kind of manual
work is called “toil,” and cutting out toil is one of the top goals.

The platform engineering team is responsible for standing up the
platform initially, upgrading the platform as new versions come out,
and building in shared services for the product teams. For example,
product teams might want to use Kafka to handle data. Instead of
each team configuring and managing their own instances, the plat‐
form engineering team typically adds this into the platform. The
platform engineering team might also add audit automation and
self-service; for example, getting audit windows down from 10
months to less than a week, like the US Air Force. Or they might
accelerate a bank’s global growth by providing a shared banking-as-
a-service platform like Scotiabank.

With the right amount of toil reduction and a continual focus on it,
the platform engineering team automates an unfathomable amount
of traditional operations work. “This made sure that our software
engineers could just push from the CI tool without worrying about
change tickets, security scanning, or approvals because it all hap‐
pened through automation,” says Matt Curry describing the degree
of self-service given to product teams at Allstate.

This reduction in toil time not only means a much, much smaller
operations team size but also means those platform engineers can
focus most of their time building their product instead of frittering
their time away on help-desk tickets.

Case study: selecting a platform at Rabobank
Rabobank’s platform journey is a great example of well-reasoned
platform strategy. As Rabobank’s Vincent Oostindië explained, the
company needed to replace its highly successful but now aged plat‐

Building Your Pipeline and Choosing Your Platform | 87

http://bit.ly/2tk4ZRe
http://bit.ly/2SOMhj4
http://bit.ly/2Ebz1gg
http://bit.ly/2E9N06m

form. Its existing Java-based platform had run the organization’s
online banking application for many years but could no longer keep
up with new technologies, scale, and the “you build it, you own it”
DevOps principles the bank needed.

“We also came to the conclusion that as a bank, we shouldn’t be
building a platform,” Vincent explained. That work would require a
lot of resources without directly adding value for the end user: “It
would mean people working on that every day, and, well that’s not
bringing any business value.”

As with most organizations, at Rabobank, choosing a new platform,
traditionally, is driven by a committee wielding spreadsheets that list
endless features and requirements. Each row lists a capability, fea‐
ture, or type of “requirement” that the committee assumes each
operator and developer will need. At this point, most enterprises
would pick a platform using advanced column sorting strategies,
vendor haruspex, and disciplined enterprise architecture futurology.

Instead, treating the developers as customers, Rabobank experimen‐
ted with several different platforms by having developers actually
use the platforms for small projects. Following the product
approach, they then observed which platforms served the developers
best. This working proof-of-concept (PoC) was driven by user vali‐
dation, proving out which platform worked best. More important, it
proved that developers liked the platform. “If you guys don’t like it,
you’ll just go away,” Vincent explains, “and we have a nice platform
—or, technically nice platform—but, [with] no users on it, [there’s]
no point.”

For virtually every organization, time and money spent building its
own platform from scratch is waste. When evaluating which plat‐
form to use, I’d suggest using Rabobank’s working PoC model,
weighting the productivity and satisfaction of developers heavily.

88 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2UUOdE0
http://bit.ly/2SSctcu

Own Your Role
Anywhere there is lack of speed, there is massive business vulnerabil‐
ity:
Speed to deliver a product or service to customers
Speed to perform maintenance on critical path equipment
Speed to bring new products and services to market
Speed to grow new businesses
Speed to evaluate and incubate new ideas
Speed to learn from failures
Speed to identify and understand customers
Speed to recognize and fix defects
Speed to recognize and replace business models that are remnants of
the past
Speed to experiment and bring about new business models
Speed to learn, experiment, and leverage new technologies
Speed to solve customer problems and prevent reoccurrence
Speed to communicate with customers and restore outages
Speed of our website and mobile app
Speed of our back-office systems
Speed of answering a customer’s call
Speed to engage and collaborate within and across teams
Speed to effectively hire and onboard
Speed to deal with human or system performance problems
Speed to recognize and remove constructs from the past that are no
longer effective
Speed to know what to do
Speed to get work done

—John Mitchell, Director of Digital Strategy and Delivery,
Duke Energy

When enterprises need to change urgently, in most cases, the prob‐
lem is with the organization and the system in place. Individuals,
like technology, are highly adaptable and can change. They’re both
silly putty that wiggle into the cracks as needed. It’s the organization
that’s obstinate and calcified.

