

Spring in Action, Fifth Edition
by Craig Walls

ISBN 9781617294945
520 pages
$39.99

Spring Microservices in Action
by John Carnell

ISBN 9781617293986
384 pages
$39.99

Spring in Practice
by Willie Wheeler with Joshua White

ISBN 9781935182054
560 pages
$35.99

Save 50% on these selected books – eBook, pBook, and MEAP. Enter ebspring50 in the
Promotional Code box when you checkout. Only at manning.com.

https://www.manning.com/books/spring-in-action-fifth-edition
https://www.manning.com/books/spring-in-practice
https://www.manning.com/books/spring-in-action-fifth-edition
https://www.manning.com/books/spring-microservices-in-action
http://manning.com
https://www.manning.com/books/spring-microservices-in-action
https://www.manning.com/books/spring-in-practice

Spring Framework Foundations
Chapters Selected by Craig Walls

Manning Author Picks

 Copyright 2019 Manning Publications
To pre-order or learn more about these books go to www.manning.com

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Candace Gillhoolley, cagi@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN: 9781617297083
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 - EBM - 24 23 22 21 20 19

http://www.manning.com

iii

brief contents
1 Getting started with Spring 1

1.1 What is Spring? 2
1.2 Initializing a Spring application 4
1.3 Writing a Spring application 15
1.4 Surveying the Spring landscape 24
1.5 Summary 26

2 Developing web applications 27
2.1 Displaying information 28
2.2 Processing form submission 38
2.3 Validating form input 43
2.4 Working with view controllers 49
2.5 Choosing a view template library 50
2.6 Summary 53

3 Working with data 54
3.1 Reading and writing data with JDBC 55
3.2 Persisting data with Spring Data JPA 73
3.3 Summary 81

 index 82

Chapter 1

Getting started
with Spring

Chapter 1 from Spring in Action,
Fifth Edition by Craig Walls
Although the Greek philosopher Heraclitus wasn’t well known as a software devel-
oper, he seemed to have a good handle on the subject. He has been quoted as say-
ing, “The only constant is change.” That statement captures a foundational truth of
software development.

 The way we develop applications today is different than it was a year ago, 5 years
ago, 10 years ago, and certainly 15 years ago, when an initial form of the Spring
Framework was introduced in Rod Johnson’s book, Expert One-on-One J2EE Design
and Development (Wrox, 2002, http://mng.bz/oVjy).

 Back then, the most common types of applications developed were browser-
based web applications, backed by relational databases. While that type of develop-
ment is still relevant, and Spring is well equipped for those kinds of applications,
we’re now also interested in developing applications composed of microservices
destined for the cloud that persist data in a variety of databases. And a new interest
in reactive programming aims to provide greater scalability and improved perfor-
mance with non-blocking operations.

This chapter covers
 Spring and Spring Boot essentials

 Initializing a Spring project

 An overview of the Spring landscape
1

https://shortener.manning.com/oVjy
https://www.manning.com/books/spring-in-action-fifth-edition
https://www.manning.com/books/spring-in-action-fifth-edition

2 CHAPTER 1 Getting started with Spring
 As software development evolved, the Spring Framework also changed to address
modern development concerns, including microservices and reactive programming.
Spring also set out to simplify its own development model by introducing Spring Boot.

 Whether you’re developing a simple database-backed web application or con-
structing a modern application built around microservices, Spring is the framework
that will help you achieve your goals. This chapter is your first step in a journey
through modern application development with Spring.

1.1 What is Spring?
I know you’re probably itching to start writing a Spring application, and I assure you
that before this chapter ends, you’ll have developed a simple one. But first, let me set
the stage with a few basic Spring concepts that will help you understand what makes
Spring tick.

 Any non-trivial application is composed of many components, each responsible for
its own piece of the overall application functionality, coordinating with the other
application elements to get the job done. When the application is run, those compo-
nents somehow need to be created and introduced to each other.

 At its core, Spring offers a container, often referred to as the Spring application con-
text, that creates and manages application components. These components, or beans,
are wired together inside the Spring application context to make a complete applica-
tion, much like bricks, mortar, timber, nails, plumbing, and wiring are bound together
to make a house.

 The act of wiring beans together is based on a pattern known as dependency injection
(DI). Rather than have components create and maintain the lifecycle of other beans
that they depend on, a dependency-injected application relies on a separate entity
(the container) to create and maintain all components and inject those into the beans
that need them. This is done typically through constructor arguments or property
accessor methods.

 For example, suppose that among an application’s many components, there are
two that you’ll address: an inventory service (for fetching inventory levels) and a prod-
uct service (for providing basic product information). The product service depends
on the inventory service to be able to provide a complete set of information about
products. Figure 1.1 illustrates the relationships between these beans and the Spring
application context.

 On top of its core container, Spring and a full portfolio of related libraries offer a
web framework, a variety of data persistence options, a security framework, integra-
tion with other systems, runtime monitoring, microservice support, a reactive pro-
gramming model, and many other features necessary for modern application
development.

 Historically, the way you would guide Spring’s application context to wire beans
together was with one or more XML files that described the components and their
relationship to other components. For example, the following XML declares two

3What is Spring?
Inventory

service

Injected into

Other application components also managed by Spring

Product

service

Spring application context

Figure 1.1 Application components are managed and injected into each
other by the Spring application context.

beans, an InventoryService bean and a ProductService bean, and wires the Inven-
toryService bean into ProductService via a constructor argument:

<bean id="inventoryService"
 class="com.example.InventoryService" />

<bean id="productService"
 class="com.example.ProductService" />
 <constructor-arg ref="inventoryService" />
</bean>

In recent versions of Spring, however, a Java-based configuration is more common.
The following Java-based configuration class is equivalent to the XML configuration:

@Configuration
public class ServiceConfiguration {
 @Bean
 public InventoryService inventoryService() {
 return new InventoryService();
 }

 @Bean
 public ProductService productService() {
 return new ProductService(inventoryService());
 }
}

The @Configuration annotation indicates to Spring that this is a configuration class
that will provide beans to the Spring application context. The configuration’s class meth-
ods are annotated with @Bean, indicating that the objects they return should be added
as beans in the application context (where, by default, their respective bean IDs will
be the same as the names of the methods that define them).

4 CHAPTER 1 Getting started with Spring
 Java-based configuration offers several benefits over XML-based configuration,
including greater type safety and improved refactorability. Even so, explicit configura-
tion with either Java or XML is only necessary if Spring is unable to automatically con-
figure the components.

 Automatic configuration has its roots in the Spring techniques known as autowiring
and component scanning. With component scanning, Spring can automatically discover
components from an application’s classpath and create them as beans in the Spring
application context. With autowiring, Spring automatically injects the components
with the other beans that they depend on.

 More recently, with the introduction of Spring Boot, automatic configuration has
gone well beyond component scanning and autowiring. Spring Boot is an extension
of the Spring Framework that offers several productivity enhancements. The most
well-known of these enhancements is autoconfiguration, where Spring Boot can make
reasonable guesses of what components need to be configured and wired together,
based on entries in the classpath, environment variables, and other factors.

 I’d like to show you some example code that demonstrates autoconfiguration. But
I can’t. You see, autoconfiguration is much like the wind. You can see the effects of it,
but there’s no code that I can show you and say “Look! Here’s an example of autocon-
figuration!” Stuff happens, components are enabled, and functionality is provided
without writing code. It’s this lack of code that’s essential to autoconfiguration and
what makes it so wonderful.

 Spring Boot autoconfiguration has dramatically reduced the amount of explicit
configuration (whether with XML or Java) required to build an application. In fact, by
the time you finish the example in this chapter, you’ll have a working Spring applica-
tion that has only a single line of Spring configuration code!

 Spring Boot enhances Spring development so much that it’s hard to imagine
developing Spring applications without it. For that reason, this book treats Spring and
Spring Boot as if they were one and the same. We’ll use Spring Boot as much as possi-
ble, and explicit configuration only when necessary. And, because Spring XML config-
uration is the old-school way of working with Spring, we’ll focus primarily on Spring’s
Java-based configuration.

 But enough of this chitchat, yakety-yak, and flimflam. This book’s title includes the
phrase in action, so let’s get moving, and you can start writing your first application
with Spring.

1.2 Initializing a Spring application
Through the course of this book, you’ll create Taco Cloud, an online application for
ordering the most wonderful food created by man—tacos. Of course, you’ll use
Spring, Spring Boot, and a variety of related libraries and frameworks to achieve
this goal.

 You’ll find several options for initializing a Spring application. Although I could
walk you through the steps of manually creating a project directory structure and

5Initializing a Spring application
defining a build specification, that’s wasted time—time better spent writing applica-
tion code. Therefore, you’re going to lean on the Spring Initializr to bootstrap your
application.

 The Spring Initializr is both a browser-based web application and a REST API,
which can produce a skeleton Spring project structure that you can flesh out with
whatever functionality you want. Several ways to use Spring Initializr follow:

 From the web application at http://start.spring.io
 From the command line using the curl command
 From the command line using the Spring Boot command-line interface
 When creating a new project with Spring Tool Suite
 When creating a new project with IntelliJ IDEA
 When creating a new project with NetBeans

Rather than spend several pages of this chapter talking about each one of these options,
I’ve collected those details in the appendix. In this chapter, and throughout this book,
I’ll show you how to create a new project using my favorite option: Spring Initializr
support in the Spring Tool Suite.

 As its name suggests, Spring Tool Suite is a fantastic Spring development environ-
ment. But it also offers a handy Spring Boot Dashboard feature that (at least at the
time I write this) isn’t available in any of the other IDE options.

 If you’re not a Spring Tool Suite user, that’s fine; we can still be friends. Hop over
to the appendix and substitute the Initializr option that suits you best for the instruc-
tions in the following sections. But know that throughout this book, I may occasionally
reference features specific to Spring Tool Suite, such as the Spring Boot Dashboard. If
you’re not using Spring Tool Suite, you’ll need to adapt those instructions to fit your
IDE.

1.2.1 Initializing a Spring project with Spring Tool Suite

To get started with a new Spring project in Spring Tool Suite, go to the File menu and
select New, and then Spring Starter Project. Figure 1.2 shows the menu structure to
look for.

Figure 1.2 Starting a new project with the Initializr in Spring Tool Suite

Once you select Spring Starter Project, a new project wizard dialog (figure 1.3) appears.
The first page in the wizard asks you for some general project information, such as the
project name, description, and other essential information. If you’re familiar with the

http://start.spring.io/

6 CHAPTER 1 Getting started with Spring
contents of a Maven pom.xml file, you’ll recognize most of the fields as items that end
up in a Maven build specification. For the Taco Cloud application, fill in the dialog as
shown in figure 1.3, and then click Next.

Figure 1.3 Specifying general project information for the Taco Cloud application

The next page in the wizard lets you select dependencies to add to your project (see
figure 1.4). Notice that near the top of the dialog, you can select which version of
Spring Boot you want to base your project on. This defaults to the most current ver-
sion available. It’s generally a good idea to leave it as is unless you need to target a
different version.

 As for the dependencies themselves, you can either expand the various sections
and seek out the desired dependencies manually, or search for them in the search box
at the top of the Available list. For the Taco Cloud application, you’ll start with the
dependencies shown in figure 1.4.

7Initializing a Spring application
Figure 1.4 Choosing starter dependencies

At this point, you can click Finish to generate the project and add it to your work-
space. But if you’re feeling slightly adventurous, click Next one more time to see the
final page of the new starter project wizard, as shown in figure 1.5.

 By default, the new project wizard makes a call to the Spring Initializr at
http://start.spring.io to generate the project. Generally, there’s no need to override
this default, which is why you could have clicked Finish on the second page of the

http://start.spring.io

8 CHAPTER 1 Getting started with Spring
Figure 1.5 Optionally specifying an alternate Initializr address

wizard. But if for some reason you’re hosting your own clone of Initializr (perhaps a
local copy on your own machine or a customized clone running inside your company
firewall), then you’ll want to change the Base Url field to point to your Initializr
instance before clicking Finish.

 After you click Finish, the project is downloaded from the Initializr and loaded
into your workspace. Wait a few moments for it to load and build, and then you’ll be

9Initializing a Spring application
ready to start developing application functionality. But first, let’s take a look at what
the Initializr gave you.

1.2.2 Examining the Spring project structure

After the project loads in the IDE, expand it to see what it contains. Figure 1.6 shows
the expanded Taco Cloud project in Spring Tool Suite.

Figure 1.6 The initial Spring project structure as shown in Spring 
Tool Suite

You may recognize this as a typical Maven or Gradle project structure, where applica-
tion source code is placed under src/main/java, test code is placed under src/test/java,
and non-Java resources are placed under src/main/resources. Within that project
structure, you’ll want to take note of these items:

 mvnw and mvnw.cmd—These are Maven wrapper scripts. You can use these
scripts to build your project even if you don’t have Maven installed on your
machine.

 pom.xml—This is the Maven build specification. We’ll look deeper into this
in a moment.

 TacoCloudApplication.java—This is the Spring Boot main class that boot-
straps the project. We’ll take a closer look at this class in a moment.

 application.properties—This file is initially empty, but offers a place where you
can specify configuration properties. We’ll tinker with this file a little in this

10 CHAPTER 1 Getting started with Spring
chapter, but I’ll postpone a detailed explanation of configuration properties to
chapter 5.

 static—This folder is where you can place any static content (images, stylesheets,
JavaScript, and so forth) that you want to serve to the browser. It’s initially
empty.

 templates—This folder is where you’ll place template files that will be used to
render content to the browser. It’s initially empty, but you’ll add a Thymeleaf
template soon.

 TacoCloudApplicationTests.java—This is a simple test class that ensures that
the Spring application context loads successfully. You’ll add more tests to the
mix as you develop the application.

As the Taco Cloud application grows, you’ll fill in this barebones project structure
with Java code, images, stylesheets, tests, and other collateral that will make your proj-
ect more complete. But in the meantime, let’s dig a little deeper into a few of the
items that Spring Initializr provided.

EXPLORING THE BUILD SPECIFICATION

When you filled out the Initializr form, you specified that your project should be built
with Maven. Therefore, the Spring Initializr gave you a pom.xml file already popu-
lated with the choices you made. The following listing shows the entire pom.xml file
provided by the Initializr.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>sia</groupId>
 <artifactId>taco-cloud</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>taco-cloud</name>
 <description>Taco Cloud Example</description>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.4.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <properties>
 <project.build.sourceEncoding>
 UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>
 UTF-8</project.reporting.outputEncoding>

Listing 1.1 The initial Maven build specification

JAR packaging

Spring Boot version

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd

11Initializing a Spring application
 <java.version>1.8</java.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <scope>runtime</scope>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>htmlunit-driver</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

</project>

The first noteworthy item in the pom.xml file is the <packaging> element. You chose
to build your application as an executable JAR file, as opposed to a WAR file. This is
probably one of the most curious choices you’ll make, especially for a web application.
After all, traditional Java web applications are packaged as WAR files, leaving JAR files
the packaging of choice for libraries and the occasional desktop UI application.

Starter
dependencies

Spring Boot
plugin

12 CHAPTER 1 Getting started with Spring
 The choice of JAR packaging is a cloud-minded choice. Whereas WAR files are per-
fectly suitable for deploying to a traditional Java application server, they’re not a natu-
ral fit for most cloud platforms. Although some cloud platforms (such as Cloud
Foundry) are capable of deploying and running WAR files, all Java cloud platforms
are capable of running an executable JAR file. Therefore, the Spring Initializr defaults
to JAR packaging unless you tell it to do otherwise.

 If you intend to deploy your application to a traditional Java application server,
then you’ll need to choose WAR packaging and include a web initializer class. We’ll
look at how to build WAR files in more detail in chapter 2.

 Next, take note of the <parent> element and, more specifically, its <version>
child. This specifies that your project has spring-boot-starter-parent as its parent
POM. Among other things, this parent POM provides dependency management for
several libraries commonly used in Spring projects. For those libraries covered by the
parent POM, you won’t have to specify a version, as it’s inherited from the parent. The
version, 2.0.4.RELEASE, indicates that you’re using Spring Boot 2.0.4 and, thus, will
inherit dependency management as defined by that version of Spring Boot.

 While we’re on the subject of dependencies, note that there are three dependen-
cies declared under the <dependencies> element. The first two should look somewhat
familiar to you. They correspond directly to the Web and Thymeleaf dependencies that
you selected before clicking the Finish button in the Spring Tool Suite new project
wizard. The third dependency is one that provides a lot of helpful testing capabilities.
You didn’t have to check a box for it to be included because the Spring Initializr
assumes (hopefully, correctly) that you’ll be writing tests.

 You may also notice that all three dependencies have the word starter in their arti-
fact ID. Spring Boot starter dependencies are special in that they typically don’t have
any library code themselves, but instead transitively pull in other libraries. These
starter dependencies offer three primary benefits:

 Your build file will be significantly smaller and easier to manage because you
won’t need to declare a dependency on every library you might need.

 You’re able to think of your dependencies in terms of what capabilities they
provide, rather than in terms of library names. If you’re developing a web appli-
cation, you’ll add the web starter dependency rather than a laundry list of indi-
vidual libraries that enable you to write a web application.

 You’re freed from the burden of worry about library versions. You can trust that
for a given version of Spring Boot, the versions of the libraries brought in tran-
sitively will be compatible. You only need to worry about which version of
Spring Boot you’re using.

