
Voices of the Vanguards:

Our Guide to Measuring
Software Delivery Through
Metrics

2

Background

In September 2022, Michael Coté, Senior Technical Staff, VMware Tanzu, led a live
webinar discussion with three VMware Tanzu Vanguard customers to get multiple
perspectives on the topic of Measuring Software Delivery Through Metrics. This guide
is a recap of the panelists’ thoughts, experiences, challenges, ideas, and advice.

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

3

Introduction

Michael Coté: There have been lots of interesting conversations and thoughts
about measurement metrics over the past 10 or so years, especially in the
DevOps space. This discussion is more about software delivery and the full
process, all that’s involved in actually enjoying (or worrying about) building
your software, discovering what’s there, and deploying it and running it—as
well how you are thinking about, reporting on, and improving that process
over time.

We will review the popular metrics, performance metrics for checking on the
health of your applications and the way they’re performing, as well as the
kinds of metrics that you use to track how an application is running or items
like number of defects.

Whether you’re building the software that you use to run your organization
— internally, or for a customer or partner — you’re thinking about the
following:

• What is the state of the software running in production?

• What is the state of the “factory” and the process that is creating this
software?

• What is our operational health as far as the potential we have in the future
to keep operating?

• How can we make sure that we’re getting better?

This report is divided up into four sections:

The Human Side of
Measurement

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

Industry-Leading Metrics:
DORA, Flow, Value

Stream

01

Tech Debt Metrics

02 03

The (im)possible task
of measuring customer

experience

04

4

Industry-Leading Metrics: DORA,
Flow, Value Stream

First, we’ll compare and contrast some more popular, well-known metrics.

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

01

5

The first group of metrics at the top of this chart is from
the State of DevOps reports.

Value Stream Value stream mapping typically uses 4 core
metrics to analyze the flow of work through each
stage in a value stream

DORA

Flow Metrics Measure the flow of business value through all the
activities involved in producing business value
through a software value stream.

Metric Description

DevOps Research and Assessment metrics • Deployment frequency (DF)
• Mean lead time (MLT) for changes
• Mean-time-to recovery (MTTR)
• Change failure rate (CFR)
• Cycle time from idea to production

• Flow velocity
• Flow time
• Flow efficiency
• Flow load
• Flow distribution

• Lead Time (LT) – Time to complete the
stage from intake to handoff

• Process Time (PT)

• Complete & Accurate (%C/A)

• Value Added (VA)

Examples

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

https://cloud.google.com/devops/state-of-devops/

6

DORA Metrics

DORA metrics were codified in the Accelerate book by Nicole Forsgren, Jez
Humble, and Gene Kim that came out in 2018. Some of these metrics include:

• The frequency that you deploy software

• The number of failures, defects, or errors that are in each deploy (do you
have to roll it back?)

• How long does it take the team from an idea to actually getting something
to production?

Each of these metrics are getting to the bigger question: what is our ability to
deploy software? And when we deploy it, are there errors in it? Then what is
the mean time to repair when something does go wrong? How quickly can
we fix it?

These DORA metrics are good metrics to start with, a baseline when you’re
looking to improve how you’re building your software and delivering it. They
are going to give you an indication of the health of your software delivery.
There are two main reasons why it’s important to deliver software frequently:

• It allows you to modify your software, add new features to it, in an
iterative way. This means you can experiment with new ideas to see what
works. Instead of waiting 6-12 months, you can more quickly change it and
make it better. To me, this is key to how you use software to innovate
your business.

• But also, there’s an interesting side effect, where if you’re releasing very
frequently, you’re forced to only release a small amount of software, which
in theory makes it easy to repair when things go wrong, because there’s
less stuff to mess with.

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

https://books.google.com/books/about/Accelerate.html?id=85XHAQAACAAJ
https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Nicole+Forsgren%22
https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Jez+Humble%22
https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Jez+Humble%22
https://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Gene+Kim%22

7

Flow Metrics

The next set of metrics are flow metrics, which come mainly from Tasktop
CTO, Mik Kersten (and friends), bestselling author of Project To
Product: How to Survive and Thrive in the Age of Digital Disruption with
the Flow Framework.®

Flow metrics are focused on the health of your factory. How many units of
work, and which units of work, are you getting through the pipeline? A huge
amount of this is borrowed from lean manufacturing. So the metaphor is
always that we have a factory line or a process that is assembling things,
delivering them, shooting them outside the factory doors (deploying your
software), and getting it out there for people to use.

Borrowing from lean is this idea that there are many different activities. But
for the purposes of this, there are two activities you’re looking at here: one,
actual work, like whether it’s coding or working on your applications to get
it out the door, that configuration and things like that. And then two, there’s
wait time: that time you’re waiting to have a meeting with someone, or
more everyday things like waiting for someone to come back from lunch or
vacation. Efficiency is an interesting metric, because it tells you how you’re
doing as far as eliminating wait time or waste.

