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OVERVIEW 

Overview 

A typical machine learning (ML) workflow usually includes stages such as data verification, feature 

engineering, model training, and deployment in a scalable fashion. Kubeflow provides a collection of cloud 

native components for developing and automating and maintaining all the stages of the ML process in a 

Kubernetes cluster either on-premises or in the cloud.  

VMWare vSphere 7 delivers Artificial Intelligence (AI) and Developer-Ready infrastructure, scales without 

compromise, and simplifies operations, is helping in the adoption of AI in the enterprise. VMware and NVIDIA 

AI-Ready Enterprise software suite is an end-to-end cloud-native suite of AI tools and frameworks, optimized 

and exclusively certified by NVIDIA to run on VMware vSphere. This software suite handles the complexity 

associated with AI and ML efforts, giving organizations the confidence to update their infrastructure for AI 

and utilize AI to transform their business. 

This paper will provide a general design and deployment guidance for running Kubeflow on VMware 

vSphere® 7 with VMware Tanzu® Kubernetes Grid™ with GPU access empowered by NVIDIA Artificial 

Intelligence Enterprise (NVAIE). We will also validate the core component functions to demonstrate that 

Kubeflow enables repeatable and reproducible machine learning workflows that can be shared between 

different teams such as data scientists, machine learning engineers, and DevOps. 

https://www.kubeflow.org/
https://nvda.ws/3CW2049
https://www.vmware.com/products/vsphere.html
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Technology Overview  

The technology components in this solution are: 

• VMware vSphere 

• VMware Tanzu Kubernetes Grid 

• VMware vSAN File Service 

• Kubeflow 

VMware vSphere  

scale, and security to AI and modern applications. AI infrastructure is now a part of a managed environment 

within IT to provision specific GPU accelerators, compute, storage, and network resources for AI workload 

needs. 

vSphere 7 delivers powerful support for the most modern GPUs such as NVIDIA Ampere-based A100 GPUs, 

including enhancements to performance boosting GPUDirect communications, vSphere also supports 

NVIDIA Multi-Instance GPU (MIG) technology to allow for partitioning of GPUs, which further increases 

utilization while strictly separating the virtual machines (VMs) sharing the GPU hardware.  

With vSphere 7, developers and DevOps teams can use Kubernetes commands to provision VMs on hosts 

or Tanzu Kubernetes Grid clusters with vGPUs. This will help customers build and run their AI apps on GPU-

enabled hardware using a self-service model. customers will have at their fingertips the power to build 

scalable AI applications. 

VMware Tanzu Kubernetes Grid  

VMware Tanzu Kubernetes Grid (TKG) provides organizations with a consistent, upstream-compatible, 

regional Kubernetes substrate that is ready for end-user workloads and ecosystem integrations. You can 

deploy Tanzu Kubernetes Grid across software-defined datacenters (SDDC) and public cloud environments, 

including vSphere, Microsoft Azure, and Amazon EC2. 

 

Tanzu Kubernetes Grid provides the services such as networking, authentication, ingress control, and 

logging that a production Kubernetes environment requires. It can simplify operations of large-scale, multi-

cluster Kubernetes environments, and keep your workloads properly isolated. It also automates lifecycle 

management to reduce your risk and shift your focus to more strategic work. 

 

This document describes the use of VMware Tanzu Kubernetes Grid Service to support machine learning 

workloads that are distributed across the nodes and servers in the cluster. The Tanzu Kubernetes Grid 

Service provides self-service lifecycle management of Tanzu Kubernetes clusters. You use the Tanzu 

Kubernetes Grid Service to create and manage Tanzu Kubernetes clusters in a declarative manner that is 

familiar to Kubernetes operators and developers. 

 

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html
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VMware vSAN File Service 

 vSAN helps reduce the complexity of monitoring and maintaining infrastructure and enables administrators 

to rapidly provision a file share in a single workflow for Kubernetes-orchestrated cloud native applications. 