Finally, the build specification ends with the Spring Boot plugin. This plugin performs
a few important functions:

 It provides a Maven goal that enables you to run the application using Maven.
You’ll try out this goal in section 1.3.4.

13Initializing a Spring application
 It ensures that all dependency libraries are included within the executable JAR
file and available on the runtime classpath.

 It produces a manifest file in the JAR file that denotes the bootstrap class
(TacoCloudApplication, in your case) as the main class for the executable JAR.

Speaking of the bootstrap class, let’s open it up and take a closer look.

BOOTSTRAPPING THE APPLICATION

Because you’ll be running the application from an executable JAR, it’s important to
have a main class that will be executed when that JAR file is run. You’ll also need at
least a minimal amount of Spring configuration to bootstrap the application. That’s
what you’ll find in the TacoCloudApplication class, shown in the following listing.

package tacos;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class TacoCloudApplication {

 public static void main(String[] args) {
 SpringApplication.run(TacoCloudApplication.class, args);
 }

}

Although there’s little code in TacoCloudApplication, what’s there packs quite a
punch. One of the most powerful lines of code is also one of the shortest. The
@SpringBootApplication annotation clearly signifies that this is a Spring Boot appli-
cation. But there’s more to @SpringBootApplication than meets the eye.

 @SpringBootApplication is a composite application that combines three other
annotations:

 @SpringBootConfiguration—Designates this class as a configuration class.
Although there’s not much configuration in the class yet, you can add Java-
based Spring Framework configuration to this class if you need to. This annota-
tion is, in fact, a specialized form of the @Configuration annotation.

 @EnableAutoConfiguration—Enables Spring Boot automatic configuration.
We’ll talk more about autoconfiguration later. For now, know that this annota-
tion tells Spring Boot to automatically configure any components that it thinks
you’ll need.

 @ComponentScan—Enables component scanning. This lets you declare other
classes with annotations like @Component, @Controller, @Service, and others,
to have Spring automatically discover them and register them as components in
the Spring application context.

Listing 1.2 The Taco Cloud bootstrap class

Spring Boot
application

Runs the
application

14 CHAPTER 1 Getting started with Spring
The other important piece of TacoCloudApplication is the main() method. This is the
method that will be run when the JAR file is executed. For the most part, this method is
boilerplate code; every Spring Boot application you write will have a method similar or
identical to this one (class name differences notwithstanding).

 The main() method calls a static run() method on the SpringApplication class,
which performs the actual bootstrapping of the application, creating the Spring appli-
cation context. The two parameters passed to the run() method are a configuration
class and the command-line arguments. Although it’s not necessary that the configu-
ration class passed to run() be the same as the bootstrap class, this is the most conve-
nient and typical choice.

 Chances are you won’t need to change anything in the bootstrap class. For simple
applications, you might find it convenient to configure one or two other components
in the bootstrap class, but for most applications, you’re better off creating a separate
configuration class for anything that isn’t autoconfigured. You’ll define several config-
uration classes throughout the course of this book, so stay tuned for details.

TESTING THE APPLICATION

Testing is an important part of software development. Recognizing this, the Spring
Initializr gives you a test class to get started. The following listing shows the baseline
test class.

package tacos;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)
@SpringBootTest
public class TacoCloudApplicationTests {

 @Test
 public void contextLoads() {
 }

}

There’s not much to be seen in TacoCloudApplicationTests: the one test method in
the class is empty. Even so, this test class does perform an essential check to ensure
that the Spring application context can be loaded successfully. If you make any
changes that prevent the Spring application context from being created, this test fails,
and you can react by fixing the problem.

 Also notice the class annotated with @RunWith(SpringRunner.class). @RunWith is
a JUnit annotation, providing a test runner that guides JUnit in running a test. Think

Listing 1.3 A baseline application test

Uses the
Spring runner

A Spring
Boot test

The test
method

15Writing a Spring application
of it as applying a plugin to JUnit to provide custom testing behavior. In this case,
JUnit is given SpringRunner, a Spring-provided test runner that provides for the cre-
ation of a Spring application context that the test will run against.

A TEST RUNNER BY ANY OTHER NAME...
If you’re already familiar with writing Spring tests or are maybe looking at some exist-
ing Spring-based test classes, you may have seen a test runner named SpringJUnit4-
ClassRunner. SpringRunner is an alias for SpringJUnit4ClassRunner, and was
introduced in Spring 4.3 to remove the association with a specific version of JUnit (for
example, JUnit 4). And there’s no denying that the alias is easier to read and type.

 @SpringBootTest tells JUnit to bootstrap the test with Spring Boot capabilities.
For now, it’s enough to think of this as the test class equivalent of calling Spring-
Application.run() in a main() method. Over the course of this book, you’ll see
@SpringBootTest several times, and we’ll uncover some of its power.

 Finally, there’s the test method itself. Although @RunWith(SpringRunner.class)
and @SpringBootTest are tasked to load the Spring application context for the test,
they won’t have anything to do if there aren’t any test methods. Even without any
assertions or code of any kind, this empty test method will prompt the two annotations
to do their job and load the Spring application context. If there are any problems in
doing so, the test fails.

 At this point, we’ve concluded our review of the code provided by the Spring Ini-
tializr. You’ve seen some of the boilerplate foundation that you can use to develop a
Spring application, but you still haven’t written a single line of code. Now it’s time to
fire up your IDE, dust off your keyboard, and add some custom code to the Taco
Cloud application.

1.3 Writing a Spring application
Because you’re just getting started, we’ll start off with a relatively small change to the
Taco Cloud application, but one that will demonstrate a lot of Spring’s goodness.
It seems appropriate that as you’re just starting, the first feature you’ll add to the Taco
Cloud application is a homepage. As you add the homepage, you’ll create two
code artifacts:

 A controller class that handles requests for the homepage
 A view template that defines what the homepage looks like

And because testing is important, you’ll also write a simple test class to test the home-
page. But first things first ... let’s write that controller.

1.3.1 Handling web requests

Spring comes with a powerful web framework known as Spring MVC. At the center of
Spring MVC is the concept of a controller, a class that handles requests and responds
with information of some sort. In the case of a browser-facing application, a controller

16 CHAPTER 1 Getting started with Spring
responds by optionally populating model data and passing the request on to a view to
produce HTML that’s returned to the browser.

 You’re going to learn a lot about Spring MVC in chapter 2. But for now, you’ll
write a simple controller class that handles requests for the root path (for example, /)
and forwards those requests to the homepage view without populating any model
data. The following listing shows the simple controller class.

package tacos;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.GetMapping;

@Controller
public class HomeController {

 @GetMapping("/")
 public String home() {
 return "home";
 }

}

As you can see, this class is annotated with @Controller. On its own, @Controller
doesn’t do much. Its primary purpose is to identify this class as a component for com-
ponent scanning. Because HomeController is annotated with @Controller, Spring’s
component scanning automatically discovers it and creates an instance of Home-
Controller as a bean in the Spring application context.

 In fact, a handful of other annotations (including @Component, @Service, and
@Repository) serve a purpose similar to @Controller. You could have just as effec-
tively annotated HomeController with any of those other annotations, and it would
have still worked the same. The choice of @Controller is, however, more descriptive
of this component’s role in the application.

 The home() method is as simple as controller methods come. It’s annotated with
@GetMapping to indicate that if an HTTP GET request is received for the root path /,
then this method should handle that request. It does so by doing nothing more than
returning a String value of home.

 This value is interpreted as the logical name of a view. How that view is imple-
mented depends on a few factors, but because Thymeleaf is in your classpath, you can
define that template with Thymeleaf.

WHY THYMELEAF?
You may be wondering why you chose Thymeleaf for a template engine. Why not JSP?
Why not FreeMarker? Why not one of several other options?

 Put simply, I had to choose something, and I like Thymeleaf and generally prefer it
over those other options. And even though JSP may seem like an obvious choice,

Listing 1.4 The homepage controller

The controller

Handles requests
for the root path /

Returns the
view name

17Writing a Spring application
there are some challenges to overcome when using JSP with Spring Boot. I didn’t want
to go down that rabbit hole in chapter 1. Hang tight. We’ll look at other template
options, including JSP, in chapter 2.

 The template name is derived from the logical view name by prefixing it with
/templates/ and postfixing it with .html. The resulting path for the template is
/templates/home.html. Therefore, you’ll need to place the template in your project
at /src/main/resources/templates/home.html. Let’s create that template now.

1.3.2 Defining the view

In the interest of keeping your homepage simple, it should do nothing more than wel-
come users to the site. The next listing shows the basic Thymeleaf template that
defines the Taco Cloud homepage.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 </head>

 <body>
 <h1>Welcome to...</h1>

 </body>
</html>

There’s not much to discuss with regard to this template. The only notable line of
code is the one with the tag to display the Taco Cloud logo. It uses a Thymeleaf
th:src attribute and an @{...} expression to reference the image with a context-rel-
ative path. Aside from that, it’s not much more than a Hello World page.

 But let’s talk about that image a bit more. I’ll leave it up to you to define a Taco
Cloud logo that you like. You’ll need to make sure you place it at the right place
within the project.

 The image is referenced with the context-relative path /images/TacoCloud.png.
As you’ll recall from our review of the project structure, static content such as images
is kept in the /src/main/resources/static folder. That means that the Taco Cloud
logo image must also reside within the project at /src/main/resources/static/images/
TacoCloud.png.

 Now that you’ve got a controller to handle requests for the homepage and a view
template to render the homepage, you’re almost ready to fire up the application and
see it in action. But first, let’s see how you can write a test against the controller.

Listing 1.5 The Taco Cloud homepage template

http://www.w3.org/1999/xhtml
http://www.thymeleaf.org

18 CHAPTER 1 Getting started with Spring
1.3.3 Testing the controller

Testing web applications can be tricky when making assertions against the content of
an HTML page. Fortunately, Spring comes with some powerful test support that
makes testing a web application easy.

 For the purposes of the homepage, you’ll write a test that’s comparable in com-
plexity to the homepage itself. Your test will perform an HTTP GET request for the
root path / and expect a successful result where the view name is home and the result-
ing content contains the phrase “Welcome to...”. The following should do the trick.

package tacos;

import static org.hamcrest.Matchers.containsString;
import static

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static

org.springframework.test.web.servlet.result.MockMvcResultMatchers.conten
t;

import static
org.springframework.test.web.servlet.result.MockMvcResultMatchers.status
;

import static
org.springframework.test.web.servlet.result.MockMvcResultMatchers.view;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.servlet.MockMvc;

@RunWith(SpringRunner.class)
@WebMvcTest(HomeController.class)
public class HomeControllerTest {

 @Autowired
 private MockMvc mockMvc;

 @Test
 public void testHomePage() throws Exception {
 mockMvc.perform(get("/"))

 .andExpect(status().isOk())

 .andExpect(view().name("home"))

 .andExpect(content().string(
 containsString("Welcome to...")));
 }

}

Listing 1.6 A test for the homepage controller

Web test for
HomeController

Injects MockMvc

Performs GET /

Expects HTTP 200

Expects home view

Expects Welcome to...

19Writing a Spring application
The first thing you might notice about this test is that it differs slightly from the Taco-
CloudApplicationTests class with regard to the annotations applied to it. Instead of
@SpringBootTest markup, HomeControllerTest is annotated with @WebMvcTest. This
is a special test annotation provided by Spring Boot that arranges for the test to run in
the context of a Spring MVC application. More specifically, in this case, it arranges for
HomeController to be registered in Spring MVC so that you can throw requests
against it.

 @WebMvcTest also sets up Spring support for testing Spring MVC. Although it
could be made to start a server, mocking the mechanics of Spring MVC is sufficient for
your purposes. The test class is injected with a MockMvc object for the test to drive the
mockup.

 The testHomePage() method defines the test you want to perform against the
homepage. It starts with the MockMvc object to perform an HTTP GET request for /
(the root path). From that request, it sets the following expectations:

 The response should have an HTTP 200 (OK) status.
 The view should have a logical name of home.
 The rendered view should contain the text “Welcome to....”

If, after the MockMvc object performs the request, any of those expectations aren’t
met, then the test fails. But your controller and view template are written to satisfy
those expectations, so the test should pass with flying colors—or at least with some
shade of green indicating a passing test.

 The controller has been written, the view template created, and you have a passing
test. It seems that you’ve implemented the homepage successfully. But even though
the test passes, there’s something slightly more satisfying with seeing the results in a
browser. After all, that’s how Taco Cloud customers are going to see it. Let’s build the
application and run it.

1.3.4 Building and running the application

Just as there are several ways to initialize a Spring application, there are several ways to
run one. If you like, you can flip over to the appendix to read about some of the more
common ways to run a Spring Boot application.

 Because you chose to use Spring Tool Suite to initialize and work on the project,
you have a handy feature called the Spring Boot Dashboard available to help you run
your application inside the IDE. The Spring Boot Dashboard appears as a tab, typi-
cally near the bottom left of the IDE window. Figure 1.7 shows an annotated screen-
shot of the Spring Boot Dashboard.

 I don’t want to spend much time going over everything the Spring Boot Dash-
board does, although figure 1.7 covers some of the most useful details. The important
thing to know right now is how to use it to run the Taco Cloud application. Make sure
taco-cloud application is highlighted in the list of projects (it’s the only application
shown in figure 1.7), and then click the start button (the left-most button with both a
green triangle and a red square). The application should start right up.

20 CHAPTER 1 Getting started with Spring
Starts/restarts the
selected project
in debug mode

Opens a web browser
on the running

application
Stops the

selected projectStarts/restarts the
selected project

List of
Spring Boot

projects
Indicates that the

project has Spring Boot
DevTools enabled

Indicates that the
running application

is listening on port 8080

Opens the console
on the running

application

Figure 1.7 Highlights of the Spring Boot Dashboard

As the application starts, you’ll see some Spring ASCII art fly by in the console, fol-
lowed by some log entries describing the steps as the application starts. Before the log-
ging stops, you’ll see a log entry saying Tomcat started on port(s): 8080 (http), which
means that you’re ready to point your web browser at the homepage to see the fruits
of your labor.

 Wait a minute. Tomcat started? When did you deploy the application to Tomcat?
 Spring Boot applications tend to bring everything they need with them and don’t

need to be deployed to some application server. You never deployed your application
to Tomcat ... Tomcat is a part of your application! (I’ll describe the details of how
Tomcat became part of your application in section 1.3.6.)

 Now that the application has started, point your web browser to http://local-
host:8080 (or click the globe button in the Spring Boot Dashboard) and you should
see something like figure 1.8. Your results may be different if you designed your own
logo image. But it shouldn’t vary much from what you see in figure 1.8.

 It may not be much to look at. But this isn’t exactly a book on graphic design. The
humble appearance of the homepage is more than sufficient for now. And it provides
you a solid start on getting to know Spring.

 One thing I’ve glossed over up until now is DevTools. You selected it as a depen-
dency when initializing your project. It appears as a dependency in the produced

21Writing a Spring application
Figure 1.8 The Taco Cloud homepage

pom.xml file. And the Spring Boot Dashboard even shows that the project has
DevTools enabled. But what is DevTools, and what does it do for you? Let’s take a
quick survey of a couple of DevTools’ most useful features.

1.3.5 Getting to know Spring Boot DevTools

As its name suggests, DevTools provides Spring developers with some handy develop-
ment-time tools. Among those are

 Automatic application restart when code changes
 Automatic browser refresh when browser-destined resources (such as templates,

JavaScript, stylesheets, and so on) change
 Automatic disable of template caches
 Built in H2 Console if the H2 database is in use

It’s important to understand that DevTools isn’t an IDE plugin, nor does it require
that you use a specific IDE. It works equally well in Spring Tool Suite, IntelliJ IDEA,
and NetBeans. Furthermore, because it’s only intended for development purposes, it’s
smart enough to disable itself when deploying in a production setting. (We’ll discuss
how it does this when you get around to deploying your application in chapter 19.)
For now, let’s focus on the most useful features of Spring Boot DevTools, starting with
automatic application restart.

AUTOMATIC APPLICATION RESTART

With DevTools as part of your project, you’ll be able to make changes to Java code and
properties files in the project and see those changes applied after a brief moment.

22 CHAPTER 1 Getting started with Spring
DevTools monitors for changes, and when it sees something has changed, it automati-
cally restarts the application.

 More precisely, when DevTools is in play, the application is loaded into two sepa-
rate class loaders in the Java virtual machine (JVM). One class loader is loaded with
your Java code, property files, and pretty much anything that’s in the src/main/ path
of the project. These are items that are likely to change frequently. The other class
loader is loaded with dependency libraries, which aren’t likely to change as often.

 When a change is detected, DevTools reloads only the class loader containing your
project code and restarts the Spring application context, but leaves the other class
loader and the JVM intact. Although subtle, this strategy affords a small reduction in
the time it takes to start the application.

 The downside of this strategy is that changes to dependencies won’t be available in
automatic restarts. That’s because the class loader containing dependency libraries
isn’t automatically reloaded. This means that any time you add, change, or remove a
dependency in your build specification, you’ll need to do a hard restart of the applica-
tion for those changes to take effect.

AUTOMATIC BROWSER REFRESH AND TEMPLATE CACHE DISABLE

By default, template options such as Thymeleaf and FreeMarker are configured to
cache the results of template parsing so that templates don’t need to be reparsed with
every request they serve. This is great in production, as it buys a bit of performance
benefit.

 Cached templates, however, are not so great at development time. Cached tem-
plates make it impossible to make changes to the templates while the application is
running and see the results after refreshing the browser. Even if you’ve made changes,
the cached template will still be in use until you restart the application.