Value Stream Metrics

Value stream metrics emphasize the complete end to end process of getting
software out the door. When someone has an idea for a new feature, your
product team is thinking about how they would build it, discussing what it
is, how they would solve that problem, coding it and testing it, packaging it,
verifying it, deploying it, maybe staging it, doing all that sort of stuff to then
finally deploying to production. Then they have people that use that software
and observe what they’re doing. But this whole process, end to end is really
what a lot of these value stream metrics are looking at.

I’m not suggesting that you should start using all of these metrics right
away. But chances are, that if you’re looking to improve the way that you’re
deploying software, you’ll be using a fair amount of them, or versions of them
that you have customized. And if you understand what these metrics are, and
why they would be valuable, it gives you one way of understanding how you
can improve your software process: not only things to measure, but also what
“good” looks like.

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

https://projecttoproduct.org/
https://projecttoproduct.org/
https://projecttoproduct.org/

8

Tech Debt Metrics & Other
Panelist Experiences

Jonathan Regehr: One of the huge reasons that Garmin started down the
journey with Tanzu Application Service and adopted that platform, was
because we knew our deployment frequency was way too low. We knew we
needed to bring it up, and we wanted to track that.

And we found that this was a lot more difficult to track than we wanted. I think
one of our audience members also asked, “how do you track the source data
residing in multiple places?” That’s actually one of our problems. We had
some teams that were making tickets when they would release and they would
detail all the things they did. And other teams weren’t doing that. And we’re
following a little bit more of an agile flow. And so it is very difficult to track
deployment frequency, especially if you think of the agile methodology where
to truly be agile, your process is constantly changing. As that process changes,
you have to constantly figure out how you’re going to track what a deployment
is and what is in a deployment. There are challenges to doing all that, and it
does make deployment frequency difficult to track. I think at some point, we
sort of decided we were just going to look at how many times we called the CF
push [the command developers use to deploy their applications to the Tanzu
Application Service, which is based on Cloud Foundry].

Michael: Several years ago, I had someone ask me a similar question and they
were a Tanzu Application Service user. To agree with you, as they dug deeper
trying to find release frequencies, they encountered exactly what you’re
saying: “Well, how do we define a release? Like, there’s so many things going

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

02

https://tanzu.vmware.com/application-service

9

on?” It’s difficult, especially across teams, to say, “this is a release versus this is
a patch.” So definitely, you have to know what your terminology means, what
the items are. Paul, do you have any reflections on these metrics?

Paul Pelafas: Yeah, I do. At the previous role that I had, the company had
recently been through a digital transformation. So this is moving from a
waterfall world to more agile methodologies and setting up some product
teams that were centered around very specific domains. So as you can
imagine, this was a huge investment for the company. We were wanting to
know:

• Were we getting a return on investment?

• Making things better? Worse?

Metrics were very much at the center of trying to understand those questions.
In our case, our product teams were often the guinea pigs for the new way
of working in the organization. So seeing how quickly and how efficiently
these teams could work with some of these new tools, and just workflows and
processes was really important.

We focused very much on DORA metrics, and how quickly we could
move from ideation into production and see real value from the code that
our engineers were producing. We could also see how quickly we would
respond to different issues that arise because in software, there’s a human
element, and there are always going to be defects or bugs. How quickly we
can respond to those and make changes that have a positive impact to our
consumers is really, really important. We focused very much on the DORA
metrics, and these were our guiding light for our product teams.

Jonathan: You mentioned cycle time, and that to me that feels a lot like the
deployment frequency. You also mentioned release size and that was one of
our big things. We had these huge releases, long cycle times, and then you hit
production with those things. And let’s say something goes wrong. Everyone
all of a sudden says, “I’ve got to figure out what the problem is.” It’s very
difficult to find issues in that regard, because your release is so big that many
different developers have code running in there.

Maybe something got lost in a merge somewhere and so it made bugs a lot
more difficult to squash. So I put a high value on the short cycle time. Short
cycle times benefit the customer, but they benefit your code quality as well.
Because you’re that much closer to when the code was written. And therefore,
you’re that much closer to remembering what the problem might be.

Paul: Yes, that’s a great point, Jonathan.

“Our organization went from quarterly releases to multiple
times daily. You can’t get there overnight. So measuring
how much more efficient you are over a period of time, you
can see trends, numbers, and data to help influence where
you’re going.”

Paul Pelafas

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

1 0

Our original aspirational goal for teams was, “Can you deploy once a week?”
and then tracking that against all the teams. Then it was moving to “can
you deploy once a day?” And after that it’s multiple times per day, because
you’re right, the smaller release sizes make it much easier to fix things as they
come up.

Michael: Legacy software is an area that I’ve been spending a lot of time
on in the past year. Your existing software and legacy software is often the
software that’s mission critical, that makes you all the money, that’s vital. And
the definition I use, the jokey one about legacy software is it’s software that
you have to change, but you’re really afraid to change, right? Because if you
weren’t afraid of changing it, you would just call it software, you wouldn’t put
the word legacy in front of it.