See VMware vSAN doc and VMware vSAN 7.0 Update 3 Release Notes for more information.  

 
vSAN File Services is a layer that sits on top of vSAN to provide file sharing services. It currently supports 
SMB, NFSv3, and NFSv4.1 file shares. vSAN File Service brings in the capability to host the file shares directly 
on the vSAN cluster. See vSAN File Services. 

The NFS feature of the vSAN File service was used to provide ReadWriteMany (RWM) volumes for this 

solution. 

Kubeflow 

Kubeflow is a free and open-source end-to-end machine learning platform designed to enable machine 

learning pipelines to orchestrate complicated workflows running on Kubernetes. Kubeflow provides 

components for each stage in the machine learning lifecycle, from exploration through to training and 

deployment.  

This drawing is courtesy of the Kubeflow project website. 

Figure 1: Kubeflow Application  

  

https://docs.vmware.com/en/VMware-vSAN/index.html
https://docs.vmware.com/en/VMware-vSphere/7.0/rn/vmware-vsan-703-release-notes.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vsan.doc/GUID-82565B82-C911-42F7-85B1-E9EF973EE90C.html
https://www.kubeflow.org/
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Table 1 lists the main pillars of Kubeflow. 

Table 1 Kubeflow Main Pillars 

Component Name Description 

Central Dashboard The central user interface (UI) in Kubeflow. 

Kubeflow Notebooks Kubeflow Notebooks provides a way to run web-based 

development environments inside your Kubernetes cluster 

by running them inside pods. 

Kubeflow Pipelines Documentation for Kubeflow pipelines 

Katib Katib is a project that is agnostic to machine learning 

frameworks. It can tune hyperparameters of applications 

written in any language of the users’ choice and natively 

supports many machine learning frameworks, such as 

TensorFlow, MXNet, PyTorch, XGBoost, and others. 

Training Operators Training of machine learning models in Kubeflow through 

operators. 

Kserve Kserve allows you to serve your models as scalable APIs 

effortlessly and even do canary releases. 

Multi-Tenancy Multi-user isolation and identity access management (IAM) 

 

These Kubeflow components can support multi-user isolation: central dashboard, notebooks, pipelines, 

AutoML (Katib), KServe. Furthermore, resources created by the notebooks (for example, training jobs and 

deployments) also inherit the same access. 

Kubeflow can organize loosely-coupled microservices as a single unit and deploy them to a variety of 

locations, including on a laptop, on-premises, or in the cloud. It is a platform for data scientists to build and 

experiment with machine learning pipelines, also for machine learning engineers and operational teams who 

want to deploy machine learning systems to various environments for development, testing, and 

production-level serving. See kubeflow website for more information. 

https://kubeflow.org/
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Configuration  

Architecture  

The Tanzu Kubernetes cluster was provisioned on top of vSphere consisting of multiple worker nodes, where 

each node is implemented as a virtual machine. Worker nodes that did not have a vGPU associated with 

them, were used for Kubeflow components. Worker nodes equipped with a vGPU are for pod deployment 

with GPU requirements. The NVIDIA GPU operator v1.9.1 was installed in the Tanzu Kubernetes cluster to 

allow users to manage the GPU nodes in the cluster. One ReadWriteMany ( RWM ) persistent volume from 

the vSAN file service was configured for shared data. 

 

Figure 2: Solution Architecture 

Hardware Resource  

Server 
A minimum of three servers that are approved on both the VMware Hardware Compatibility List and the 

NVIDIA Virtual GPU Certified Servers List are required. 

 
GPU 
A minimum of one NVIDIA GPU installed in one of the servers: 

• Ampere class GPU (A100, A30, A0, or A10) (A100 and A30 are MIG capable, recommended, A40 is 

mainly focused on graphics) 

• Turing class GPU (T4) 

https://www.vmware.com/resources/compatibility/search.php
https://www.nvidia.com/en-us/data-center/resources/vgpu-certified-servers/
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• Additional supported GPUs can be found here 

In our validation environment, we used the following GPU resource: 1 x NVIDIA Ampere A100 40GB 

PCIe/server. 