 DevTools addresses this issue by automatically disabling all template caching. Make
as many changes as you want to your templates and know that you’re only a browser
refresh away from seeing the results.

 But if you’re like me, you don’t even want to be burdened with the effort of click-
ing the browser’s refresh button. It’d be much nicer if you could make the changes
and witness the results in the browser immediately. Fortunately, DevTools has some-
thing special for those of us who are too lazy to click a refresh button.

 When DevTools is in play, it automatically enables a LiveReload (http://livere-
load.com/) server along with your application. By itself, the LiveReload server isn’t
very useful. But when coupled with a corresponding LiveReload browser plugin, it
causes your browser to automatically refresh when changes are made to templates,
images, stylesheets, JavaScript, and so on—in fact, almost anything that ends up being
served to your browser.

 LiveReload has browser plugins for Google Chrome, Safari, and Firefox browsers.
(Sorry, Internet Explorer and Edge fans.) Visit http://livereload.com/extensions/ to
find information on how to install LiveReload for your browser.

http://livereload.com/
http://livereload.com/
http://livereload.com/extensions/

23Writing a Spring application
BUILT IN H2 CONSOLE

Although your project doesn’t yet use a database, that will change in chapter 3. If you
choose to use the H2 database for development, DevTools will also automatically
enable an H2 Console that you can access from your web browser. You only need to
point your web browser to http://localhost:8080/h2-console to gain insight into the
data your application is working with.

 At this point, you’ve written a complete, albeit simple, Spring application. You’ll
expand on it throughout the course of the book. But now is a good time to step back
and review what you’ve accomplished and how Spring played a part.

1.3.6 Let’s review

Think back on how you got to this point. In short, these are the steps you’ve taken to
build your Spring-based Taco Cloud application:

 You created an initial project structure using Spring Initializr.
 You wrote a controller class to handle the homepage request.
 You defined a view template to render the homepage.
 You wrote a simple test class to prove out your work.

Seems pretty straightforward, doesn’t it? With the exception of the first step to boot-
strap the project, each action you’ve taken has been keenly focused on achieving the
goal of producing a homepage.

 In fact, almost every line of code you’ve written is aimed toward that goal. Not
counting Java import statements, I count only two lines of code in your controller
class and no lines in the view template that are Spring-specific. And although the bulk
of the test class utilizes Spring testing support, it seems a little less invasive in the con-
text of a test.

 That’s an important benefit of developing with Spring. You can focus on the code
that meets the requirements of an application rather than on satisfying the demands
of a framework. Although you’ll no doubt need to write some framework-specific code
from time to time, it’ll usually be only a small fraction of your codebase. As I said
before, Spring (with Spring Boot) can be considered the frameworkless framework.

 How does this even work? What is Spring doing behind the scenes to make sure
your application needs are met? To understand what Spring is doing, let’s start by
looking at the build specification.

 In the pom.xml file, you declared a dependency on the Web and Thymeleaf start-
ers. These two dependencies transitively brought in a handful of other dependencies,
including

 Spring’s MVC framework
 Embedded Tomcat
 Thymeleaf and the Thymeleaf layout dialect

http://localhost:8080/h2-console

24 CHAPTER 1 Getting started with Spring
It also brought Spring Boot’s autoconfiguration library along for the ride. When
the application starts, Spring Boot autoconfiguration detects those libraries and
automatically

 Configures the beans in the Spring application context to enable Spring MVC
 Configures the embedded Tomcat server in the Spring application context
 Configures a Thymeleaf view resolver for rendering Spring MVC views with

Thymeleaf templates

In short, autoconfiguration does all the grunt work, leaving you to focus on writing
code that implements your application functionality. That’s a pretty sweet arrange-
ment, if you ask me!

 Your Spring journey has just begun. The Taco Cloud application only touched on a
small portion of what Spring has to offer. Before you take your next step, let’s survey
the Spring landscape and see what landmarks you’ll encounter on your journey.

1.4 Surveying the Spring landscape
To get an idea of the Spring landscape, look no further than the enormous list of
checkboxes on the full version of the Spring Initializr web form. It lists over 100
dependency choices, so I won’t try to list them all here or to provide a screenshot. But
I encourage you to take a look. In the meantime, I’ll mention a few of the highlights.

1.4.1 The core Spring Framework

As you might expect, the core Spring Framework is the foundation of everything else
in the Spring universe. It provides the core container and dependency injection
framework. But it also provides a few other essential features.

 Among these is Spring MVC, Spring’s web framework. You’ve already seen how to
use Spring MVC to write a controller class to handle web requests. What you’ve not yet
seen, however, is that Spring MVC can also be used to create REST APIs that produce
non-HTML output. We’re going to dig more into Spring MVC in chapter 2 and then
take another look at how to use it to create REST APIs in chapter 6.

 The core Spring Framework also offers some elemental data persistence support,
specifically template-based JDBC support. You’ll see how to use JdbcTemplate in chap-
ter 3.

 In the most recent version of Spring (5.0.8), support was added for reactive-style
programming, including a new reactive web framework called Spring WebFlux that
borrows heavily from Spring MVC. You’ll look at Spring’s reactive programming
model in part 3 and Spring WebFlux specifically in chapter 10.

1.4.2 Spring Boot

We’ve already seen many of the benefits of Spring Boot, including starter dependen-
cies and autoconfiguration. Be certain that we’ll use as much of Spring Boot as possi-
ble throughout this book and avoid any form of explicit configuration, unless it’s

25Surveying the Spring landscape
absolutely necessary. But in addition to starter dependencies and autoconfiguration,
Spring Boot also offers a handful of other useful features:

 The Actuator provides runtime insight into the inner workings of an applica-
tion, including metrics, thread dump information, application health, and envi-
ronment properties available to the application.

 Flexible specification of environment properties.
 Additional testing support on top of the testing assistance found in the core

framework.

What’s more, Spring Boot offers an alternative programming model based on Groovy
scripts that’s called the Spring Boot CLI (command-line interface). With the Spring
Boot CLI, you can write entire applications as a collection of Groovy scripts and run
them from the command line. We won’t spend much time with the Spring Boot CLI,
but we’ll touch on it on occasion when it fits our needs.

 Spring Boot has become such an integral part of Spring development; I can’t imag-
ine developing a Spring application without it. Consequently, this book takes a Spring
Boot–centric view, and you might catch me using the word Spring when I’m referring
to something that Spring Boot is doing.

1.4.3 Spring Data

Although the core Spring Framework comes with basic data persistence support,
Spring Data provides something quite amazing: the ability to define your application’s
data repositories as simple Java interfaces, using a naming convention when defining
methods to drive how data is stored and retrieved.

 What’s more, Spring Data is capable of working with a several different kinds of
databases, including relational (JPA), document (Mongo), graph (Neo4j), and others.
You’ll use Spring Data to help create repositories for the Taco Cloud application in
chapter 3.

1.4.4 Spring Security

Application security has always been an important topic, and it seems to become more
important every day. Fortunately, Spring has a robust security framework in Spring
Security.

 Spring Security addresses a broad range of application security needs, including
authentication, authorization, and API security. Although the scope of Spring Security
is too large to be properly covered in this book, we’ll touch on some of the most com-
mon use cases in chapters 4 and 12.

1.4.5 Spring Integration and Spring Batch

At some point, most applications will need to integrate with other applications or
even with other components of the same application. Several patterns of application

26 CHAPTER 1 Getting started with Spring
integration have emerged to address these needs. Spring Integration and Spring
Batch provide the implementation of these patterns for Spring-based applications.

 Spring Integration addresses real-time integration where data is processed as it’s
made available. In contrast, Spring Batch addresses batched integration where data is
allowed to collect for a time until some trigger (perhaps a time trigger) signals that it’s
time for the batch of data to be processed. You’ll explore both Spring Batch and
Spring Integration in chapter 9.

1.4.6 Spring Cloud

As I’m writing this, the application development world is entering a new era where
we’ll no longer develop our applications as single deployment unit monoliths and will
instead compose applications from several individual deployment units known as
microservices.

 Microservices are a hot topic, addressing several practical development and run-
time concerns. In doing so, however, they bring to fore their own challenges. Those
challenges are met head-on by Spring Cloud, a collection of projects for developing
cloud-native applications with Spring.

 Spring Cloud covers a lot of ground, and it’d be impossible to cover it all in this
book. We’ll look at some of the most common components of Spring Cloud in chap-
ters 13, 14, and 15. For a more complete discussion of Spring Cloud, I suggest taking a
look at Spring Microservices in Action by John Carnell (Manning, 2017, www.manning
.com/books/spring-microservices-in-action).

1.5 Summary
 Spring aims to make developer challenges easy, like creating web applications,

working with databases, securing applications, and microservices.
 Spring Boot builds on top of Spring to make Spring even easier with simplified

dependency management, automatic configuration, and runtime insights.
 Spring applications can be initialized using the Spring Initializr, which is web-

based and supported natively in most Java development environments.
 The components, commonly referred to as beans, in a Spring application con-

text can be declared explicitly with Java or XML, discovered by component
scanning, or automatically configured with Spring Boot autoconfiguration.

http://www.manning.com/books/spring-microservices-in-action
http://www.manning.com/books/spring-microservices-in-action
http://www.manning.com/books/spring-microservices-in-action

Chapter 2

Developing web
applications

Chapter 2 from Spring in Action,
Fifth Edition by Craig Walls
First impressions are important. Curb appeal can sell a house long before the
home buyer enters the door. A car’s cherry paint job will turn more heads than
what’s under the hood. And literature is replete with stories of love at first sight.
What’s inside is very important, but what’s outside—what’s seen first—is important.

 The applications you’ll build with Spring will do all kinds of things, including
crunching data, reading information from a database, and interacting with other
applications. But the first impression your application users will get comes from the
user interface. And in many applications, that UI is a web application presented in
a browser.

 In chapter 1, you created your first Spring MVC controller to display your applica-
tion homepage. But Spring MVC can do far more than simply display static content.
In this chapter, you’ll develop the first major bit of functionality in your Taco Cloud
application—the ability to design custom tacos. In doing so, you’ll dig deeper into
Spring MVC, and you’ll see how to display model data and process form input.

This chapter covers
 Presenting model data in the browser

 Processing and validating form input

 Choosing a view template library
27

https://www.manning.com/books/spring-in-action-fifth-edition
https://www.manning.com/books/spring-in-action-fifth-edition

28 CHAPTER 2 Developing web applications
2.1 Displaying information
Fundamentally, Taco Cloud is a place where you can order tacos online. But more
than that, Taco Cloud wants to enable its customers to express their creative side and
to design custom tacos from a rich palette of ingredients.

 Therefore, the Taco Cloud web application needs a page that displays the selection
of ingredients for taco artists to choose from. The ingredient choices may change at
any time, so they shouldn’t be hardcoded into an HTML page. Rather, the list of avail-
able ingredients should be fetched from a database and handed over to the page to be
displayed to the customer.

 In a Spring web application, it’s a controller’s job to fetch and process data. And
it’s a view’s job to render that data into HTML that will be displayed in the browser.
You’re going to create the following components in support of the taco creation page:

 A domain class that defines the properties of a taco ingredient
 A Spring MVC controller class that fetches ingredient information and passes it

along to the view
 A view template that renders a list of ingredients in the user’s browser

The relationship between these components is illustrated in figure 2.1.

Request

Request

Design

view

Ingredients

Web browser

HTML

Taco

design

controller

Figure 2.1 A typical Spring MVC request flow

Because this chapter focuses on Spring’s web framework, we’ll defer any of the data-
base stuff to chapter 3. For now, the controller will be solely responsible for providing
the ingredients to the view. In chapter 3, you’ll rework the controller to collaborate
with a repository that fetches ingredients data from a database.

29Displaying information
 Before you write the controller and view, let’s hammer out the domain type that
represents an ingredient. This will establish a foundation on which you can develop
your web components.

2.1.1 Establishing the domain

An application’s domain is the subject area that it addresses—the ideas and concepts
that influence the understanding of the application.1 In the Taco Cloud application,
the domain includes such objects as taco designs, the ingredients that those designs
are composed of, customers, and taco orders placed by the customers. To get started,
we’ll focus on taco ingredients.

 In your domain, taco ingredients are fairly simple objects. Each has a name as well
as a type so that it can be visually categorized (proteins, cheeses, sauces, and so on).
Each also has an ID by which it can easily and unambiguously be referenced. The fol-
lowing Ingredient class defines the domain object you need.

package tacos;

import lombok.Data;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor
public class Ingredient {

 private final String id;
 private final String name;
 private final Type type;

 public static enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

As you can see, this is a run-of-the-mill Java domain class, defining the three proper-
ties needed to describe an ingredient. Perhaps the most unusual thing about the
Ingredient class as defined in listing 2.1 is that it seems to be missing the usual set of
getter and setter methods, not to mention useful methods like equals(), hashCode(),
toString(), and others.

 You don’t see them in the listing partly to save space, but also because you’re using
an amazing library called Lombok to automatically generate those methods at run-
time. In fact, the @Data annotation at the class level is provided by Lombok and tells
Lombok to generate all of those missing methods as well as a constructor that accepts

1 For a much more in-depth discussion of application domains, I suggest Eric Evans’ Domain-Driven Design
(Addison-Wesley Professional, 2003).

Listing 2.1 Defining taco ingredients

30 CHAPTER 2 Developing web applications
all final properties as arguments. By using Lombok, you can keep the code for
Ingredient slim and trim.

 Lombok isn’t a Spring library, but it’s so incredibly useful that I find it hard to
develop without it. And it’s a lifesaver when I need to keep code examples in a book
short and sweet.

 To use Lombok, you’ll need to add it as a dependency in your project. If you’re
using Spring Tool Suite, it’s an easy matter of right-clicking on the pom.xml file and
selecting Edit Starters from the Spring context menu option. The same selection of
dependencies you were given in chapter 1 (in figure 1.4) will appear, giving you a
chance to add or change your selected dependencies. Find the Lombok choice, make
sure it’s checked, and click OK; Spring Tool Suite will automatically add it to your
build specification.

 Alternatively, you can manually add it with the following entry in pom.xml:

<dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <optional>true</optional>
</dependency>

This dependency will provide you with Lombok annotations (such as @Data) at devel-
opment time and with automatic method generation at runtime. But you’ll also need
to add Lombok as an extension in your IDE, or your IDE will complain with errors
about missing methods and final properties that aren’t being set. Visit https://pro-
jectlombok.org/ to find out how to install Lombok in your IDE of choice.

 I think you’ll find Lombok to be very useful, but know that it’s optional. You don’t
need it to develop Spring applications, so if you’d rather not use it, feel free to write
those missing methods by hand. Go ahead ... I’ll wait. When you finish, you’ll add
some controllers to handle web requests in your application.

2.1.2 Creating a controller class

Controllers are the major players in Spring’s MVC framework. Their primary job is to
handle HTTP requests and either hand a request off to a view to render HTML
(browser-displayed) or write data directly to the body of a response (RESTful). In this
chapter, we’re focusing on the kinds of controllers that use views to produce content
for web browsers. When we get to chapter 6, we’ll look at writing controllers that han-
dle requests in a REST API.

 For the Taco Cloud application, you need a simple controller that will do the fol-
lowing:

 Handle HTTP GET requests where the request path is /design
 Build a list of ingredients
 Hand the request and the ingredient data off to a view template to be rendered

as HTML and sent to the requesting web browser

https://projectlombok.org/
https://projectlombok.org/

31Displaying information
The following DesignTacoController class addresses those requirements.

package tacos.web;

import java.util.Arrays;
import java.util.List;
import java.util.stream.Collectors;

import javax.validation.Valid;

import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.Errors;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;

import lombok.extern.slf4j.Slf4j;
import tacos.Taco;
import tacos.Ingredient;
import tacos.Ingredient.Type;

@Slf4j
@Controller
@RequestMapping("/design")
public class DesignTacoController {

 @GetMapping
 public String showDesignForm(Model model) {
 List<Ingredient> ingredients = Arrays.asList(
 new Ingredient("FLTO", "Flour Tortilla", Type.WRAP),
 new Ingredient("COTO", "Corn Tortilla", Type.WRAP),
 new Ingredient("GRBF", "Ground Beef", Type.PROTEIN),
 new Ingredient("CARN", "Carnitas", Type.PROTEIN),
 new Ingredient("TMTO", "Diced Tomatoes", Type.VEGGIES),
 new Ingredient("LETC", "Lettuce", Type.VEGGIES),
 new Ingredient("CHED", "Cheddar", Type.CHEESE),
 new Ingredient("JACK", "Monterrey Jack", Type.CHEESE),
 new Ingredient("SLSA", "Salsa", Type.SAUCE),
 new Ingredient("SRCR", "Sour Cream", Type.SAUCE)
);

 Type[] types = Ingredient.Type.values();
 for (Type type : types) {
 model.addAttribute(type.toString().toLowerCase(),
 filterByType(ingredients, type));
 }

 model.addAttribute("design", new Taco());

 return "design";
 }

}

Listing 2.2 The beginnings of a Spring controller class

32 CHAPTER 2 Developing web applications
The first thing to note about DesignTacoController is the set of annotations applied
at the class level. The first, @Slf4j, is a Lombok-provided annotation that, at runtime,
will automatically generate an SLF4J (Simple Logging Facade for Java, https://www
.slf4j.org/) Logger in the class. This modest annotation has the same effect as if you
were to explicitly add the following lines within the class:

private static final org.slf4j.Logger log =
 org.slf4j.LoggerFactory.getLogger(DesignTacoController.class);

You’ll make use of this Logger a little later.
 The next annotation applied to DesignTacoController is @Controller. This

annotation serves to identify this class as a controller and to mark it as a candidate for
component scanning, so that Spring will discover it and automatically create an
instance of DesignTacoController as a bean in the Spring application context.