I think, especially in large organizations, the more successful ones that have
managed to stay alive for a while, there’s always technical debt and legacy
software to deal with. And it’s one of the more elusive things to measure,
right? Jim, you’ve been thinking about how to get a sense of the tech debt
that you have. How have you been working on this?

Jim: Basically, whether you’ve got a legacy system (or even a new system
that is going to become legacy very quickly), it’s going to accumulate debt.
So tech debt is sort of euphemistic for a lot of things. And people say, “well,
that’s tech debt, what are we going to do about it”? and shrug their
shoulders.

But let’s talk a little bit about what it really seems to be, at least from our
world and what we’ve done with it. And when we got on the Tanzu
Application Service train (and it’s great, it’s fantastic), we saw the things that
everybody talked about, that everybody was jumping into our system. And
they were basically bringing all kinds of things to the party, big apps that
needed refactoring apps that really weren’t compliant with what we wanted.
So there are lots of areas where tech debt can accumulate because they’re
not norming around the things we wanted to initially.

As we evolved, we got our cycle time down; it was great. But we needed
to take care of some things like changing platforms, or changing language
versions, compilers, non conformance projects for architecture, configuration,
and security vulnerabilities. These are always going to keep coming at us. So
we actually did something about it. But to me, that’s what technical debt is.

“76% of executives said they are too invested in legacy
applications to change.”

Source: “Improving Customer Experience And Revenue Starts With The App Portfolio,”

Forrester Consulting, commissioned by VMware, March, 2020. Survey conducted July to
Oct. 2019 with 614 respondents and six CIO/SVP interviews.

“Why is it important to be discussing these productivity
metrics? Because they’re hidden. They’re very hard to see,
so it affects everything that we talk about. So when are
they addressed?”

Jim Kohl

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

https://tanzu.vmware.com/content/ebooks/the-legacy-trap
https://tanzu.vmware.com/content/ebooks/the-legacy-trap
https://www.vmware.com/cio-vantage/articles/customer-experience-starts-with-apps.html

1 1

Some teams, they’ll deal with these problems on a quarterly basis. And
they’ve got to justify why they’re taking these things on. But for other things,
we work on a weekly cadence, and then we address it right away. But what
we’ve done is what maybe some organizations do — we look through all
the projects that we have on our portfolio. And we have software that looks
at the configuration and flags issues that we find that are problems with
the configuration. Or if we find vulnerabilities we take feeds in from our
Checkmarx partner, or if we have any other sources that give us information
like Tanzu Application Service, we can look there. We take all this data, and
we actually create issues on the team’s tracking boards. There are quantitative
things that can be measured, so that’s something we’ve done. Some teams,
I imagine, never capture it, and they keep shrugging their shoulders. But it’s
less of a hidden cost to us.

We actually look at this other work we’re doing and we ask teams to commit
time, because they’re high priority and medium and low priority issues. The
high priority issues, we want them to resolve very quickly. There’s also this
notion of a technical debt ratio. We have not evolved to this extent, but it’s
remediation costs versus your development cost times 100%. It’s a little trickier
to measure. And I’m sure, Coté, that in your Legacy Trap eBook, you probably
could talk a lot about that. The main point here is that it’s something that is
often ignored or not accounted for. It’s important to think about how that
factors into those metrics.

Michael: Another thing that I’ve encountered over the years that I’ve been
able to write up with some of my coworkers recently is this idea of developer
toil. It’s, as the name would imply, annoying stuff developers have to put up
with. There’s a way of pulling metrics out by using surveys, essentially, which I
think is an interesting practice.

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

https://tanzu.vmware.com/content/ebooks/the-legacy-trap
https://tanzu.vmware.com/content/white-papers/developer-toil-the-hidden-tech-debt?utm_source=cote&utm_campaign=devrel
https://tanzu.vmware.com/content/white-papers/developer-toil-the-hidden-tech-debt?utm_source=cote&utm_campaign=devrel

1 2

The Human Side of Measurement
• Teamwork vs. Individual blame

• MTTR/MTTI example

Michael: When we were discussing this, something that came up very
frequently was that you will have good and bad metrics, and hopefully, you’ll
figure out which ones are working well.

There are good ways that metrics can affect people, and drive them, and y’all
have a bit to say about that. There are bad ways, as well. Jonathan,
why don’t you start us off with the idea of “blame-storming,’’ as we used to
call it. The blame game is something that metrics are, unfortunately, a ready
weapon to use in any sort of blame battles that you have, which one has to
be cautious about.

“But especially as you’re programming, building your art,
your organization, you’re creating the architecture for your
factory. It becomes very important to pay attention to how
these metrics are affecting people, humans - both good
and bad (and especially the bad).”