PROPERTY SPECIFICATION 

Server Model Dell VxRail P670F 

CPU 2 x Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, 28 

core each 

RAM 512GB 

Network Resources 1 x Intel(R) Ethernet Controller E810-XXV, 25Gbit/s, 

dual ports 

1 x NVIDIA ConnectX-5 Ex, 100Gbit/s dual ports 

Storage Resources 1 x Dell HBA355i disk controller 

2 x P5600 1.6TB as vSAN Cache Devices 

8 x 3.84TB Read Intensive SAS SSDs as vSAN 

Capacity Devices 

GPU Resources 1 x NVIDIA Ampere A100 40GB PCIe 

 

Software Resource 

Table 1: Software List 

Software Version 

vSphere 7.0 update 3c 

Tanzu Kubernetes Release  v1.20.8+vmware.2 

NVAIE 1.1 

Kubeflow v1.5 

Helm 3.7.2 

Network Design 

The 25GbE NICs were used for vSphere management, vMotion, vSAN, and the Tanzu Kubernetes Grid 

management network. The 100GbE NICs were used for the vSAN file service and the Tanzu Kubernetes Grid 

workload network. In this case, the workload cluster was physically separated from the management and 

vSAN network. The workload cluster used the higher network bandwidth for both node-to-node interactions 

and read or write data on the vSAN file share. 

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-vmware-vsphere/index.html#hardware-configuration
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Figure 3: Network 

vSphere Configuration 
In this solution, a vSphere cluster should be pre-configured with vSAN enabled, and the ESXi hosts in the 

cluster should have NVIDIA GPUs installed. 

Enable vGPU on ESXi Hosts 

The vSphere administrator can follow this article to install the NVIDIA Virtual GPU Manager from NVAIE 1.1 

package and enable vGPU support on the ESXi hosts that have GPU installed. 

 

Configure vSAN File Service for Network File System (NFS) 

With the vSAN file service enabled, we can create native vSAN NFS File shares without extra storage 

on the vSphere cluster. Most machine learning platforms need a data lake, a centralized repository 

to store all the structured and unstructured data. The Tanzu Kubernetes cluster can be configured 

with an NFS-backed ReadWriteMany (RWM) persistent volume across the pods to share and store 

data.  

In Cluster Configure->vSAN->File Service, click Enable and follow the wizard to enable the File Service. 

https://core.vmware.com/resource/deploy-ai-ready-enterprise-platform-vmware-vsphere-7-vmware-tanzu-kubernetes-grid-service#enable-vgpu
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Figure 4: Configure File Service 

In this solution, we created a vSAN NFS file share MLData with a size of 1TB. The storage policy was 

configured with RAID 1 with StripeWidth=8 to guarantee the best performance by distributing the data across 

all the vSAN disk groups while not compromising data resiliency.  

 

Figure 5: NFS File Share  

Note:  RWM volume is not natively supported with vSAN File Services in the current version. We can 
configure an RWM persistent volume according to Using ReadWriteMany Volumes on TKG Clusters. See the 
example here. 

https://core.vmware.com/blog/using-readwritemany-volumes-tkg-clusters
https://github.com/vsphere-tmm/run-kubeflow-on-tkg/tree/main/configure-pvc


 

 11 
 

OVERVIEW 

 
For more information regarding vSAN file service, visit the link here. 

Provision the Tanzu Kubernetes Cluster 

While provisioning the Tanzu Kubernetes cluster, we defined the control planes and worker nodes as follows. 