 DesignTacoController is also annotated with @RequestMapping. The @Request-
Mapping annotation, when applied at the class level, specifies the kind of requests that
this controller handles. In this case, it specifies that DesignTacoController will han-
dle requests whose path begins with /design.

HANDLING A GET REQUEST

The class-level @RequestMapping specification is refined with the @GetMapping annota-
tion that adorns the showDesignForm() method. @GetMapping, paired with the class-
level @RequestMapping, specifies that when an HTTP GET request is received for
/design, showDesignForm() will be called to handle the request.

 @GetMapping is a relatively new annotation, having been introduced in Spring 4.3.
Prior to Spring 4.3, you might have used a method-level @RequestMapping annota-
tion instead:

@RequestMapping(method=RequestMethod.GET)

Clearly, @GetMapping is more succinct and specific to the HTTP method that it targets.
@GetMapping is just one member of a family of request-mapping annotations. Table 2.1
lists all of the request-mapping annotations available in Spring MVC.

Table 2.1 Spring MVC request-mapping annotations

Annotation Description

@RequestMapping General-purpose request handling

@GetMapping Handles HTTP GET requests

@PostMapping Handles HTTP POST requests

@PutMapping Handles HTTP PUT requests

@DeleteMapping Handles HTTP DELETE requests

@PatchMapping Handles HTTP PATCH requests

https://www.slf4j.org/
https://www.slf4j.org/
https://www.slf4j.org/

33Displaying information
Now that you know that the showDesignForm() method will handle the request, let’s
look at the method body to see how it ticks. The bulk of the method constructs a list of
Ingredient objects. The list is hardcoded for now. When we get to chapter 3, you’ll
pull the list of available taco ingredients from a database.

 Once the list of ingredients is ready, the next few lines of showDesignForm() filters
the list by ingredient type. A list of ingredient types is then added as an attribute to the
Model object that’s passed into showDesignForm(). Model is an object that ferries data
between a controller and whatever view is charged with rendering that data. Ulti-
mately, data that’s placed in Model attributes is copied into the servlet response attri-
butes, where the view can find them. The showDesignForm() method concludes by
returning "design", which is the logical name of the view that will be used to render
the model to the browser.

 Your DesignTacoController is really starting to take shape. If you were to run
the application now and point your browser at the /design path, the DesignTaco-
Controller’s showDesignForm() would be engaged, fetching data from the reposi-
tory and placing it in the model before passing the request on to the view. But
because you haven’t defined the view yet, the request would take a horrible turn,
resulting in an HTTP 404 (Not Found) error. To fix that, let’s switch our attention
to the view where the data will be decorated with HTML to be presented in the
user’s web browser.

2.1.3 Designing the view

After the controller is finished with its work, it’s time for the view to get going. Spring
offers several great options for defining views, including JavaServer Pages (JSP),
Thymeleaf, FreeMarker, Mustache, and Groovy-based templates. For now, we’ll use
Thymeleaf, the choice we made in chapter 1 when starting the project. We’ll consider
a few of the other options in section 2.5.

Making the right thing the easy thing
It’s always a good idea to be as specific as possible when declaring request map-
pings on your controller methods. At the very least, this means declaring both a path
(or inheriting a path from the class-level @RequestMapping) and which HTTP method
it will handle.

The lengthier @RequestMapping(method=RequestMethod.GET) made it tempting to
take the lazy way out and leave off the method attribute. Thanks to Spring 4.3’s new
mapping annotations, the right thing to do is also the easy thing to do—with less typing.

The new request-mapping annotations have all of the same attributes as @Request-
Mapping, so you can use them anywhere you’d otherwise use @RequestMapping.

Generally, I prefer to only use @RequestMapping at the class level to specify the base
path. I use the more specific @GetMapping, @PostMapping, and so on, on each of
the handler methods.

34 CHAPTER 2 Developing web applications
 In order to use Thymeleaf, you need to add another dependency to your project
build. The following <dependency> entry uses Spring Boot’s Thymeleaf starter to
make Thymeleaf available for rendering the view you’re about to create:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

At runtime, Spring Boot autoconfiguration will see that Thymeleaf is in the classpath
and will automatically create the beans that support Thymeleaf views for Spring MVC.

 View libraries such as Thymeleaf are designed to be decoupled from any particular
web framework. As such, they’re unaware of Spring’s model abstraction and are
unable to work with the data that the controller places in Model. But they can work
with servlet request attributes. Therefore, before Spring hands the request over to a
view, it copies the model data into request attributes that Thymeleaf and other view-
templating options have ready access to.

 Thymeleaf templates are just HTML with some additional element attributes that
guide a template in rendering request data. For example, if there were a request attri-
bute whose key is "message", and you wanted it to be rendered into an HTML <p> tag
by Thymeleaf, you’d write the following in your Thymeleaf template:

<p th:text="${message}">placeholder message</p>

When the template is rendered into HTML, the body of the <p> element will be
replaced with the value of the servlet request attribute whose key is "message". The
th:text attribute is a Thymeleaf-namespaced attribute that performs the replace-
ment. The ${} operator tells it to use the value of a request attribute ("message", in
this case).

 Thymeleaf also offers another attribute, th:each, that iterates over a collection of
elements, rendering the HTML once for each item in the collection. This will come in
handy as you design your view to list taco ingredients from the model. For example, to
render just the list of "wrap" ingredients, you can use the following snippet of HTML:

<h3>Designate your wrap:</h3>
<div th:each="ingredient : ${wrap}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}" />
 INGREDIENT

</div>

Here, you use the th:each attribute on the <div> tag to repeat rendering of the <div>
once for each item in the collection found in the wrap request attribute. On each iter-
ation, the ingredient item is bound to a Thymeleaf variable named ingredient.

 Inside the <div> element, there’s a check box <input> element and a ele-
ment to provide a label for the check box. The check box uses Thymeleaf’s th:value
to set the rendered <input> element’s value attribute to the value found in the

35Displaying information
ingredient’s id property. The element uses th:text to replace the "INGREDI-
ENT" placeholder text with the value of the ingredient’s name property.

 When rendered with actual model data, one iteration of that <div> loop might
look like this:

<div>
 <input name="ingredients" type="checkbox" value="FLTO" />
 Flour Tortilla

</div>

Ultimately, the preceding Thymeleaf snippet is just part of a larger HTML form
through which your taco artist users will submit their tasty creations. The complete
Thymeleaf template, including all ingredient types and the form, is shown in the fol-
lowing listing.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 <link rel="stylesheet" th:href="@{/styles.css}" />
 </head>

 <body>
 <h1>Design your taco!</h1>

 <form method="POST" th:object="${design}">
 <div class="grid">
 <div class="ingredient-group" id="wraps">
 <h3>Designate your wrap:</h3>
 <div th:each="ingredient : ${wrap}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="proteins">
 <h3>Pick your protein:</h3>
 <div th:each="ingredient : ${protein}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="cheeses">
 <h3>Choose your cheese:</h3>
 <div th:each="ingredient : ${cheese}">

Listing 2.3 The complete design-a-taco page

36 CHAPTER 2 Developing web applications
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"
/>

 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="veggies">
 <h3>Determine your veggies:</h3>
 <div th:each="ingredient : ${veggies}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>

 <div class="ingredient-group" id="sauces">
 <h3>Select your sauce:</h3>
 <div th:each="ingredient : ${sauce}">
 <input name="ingredients" type="checkbox" th:value="${ingredient.id}"

/>
 INGREDIENT

 </div>
 </div>
 </div>

 <div>

 <h3>Name your taco creation:</h3>
 <input type="text" th:field="*{name}"/>

 <button>Submit your taco</button>
 </div>
 </form>
 </body>
</html>

As you can see, you repeat the <div> snippet for each of the types of ingredients. And
you include a Submit button and field where the user can name their creation.

 It’s also worth noting that the complete template includes the Taco Cloud logo
image and a <link> reference to a stylesheet.2 In both cases, Thymeleaf’s @{} operator
is used to produce a context-relative path to the static artifacts that they’re referenc-
ing. As you learned in chapter 1, static content in a Spring Boot application is served
from the /static directory at the root of the classpath.

 Now that your controller and view are complete, you can fire up the application to
see the fruits of your labor. There are many ways to run a Spring Boot application. In
chapter 1, I showed you how to run the application by first building it into an executable

2 The contents of the stylesheet aren’t relevant to our discussion; it only contains styling to present the ingre-
dients in two columns instead of one long list of ingredients.

37Displaying information
JAR file and then running the JAR with java -jar. I also showed how you can run the
application directly from the build with mvn spring-boot:run.

 No matter how you fire up the Taco Cloud application, once it starts, point your
browser to http://localhost:8080/design. You should see a page that looks something
like figure 2.2.

Figure 2.2 The rendered taco design page

It’s looking good! A taco artist visiting your site is presented with a form containing a
palette of taco ingredients from which they can create their masterpiece. But what
happens when they click the Submit Your Taco button?

http://localhost:8080/design

38 CHAPTER 2 Developing web applications
 Your DesignTacoController isn’t yet ready to accept taco creations. If the design
form is submitted, the user will be presented with an error. (Specifically, it will be an
HTTP 405 error: Request Method “POST” Not Supported.) Let’s fix that by writing
some more controller code that handles form submission.

2.2 Processing form submission
If you take another look at the <form> tag in your view, you can see that its method
attribute is set to POST. Moreover, the <form> doesn’t declare an action attribute. This
means that when the form is submitted, the browser will gather up all the data in the
form and send it to the server in an HTTP POST request to the same path for which a
GET request displayed the form—the /design path.

 Therefore, you need a controller handler method on the receiving end of that
POST request. You need to write a new handler method in DesignTacoController
that handles a POST request for /design.

 In listing 2.2, you used the @GetMapping annotation to specify that the show-
DesignForm() method should handle HTTP GET requests for /design. Just like @Get-
Mapping handles GET requests, you can use @PostMapping to handle POST requests.
For handling taco design submissions, add the processDesign() method in the fol-
lowing listing to DesignTacoController.

@PostMapping
public String processDesign(Design design) {
 // Save the taco design...
 // We'll do this in chapter 3
 log.info("Processing design: " + design);

 return "redirect:/orders/current";
}

As applied to the processDesign() method, @PostMapping coordinates with the class-
level @RequestMapping to indicate that processDesign() should handle POST
requests for /design. This is precisely what you need to process a taco artist’s submit-
ted creations.

 When the form is submitted, the fields in the form are bound to properties of a
Taco object (whose class is shown in the next listing) that’s passed as a parameter into
processDesign(). From there, the processDesign() method can do whatever it wants
with the Taco object.

package tacos;
import java.util.List;
import lombok.Data;

Listing 2.4 Handling POST requests with @PostMapping

Listing 2.5 A domain object defining a taco design

39Processing form submission
@Data
public class Taco {

 private String name;
 private List<String> ingredients;

}

As you can see, Taco is a straightforward Java domain object with a couple of proper-
ties. Like Ingredient, the Taco class is annotated with @Data to automatically generate
essential JavaBean methods for you at runtime.

 If you look back at the form in listing 2.3, you’ll see several checkbox elements, all
with the name ingredients, and a text input element named name. Those fields in the
form correspond directly to the ingredients and name properties of the Taco class.

 The Name field on the form only needs to capture a simple textual value. Thus the
name property of Taco is of type String. The ingredients check boxes also have textual
values, but because zero or many of them may be selected, the ingredients property
that they’re bound to is a List<String> that will capture each of the chosen ingredi-
ents.

 For now, the processDesign() method does nothing with the Taco object. In fact,
it doesn’t do much of anything at all. That’s OK. In chapter 3, you’ll add some per-
sistence logic that will save the submitted Taco to a database.

 Just as with the showDesignForm() method, processDesign() finishes by return-
ing a String value. And just like showDesignForm(), the value returned indicates a
view that will be shown to the user. But what’s different is that the value returned from
processDesign() is prefixed with "redirect:", indicating that this is a redirect view.
More specifically, it indicates that after processDesign() completes, the user’s browser
should be redirected to the relative path /order/current.

 The idea is that after creating a taco, the user will be redirected to an order form
from which they can place an order to have their taco creations delivered. But you
don’t yet have a controller that will handle a request for /orders/current.

 Given what you now know about @Controller, @RequestMapping, and @Get-
Mapping, you can easily create such a controller. It might look something like the fol-
lowing listing.

package tacos.web;
import javax.validation.Valid;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.Errors;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import lombok.extern.slf4j.Slf4j;
import tacos.Order;

Listing 2.6 A controller to present a taco order form

40 CHAPTER 2 Developing web applications
@Slf4j
@Controller
@RequestMapping("/orders")
public class OrderController {

 @GetMapping("/current")
 public String orderForm(Model model) {
 model.addAttribute("order", new Order());
 return "orderForm";
 }

}

Once again, you use Lombok’s @Slf4j annotation to create a free SLF4J Logger
object at runtime. You’ll use this Logger in a moment to log the details of the order
that’s submitted.

 The class-level @RequestMapping specifies that any request-handling methods in
this controller will handle requests whose path begins with /orders. When combined
with the method-level @GetMapping, it specifies that the orderForm() method will han-
dle HTTP GET requests for /orders/current.

 As for the orderForm() method itself, it’s extremely basic, only returning a logical
view name of orderForm. Once you have a way to persist taco creations to a database in
chapter 3, you’ll revisit this method and modify it to populate the model with a list of
Taco objects to be placed in the order.

 The orderForm view is provided by a Thymeleaf template named orderForm.html,
which is shown next.

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:th="http://www.thymeleaf.org">
 <head>
 <title>Taco Cloud</title>
 <link rel="stylesheet" th:href="@{/styles.css}" />
 </head>

 <body>

 <form method="POST" th:action="@{/orders}" th:object="${order}">
 <h1>Order your taco creations!</h1>

 <a th:href="@{/design}" id="another">Design another taco

 <div th:if="${#fields.hasErrors()}">

 Please correct the problems below and resubmit.

 </div>

Listing 2.7 A taco order form view

41Processing form submission
 <h3>Deliver my taco masterpieces to...</h3>
 <label for="name">Name: </label>
 <input type="text" th:field="*{name}"/>

 <label for="street">Street address: </label>
 <input type="text" th:field="*{street}"/>

 <label for="city">City: </label>
 <input type="text" th:field="*{city}"/>

 <label for="state">State: </label>
 <input type="text" th:field="*{state}"/>

 <label for="zip">Zip code: </label>
 <input type="text" th:field="*{zip}"/>

 <h3>Here's how I'll pay...</h3>
 <label for="ccNumber">Credit Card #: </label>
 <input type="text" th:field="*{ccNumber}"/>

 <label for="ccExpiration">Expiration: </label>
 <input type="text" th:field="*{ccExpiration}"/>

 <label for="ccCVV">CVV: </label>
 <input type="text" th:field="*{ccCVV}"/>

 <input type="submit" value="Submit order"/>
 </form>

 </body>
</html>

For the most part, the orderForm.html view is typical HTML/Thymeleaf content, with
very little of note. But notice that the <form> tag here is different from the <form> tag
used in listing 2.3 in that it also specifies a form action. Without an action specified,
the form would submit an HTTP POST request back to the same URL that presented
the form. But here, you specify that the form should be POSTed to /orders (using
Thymeleaf’s @{…} operator for a context-relative path).

 Therefore, you’re going to need to add another method to your OrderController
class that handles POST requests for /orders. You won’t have a way to persist orders
until the next chapter, so you’ll keep it simple here—something like what you see in
the next listing.

42 CHAPTER 2 Developing web applications
@PostMapping
public String processOrder(Order order) {
 log.info("Order submitted: " + order);
 return "redirect:/";
}

When the processOrder() method is called to handle a submitted order, it’s given an
Order object whose properties are bound to the submitted form fields. Order, much
like Taco, is a fairly straightforward class that carries order information.

package tacos;
import javax.validation.constraints.Digits;
import javax.validation.constraints.Pattern;
import org.hibernate.validator.constraints.CreditCardNumber;
import org.hibernate.validator.constraints.NotBlank;
import lombok.Data;

@Data
public class Order {

 private String name;
 private String street;
 private String city;
 private String state;
 private String zip;
 private String ccNumber;
 private String ccExpiration;
 private String ccCVV;

}

Now that you’ve developed an OrderController and the order form view, you’re
ready to try it out. Open your browser to http://localhost:8080/design, select some
ingredients for your taco, and click the Submit Your Taco button. You should see a
form similar to what’s shown in figure 2.3.

 Fill in some fields in the form, and press the Submit Order button. As you do, keep
an eye on the application logs to see your order information. When I tried it, the log
entry looked something like this (reformatted to fit the width of this page):

Order submitted: Order(name=Craig Walls,street1=1234 7th Street,
city=Somewhere, state=Who knows?, zip=zipzap, ccNumber=Who can guess?,

ccExpiration=Some day, ccCVV=See-vee-vee)

If you look carefully at the log entry from my test order, you can see that although the
processOrder() method did its job and handled the form submission, it let a little bit
of bad information get in. Most of the fields in the form contained data that couldn’t

Listing 2.8 Handling a taco order submission

Listing 2.9 A domain object for taco orders

http://localhost:8080/design

43Validating form input
Figure 2.3 The taco order form

possibly be correct. Let’s add some validation to ensure that the data provided at least
resembles the kind of information required.