Michael Coté

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

03

1 3

Jonathan: Indeed, yeah, I’ve got a lot to say on this topic. I’ll try and keep it
brief. But I want to focus for a minute on the MTTR versus MTTI. So MTTR is
a mean time to resolution: when you have an issue and you want to put your
systems back to normal as quickly as possible. We’ll see how fast you can do
it — that’s mean time to resolution. That’s a great measure. That measure
should constantly be getting faster, as your teams get better at solving issues.

But there was a period of time where mean time to innocence became
something that teams tracked. And that’s the whole thing of each team
frantically looking at their own system going, “Oh, it’s not me, my system
is fine.” And leaving the room or going back to coding. But mean time to
innocence — I don’t see any value in that. Because essentially, you’re slowly
shrinking the number of minds that are solving the problem. With really good
metrics, and really good monitoring and alerting, I’ll plug Aria Operations
here. If you can put your metrics together really well, everybody can see at the
same time where the problem is.

If you all can look at the same metrics and all see very quickly that the
problem is a storage problem, or a network problem, or whatever it happens
to be. Instead of all of the people hounding that one team, now everybody
can collaborate together and solve that problem at the same time.

The blame topic is an interesting one, too.

Jim Kohl: Well, one of the things that I’m concerned about is that we, as
engineers, like to optimize things. So it’s a very interesting proposition to work
on these things. However, we have an inherent distrust of management, and
how these metrics will be used against us.

Paul: Yeah, that’s so true, Jim…there has to be a trust element there,
otherwise, a lot of this stuff falls down. I know a big thing in applications
and software development is gamification, so we did a lot of this pitting our
teams against each other to see who could deploy most frequently. That only
works if there is trust from the development teams to the stakeholders and
understanding that there are going to be things that happen and if we can
respond to them quickly and not cause major disruptions in the business,
then that’s okay. And that’s to be expected. I don’t see how this works unless
you have that buy-in because, whoever mentioned that earlier about just an
inherent distrust, you’re definitely not wrong. It’s real and if the people who
are writing the checks are okay with the teams being able to fail and gracefully
fail and recover, then that’s when you build that solid relationship.

Michael: Building up trust in the organization is important to get around the
thing everyone knows: once you have a metric, people will figure out how to

“If you want to have fail fast teams, you have to make sure
that even if someone makes a mistake, that mistake is
handled in a way that your (human) teams are comfortable
failing. If they’re not comfortable failing, because someone
failed and the director walked out of their office and
went “who did it?” your teams are going to be a lot more
cautious. You may have measurements and you can tell
who’s doing what, but nobody’s taking any risks — and
therefore your company is going to move a lot slower.”

Jonathan Regehr

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

1 4

game it, and how to make themselves look good. So what have you seen?
What are some ways to get more people to trust the metrics for furthering the
genuine thing that they’re trying to do, to give you those health gauges?

Jim: I think you need to avoid comparison. But it’s so tempting to do — you’ve
got all the dashboards and with all the data lined up that’s the first inclination.
Metrics may not scale up as well as you might think, just as with sprint velocity,
each team has its own way of doing things. For example, you might have apps
that are huge, monolithic things, so some of those metrics are going to be
skewed. Because you have to deploy more frequently to get things changed
versus, say, a microservice.

Some teams may be more diligent about addressing tech debt, and it’s going
to take them a little bit longer to deliver that feature. Those are some areas
where you may not see much when you look at these metrics, but if you can
dig deeper that might be able to help other teams or set a focus on what
is expected. If the objective is to compare teams to find trouble areas, it’s
probably a lot more effective to put it in the team’s hands so that they can
figure out better ways to work and make their own improvements. Sharing data
can be useful to visualize the same trouble areas occurring across teams and
then presents a great opportunity to devote devops energy to resolve them.

Paul: That’s definitely true, Jim. That’s why I always have found velocity to
be a bad metric as opposed to volatility. Over time, teams will normalize to
an expected output. And if your volatility is generally flat, then your team
is probably very efficient. Once you start to see spikes up and down and
volatility, then you can start to ascertain what’s going on in the team, because
you have newer team members that are still learning what’s going on in
the application. And if you have a more mature team, then you might have

additional things that you need to take a closer look at. I like metrics like
volatility as opposed to velocity. For that specific use, there’s a whole other
bunch of different metrics that are not apples to apples; you have to figure
out what the right metrics for tracking individual teams look like.

Michael: Volatility versus velocity as a way of adding in exactness into a
metric, right? To drive towards what you’re really interested in. Something
that you might be really interested in could be, “is this team functioning well
— nevermind the speed or the exact number?” Something like volatility gives
you an indication of that. And it reminds me of way back in the beginning
of agile, how there was a lot of thought into also putting in exactness and
metrics, like using story points instead of feature points, and all these things
that were made up to emphasize more of the qualitative nature of things
rather than quantitative. Again, so that you can have a metric that isn’t scary
to some extent, or can’t be used against you.