Table 2 Tanzu Kubernetes Cluster Definition 

Role Replicas Storage 

Class 

VM Class Tanzu Kubernetes 

Release (TKR) 

Control Plane 3 vsan-r1 best-effort-small v1.20.8---vmware.1-

tkg.2 

GPU Worker Nodes 6 vsan-r1 gpuclass-a100 v1.20.8---vmware.1-

tkg.2 

Non-GPU Worker Nodes 3 vsan-r1 best-effort-xlarge v1.20.8---vmware.1-

tkg.2 

Additionally, for each of the worker nodes, we configured a 50GB storage volume for container and a 50GB 

volume for the kubelet. The YAML file we used in this example for Tanzu Kubernetes cluster deployment can 

be found here. 

Configure a Node in a Tanzu Kubernetes Cluster with vGPU Access 

To configure Tanzu Kubernetes cluster with vGPU access, the vSphere administrator should first enable 

Workload Management in the vSphere Client, create the supervisor cluster and content library that will 

be subscribed to https://wp-content.vmware.com/v2/latest/lib.json, create the VM classes with vGPU 

access and create a new namespace with the VM classes configured with vGPU. Visit the link here for more 

details on the procedures and steps involved in this section. 

In this solution, we configured the Tanzu Supervisor Cluster with haproxy v0.2.0 for load balancing. We 

added the pre-defined best-effort-small, best-effort-large, and best-effort-2xlarge VM classes to the 

namespace. To give the worker nodes vGPU access, we created and added a VM class (named gpuclass-

a100) with the following specifications to the namespace: 

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vsan.doc/GUID-82565B82-C911-42F7-85B1-E9EF973EE90C.html
https://github.com/vsphere-tmm/run-kubeflow-on-tkg/blob/main/deploy-tkg-cluster/tkgs-gpu-cluster-eval1.yaml
https://wp-content.vmware.com/v2/latest/lib.json
https://core.vmware.com/resource/deploy-ai-ready-enterprise-platform-vmware-vsphere-7-vmware-tanzu-kubernetes-grid-service#vsphere-with-tanzu-kubernetes-settings
https://cdn.haproxy.com/download/haproxy/vsphere/ova/haproxy-v0.2.0.ova
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Figure 6: VM Class Details 

From the storage perspective, we added two vSAN storage policies to the namespace, one was vsan-r1 that 

is with RAID 1 configured, the other was stripe that is configured with RAID 5 and StripeWidth=8 to maximize 

the performance for the Tanzu Kubernetes cluster worker nodes. 

Install the NVIDIA GPU Operator 

After the Tanzu Kubernetes cluster is up and running, the developer logs into the Tanzu Kubernetes cluster 

that was created and follows the instructions in this link to install NVIDIA GPU operator on the Tanzu 

Kubernetes cluster. The installation process needs the developer to provide the NVIDIA CLS or DLS license 

token and the NGC account information. Refer to the NVIDIA Licensing Guide here. 

In this solution, we installed GPU operator v1.9.1 and the script we used for installing NVIDIA GPU operator can 

be found here. 

Monitoring Tools 

Kubeflow Central Dashboard 
The Kubeflow central dashboard provides quick access to the Kubeflow components deployed in your cluster 

where you can see a list of recent pipelines, notebooks, metrics, and an overview of your jobs as they are 

processed. See Central Dashboard to learn more.  

vSAN Performance Service 

The vSAN Performance Service is for monitoring the performance of the vSAN environment and helping 

users to investigate potential problems. The performance service collects and analyzes performance statistics 

and displays the data in a graphical format. You can use the performance charts to manage your workload 

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/install-gpu-operator-nvaie.html#installing-gpu-operator
https://github.com/vsphere-tmm/run-kubeflow-on-tkg/tree/main/install-gpu-operator
https://www.kubeflow.org/docs/components/central-dash/overview/
https://kb.vmware.com/s/article/2144493
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and determine the root cause of problems. 
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Kubeflow Deployment  

Introduction 

This document provides instructions for deploying Kubeflow on Tanzu Kubernetes cluster. 