2.3 Validating form input
When designing a new taco creation, what if the user selects no ingredients or fails to
specify a name for their creation? When submitting the order, what if they fail to fill in
the required address fields? Or what if they enter a value into the credit card field that
isn’t even a valid credit card number?

 As things stand now, nothing will stop the user from creating a taco without any
ingredients or with an empty delivery address, or even submitting the lyrics to their

44 CHAPTER 2 Developing web applications
favorite song as the credit card number. That’s because you haven’t yet specified how
those fields should be validated.

 One way to perform form validation is to litter the processDesign() and process-
Order() methods with a bunch of if/then blocks, checking each and every field to
ensure that it meets the appropriate validation rules. But that would be cumbersome
and difficult to read and debug.

 Fortunately, Spring supports Java’s Bean Validation API (also known as JSR-303;
https://jcp.org/en/jsr/detail?id=303). This makes it easy to declare validation rules
as opposed to explicitly writing declaration logic in your application code. And with
Spring Boot, you don’t need to do anything special to add validation libraries to your
project, because the Validation API and the Hibernate implementation of the Valida-
tion API are automatically added to the project as transient dependencies of Spring
Boot’s web starter.

 To apply validation in Spring MVC, you need to

 Declare validation rules on the class that is to be validated: specifically, the
Taco class.

 Specify that validation should be performed in the controller methods that
require validation: specifically, the DesignTacoController’s processDesign()
method and OrderController’s processOrder() method.

 Modify the form views to display validation errors.

The Validation API offers several annotations that can be placed on properties of
domain objects to declare validation rules. Hibernate’s implementation of the Valida-
tion API adds even more validation annotations. Let’s see how you can apply a few of
these annotations to validate a submitted Taco or Order.

2.3.1 Declaring validation rules

For the Taco class, you want to ensure that the name property isn’t empty or null and
that the list of selected ingredients has at least one item. The following listing shows
an updated Taco class that uses @NotNull and @Size to declare those validation rules.

package tacos;
import java.util.List;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import lombok.Data;

@Data
public class Taco {

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

Listing 2.10 Adding validation to the Taco domain class

https://jcp.org/en/jsr/detail?id=303

45Validating form input
 @Size(min=1, message="You must choose at least 1 ingredient")
 private List<String> ingredients;

}

You’ll notice that in addition to requiring that the name property isn’t null, you
declare that it should have a value that’s at least 5 characters in length.

 When it comes to declaring validation on submitted taco orders, you must apply
annotations to the Order class. For the address properties, you only want to be sure
that the user doesn’t leave any of the fields blank. For that, you’ll use Hibernate Vali-
dator’s @NotBlank annotation.

 Validation of the payment fields, however, is a bit more exotic. You need to not
only ensure that the ccNumber property isn’t empty, but that it contains a value that
could be a valid credit card number. The ccExpiration property must conform to
a format of MM/YY (two-digit month and year). And the ccCVV property needs to be a
three-digit number. To achieve this kind of validation, you need to use a few other Java
Bean Validation API annotations and borrow a validation annotation from the Hiber-
nate Validator collection of annotations. The following listing shows the changes
needed to validate the Order class.

package tacos;
import javax.validation.constraints.Digits;
import javax.validation.constraints.Pattern;
import org.hibernate.validator.constraints.CreditCardNumber;
import javax.validation.constraints.NotBlank;
import lombok.Data;

@Data
public class Order {

 @NotBlank(message="Name is required")
 private String name;

 @NotBlank(message="Street is required")
 private String street;

 @NotBlank(message="City is required")
 private String city;

 @NotBlank(message="State is required")
 private String state;

 @NotBlank(message="Zip code is required")
 private String zip;

 @CreditCardNumber(message="Not a valid credit card number")
 private String ccNumber;

Listing 2.11 Validating order fields

46 CHAPTER 2 Developing web applications
 @Pattern(regexp="^(0[1-9]|1[0-2])([\\/])([1-9][0-9])$",
 message="Must be formatted MM/YY")
 private String ccExpiration;

 @Digits(integer=3, fraction=0, message="Invalid CVV")
 private String ccCVV;

}

As you can see, the ccNumber property is annotated with @CreditCardNumber. This
annotation declares that the property’s value must be a valid credit card number that
passes the Luhn algorithm check (https://en.wikipedia.org/wiki/Luhn_algorithm).
This prevents user mistakes and deliberately bad data but doesn’t guarantee that the
credit card number is actually assigned to an account or that the account can be used
for charging.

 Unfortunately, there’s no ready-made annotation for validating the MM/YY format
of the ccExpiration property. I’ve applied the @Pattern annotation, providing it with
a regular expression that ensures that the property value adheres to the desired for-
mat. If you’re wondering how to decipher the regular expression, I encourage you to
check out the many online regular expression guides, including http://www.regular-
expressions.info/. Regular expression syntax is a dark art and certainly outside the
scope of this book.

 Finally, the ccCVV property is annotated with @Digits to ensure that the value con-
tains exactly three numeric digits.

 All of the validation annotations include a message attribute that defines the mes-
sage you’ll display to the user if the information they enter doesn’t meet the require-
ments of the declared validation rules.

2.3.2 Performing validation at form binding

Now that you’ve declared how a Taco and Order should be validated, we need to
revisit each of the controllers, specifying that validation should be performed when
the forms are POSTed to their respective handler methods.

 To validate a submitted Taco, you need to add the Java Bean Validation API’s
@Valid annotation to the Taco argument of DesignTacoController’s processDe-
sign() method.

@PostMapping
public String processDesign(@Valid Taco design, Errors errors) {
 if (errors.hasErrors()) {
 return "design";
 }

 // Save the taco design...
 // We'll do this in chapter 3
 log.info("Processing design: " + design);

Listing 2.12 Validating a POSTed Taco

https://en.wikipedia.org/wiki/Luhn_algorithm
http://www.regular-expressions.info/
http://www.regular-expressions.info/

47Validating form input
 return "redirect:/orders/current";
}

The @Valid annotation tells Spring MVC to perform validation on the submitted Taco
object after it’s bound to the submitted form data and before the processDesign()
method is called. If there are any validation errors, the details of those errors will be
captured in an Errors object that’s passed into processDesign(). The first few lines
of processDesign() consult the Errors object, asking its hasErrors() method if
there are any validation errors. If there are, the method concludes without processing
the Taco and returns the "design" view name so that the form is redisplayed.

 To perform validation on submitted Order objects, similar changes are also required
in the processOrder() method of OrderController.

@PostMapping
public String processOrder(@Valid Order order, Errors errors) {
 if (errors.hasErrors()) {
 return "orderForm";
 }

 log.info("Order submitted: " + order);
 return "redirect:/";
}

In both cases, the method will be allowed to process the submitted data if there are no
validation errors. If there are validation errors, the request will be forwarded to the
form view to give the user a chance to correct their mistakes.

 But how will the user know what mistakes require correction? Unless you call out
the errors on the form, the user will be left guessing about how to successfully submit
the form.

2.3.3 Displaying validation errors

Thymeleaf offers convenient access to the Errors object via the fields property and
with its th:errors attribute. For example, to display validation errors on the credit
card number field, you can add a element that uses these error references to
the order form template, as follows.

<label for="ccNumber">Credit Card #: </label>
<input type="text" th:field="*{ccNumber}"/>
<span class="validationError"
 th:if="${#fields.hasErrors('ccNumber')}"
 th:errors="*{ccNumber}">CC Num Error

Aside from a class attribute that can be used to style the error so that it catches the
user’s attention, the element uses a th:if attribute to decide whether or not

Listing 2.13 Validating a POSTed Order

Listing 2.14 Displaying validation errors

48 CHAPTER 2 Developing web applications
to display the . The fields property’s hasErrors() method checks if there are
any errors in the ccNumber field. If so, the will be rendered.

 The th:errors attribute references the ccNumber field and, assuming there are
errors for that field, it will replace the placeholder content of the element with
the validation message.

 If you were to sprinkle similar tags around the order form for the other
fields, you might see a form that looks like figure 2.4 when you submit invalid informa-
tion. The errors indicate that the name, city, and ZIP code fields have been left blank,
and that all of the payment fields fail to meet the validation criteria.

Figure 2.4 Validation errors displayed on the order form

49Working with view controllers
Now your Taco Cloud controllers not only display and capture input, but they
also validate that the information meets some basic validation rules. Let’s step back
and reconsider the HomeController from chapter 1, looking at an alternative
implementation.

2.4 Working with view controllers
Thus far, you’ve written three controllers for the Taco Cloud application. Although
each controller serves a distinct purpose in the functionality of the application, they
all pretty much follow the same programming model:

 They’re all annotated with @Controller to indicate that they’re controller
classes that should be automatically discovered by Spring component scanning
and instantiated as beans in the Spring application context.

 All but HomeController are annotated with @RequestMapping at the class level
to define a baseline request pattern that the controller will handle.

 They all have one or more methods that are annotated with @GetMapping or
@PostMapping to provide specifics on which methods should handle which
kinds of requests.

Most of the controllers you’ll write will follow that pattern. But when a controller is
simple enough that it doesn’t populate a model or process input—as is the case with
your HomeController—there’s another way that you can define the controller. Have a
look at the next listing to see how you can declare a view controller—a controller that
does nothing but forward the request to a view.

package tacos.web;

import org.springframework.context.annotation.Configuration;
import

org.springframework.web.servlet.config.annotation.ViewControllerRegistry
;

import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class WebConfig implements WebMvcConfigurer {

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 }

}

The most significant thing to notice about @WebConfig is that it implements the Web-
MvcConfigurer interface. WebMvcConfigurer defines several methods for configuring
Spring MVC. Even though it’s an interface, it provides default implementations of all

Listing 2.15 Declaring a view controller

50 CHAPTER 2 Developing web applications
the methods, so you only need to override the methods you need. In this case, you
override addViewControllers().

 The addViewControllers() method is given a ViewControllerRegistry that you
can use to register one or more view controllers. Here, you call addViewController()
on the registry, passing in "/", which is the path for which your view controller will
handle GET requests. That method returns a ViewControllerRegistration object,
on which you immediately call setViewName() to specify home as the view that a
request for "/" should be forwarded to.

 And just like that, you’ve been able to replace HomeController with a few lines in a
configuration class. You can now delete HomeController, and the application should
still behave as it did before. The only other change required is to revisit Home-
ControllerTest from chapter 1, removing the reference to HomeController from the
@WebMvcTest annotation, so that the test class will compile without errors.

 Here, you’ve created a new WebConfig configuration class to house the view con-
troller declaration. But any configuration class can implement WebMvcConfigurer and
override the addViewController method. For instance, you could have added the
same view controller declaration to the bootstrap TacoCloudApplication class like
this:

@SpringBootApplication
public class TacoCloudApplication implements WebMvcConfigurer {

 public static void main(String[] args) {
 SpringApplication.run(TacoCloudApplication.class, args);
 }

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("home");
 }

}

By extending an existing configuration class, you can avoid creating a new configura-
tion class, keeping your project artifact count down. But I tend to prefer creating a
new configuration class for each kind of configuration (web, data, security, and so
on), keeping the application bootstrap configuration clean and simple.

 Speaking of view controllers, and more generically the views that controllers for-
ward requests to, so far you’ve been using Thymeleaf for all of your views. I like
Thymeleaf a lot, but maybe you prefer a different template model for your application
views. Let’s have a look at Spring’s many supported view options.

2.5 Choosing a view template library
For the most part, your choice of a view template library is a matter of personal taste.
Spring is very flexible and supports many common templating options. With only a

51Choosing a view template library
few small exceptions, the template library you choose will itself have no idea that it’s
even working with Spring.3

 Table 2.2 catalogs the template options supported by Spring Boot autoconfiguration.

Generally speaking, you select the view template library you want, add it as a depen-
dency in your build, and start writing templates in the /templates directory (under
the src/main/resources directory in a Maven- or Gradle-built project). Spring Boot
will detect your chosen template library and automatically configure the components
required for it to serve views for your Spring MVC controllers.

 You’ve already done this with Thymeleaf for the Taco Cloud application. In chap-
ter 1, you selected the Thymeleaf check box when initializing the project. This resulted
in Spring Boot’s Thymeleaf starter being included in the pom.xml file. When the appli-
cation starts up, Spring Boot autoconfiguration detects the presence of Thymeleaf and
automatically configures the Thymeleaf beans for you. All you had to do was start writ-
ing templates in /templates.

 If you’d rather use a different template library, you simply select it at project initial-
ization or edit your existing project build to include the newly chosen template
library.

 For example, let’s say you wanted to use Mustache instead of Thymeleaf. No prob-
lem. Just visit the project pom.xml file and replace this,

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

with this:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-mustache</artifactId>
</dependency>

3 One such exception is Thymeleaf’s Spring Security dialect, which we’ll talk about in chapter 4.

Table 2.2 Supported template options

Template Spring Boot starter dependency

FreeMarker spring-boot-starter-freemarker

Groovy Templates spring-boot-starter-groovy-templates

JavaServer Pages (JSP) None (provided by Tomcat or Jetty)

Mustache spring-boot-starter-mustache

Thymeleaf spring-boot-starter-thymeleaf

52 CHAPTER 2 Developing web applications
Of course, you’d need to make sure that you write all the templates with Mustache syn-
tax instead of Thymeleaf tags. The specifics of working with Mustache (or any of the
template language choices) is well outside of the scope of this book, but to give you an
idea of what to expect, here’s a snippet from a Mustache template that will render one
of the ingredient groups in the taco design form:

<h3>Designate your wrap:</h3>
{{#wrap}}
<div>
 <input name="ingredients" type="checkbox" value="{{id}}" />
 {{name}}

</div>
{{/wrap}}

This is the Mustache equivalent of the Thymeleaf snippet in section 2.1.3. The
{{#wrap}} block (which concludes with {{/wrap}}) iterates through a collection in
the request attribute whose key is wrap and renders the embedded HTML for each
item. The {{id}} and {{name}} tags reference the id and name properties of the item
(which should be an Ingredient).

 You’ll notice in table 2.2 that JSP doesn’t require any special dependency in the
build. That’s because the servlet container itself (Tomcat by default) implements
the JSP specification, thus requiring no further dependencies.

 But there’s a gotcha if you choose to use JSP. As it turns out, Java servlet contain-
ers—including embedded Tomcat and Jetty containers—usually look for JSPs some-
where under /WEB-INF. But if you’re building your application as an executable JAR
file, there’s no way to satisfy that requirement. Therefore, JSP is only an option if
you’re building your application as a WAR file and deploying it in a traditional servlet
container. If you’re building an executable JAR file, you must choose Thymeleaf,
FreeMarker, or one of the other options in table 2.2.

2.5.1 Caching templates

By default, templates are only parsed once, when they’re first used, and the results of
that parse are cached for subsequent use. This is a great feature for production,
as it prevents redundant template parsing on each request and thus improves
performance.

 That feature is not so awesome at development time, however. Let’s say you fire up
your application and hit the taco design page and decide to make a few changes to it.
When you refresh your web browser, you’ll still be shown the original version. The
only way you can see your changes is to restart the application, which is quite inconve-
nient.

 Fortunately, there’s a way to disable caching. All you need to do is set a template-
appropriate caching property to false. Table 2.3 lists the caching properties for each
of the supported template libraries.

53Summary
By default, all of these properties are set to true to enable caching. You can disable
caching for your chosen template engine by setting its cache property to false. For
example, to disable Thymeleaf caching, add the following line in application.proper-
ties:

spring.thymeleaf.cache=false

The only catch is that you’ll want to be sure to remove this line (or set it to true)
before you deploy your application to production. One option is to set the property in
a profile. (We’ll talk about profiles in chapter 5.)

 A much simpler option is to use Spring Boot’s DevTools, as we opted to do in chap-
ter 1. Among the many helpful bits of development-time help offered by DevTools, it
will disable caching for all template libraries but will disable itself (and thus reenable
template caching) when your application is deployed.

2.6 Summary
 Spring offers a powerful web framework called Spring MVC that can be used to

develop the web frontend for a Spring application.
 Spring MVC is annotation-based, enabling the declaration of request-handling

methods with annotations such as @RequestMapping, @GetMapping, and @Post-
Mapping.

 Most request-handling methods conclude by returning the logical name of a
view, such as a Thymeleaf template, to which the request (along with any model
data) is forwarded.

 Spring MVC supports validation through the Java Bean Validation API and
implementations of the Validation API such as Hibernate Validator.

 View controllers can be used to handle HTTP GET requests for which no
model data or processing is required.

 In addition to Thymeleaf, Spring supports a variety of view options, including
FreeMarker, Groovy Templates, and Mustache.

Table 2.3 Properties to enable/disable template caching

Template Cache enable property

FreeMarker spring.freemarker.cache

Groovy Templates spring.groovy.template.cache

Mustache spring.mustache.cache

Thymeleaf spring.thymeleaf.cache

Chapter 3

Working with data

Chapter 3 from Spring in Action,
Fifth Edition by Craig Walls
Most applications offer more than just a pretty face. Although the user interface
may provide interaction with an application, it’s the data it presents and stores that
separates applications from static websites.