Paul: Yeah, I’ve seen, Coté, where they can be used to manipulate metrics for
the sake of reporting. If you extrapolate out, if your team tends to sandbag
on stories and points, you’ll see the numbers will never necessarily lie. If you
sandbag three-point stories, you will see that every three-point story should
have a certain amount of time that it goes from into the backlog to being
completed. And all of these things will normalize over time. It’s all how you
use the metrics and if you’re using them in the right way: the right metrics for
the right teams.

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

1 5

The (im)possible Task of Measuring
Customer Experience
• Customer service (ticketing)

• Applying agile methodology to metrics themselves

• Qualitative results like “happiness” in favor of numbers

Michael: We haven’t necessarily covered “business value,” or “was the
software useful? Did it actually achieve some goal that helps our business
out? Did we achieve business value, or outcomes?”

Unless you’re just measuring revenue, the above can be hard to measure. To
that end, there are some other stories we have about being careful on how
you’re measuring this outcome. Even though you might have really good
metrics, they might not be as useful as you think.

Jonathan, you had a story about chat ops that wraps a lot of this together,
about the support that you’re providing and how to measure the business
value of it. What happened in your experience with trying to figure out value?

Jonathan: Yeah, so being on a platform team, I’m very customer service
focused. My customers are basically every software development team at
Garmin. And they’ll have questions or need things from the platform team.
We run a Slack channel that is very active, and we respond really quickly in
that slack channel. Our customers are really happy with that because they
get really fast responses on what they need. But our management asks, “Oh,

04

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

1 6

what do you guys do?” We answer, “have you looked in the Slack channel?”
And they answer, “Well, we were looking for your ticket velocity.”

There’s a tension there, right? I could create a support ticket for everything
that I do in the Slack channel. But from my perspective, it defeats the value
of the Slack channel. I’m trying to keep my customers out of “please make a
ticket, and then I’ll answer you.” I don’t want to slow my customers down like
that. I don’t want to slow myself down like that.

There needs to be some automation, and we’re talking about building a Slack
bot for this, so that we can get the best of both worlds. But if you have to, if
somebody has to make a ticket in order for something to happen, what you
really end up doing is just putting lead weights on people’s feet. And that just
slows everybody way, way down.

Our experience with chat ops has been obviously great for our customers,
but not so great for when we go to our management. We say, “Hey, we’re
overworked. We need another person.” And they say, “We’re looking at your
tickets — do you really?”

Michael: Some business gurus say that if the goal of metrics becomes
to improve metrics, things are going to go terribly wrong. So it’s always
important to focus on why you’re using these metrics in the first place. This
is something that in all walks of life, but especially in software, we easily lose
track of. It’s important to make sure you’re evaluating if the metrics that you
have are helping, and looking at the feedback on them and evolving them.
It can be very difficult for people to retire anything, right? Then this metric,
which was so awesome, is no longer awesome or useful. Perhaps we should
come up with a new one.

Jim, I think you had an interesting point that it’s also easy when you’re
obsessed with metrics to basically lose track of the “unmetric things,” the
qualitative value and comments that people have. Can you share your
thoughts on that topic?

Jim: Yes, when we adopted the whole Tanzu methodology and the platform,
we did a few test runs of apps through it. But then when we started to add real
commercial ones, our internal customers were delighted. In fact, they started
wanting to pop more and more products through this whole system. They
were delighted, and that was a very important metric. And our executive team,
they love it. That’s the goal right there.

Now we’ve got people wanting to come in and do more projects here. But the
problem is, they don’t necessarily follow all the practices that we do, they just
want to use say, Tanzu Application Service and not follow the practices. And
with that in mind, it’s time maybe to measure a little bit more and see where
they are compared to the others. That’s where we enter into the metrics.

Michael: There’s an idea that y’all have been growing in my head throughout
this, and the topic has come up several times that comparing different
teams based on metrics is dangerous, is fraught. It makes me think of a very
direct reason, which is that metrics misused will be used to reward but more
importantly punish people, and the punishment often in the corporate context
is withholding things. It’s almost as if people in the mindset of using metrics to
compare teams are a little too competitive for how those being measured by
the metrics would like. But really, it’s probably a good idea to figure out what
you don’t want to do, like pitting each team against each other.

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

1 7

Jonathan: That competitive nature, it really can change the dynamics between
teams, right? Where, if I do this, I might lose my advantage. Or if I do this,
I might make them look good. I’m going to try this other thing that makes
my team look good. And suddenly, you’re not necessarily doing the best
thing, but you’re doing the best thing for a small group of people. If you
can somehow combine all of that with a servant leadership mentality where
everyone is focused on driving the whole train forward, you’re going to have
to be more successful.

Paul: Yeah, I wanted to add on that too, because I shared an anecdote earlier
about an organization that went through a digital transformation. We ended
up with several product teams, and I want to comment that you’re so spot on,
Jonathan. Those things can become points of pride between teams, but they
can also become very envious for other teams, if they have certain difficulties
that they have to work through that other teams don’t have. We were lucky
enough to have leadership in our area and all the way to the top to our CIO,
who was taking the lead on making sure that everyone was collaborating
together and feeling like they were a bigger part of just their small team. That
was super important to building that trust and not feeling like metrics were
going to be used for ill will.