Own Your Role | 89

How the organization works—its architecture—is totally the respon‐
sibility of the leadership team. That team owns it just like a product
team owns its software. Leadership’s job is to make sure the organi‐
zation is healthy, thriving, and capable.

DevOps’ great contribution to IT is treating culture as programma‐
ble. How your people work is as agile and programmable as the soft‐
ware. Executives, management, and enterprise architects—
leadership—are product managers, programmers, and designers.
The organization is leadership’s product, and they should also apply
the small-batch process to its creation and growth. They pay atten‐
tion to their customers—the product teams and the platform engi‐
neers—and do everything possible to get the best outcomes, to make
the product—the organization—as productive and well designed as
possible.

I’ve tried to collect together what’s worked for numerous organiza‐
tions going through—again, even at the end, brace yourself and par‐
don me—digital transformation. Of course, as in all of life, the
generalized version of Orwell’s 6th rule applies: break any of these
rules rather than doing anything barbarous.

As you discover new and better ways of doing software, I’d ask you
to share those learnings as widely as possible, especially outside of
your organization. There’s very little written on the topic of how
regular, large organizations manage the transformation to becoming
software-driven enterprises.

Know that if your organization is dysfunctional, always late, and
over budget, it’s your fault. Your staff might be grumpy, seem under-
skilled, and your existing infrastructure and applications might be
pulling you down like a black hole. All of that is your product: you
own it.

As I recall, the conclusion of a book is supposed to be inspirational
instead of a downer. So, here you go. You have the power to fix it.
Hurry up and get to work.

90 | Chapter 2: Leadership’s Cloud-Native Cookbook

http://bit.ly/2GLtWNl

About the Author
Michael Coté works on the advocate team at VMware Tanzu. He
focuses on how large organizations are getting better at building and
delivering software to help their business run better and grow. He’s
been an industry analyst at RedMonk and 451 Research, worked in
corporate strategy and mergers and acquisitions at Dell in software
and cloud, and was a programmer for a decade before all that. He
does several technology podcasts (such as Software Defined Talk),
writes frequently on how large organizations struggle and succeed
with agile development and DevOps, blogs at cote.coffee, and is
@cote on Twitter. Texas Forever!

http://cote.coffee/

	Copyright
	Table of Contents
	Introduction: Why Change?
	Chapter 1. Fostering Change
	Small-Batch Thinking
	Shift to User-Centric Design
	From Functional Teams to Product Teams
	Product Teams3Much of the role descriptions in this section are taken from and based on Tanzu Labs’ guides and experience.
	Pairing Roles

	Case Study: No One Wants to Call the IRS
	Transforming Is Easy...Right?

	Chapter 2. Leadership’s Cloud-Native Cookbook
	Establishing a Vision and Strategy
	Use Vision to Set Your Goals and Inspiration
	Create an Actionable Strategy
	Keep Your Strategy Agile

	Communicating the Vision and Strategy
	Use Internal Channels
	Show Your Strategy in Action
	Gather Feedback
	Create a Manifesto

	Creating a Culture of Change, Continuous Learning, and Comfort
	What Even Is Culture?
	The Core Values of Product Culture
	Monitoring Culture Change
	Giving Feedback

	Building Your Business Case
	The Business Case
	The Ongoing Business Case
	Gated Funding as a Defensive Tactic

	Considering the Enterprise Architect
	Gardening the Organization
	The Shifting yet Never-Changing Role of the EA

	Tackling a Series of Small Projects
	Choosing Projects
	Picking Projects by Portfolio Pondering
	Planning Out the Initial Project

	Assemble the Right Team
	Volunteers
	Rotating Teams to Spread Digital Transformation
	A Note on Labs and Legacy Organizations

	Building Trust with Internal Marketing, Large and Small
	Beyond Newsletters
	Fostering Trust
	Winning Over Process Stakeholders
	The Next Step: Training by Doing

	Tracking Your Improvement with Metrics
	Monitoring
	Six Common Cloud-Native Metrics
	Business Value
	Fleshing Out Metrics
	Metrics’ Utility

	Tending to Compliance and Regulation
	But First, What Exactly Is “Compliance”?
	Compliance Unchained
	Minimal Viable Compliance
	Transform Compliance
	Improving Compliance

	Building Your Pipeline and Choosing Your Platform
	The Build Pipeline
	You’re Gonna Need a Platform

	Own Your Role

	About the Author