Scope and Steps 

Kubeflow provides components for each stage in the machine learning lifecycle, from exploration through to 

training and deployment. Operators can choose what is best for their users, there is no requirement to 

deploy every component of Kubeflow. 

Prerequisites  

NOTE: All prerequisites must be installed and configured before creating the Tanzu Kubernetes cluster. 

Perform the following steps: 

1. Download and Install kubectl for vSphere in our validation for Kubeflow version 1.5 of kubectl requires 

v1.21+. 

2. Make sure you first create a Tanzu Kubernetes cluster and install GPU Operator on your Tanzu 

Kubernetes cluster in the configuration session. 

3. Install Kustomize for Kubeflow installation 

Deploy Kubeflow 

We used the manifests for installation, perform the following steps to deploy Kubeflow 1.5.0 on your Tanzu 

Kubernetes cluster: 

1. The following kubectl command creates a ClusterRoleBinding that grants access to authenticated 

users to run a privileged set of workloads using the default PSP vmware-system-privileged. 

kubectl create clusterrolebinding default-tkg-admin-privileged-binding --

clusterrole=psp:vmware-system-privileged --group=system:authenticated  

2. Set the default storageclass for pv claims of kubeflow components such as MinIO and MySQL: 

kubectl patch storageclass seletedstorageclassname -p '{"metadata": {"annotations"：

{"storageclass.kubernetes.io/is-default-class":"true"}}}' 

 

Figure 7: Set Default Storageclass 

https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-0F6E45C4-3CB1-4562-9370-686668519FCA.html
https://github.com/kubernetes-sigs/kustomize/releases/tag/v3.2.0
https://github.com/kubeflow/manifests#installation
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3. Download the scripts to deploy kubeflow by cloning the Github repository: 

 git clone https://github.com/kubeflow/manifests.git 

 git checkout v1.5-branch   

4. You can install kubeflow official components by using either of the two options, Install with a single 

command or Install individual components. Note: Individual components may have dependencies. If 

all the individual commands are executed, the result is the same as the single command installation. 

5. Verify all the pods are running. The kubectl apply commands may fail on the first try. This is inherent 

in how Kubernetes and kubectl work. Try to rerun the command until it succeeds. 

To check that all Kubeflow-related pods are ready, use the following commands: 

kubectl get pods -n cert-manager 

kubectl get pods -n istio-system 

kubectl get pods -n auth 

kubectl get pods -n knative-eventing 

kubectl get pods -n knative-serving 

kubectl get pods -n kubeflow 

kubectl get pods -n kubeflow-user-example-com 

The following diagram shows the pods deployed in the Istio namespace: 

kubectl get pod -n istio-system 

NAME                                    READY        STATUS.    RESTARTS   AGE 

authservice-0                           1/1          RUNNING     0         23h 

cluster-local-gateway-7796d7bc87-9qb5v  1/1          Running     0         24h 

istio-ingressgateway-64b7899489-ft5gn   1/1          Running     0         24h 

istio-5d9bb9cb4-5zvzz                   1/1          Running     0         24h 

   

Figure 8: Pods in istio-system Namespace 

 

  

https://github.com/kubeflow/manifests.git
https://github.com/kubeflow/manifests#:~:text=workflows%20with%20Kubeflow.-,Install%20individual%20components,-In%20this%20section
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Figure 9 shows the pods deployed in the kubeflow namespace: 

 

Figure 10: Pods in Kubeflow Namespace 

6. Access the Kubeflow central dashboard: 

• Option 1:  Port forward: The default way of accessing Kubeflow is via port-forward. 

kubectl port-forward svc/istio-ingressgateway -n istio-system 8080:80 

                  Example:  http://localhost:8080  

• Option 2: NodePort/LoadBalancer/Ingress: since many of the Kubeflow web apps (for 

example, Tensorboard Web App, Jupyter Web App, Katib UI) use secure cookies, we need 

to set up HTTPS.  