 In the Taco Cloud application, you need to be able to maintain information
about ingredients, tacos, and orders. Without a database to store this information,
the application wouldn’t be able to progress much further than what you devel-
oped in chapter 2.

 In this chapter, you’re going to add data persistence to the Taco Cloud applica-
tion. You’ll start by using Spring support for JDBC (Java Database Connectivity) to
eliminate boilerplate code. Then you’ll rework the data repositories to work with
the JPA (Java Persistence API), eliminating even more code.

This chapter covers
 Using Spring’s JdbcTemplate

 Inserting data with SimpleJdbcInsert

 Declaring JPA repositories with Spring Data
54

https://www.manning.com/books/spring-in-action-fifth-edition
https://www.manning.com/books/spring-in-action-fifth-edition

55Reading and writing data with JDBC
3.1 Reading and writing data with JDBC
For decades, relational databases and SQL have enjoyed their position as the leading
choice for data persistence. Even though many alternative database types have emerged
in recent years, the relational database is still a top choice for a general-purpose data
store and will not likely be usurped from its position any time soon.

 When it comes to working with relational data, Java developers have several
options. The two most common choices are JDBC and the JPA. Spring supports both
of these with abstractions, making working with either JDBC or JPA easier than it
would be without Spring. In this section, we’ll focus on how Spring supports JDBC,
and then we’ll look at Spring support for JPA in section 3.2.

 Spring JDBC support is rooted in the JdbcTemplate class. JdbcTemplate provides a
means by which developers can perform SQL operations against a relational database
without all the ceremony and boilerplate typically required when working with JDBC.

 To gain an appreciation of what JdbcTemplate does, let’s start by looking at an
example of how to perform a simple query in Java without JdbcTemplate.

@Override
public Ingredient findOne(String id) {
 Connection connection = null;
 PreparedStatement statement = null;
 ResultSet resultSet = null;
 try {
 connection = dataSource.getConnection();
 statement = connection.prepareStatement(
 "select id, name, type from Ingredient");
 statement.setString(1, id);
 resultSet = statement.executeQuery();
 Ingredient ingredient = null;
 if(resultSet.next()) {
 ingredient = new Ingredient(
 resultSet.getString("id"),
 resultSet.getString("name"),
 Ingredient.Type.valueOf(resultSet.getString("type")));
 }
 return ingredient;
 } catch (SQLException e) {
 // ??? What should be done here ???
 } finally {
 if (resultSet != null) {
 try {
 resultSet.close();
 } catch (SQLException e) {}
 }
 if (statement != null) {
 try {
 statement.close();
 } catch (SQLException e) {}
 }

Listing 3.1 Querying a database without JdbcTemplate

56 CHAPTER 3 Working with data
 if (connection != null) {
 try {
 connection.close();
 } catch (SQLException e) {}
 }
 }
 return null;
}

I assure you that somewhere in listing 3.1 there are a couple of lines that query the
database for ingredients. But I’ll bet you had a hard time spotting that query needle in
the JDBC haystack. It’s surrounded by code that creates a connection, creates a state-
ment, and cleans up by closing the connection, statement, and result set.

 To make matters worse, any number of things could go wrong when creating the
connection or the statement, or when performing the query. This requires that you
catch a SQLException, which may or may not be helpful in figuring out what went
wrong or how to address the problem.

 SQLException is a checked exception, which requires handling in a catch block.
But the most common problems, such as failure to create a connection to the data-
base or a mistyped query, can’t possibly be addressed in a catch block and are likely to
be rethrown for handling upstream. In contrast, consider the methods that use Jdbc-
Template.

private JdbcTemplate jdbc;

@Override
public Ingredient findOne(String id) {
 return jdbc.queryForObject(
 "select id, name, type from Ingredient where id=?",
 this::mapRowToIngredient, id);
}

private Ingredient mapRowToIngredient(ResultSet rs, int rowNum)
 throws SQLException {
 return new Ingredient(
 rs.getString("id"),
 rs.getString("name"),
 Ingredient.Type.valueOf(rs.getString("type")));
}

The code in listing 3.2 is clearly much simpler than the raw JDBC example in listing 3.1;
there aren’t any statements or connections being created. And, after the method is
finished, there isn’t any cleanup of those objects. Finally, there isn’t any handling of
exceptions that can’t properly be handled in a catch block. What’s left is code that’s
focused solely on performing a query (the call to JdbcTemplate’s queryForObject()
method) and mapping the results to an Ingredient object (in the mapRowTo-
Ingredient() method).

Listing 3.2 Querying a database with JdbcTemplate

57Reading and writing data with JDBC
 The code in listing 3.2 is a snippet of what you need to do to use JdbcTemplate to
persist and read data in the Taco Cloud application. Let’s take the next steps neces-
sary to outfit the application with JDBC persistence. We’ll start by making a few tweaks
to the domain objects.

3.1.1 Adapting the domain for persistence

When persisting objects to a database, it’s generally a good idea to have one field that
uniquely identifies the object. Your Ingredient class already has an id field, but you
need to add id fields to both Taco and Order.

 Moreover, it might be useful to know when a Taco is created and when an Order is
placed. You’ll also need to add a field to each object to capture the date and time that
the objects are saved. The following listing shows the new id and createdAt fields
needed in the Taco class.

@Data
public class Taco {

 private Long id;

 private Date createdAt;

 ...

}

Because you use Lombok to automatically generate accessor methods at runtime,
there’s no need to do anything more than declare the id and createdAt properties.
They’ll have appropriate getter and setter methods as needed at runtime. Similar
changes are required in the Order class, as shown here:

@Data
public class Order {

 private Long id;

 private Date placedAt;

 ...

}

Again, Lombok automatically generates the accessor methods, so these are the only
changes required in Order. (If for some reason you choose not to use Lombok, you’ll
need to write these methods yourself.)

 Your domain classes are now ready for persistence. Let’s see how to use Jdbc-
Template to read and write them to a database.

Listing 3.3 Adding ID and timestamp fields to the Taco class

58 CHAPTER 3 Working with data
3.1.2 Working with JdbcTemplate

Before you can start using JdbcTemplate, you need to add it to your project classpath.
This can easily be accomplished by adding Spring Boot’s JDBC starter dependency to
the build:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>

You’re also going to need a database where your data will be stored. For development
purposes, an embedded database will be just fine. I favor the H2 embedded database,
so I’ve added the following dependency to the build:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>runtime</scope>
</dependency>

Later, you’ll see how to configure the application to use an external database. But for
now, let’s move on to writing a repository that fetches and saves Ingredient data.

DEFINING JDBC REPOSITORIES

Your Ingredient repository needs to perform these operations:

 Query for all ingredients into a collection of Ingredient objects
 Query for a single Ingredient by its id
 Save an Ingredient object

The following IngredientRepository interface defines those three operations as
method declarations:

package tacos.data;

import tacos.Ingredient;

public interface IngredientRepository {

 Iterable<Ingredient> findAll();

 Ingredient findOne(String id);

 Ingredient save(Ingredient ingredient);

}

Although the interface captures the essence of what you need an ingredient reposi-
tory to do, you’ll still need to write an implementation of IngredientRepository that
uses JdbcTemplate to query the database. The code shown next is the first step in writ-
ing that implementation.

59Reading and writing data with JDBC
package tacos.data;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.stereotype.Repository;

import tacos.Ingredient;

@Repository
public class JdbcIngredientRepository
 implements IngredientRepository {

 private JdbcTemplate jdbc;

 @Autowired
 public JdbcIngredientRepository(JdbcTemplate jdbc) {
 this.jdbc = jdbc;
 }

 ...

}

As you can see, JdbcIngredientRepository is annotated with @Repository. This
annotation is one of a handful of stereotype annotations that Spring defines, includ-
ing @Controller and @Component. By annotating JdbcIngredientRepository with
@Repository, you declare that it should be automatically discovered by Spring compo-
nent scanning and instantiated as a bean in the Spring application context.

 When Spring creates the JdbcIngredientRepository bean, it injects it with Jdbc-
Template via the @Autowired annotated construction. The constructor assigns
JdbcTemplate to an instance variable that will be used in other methods to query and
insert into the database. Speaking of those other methods, let’s take a look at the
implementations of findAll() and findById().

@Override
public Iterable<Ingredient> findAll() {
 return jdbc.query("select id, name, type from Ingredient",
 this::mapRowToIngredient);
}

@Override
public Ingredient findOne(String id) {
 return jdbc.queryForObject(
 "select id, name, type from Ingredient where id=?",
 this::mapRowToIngredient, id);
}

Listing 3.4 Beginning an ingredient repository with JdbcTemplate

Listing 3.5 Querying the database with JdbcTemplate

60 CHAPTER 3 Working with data
private Ingredient mapRowToIngredient(ResultSet rs, int rowNum)
 throws SQLException {
 return new Ingredient(
 rs.getString("id"),
 rs.getString("name"),
 Ingredient.Type.valueOf(rs.getString("type")));
}

Both findAll() and findById() use JdbcTemplate in a similar way. The findAll()
method, expecting to return a collection of objects, uses JdbcTemplate’s query()
method. The query() method accepts the SQL for the query as well as an implemen-
tation of Spring’s RowMapper for the purpose of mapping each row in the result set to
an object. findAll() also accepts as its final argument(s) a list of any parameters
required in the query. But, in this case, there aren’t any required parameters.

 The findById() method only expects to return a single Ingredient object, so it
uses the queryForObject() method of JdbcTemplate instead of query(). queryFor-
Object() works much like query() except that it returns a single object instead of a
List of objects. In this case, it’s given the query to perform, a RowMapper, and the id
of Ingredient to fetch, which is used in place of the ? in the query.

 As shown in listing 3.5, the RowMapper parameter for both findAll() and find-
ById() is given as a method reference to the mapRowToIngredient() method. Java 8’s
method references and lambdas are convenient when working with JdbcTemplate as
an alternative to an explicit RowMapper implementation. But if for some reason you
want or need an explicit RowMapper, then the following implementation of findAll()
shows how to do that:

@Override
public Ingredient findOne(String id) {
 return jdbc.queryForObject(
 "select id, name, type from Ingredient where id=?",
 new RowMapper<Ingredient>() {
 public Ingredient mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 return new Ingredient(
 rs.getString("id"),
 rs.getString("name"),
 Ingredient.Type.valueOf(rs.getString("type")));
 };
 }, id);
}

Reading data from a database is only part of the story. At some point, data must be
written to the database so that it can be read. So let’s see about implementing the
save() method.

INSERTING A ROW

JdbcTemplate’s update() method can be used for any query that writes or updates
data in the database. And, as shown in the following listing, it can be used to insert
data into the database.

61Reading and writing data with JDBC
@Override
public Ingredient save(Ingredient ingredient) {
 jdbc.update(
 "insert into Ingredient (id, name, type) values (?, ?, ?)",
 ingredient.getId(),
 ingredient.getName(),
 ingredient.getType().toString());
 return ingredient;
}

Because it isn’t necessary to map ResultSet data to an object, the update() method is
much simpler than query() or queryForObject(). It only requires a String contain-
ing the SQL to perform as well as values to assign to any query parameters. In this
case, the query has three parameters, which correspond to the final three parameters
of the save()method, providing the ingredient’s ID, name, and type.

 With JdbcIngredientRepository complete, you can now inject it into Design-
TacoController and use it to provide a list of Ingredient objects instead of using
hardcoded values (as you did in chapter 2). The changes to DesignTacoController
are shown next.

@Controller
@RequestMapping("/design")
@SessionAttributes("order")
public class DesignTacoController {

 private final IngredientRepository ingredientRepo;

 @Autowired
 public DesignTacoController(IngredientRepository ingredientRepo) {
 this.ingredientRepo = ingredientRepo;
 }

 @GetMapping
 public String showDesignForm(Model model) {
 List<Ingredient> ingredients = new ArrayList<>();
 ingredientRepo.findAll().forEach(i -> ingredients.add(i));

 Type[] types = Ingredient.Type.values();
 for (Type type : types) {
 model.addAttribute(type.toString().toLowerCase(),
 filterByType(ingredients, type));
 }

 return "design";
 }

 ...

}

Listing 3.6 Inserting data with JdbcTemplate

Listing 3.7 Injecting and using a repository in the controller

62 CHAPTER 3 Working with data
Notice that the second line of the showDesignForm() method now makes a call to the
injected IngredientRepository’s findAll() method. The findAll() method fetches
all the ingredients from the database before filtering them into distinct types in the
model.

 You’re almost ready to fire up the application and try these changes out. But
before you can start reading data from the Ingredient table referenced in the que-
ries, you should probably create that table and populate it with some ingredient data.

3.1.3 Defining a schema and preloading data

Aside from the Ingredient table, you’re also going to need some tables that hold
order and design information. Figure 3.1 illustrates the tables you’ll need, as well as
the relationships between those tables.

Taco_Order

id: identity

deliveryName: varchar

deliveryStreet: varchar

deliveryCity: varchar

deliveryState: varchar

deliveryZip: varchar

ccNumber: varchar

ccExpiration: varchar

ccCVV: varchar

placedAt: timestamp

Taco

id: identity

name: varchar

createdAt: timestamp

Ingredient

id: varchar

name: varchar

*

*

*
Taco_Order_Tacos

tacoOrder: bigint,

taco: bigint

Taco_Ingredients

taco: bigint,

ingredient: varchar

type: varchar

*

Figure 3.1 The tables for the Taco Cloud schema

The tables in figure 3.1 serve the following purposes:

 Ingredient—Holds ingredient information
 Taco—Holds essential information about a taco design
 Taco_Ingredients—Contains one or more rows for each row in Taco, mapping

the taco to the ingredients for that taco
 Taco_Order—Holds essential order details
 Taco_Order_Tacos—Contains one or more rows for each row in Taco_Order,

mapping the order to the tacos in the order

The next listing shows the SQL that creates the tables.

63Reading and writing data with JDBC
create table if not exists Ingredient (
 id varchar(4) not null,
 name varchar(25) not null,
 type varchar(10) not null
);

create table if not exists Taco (
 id identity,
 name varchar(50) not null,
 createdAt timestamp not null
);

create table if not exists Taco_Ingredients (
 taco bigint not null,
 ingredient varchar(4) not null
);

alter table Taco_Ingredients
 add foreign key (taco) references Taco(id);
alter table Taco_Ingredients
 add foreign key (ingredient) references Ingredient(id);

create table if not exists Taco_Order (
 id identity,
 deliveryName varchar(50) not null,
 deliveryStreet varchar(50) not null,
 deliveryCity varchar(50) not null,
 deliveryState varchar(2) not null,
 deliveryZip varchar(10) not null,
 ccNumber varchar(16) not null,
 ccExpiration varchar(5) not null,
 ccCVV varchar(3) not null,
 placedAt timestamp not null
);

create table if not exists Taco_Order_Tacos (
 tacoOrder bigint not null,
 taco bigint not null
);

alter table Taco_Order_Tacos
 add foreign key (tacoOrder) references Taco_Order(id);
alter table Taco_Order_Tacos
 add foreign key (taco) references Taco(id);

The big question is where to put this schema definition. As it turns out, Spring Boot
answers that question.

 If there’s a file named schema.sql in the root of the application’s classpath, then
the SQL in that file will be executed against the database when the application starts.
Therefore, you should place the contents of listing 3.8 in your project as a file named
schema.sql in the src/main/resources folder.

Listing 3.8 Defining the Taco Cloud schema

64 CHAPTER 3 Working with data
 You also need to preload the database with some ingredient data. Fortunately,
Spring Boot will also execute a file named data.sql from the root of the classpath when
the application starts. Therefore, you can load the database with ingredient data using
the insert statements in the next listing, placed in src/main/resources/data.sql.

delete from Taco_Order_Tacos;
delete from Taco_Ingredients;
delete from Taco;
delete from Taco_Order;

delete from Ingredient;
insert into Ingredient (id, name, type)
 values ('FLTO', 'Flour Tortilla', 'WRAP');
insert into Ingredient (id, name, type)
 values ('COTO', 'Corn Tortilla', 'WRAP');
insert into Ingredient (id, name, type)
 values ('GRBF', 'Ground Beef', 'PROTEIN');
insert into Ingredient (id, name, type)
 values ('CARN', 'Carnitas', 'PROTEIN');
insert into Ingredient (id, name, type)
 values ('TMTO', 'Diced Tomatoes', 'VEGGIES');
insert into Ingredient (id, name, type)
 values ('LETC', 'Lettuce', 'VEGGIES');
insert into Ingredient (id, name, type)
 values ('CHED', 'Cheddar', 'CHEESE');
insert into Ingredient (id, name, type)
 values ('JACK', 'Monterrey Jack', 'CHEESE');
insert into Ingredient (id, name, type)
 values ('SLSA', 'Salsa', 'SAUCE');
insert into Ingredient (id, name, type)
 values ('SRCR', 'Sour Cream', 'SAUCE');

Even though you’ve only developed a repository for ingredient data, you can fire up
the Taco Cloud application at this point and visit the design page to see JdbcIngredi-
entRepository in action. Go ahead ... give it a try. When you get back, you’ll write the
repositories for persisting Taco, Order, and data.

3.1.4 Inserting data

You’ve already had a glimpse into how to use JdbcTemplate to write data to the data-
base. The save() method in JdbcIngredientRepository used the update() method
of JdbcTemplate to save Ingredient objects to the database.