Jonathan: You can create massive positive buzz in your office, and not the
high stakes positive buzz that we talked about earlier. But genuine positive
buzz through this kind of thing. If somebody knows that, hey, I had this idea,
and it blew up, and we did this amazing thing with it. Like, you’re gonna get so
many more of those. Or you could go with I had this idea that didn’t work real
well, and everybody blamed me, so I just don’t have ideas anymore.

Michael: Well, we have a lot of great audience questions to answer. Let’s
share those now!

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

1 8

Audience Q and A

Q: What is your recommendation on how to track these elements
in-house, as the source data could reside in multiple places? How
does one gather these metrics? Is it even possible?

Paul: You can use tools to do this, and you can build applications to do this,
too. We built an enablement team in my previous job: a team that tried to
make things easier for everybody. And it could be anything from building
a shared library that can be used across teams to working on security
that everyone can use, or a metrics library that you can just plug into your
application and make it easy to pull stuff out.

We had deployments for each team where you could use as a configurable
variable, a Pivotal Tracker ID, and then you could pull out story IDs. From the
time that the story was started to the time that it was closed, you could pull
those numbers out, and we built dashboards around them. So you can use
APIs and applications to do this. It does not have to be manual, because that
does not sound like any job that anyone should have to do - to manually pull
numbers out.

Jonathan: Yeah, I can think of three ways. And the problem is that your
organization may be using all of them at the same time. That’s where the real
issue comes: how is one bigger than the other? Like, how do you gauge size?

We’re a JIRA shop. So you might have JIRA tickets for each story that you’re
working on. And then you might have a release ticket that ties all of those

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

1 9

JIRAs together. And that release ticket is what goes out the door. So if you’re
tracking those releases, you can track okay, it’s been 30 JIRA tickets. And
that was 60 points that we just released. So that could be one way to do it.
If everybody’s doing that, you could have something somewhat consistent.
But going back to story points, you might have a team doing story points on
the Fibonacci scale, you might have another team using t-shirt. So it’s hard to
quantify that.

Another method would be to just count CF pushes, or count the number
of times a new app is deployed. That could be a way to do it, or count the
number of times that you’re Maven versions, in whatever your repo is, whether
you’re using Artifactory, or Nexus or whatever that is. Look at, look at how
many times you see the minor version bump in there, or the major version
bump in there, and track releases that way.

So those are all different ways you can do it. The problem is, some teams
might be using releases, some might only be counting the times they push.
So I may not do a release at all, we got away from that for a little while. If
you’re constantly rolling forward, there’s not really a need for a Maven release,
because you don’t really care. It’s not “well, we’re on 15.2.3, and we’ve got a
rollback to 15.2.2.” If you’re always rolling forward, this was the last commit
that was good. Let’s fix it.

Q: Have any of you encountered working with external development
teams that may occasionally interact with multiple applications
within your organization? If so, how has it impacted your
deployments and metrics?

Paul: Great question and the answer depends largely on what levels of rigor
your teams place in testing those integrations, and the contracts you build
between consumers/producers.

Jim: We have our lab, and have also added other teams from other corners
that don’t necessarily buy into all the hype. As a consequence, we start to see
drifting configuration, which creates more tech debt.

Q: Good discussion! Can you all talk about the importance of
driving a ‘Continuous Improvement Mindset’ and value of
‘feedback’ to mitigate the fear of being measured for punishment
versus understanding the need for measurement to improve. Also,
trust is HUGE! We’ve spent the last 3 years on our DevX journey
focused on building trust. How have you all tried to establish trust?

Paul: This is such a big question to try and answer. It warrants its own
discussion honestly, but I’ll give it a few words and try to capture the
major themes. Trust is definitely earned. In organizations that are making
organizational changes, there will always be naysayers and individuals that
don’t necessarily want to see you succeed. I know that’s hard to fathom, but
what I want to point out is that those early wins seem to be more valuable. If
you can build, test, and deploy even the smallest piece of business value more
effectively than you’ve done it in the past, you’ve already won.

Jim: Yes, to me, trust is a two way street. Management buys the platform and
practices, with perhaps some initial distrust on the part of devs. If dev teams
deliver faster, management begins to trust the people and process. In return,

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

2 0

management trusts devs with new business and more such projects. Devs
keep delivering, and trust goes up even more. Both management and devs
then want to ensure that there are few things that could wreck this partnership,
including very careful consideration of using metrics. Management trusts the
teams to do their work, and devs trust that management won’t do things that
could be perceived as pitting teams against each other or looking for ways to
‘help’ apparent underperformers.

We focus on true trouble areas like security vulnerabilities or production
outages. It’s something we can all agree is important. As engineers, we
are naturally curious as to how we can improve. If this topic is placed in our
hands as a tool we can use, then chances are much better that it will be used
for improvement.