 Although that was a good first example, it was perhaps a bit too simple. As you’ll
soon see, saving data can be more involved than what JdbcIngredientRepository
needed. Two ways to save data with JdbcTemplate include the following:

 Directly, using the update() method
 Using the SimpleJdbcInsert wrapper class

Listing 3.9 Preloading the database

65Reading and writing data with JDBC
Let’s first see how to use the update() method when the persistence needs are more
complex than what was required to save an Ingredient.

SAVING DATA WITH JDBCTEMPLATE

For now, the only thing that the taco and order repositories need to do is to save their
respective objects. To save Taco objects, the TacoRepository declares a save() method
like this:

package tacos.data;

import tacos.Taco;

public interface TacoRepository {

 Taco save(Taco design);

}

Similarly, OrderRepository also declares a save() method:

package tacos.data;

import tacos.Order;

public interface OrderRepository {

 Order save(Order order);

}

Seems simple enough, right? Not so quick. Saving a taco design requires that you also
save the ingredients associated with that taco to the Taco_Ingredients table. Like-
wise, saving an order requires that you also save the tacos associated with the order to
the Taco_Order_Tacos table. This makes saving tacos and orders a bit more challeng-
ing than what was required to save an ingredient.

 To implement TacoRepository, you need a save() method that starts by saving
the essential taco design details (for example, the name and time of creation), and
then inserts one row into Taco_Ingredients for each ingredient in the Taco object.
The following listing shows the complete JdbcTacoRepository class.

package tacos.data;

import java.sql.Timestamp;
import java.sql.Types;
import java.util.Arrays;
import java.util.Date;

import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.PreparedStatementCreator;

Listing 3.10 Implementing TacoRepository with JdbcTemplate

66 CHAPTER 3 Working with data
import org.springframework.jdbc.core.PreparedStatementCreatorFactory;
import org.springframework.jdbc.support.GeneratedKeyHolder;
import org.springframework.jdbc.support.KeyHolder;
import org.springframework.stereotype.Repository;

import tacos.Ingredient;
import tacos.Taco;

@Repository
public class JdbcTacoRepository implements TacoRepository {

 private JdbcTemplate jdbc;

 public JdbcTacoRepository(JdbcTemplate jdbc) {
 this.jdbc = jdbc;
 }

 @Override
 public Taco save(Taco taco) {
 long tacoId = saveTacoInfo(taco);
 taco.setId(tacoId);
 for (Ingredient ingredient : taco.getIngredients()) {
 saveIngredientToTaco(ingredient, tacoId);
 }

 return taco;
 }

 private long saveTacoInfo(Taco taco) {
 taco.setCreatedAt(new Date());
 PreparedStatementCreator psc =
 new PreparedStatementCreatorFactory(
 "insert into Taco (name, createdAt) values (?, ?)",
 Types.VARCHAR, Types.TIMESTAMP
).newPreparedStatementCreator(
 Arrays.asList(
 taco.getName(),
 new Timestamp(taco.getCreatedAt().getTime())));

 KeyHolder keyHolder = new GeneratedKeyHolder();
 jdbc.update(psc, keyHolder);

 return keyHolder.getKey().longValue();
 }

 private void saveIngredientToTaco(
 Ingredient ingredient, long tacoId) {
 jdbc.update(
 "insert into Taco_Ingredients (taco, ingredient) " +
 "values (?, ?)",
 tacoId, ingredient.getId());
 }

}

67Reading and writing data with JDBC
As you can see, the save() method starts by calling the private saveTacoInfo()
method, and then uses the taco ID returned from that method to call saveIngredient-
ToTaco(), which saves each ingredient. The devil is in the details of saveTacoInfo().

 When you insert a row into Taco, you need to know the ID generated by the data-
base so that you can reference it in each of the ingredients. The update() method,
used when saving ingredient data, doesn’t help you get at the generated ID, so you
need a different update() method here.

 The update() method you need accepts a PreparedStatementCreator and a Key-
Holder. It’s the KeyHolder that will provide the generated taco ID. But in order to use
it, you must also create a PreparedStatementCreator.

 As you can see from listing 3.10, creating a PreparedStatementCreator is non-
trivial. Start by creating a PreparedStatementCreatorFactory, giving it the SQL you
want to execute, as well as the types of each query parameter. Then call newPrepared-
StatementCreator() on that factory, passing in the values needed in the query parame-
ters to produce the PreparedStatementCreator.

 With a PreparedStatementCreator in hand, you can call update(), passing in
PreparedStatementCreator and KeyHolder (in this case, a GeneratedKeyHolder
instance). Once the update() is finished, you can return the taco ID by returning
keyHolder.getKey().longValue().

 Back in save(), cycle through each Ingredient in Taco, calling saveIngredient-
ToTaco(). The saveIngredientToTaco() method uses the simpler form of update()
to save ingredient references to the Taco_Ingredients table.

 All that’s left to do with TacoRepository is to inject it into DesignTacoController
and use it when saving tacos. The following listing shows the changes necessary for
injecting the repository.

@Controller
@RequestMapping("/design")
@SessionAttributes("order")
public class DesignTacoController {

 private final IngredientRepository ingredientRepo;

 private TacoRepository designRepo;

 @Autowired
 public DesignTacoController(
 IngredientRepository ingredientRepo,
 TacoRepository designRepo) {
 this.ingredientRepo = ingredientRepo;
 this.designRepo = designRepo;
 }

 ...

}

Listing 3.11 Injecting and using TacoRepository

68 CHAPTER 3 Working with data
As you can see, the constructor takes both an IngredientRepository and a Taco-
Repository. It assigns both to instance variables so that they can be used in the show-
DesignForm() and processDesign() methods.

 Speaking of the processDesign() method, its changes are a bit more extensive
than the changes you made to showDesignForm(). The next listing shows the new
processDesign() method.

@Controller
@RequestMapping("/design")
@SessionAttributes("order")
public class DesignTacoController {

 @ModelAttribute(name = "order")
 public Order order() {
 return new Order();
 }

 @ModelAttribute(name = "taco")
 public Taco taco() {
 return new Taco();
 }

 @PostMapping
 public String processDesign(
 @Valid Taco design, Errors errors,
 @ModelAttribute Order order) {

 if (errors.hasErrors()) {
 return "design";
 }

 Taco saved = designRepo.save(design);
 order.addDesign(saved);

 return "redirect:/orders/current";
 }

 ...

}

The first thing you’ll notice about the code in listing 3.12 is that DesignTaco-
Controller is now annotated with @SessionAttributes("order") and that it has a
new @ModelAttribute annotated method, order(). As with the taco() method, the
@ModelAttribute annotation on order() ensures that an Order object will be created
in the model. But unlike the Taco object in the session, you need the order to be
present across multiple requests so that you can create multiple tacos and add them
to the order. The class-level @SessionAttributes annotation specifies any model

Listing 3.12 Saving taco designs and linking them to orders

69Reading and writing data with JDBC
objects like the order attribute that should be kept in session and available across
multiple requests.

 The real processing of a taco design happens in the processDesign() method,
which now accepts an Order object as a parameter, in addition to Taco and Errors
objects. The Order parameter is annotated with @ModelAttribute to indicate that its
value should come from the model and that Spring MVC shouldn’t attempt to bind
request parameters to it.

 After checking for validation errors, processDesign() uses the injected Taco-
Repository to save the taco. It then adds the Taco object to the Order that’s kept in
the session.

 In fact, the Order object remains in the session and isn’t saved to the database until
the user completes and submits the order form. At that point, OrderController
needs to call out to an implementation of OrderRepository to save the order. Let’s
write that implementation.

INSERTING DATA WITH SIMPLEJDBCINSERT

You’ll recall that saving a taco involved not only saving the taco’s name and creation
time to the Taco table, but also saving a reference to the ingredients associated with
the taco to the Taco_Ingredients table. And you’ll also recall that this required you to
know the Taco’s ID, which you obtained using KeyHolder and PreparedStatement-
Creator.

 When it comes to saving orders, a similar circumstance exists. You must not only
save the order data to the Taco_Order table, but also references to each taco in the
order to the Taco_Order_Tacos table. But rather than use the cumbersome Prepared-
StatementCreator, allow me to introduce you to SimpleJdbcInsert, an object that
wraps JdbcTemplate to make it easier to insert data into a table.

 You’ll start by creating JdbcOrderRepository, an implementation of OrderRepos-
itory. But before you write the save() method implementation, let’s focus on the
constructor, where you’ll create a couple of instances of SimpleJdbcInsert for insert-
ing values into the Taco_Order and Taco_Order_Tacos tables. The following listing
shows JdbcOrderRepository (without the save() method).

package tacos.data;

import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.simple.SimpleJdbcInsert;
import org.springframework.stereotype.Repository;

import com.fasterxml.jackson.databind.ObjectMapper;

Listing 3.13 Creating a SimpleJdbcInsert from a JdbcTemplate

70 CHAPTER 3 Working with data
import tacos.Taco;
import tacos.Order;

@Repository
public class JdbcOrderRepository implements OrderRepository {

 private SimpleJdbcInsert orderInserter;
 private SimpleJdbcInsert orderTacoInserter;
 private ObjectMapper objectMapper;

 @Autowired
 public JdbcOrderRepository(JdbcTemplate jdbc) {
 this.orderInserter = new SimpleJdbcInsert(jdbc)
 .withTableName("Taco_Order")
 .usingGeneratedKeyColumns("id");

 this.orderTacoInserter = new SimpleJdbcInsert(jdbc)
 .withTableName("Taco_Order_Tacos");

 this.objectMapper = new ObjectMapper();
 }

...

}

Like JdbcTacoRepository, JdbcOrderRepository is injected with JdbcTemplate
through its constructor. But instead of assigning JdbcTemplate directly to an instance
variable, the constructor uses it to construct a couple of SimpleJdbcInsert instances.

 The first instance, which is assigned to the orderInserter instance variable, is con-
figured to work with the Taco_Order table and to assume that the id property will be
provided or generated by the database. The second instance, assigned to order-
TacoInserter, is configured to work with the Taco_Order_Tacos table but makes no
claims about how any IDs will be generated in that table.

 The constructor also creates an instance of Jackson’s ObjectMapper and assigns it
to an instance variable. Although Jackson is intended for JSON processing, you’ll see
in a moment how you’ll repurpose it to help you as you save orders and their associ-
ated tacos.

 Now let’s take a look at how the save() method uses the SimpleJdbcInsert
instances. The next listing shows the save() method, as well as a couple of private
methods that save() delegates for the real work.

 @Override
 public Order save(Order order) {
 order.setPlacedAt(new Date());
 long orderId = saveOrderDetails(order);
 order.setId(orderId);
 List<Taco> tacos = order.getTacos();

Listing 3.14 Using SimpleJdbcInsert to insert data

71Reading and writing data with JDBC
 for (Taco taco : tacos) {
 saveTacoToOrder(taco, orderId);
 }

 return order;
 }

 private long saveOrderDetails(Order order) {
 @SuppressWarnings("unchecked")
 Map<String, Object> values =
 objectMapper.convertValue(order, Map.class);
 values.put("placedAt", order.getPlacedAt());

 long orderId =
 orderInserter
 .executeAndReturnKey(values)
 .longValue();
 return orderId;
 }

 private void saveTacoToOrder(Taco taco, long orderId) {
 Map<String, Object> values = new HashMap<>();
 values.put("tacoOrder", orderId);
 values.put("taco", taco.getId());
 orderTacoInserter.execute(values);
 }

The save() method doesn’t actually save anything. It defines the flow for saving an
Order and its associated Taco objects, and delegates the persistence work to save-
OrderDetails() and saveTacoToOrder().

 SimpleJdbcInsert has a couple of useful methods for executing the insert: exe-
cute() and executeAndReturnKey(). Both accept a Map<String, Object>, where the
map keys correspond to the column names in the table the data is inserted into. The
map values are inserted into those columns.

 It’s easy to create such a Map by copying the values from Order into entries of the
Map. But Order has several properties, and those properties all share the same name
with the columns that they’re going into. Because of that, in saveOrderDetails(),
I’ve decided to use Jackson’s ObjectMapper and its convertValue() method to con-
vert an Order into a Map.1 Once the Map is created, you’ll set the placedAt entry to the
value of the Order object’s placedAt property. This is necessary because Object-
Mapper would otherwise convert the Date property into a long, which is incompatible
with the placedAt field in the Taco_Order table.

 With a Map full of order data ready, you can now call executeAndReturnKey() on
orderInserter. This saves the order information to the Taco_Order table and returns

1 I’ll admit that this is a hackish use of ObjectMapper, but you already have Jackson in the classpath; Spring
Boot’s web starter brings it in. Also, using ObjectMapper to map an object into a Map is much easier than
copying each property from the object into the Map. Feel free to replace the use of ObjectMapper with any
code you prefer that builds the Map you’ll give to the inserter objects.

72 CHAPTER 3 Working with data
the database-generated ID as a Number object, which a call to longValue() converts to
a long returned from the method.

 The saveTacoToOrder() method is significantly simpler. Rather than use the
ObjectMapper to convert an object to a Map, you create the Map and set the appropri-
ate values. Once again, the map keys correspond to column names in the table. A sim-
ple call to the orderTacoInserter’s execute() method performs the insert.

 Now you can inject OrderRepository into OrderController and start using it. The
following listing shows the complete OrderController, including the changes to use
an injected OrderRepository.

package tacos.web;
import javax.validation.Valid;

import org.springframework.stereotype.Controller;
import org.springframework.validation.Errors;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.SessionAttributes;
import org.springframework.web.bind.support.SessionStatus;

import tacos.Order;
import tacos.data.OrderRepository;

@Controller
@RequestMapping("/orders")
@SessionAttributes("order")
public class OrderController {

 private OrderRepository orderRepo;

 public OrderController(OrderRepository orderRepo) {
 this.orderRepo = orderRepo;
 }

 @GetMapping("/current")
 public String orderForm() {
 return "orderForm";
 }

 @PostMapping
 public String processOrder(@Valid Order order, Errors errors,
 SessionStatus sessionStatus) {
 if (errors.hasErrors()) {
 return "orderForm";
 }

 orderRepo.save(order);
 sessionStatus.setComplete();

Listing 3.15 Using an OrderRepository in OrderController

73Persisting data with Spring Data JPA
 return "redirect:/";
 }

}

Aside from injecting OrderRepository into the controller, the only significant changes
in OrderController are in the processOrder() method. Here, the Order object sub-
mitted in the form (which also happens to be the same Order object maintained in
session) is saved via the save() method on the injected OrderRepository.

 Once the order is saved, you don’t need it hanging around in a session anymore.
In fact, if you don’t clean it out, the order remains in session, including its associated
tacos, and the next order will start with whatever tacos the old order contained.
Therefore, the processOrder() method asks for a SessionStatus parameter and
calls its setComplete() method to reset the session.

 All of the JDBC persistence code is in place. Now you can fire up the Taco Cloud
application and try it out. Feel free to create as many tacos and as many orders as
you’d like.

 You might also find it helpful to dig around in the database. Because you’re using
H2 as your embedded database, and because you have Spring Boot DevTools in place,
you should be able to point your browser to http://localhost:8080/h2-console to see
the H2 Console. The default credentials should get you in, although you’ll need to be
sure that the JDBC URL field is set to jdbc:h2:mem:testdb. Once logged in, you
should be able to issue any query you like against the tables in the Taco Cloud schema.

 Spring’s JdbcTemplate, along with SimpleJdbcInsert, makes working with rela-
tional databases significantly simpler than plain vanilla JDBC. But you may find that
JPA makes it even easier. Let’s rewind your work and see how to use Spring Data to
make data persistence even easier.

3.2 Persisting data with Spring Data JPA
The Spring Data project is a rather large umbrella project comprised of several sub-
projects, most of which are focused on data persistence with a variety of different data-
base types. A few of the most popular Spring Data projects include these:

 Spring Data JPA —JPA persistence against a relational database
 Spring Data MongoDB —Persistence to a Mongo document database
 Spring Data Neo4j —Persistence to a Neo4j graph database
 Spring Data Redis —Persistence to a Redis key-value store
 Spring Data Cassandra —Persistence to a Cassandra database

One of the most interesting and useful features provided by Spring Data for all of
these projects is the ability to automatically create repositories, based on a repository
specification interface.

http://localhost:8080/h2-console

74 CHAPTER 3 Working with data
 To see how Spring Data works, you’re going to start over, replacing the JDBC-based
repositories from earlier in this chapter with repositories created by Spring Data JPA.
But first, you need to add Spring Data JPA to the project build.

3.2.1 Adding Spring Data JPA to the project

Spring Data JPA is available to Spring Boot applications with the JPA starter. This
starter dependency not only brings in Spring Data JPA, but also transitively includes
Hibernate as the JPA implementation:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

If you want to use a different JPA implementation, then you’ll need to, at least,
exclude the Hibernate dependency and include the JPA library of your choice. For
example, to use EclipseLink instead of Hibernate, you’ll need to alter the build
as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 <exclusions>
 <exclusion>
 <artifactId>hibernate-entitymanager</artifactId>
 <groupId>org.hibernate</groupId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>eclipselink</artifactId>
 <version>2.5.2</version>
</dependency>

Note that there may be other changes required, depending on your choice of JPA
implementation. Consult the documentation for your chosen JPA implementation for
details. Now let’s revisit your domain objects and annotate them for JPA persistence.

3.2.2 Annotating the domain as entities

As you’ll soon see, Spring Data does some amazing things when it comes to creating
repositories. But unfortunately, it doesn’t help much when it comes to annotating
your domain objects with JPA mapping annotations. You’ll need to open up
the Ingredient, Taco, and Order classes and throw in a few annotations. First up is the
Ingredient class.

75Persisting data with Spring Data JPA
package tacos;

import javax.persistence.Entity;
import javax.persistence.Id;

import lombok.AccessLevel;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.RequiredArgsConstructor;

@Data
@RequiredArgsConstructor
@NoArgsConstructor(access=AccessLevel.PRIVATE, force=true)
@Entity
public class Ingredient {

 @Id
 private final String id;
 private final String name;
 private final Type type;

 public static enum Type {
 WRAP, PROTEIN, VEGGIES, CHEESE, SAUCE
 }

}

In order to declare this as a JPA entity, Ingredient must be annotated with @Entity.
And its id property must be annotated with @Id to designate it as the property that will
uniquely identify the entity in the database.

 In addition to the JPA-specific annotations, you’ll also note that you’ve added a
@NoArgsConstructor annotation at the class level. JPA requires that entities have a no-
arguments constructor, so Lombok’s @NoArgsConstructor does that for you. You
don’t want to be able to use it, though, so you make it private by setting the access
attribute to AccessLevel.PRIVATE. And because there are final properties that must
be set, you also set the force attribute to true, which results in the Lombok-generated
constructor setting them to null.

 You also add a @RequiredArgsConstructor. The @Data implicitly adds a required
arguments constructor, but when a @NoArgsConstructor is used, that constructor gets
removed. An explicit @RequiredArgsConstructor ensures that you’ll still have a
required arguments constructor in addition to the private no-arguments constructor.

 Now let’s move on to the Taco class and see how to annotate it as a JPA entity.

package tacos;
import java.util.Date;
import java.util.List;

Listing 3.16 Annotating Ingredient for JPA persistence

Listing 3.17 Annotating Taco as an entity

76 CHAPTER 3 Working with data
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.ManyToMany;
import javax.persistence.OneToMany;
import javax.persistence.PrePersist;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

import lombok.Data;

@Data
@Entity
public class Taco {

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;

 @NotNull
 @Size(min=5, message="Name must be at least 5 characters long")
 private String name;

 private Date createdAt;

 @ManyToMany(targetEntity=Ingredient.class)
 @Size(min=1, message="You must choose at least 1 ingredient")
 private List<Ingredient> ingredients;

 @PrePersist
 void createdAt() {
 this.createdAt = new Date();
 }
}

As with Ingredient, the Taco class is now annotated with @Entity and has its id prop-
erty annotated with @Id. Because you’re relying on the database to automatically
generate the ID value, you also annotate the id property with @GeneratedValue, spec-
ifying a strategy of AUTO.

 To declare the relationship between a Taco and its associated Ingredient list, you
annotate ingredients with @ManyToMany. A Taco can have many Ingredient objects,
and an Ingredient can be a part of many Tacos.

 You’ll also notice that there’s a new method, createdAt(), which is annotated with
@PrePersist. You’ll use this to set the createdAt property to the current date and
time before Taco is persisted. Finally, let’s annotate the Order object as an entity. The
next listing shows the new Order class.

77Persisting data with Spring Data JPA
package tacos;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.ManyToMany;
import javax.persistence.OneToMany;
import javax.persistence.PrePersist;
import javax.persistence.Table;
import javax.validation.constraints.Digits;
import javax.validation.constraints.Pattern;
import org.hibernate.validator.constraints.CreditCardNumber;
import org.hibernate.validator.constraints.NotBlank;
import lombok.Data;

@Data
@Entity
@Table(name="Taco_Order")
public class Order implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;

 private Date placedAt;

 ...

 @ManyToMany(targetEntity=Taco.class)
 private List<Taco> tacos = new ArrayList<>();

 public void addDesign(Taco design) {
 this.tacos.add(design);
 }

 @PrePersist
 void placedAt() {
 this.placedAt = new Date();
 }

}

As you can see, the changes to Order closely mirror the changes to Taco. But there’s
one new annotation at the class level: @Table. This specifies that Order entities should
be persisted to a table named Taco_Order in the database.

Listing 3.18 Annotating Order as a JPA entity

78 CHAPTER 3 Working with data
 Although you could have used this annotation on any of the entities, it’s necessary
with Order. Without it, JPA would default to persisting the entities to a table named
Order, but order is a reserved word in SQL and would cause problems. Now that the
entities are properly annotated, it’s time to write your repositories.

3.2.3 Declaring JPA repositories

In the JDBC versions of the repositories, you explicitly declared the methods you
wanted the repository to provide. But with Spring Data, you can extend the Crud-
Repository interface instead. For example, here’s the new IngredientRepository
interface:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Ingredient;

public interface IngredientRepository
 extends CrudRepository<Ingredient, String> {

}

CrudRepository declares about a dozen methods for CRUD (create, read, update,
delete) operations. Notice that it’s parameterized, with the first parameter being the
entity type the repository is to persist, and the second parameter being the type of the
entity ID property. For IngredientRepository, the parameters should be Ingredient
and String.

 You can similarly define the TacoRepository like this:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Taco;

public interface TacoRepository
 extends CrudRepository<Taco, Long> {

}

The only significant differences between IngredientRepository and TacoRepository
are the parameters to CrudRepository. Here, they’re set to Taco and Long to specify
the Taco entity (and its ID type) as the unit of persistence for this repository interface.
Finally, the same changes can be applied to OrderRepository:

package tacos.data;

import org.springframework.data.repository.CrudRepository;

import tacos.Order;

79Persisting data with Spring Data JPA
public interface OrderRepository
 extends CrudRepository<Order, Long> {

}

And now you have your three repositories. You might be thinking that you need to
write the implementations for all three, including the dozen methods for each imple-
mentation. But that’s the good news about Spring Data JPA—there’s no need to write
an implementation! When the application starts, Spring Data JPA automatically gener-
ates an implementation on the fly. This means the repositories are ready to use from
the get-go. Just inject them into the controllers like you did for the JDBC-based imple-
mentations, and you’re done.

 The methods provided by CrudRepository are great for general-purpose per-
sistence of entities. But what if you have some requirements beyond basic persistence?
Let’s see how to customize the repositories to perform queries unique to your
domain.

3.2.4 Customizing JPA repositories

Imagine that in addition to the basic CRUD operations provided by CrudRepository,
you also need to fetch all the orders delivered to a given ZIP code. As it turns out,
this can easily be addressed by adding the following method declaration to OrderRe-
pository:

List<Order> findByDeliveryZip(String deliveryZip);

When generating the repository implementation, Spring Data examines any methods
in the repository interface, parses the method name, and attempts to understand the
method’s purpose in the context of the persisted object (an Order, in this case). In
essence, Spring Data defines a sort of miniature domain-specific language (DSL)
where persistence details are expressed in repository method signatures.

 Spring Data knows that this method is intended to find Orders, because you’ve
parameterized CrudRepository with Order. The method name, findByDelivery-
Zip(), makes it clear that this method should find all Order entities by matching their
deliveryZip property with the value passed in as a parameter to the method.

 The findByDeliveryZip() method is simple enough, but Spring Data can handle
even more-interesting method names as well. Repository methods are composed of a
verb, an optional subject, the word By, and a predicate. In the case of findByDelivery-
Zip(), the verb is find and the predicate is DeliveryZip; the subject isn’t specified and is
implied to be an Order.

 Let’s consider another, more complex example. Suppose that you need to query
for all orders delivered to a given ZIP code within a given date range. In that case, the
following method, when added to OrderRepository, might prove useful:

List<Order> readOrdersByDeliveryZipAndPlacedAtBetween(
 String deliveryZip, Date startDate, Date endDate);

80 CHAPTER 3 Working with data
Figure 3.2 illustrates how Spring Data parses and understands the readOrdersBy-
DeliveryZipAndPlacedAtBetween() method when generating the repository implemen-
tation. As you can see, the verb in readOrdersByDeliveryZipAndPlacedAtBetween() is
read. Spring Data also understands find, read, and get as synonymous for fetching one
or more entities. Alternatively, you can also use count as the verb if you only want the
method to return an int with the count of matching entities.

readOrdersByDeliveryZipAndPlacedAtBetween()

This method will read
data (“get” and “find” are

also allowed here).

Match .deliveryZip or
.delivery.zip property

Match .placedAt or
.placed.at property

Signifies the start of
properties to match The value must fall

between the given
values.

...and...

Figure 3.2 Spring Data parses repository method signatures to
determine the query that should be performed.

Although the subject of the method is optional, here it says Orders. Spring Data
ignores most words in a subject, so you could name the method readPuppiesBy...
and it would still find Order entities, as that is the type that CrudRepository is param-
eterized with.

 The predicate follows the word By in the method name and is the most interesting
part of the method signature. In this case, the predicate refers to two Order proper-
ties: deliveryZip and placedAt. The deliveryZip property must be equal to the
value passed into the first parameter of the method. The keyword Between indicates
that the value of deliveryZip must fall between the values passed into the last two
parameters of the method.

 In addition to an implicit Equals operation and the Between operation, Spring
Data method signatures can also include any of these operators:

 IsAfter, After, IsGreaterThan, GreaterThan
 IsGreaterThanEqual, GreaterThanEqual
 IsBefore, Before, IsLessThan, LessThan
 IsLessThanEqual, LessThanEqual
 IsBetween, Between
 IsNull, Null
 IsNotNull, NotNull
 IsIn, In
 IsNotIn, NotIn
 IsStartingWith, StartingWith, StartsWith

81Summary
 IsEndingWith, EndingWith, EndsWith
 IsContaining, Containing, Contains
 IsLike, Like
 IsNotLike, NotLike
 IsTrue, True
 IsFalse, False
 Is, Equals
 IsNot, Not
 IgnoringCase, IgnoresCase

As alternatives for IgnoringCase and IgnoresCase, you can place either AllIgnoring-
Case or AllIgnoresCase on the method to ignore case for all String comparisons.
For example, consider the following method:

List<Order> findByDeliveryToAndDeliveryCityAllIgnoresCase(
 String deliveryTo, String deliveryCity);

Finally, you can also place OrderBy at the end of the method name to sort the results
by a specified column. For example, to order by the deliveryTo property:

List<Order> findByDeliveryCityOrderByDeliveryTo(String city);

Although the naming convention can be useful for relatively simple queries, it doesn’t
take much imagination to see that method names could get out of hand for more-
complex queries. In that case, feel free to name the method anything you want and
annotate it with @Query to explicitly specify the query to be performed when the
method is called, as this example shows:

@Query("Order o where o.deliveryCity='Seattle'")
List<Order> readOrdersDeliveredInSeattle();

In this simple usage of @Query, you ask for all orders delivered in Seattle. But you can
use @Query to perform virtually any query you can dream up, even when it’s difficult
or impossible to achieve the query by following the naming convention.

3.3 Summary
 Spring’s JdbcTemplate greatly simplifies working with JDBC.
 PreparedStatementCreator and KeyHolder can be used together when you

need to know the value of a database-generated ID.
 For easy execution of data inserts, use SimpleJdbcInsert.
 Spring Data JPA makes JPA persistence as easy as writing a repository interface.

 index

Symbols

@ operator 36
@{} operator 36
@Autowired annotation 59
@Bean annotation 3
@ComponentScan annotation 13
@Configuration annotation 3
@Controller annotation 16
@Data annotation 30
@Digits annotation 46
@EnableAutoConfiguration annotation 13
@GeneratedValue annotation 76
@GetMapping annotation 16, 33
@Id annotation 75
@ManyToMany annotation 76
@ModelAttribute annotation 68
@NoArgsConstructor annotation 75
@NotBlank annotation 45
@NotNull annotation 44
@Pattern annotation 46
@PostMapping annotation 33
@PrePersist annotation 76
@Repository annotation 59
@RequestMapping annotation 32–33
@RequiredArgsConstructor annotation 75
@RunWith annotation 14
@SessionAttributes annotation 68
@Size annotation 44
@Slf4j annotation 32
@SpringBootApplication annotation 13
@SpringBootConfiguration annotation 13
@SpringBootTest annotation 15
@Valid annotation 46
@WebMvcTest annotation 19, 50

A

addViewControllers() method 50
applications. See Spring applications
autowiring 4

B

bootstrapping applications, example 13–14
browser refresh 22
build specification 10–13

C

caching templates 52–53
ccExpiration property 45
ccNumber property 45
cloud. See Spring Cloud
component scanning 4
controller class, creating 30–33
controller, testing 18–19
createdAt property 57
CrudRepository interface 79
curl 5

D

data 54–81
persisting with Spring Data JPA 73–81

adding Spring Data JPA to project 74
annotating domain as entities 74–78
customizing JPA repositories 79–81
declaring JPA repositories 78–79

reading and writing with JDBC 55–73
adapting domain for persistence 57
defining schema and preloading data 62–64
82

83INDEX
inserting data 64–73
working with JdbcTemplate 58–62

dependency injection (DI) 2
DI (dependency injection) 2
displaying information 28–38

creating controller class 30–33
designing view 33–38

domain, establishing 29–30

E

equals() method 29
errors attribute 48
execute() method 71
executeAndReturnKey() method 71

F

final property 30
findAll() method 59–60
findOne() method 59–60
forms

processing submission 38–43
validating input 43–49

declaring validation rules 44–46
displaying validation errors 47–49
performing validation at form binding 

46–47
frameworkless framework 23
FreeMarker 51

G

GET requests, handling 32–33
Groovy Templates 51

H

H2 console 23
hasErrors() method 47
hashCode() method 29
home() method 16
HTTP 404 (Not Found) error 33

I

initializing applications 4–15
initializing projects, with Spring Tool Suite 5–9
integration. See Spring Integration
InventoryService bean 3

J

Java Database Connectivity. See JDBC
Java Persistence API. See Spring Data JPA
Java virtual machine (JVM) 22
JavaServer Pages. See JSP
JDBC (Java Database Connectivity), reading and

writing data with 55–73
adapting domain for persistence 57
defining schema and preloading data 62–64
inserting data 64–73
working with JdbcTemplate 58–62

JdbcTemplate class 24, 55
JPA (Java Persistence API). See Spring Data JPA

(Java Persistence API)
JSP (JavaServer Pages) 33
JVM (Java virtual machine) 22

L

LiveReload 22
Lombok 30

M

main() method 14
mapRowToIngredient() method 56
Mustache 51

N

Not Found (HTTP 404) error 33

O

OrderController class 41
orderForm() method 40
orderInserter variable 70

P

placedAt property 71
PreparedStatementCreator() method 67
processDesign() method 38, 44, 68
processOrder() method 44
ProductService bean 3
projects. See Spring projects

Q

query() method 61
queryForObject() method 56, 60–61

84 INDEX
R

reactive repositories. See Spring Data
reading and writing data, with JDBC 55–73

adapting domain for persistence 57
defining schema and preloading data 62–64
inserting data 64–73

inserting data with SimpleJdbcTemplate 
69–73

saving data with JdbcTemplate 65–69
working with JdbcTemplate 58–62

defining JDBC repositories 58–60
inserting row 60–62

restart, automatic 21–22
run() method 14

S

save() method 65
scanning 4, 13
security. See Spring Security
SessionStatus parameter 73
setViewName() method 50
showDesignForm() method 32–33
SimpleJdbcInsert class 64
SimpleJdbcTemplate 69–73
Spring applications

automatic restart 21–22
initializing 4–15
testing 14–15
writing 15–24

building and running application 19–21
defining view 17
handling web requests 15–17
Spring Boot DevTools use 21–23
testing controller 18–19

See also bootstrapping applications
Spring Batch 25–26
Spring Boot, overview of 24–25
Spring Boot DevTools 21–23

automatic application restart 21–22
automatic browser refresh 22
built in H2 console 23
template cache disable 22

Spring Cloud 26
Spring Data 25
Spring Data JPA (Java Persistence API) 73–81

adding to project 74
annotating domain as entities 74–78
customizing JPA repositories 79–81
declaring JPA repositories 78–79

Spring Framework 24

Spring Integration 25–26
Spring overview 2–4
Spring projects

initializing, with Spring Tool Suite 5–9
structure 9–15

bootstrapping application 13–14
build specification 10–13
SpringRunner 15
testing application 14–15

Spring Security 25
Spring Tool Suite, initializing Spring projects

with 5–9
SpringApplication class 14
SpringJUnit4ClassRunner 15
SpringRunner 15
SQLException 56

T

template cache disable 22
testHomePage() method 19
testing

applications 14–15
controller 18–19

Thymeleaf 12, 16–17
Tomcat 20
toString() method 29

U

update() method 61, 64

V

validating form input 43–49
declaring validation rules 44–46
displaying validation errors 47–49
performing validation at form binding 46–47

view controllers 49–50
view template library, choosing

caching templates 52–53
general discussion 50–53

view, designing 33–38

W

web applications, developing 27–53
displaying information 28–38

creating controller class 30–33
designing view 33–38
establishing domain 29–30

processing form submission 38–43

85INDEX
validating form input 43–49
declaring validation rules 44–46
displaying validation errors 47–49
performing validation at form binding 

46–47
view controllers 49–50
view template library, choosing 50–53

WebMvcConfigurer interface 49
wrapper scripts, Maven 9
writing data. See reading and writing data, with

JDBC

writing Spring applications 15–24
building and running application 19–21
defining view 17
handling web requests 15–17
Spring Boot DevTools use 21–23

automatic application restart 21–22
automatic browser refresh and template

cache disable 22
built in H2 console 23

testing controller 18–19