Q: Do you all think it’s more important to index on capabilities
of the teams and use metrics to help measure the capabilities, but
tailored to the given types of software systems they manage or
manufacture? (i.e. legacy, monolith, micro-services, functions, etc.)

Jim: Regarding the topic of software systems, I like this idea a lot. It certainly
would be interesting to see if the expected characteristics for each type of
project line up with actual delivery data. There are so many other factors that
might be hidden in such an evaluation such as what is the level of TDD being
used: unit testing? Acceptance testing? How rigorous are these? What is the
team’s position on resolving tech debt (security issues, config issues, etc)?
Proactive or lazy loaders?

Q: Thoughts on how management shouldn’t have access to team
metrics because they should be focused on outcomes not outputs?
(i.e. metrics are for teams to self-evaluate)

Paul: I don’t believe this to be true. I think that the more data (evidence) that
you can provide to your stakeholders around quality, efficiency, and speed to
business value can help you build trust from the people that can help foster a
great environment for building incredible software.

Jim: I somewhat disagree. I think that repeated faster delivery is quickly
noticed without any metrics at all (aside from using a calendar). While I like
the idea that metrics data should be shared between management and devs
(unless there is a profound culture shift), there is an instinctual inclination to
compare, desire to fix/optimize, and share upwards. I’m jaded, but this is why
I think metrics should be for the team only, and potentially other teams that
want to learn from (more) successful teams. If teams agree on sharing metrics
with management, then that’s great. Self-managed team culture is strong in
our shop.

Jonathan: I think leadership should have access to team metrics... but “with
great power comes great responsibility.” Leaders need to understand more
than just the numbers. Productivity can be influenced by a number of actors.
Managing by numbers can engender massive distrust, and therefore poor
employee morale. And yes, outcomes are more important than outcomes.
One useful way to use metrics would be to look at a team and figure out why
their numbers aren’t meeting expectations. Likely it has more to do with some
issue the team is dealing with; solving the issue is more likely to produce
positive outcomes than using metrics as a stick.

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

2 1

Q: What do you think about a metric that tracks the number of GIT
commits for each engineer? I have a strong opinion on this, but am
interested in a perspective outside my company.

Paul: I hate using metrics for this purpose. It seems to be ripe for fostering
distrust among engineers and management. It doesn’t begin to tell the story
of what happened in a given period of time. I could be pairing with someone
and one name gets attached to the commit. I could be spending time doing
merge request reviews. I could be working ahead of the team researching
solutions for the next tracks of work for the team.

Jim: Yes, squashed versus individual committers, plus forked repo commit
data, can also skew things. While we do accumulate this data — it’s for a
binary query — is this dev breathing in Github or not?

Jonathan: I wholeheartedly agree with Jim and Paul. This idea reminds me
too much of a Dilbert comic. As with the previous question, this metric would
be too easily abused, by both leadership and individual contributors.

Q: When you say “deploy once a day” are you referring to
production deployments?

Paul: You don’t realize the business value until it’s in production right? If
you build the proper testing framework around your application, you should
feel confident that the new changes you make will not cause issues to your
customers (internal or external).

Jim: I agree and I’d expand it to not think of it as once a day, but rather,

be able to deploy anything in a moment up to prod at any time. The TDD
foundation helps make this assumption hold as long as there are no broken
tests and if there is a solid working copy in blue/green to utilize.

Jonathan: I agree with both of these.

Q: How do you compare cycle time across different “ideas,” as
some ideas are big (and have longer cycle times) and some are
small with shorter cycle times?

Jim: I’d say we do it by story pointing, but then each team may use a
different system on pointing (complexity versus time-based), so it’s somewhat
dangerous to look at things like points and velocity. And pointing is a front-
loaded estimate allegedly from experience, but the fight often differs from the
battle plan. That said, this early t-shirt sizing is the closest thing we have about
the thing. I could add metadata, but the more you add, the less likely teams
will keep it up.

Q: This is for Jonathan because I’ve been a lifelong Garmin
customer, but actually this is also for everyone. Can you talk about
how:

• Roll Forward — does it play a role in your software manufacturing process?

• Versioning Drift — have you observed the impact of versioning drift on your
dev team’s ability to push changes due to dependency management and
the pace by which teams upgrade. Have you all established Versioning Drift
Policies via the Semantic Versioning Standards?

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

https://dilbert.com/strip/1995-11-13

2 2

Jonathan: Thanks for the Garmin shout-out. I love our products too.
Regarding the first question about Roll Forward — yes it does. When we first
adopted Tanzu Application Service (back in the day) we talked a lot about
deployment pipelines being fast enough that regular releases were as fast
as emergency releases. We convinced both dev teams and management
of the value of small releases and how they enabled roll-forward instead of
rolling back. As for versioning, we don’t currently enforce versioning on our
developers. We encourage teams to grab newer versions of things like Spring
Boot and Java as they develop.

Jim: Versioning Drift - yes from buildpacks, the choice of language version
to individual dependencies. We added detection of deviance from bp and
language and for individual dependencies that have known sec risk scores
>= 7, we create issues on teams tracker boards where they plan their work.
We also add these issues to an overall public dashboard which tends to drive
action. We place the responsibility on teams to address these items as they
can alongside features (most teams are diligent about resolving these). At the
beginning it was an adjustment to normal op procedure. In regards to using
the Semantic Versioning standards, we are not driving teams generally to a
specific major or minor or patch as a course of habit - but more in reaction to
security posture and deprecated versions.

Q: Using metrics to suggest possible root cause (suggesting
someone did something) may be better received if trust is
established. Teamwork, trust with teams can be improved by
establishing credibility which includes building upon integrity,
intent, capabilities and results, correct?

Jim: Agreed, as trust is 2-way street. Focus on hardcore data about outtages

and vulnerabilities getting resolved. Anything more than that (you should be
doing this faster might ignore some of the important things ‘slower’ teams are
doing that are really important).

What is a huge release and what is a long cycle time? What are the key
building blocks to reduce cycle time from quarterly into weekly and then daily?
Do you all use external consulting services to review your code and call out
tech debt? The challenge with UX is that revenue is king over anything else
and it’s a steep climb to get execs to appreciate the UX value long term?

Jim: We strive to have smaller releases and shorter cycle times (hours, days).
While some in our company are using SAFE, which tend to be bigger releases
and delivery is every 2 weeks, minimum. Some crossover into months or
quarters. Building blocks? We adopted the Tanzu practices of TDD, smallest
stories possible, and CI/CD. It has paid off with satisfied business units.

Regarding external consulting services for reviewing code/calling out
tech debt, my answer is “no,” but we do have integration with Sonarqube
and Checkmarx for detecting issues and putting findings into workflow.
It’s paying off!

Regarding UX, some execs think it is magic and that no code solutions will
solve all the problems. I don’t even know what to say to that.

Q: What is your recommendation on how to track these in-house as
the source data could reside in multiple places?

Jim: We’ve built our own tooling around Github, which for us is the right fit.

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

2 3

Resources

Michael: Now you’ve heard several people mention Tanzu Application
Service, which is a modern application platform for enterprises that want
to continuously deliver and run microservices across clouds. We also have
another platform that’s an application toolbox for building a platform as a
service on top of Kubernetes: Tanzu Application Platform. It’s a modular,
application-aware platform that provides a rich set of developer tooling and
a prepaved path to production to build and deploy software quickly and
securely on any compliant public cloud or on-premises Kubernetes cluster.

The diagram on the next page shows the full end to end view of the software
process. There are many metrics — and the philosophy of a lot of the metrics
we’ve talked about — that come in it. It’s a very open platform built on open
source components, with an open API-driven nature to it. If you’re using it,
you’ll discover things you want to measure, and ways to instrument or measure
your process.

Watch the webinar version of this eBook!

VMware Tanzu whitepaper on Developer Toil: Hidden Tech Debt

VMware Tanzu eBook: The Legacy Trap

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

https://tanzu.vmware.com/application-service
https://tanzu.vmware.com/application-service
https://tanzu.vmware.com/application-platform
https://tanzu.vmware.com/content/webinars/sep-13-how-to-measure-developer-productivity-with-metrics-and-more
https://tanzu.vmware.com/content/white-papers/developer-toil-the-hidden-tech-debt?utm_campaign=devrel&utm_source=cote
https://tanzu.vmware.com/content/ebooks/the-legacy-trap

2 4

How Tanzu Application
Platform Can Help
• Automates path to production: every step is automated, because devs just

want to work on feature development

• Out of the box security: TAP scans source code, images

• Helps orgs adopt a cultural shift among key stakeholders – across
Dev, Sec, Ops

Learn Discover and
Start

(API Portal + App
Accelerator)

(IDE Plugin +
Dev Tooling)

(IDE Plugin +
App Live View)

(Pipeline Service +
Build Service)

(Pipeline Service +
Build Service)

(App Delivery) (CNR)

Iterate Debug Test and build Scan, Sign and
Store

Deploy Run

SEC OPS

Observe At Scale

Choreograph (Pipeline Service + Build Service)

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

2 5

About the Authors

Michael Cote
Senior Member of Technical Staff,

VMware Tanzu

Jim Kohl
Consulting Software Engineer,

Great American Insurance Group

Jonathan Regehr
Architect,

Garmin

Paul Pelafas
Senior Principal Architect,

Kin + Carta

@cote @jimdkohl @jonathanregehr @paulpelafas

M E A S U R I N G S O F T WA R E D E L I V E R Y
T H R O U G H M E T R I C S

The Human Side of
Measurement

The (im)possible task
of measuring customer
experience

Tech Debt Metrics Industry-Leading Metrics:
DORA, Flow, Value Stream

https://twitter.com/cote?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://twitter.com/jimdkohl
https://twitter.com/jonathanregehr?lang=en
https://twitter.com/paulpelafas