We can access the dashboard using the LoadBalancer external IP address ： 

o Change the type of the istio-ingressgateway service to LoadBalancer: 

kubectl -n istio-system patch service istio-ingressgateway -p '{"spec": 

{"type": "LoadBalancer"}}' 

http://localhost:8080/
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kubectl get svc -n istio-system 

NAME            TYPE            CLUSTER-IP     EXTERNAL-IP    PORT (S) 

Authservice   ClusterIP       10.100.82.68    ‹none>         8080/TCP 

cluster-local-gateway ClusterIP 10.101.213.134 ‹none> 15020/TCP,80/TCP 

istio-ingressgateway LoadBalancer 10.104.45.33 172.16.20.72 

15021:32506/TCP,80:31917/TCP,443:32332/TCP,314 

          istiod               ClusterIP  10.103.211.151 (none> 

5010/TCP.15012/TCP,443/TCP,15014/TCP 

knative-local-gateway ClusterIP 10.111.221.131 ‹none> 80/TCP 

Figure 4: Change istio-ingressgateway Service Type to Loadbalancer 

And make changes to set up HTTPS configuration.  

Configure HTTPS  

Make the following changes: 

• Update Istio Gateway to expose port 443 with HTTPS and make port 80 redirected to 443: 

kubectl -n kubeflow edit gateways.networking.istio.io kubeflow-gateway  

servers: 

- hosts: 

  -“*” 

  port: 

    name: http 

    number: 80 

    protocol: HTTP 

  tls: 

    httpsRedirect: true 

-hosts: 

 -“*” 

 port: 

   name: https 

   number: 443 

   protocol: HTTPS 
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tls: 

  mode: SIMPLE 

  privatekey:/etc/istio/ingressgateway-certs/tls.key 

  serverCertificate:/etc/istio/ingressgateway-certs/tls.crt  

 Figure 5: Update istio Gateway Attributes 

• Change the REDIRECT_URL in oidc-authservice-parameters configmap.  

               In our example, 172.16.20.72 is the IP address of the istio-ingressgateway.  

                                       kubectl -n istio-system edit configmap oidc-authservice-parameters 

            OIDC SCOPES: profile email groups 
        PORT: ‘"8080”’ 

        REDIRECT URL: https://172.16.20.72/login/oide 

        SKIP AUTH URI: / dex 

        STORE PATH: /var/lib/authservice/data.db          
 

Figure 11: Change REDIRECT_URL to Loadbalancer IP Address 

                 Append the same to the redirectURIs list in dex configmap: 

                          kubectl -n auth edit configmap dex 

• Rollout restart authservice and dex 

             kubectl -n istio-system rollout restart statefulset authservice 

                                       kubectl -n auth rollout restart deployment dex 

• Create a certificate.yaml with the YAML in Figure 12 to create a self-signed certificate: 

             kubectl -n istio-system apply -f certificate.yaml 

apiVersion: 

cert-manager.io/vlalpha2 

kind: Certificate 

metadata: 

name: istio-ingressgateway-certs 

namespace: istio-system 

spec: 

commonName: istio-ingressgateway.istio-system.svc 
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ipAddresses: 

- 172.16.20.72 

isCA: true 

issuerRef: 

kind: ClusterIssuer 

name: kubeflow-self-signing-issuer 

secretName:istio-ingressgateway-certs                

Figure 13: Create istio-ingressgateway Certificate  

• We can access the Kubeflow Central Dashboard from https:// IP address of the istio-ingressgateway. 

                                     

Figure 14: Kubeflow Login Page 

Log in with the default user's credential. The default email address is 

user@example.com and the default password is 12341234

namespace is Kubeflow-user-example-com. 
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-  

Figure 15: Kubeflow Central Dashboard 

Add New Users  

Add new user: users are managed by Kubeflow profile module: 

      cat <<EOF | kubectl apply -f 

      apiVersion: kubeflow.org/v1beta1 

      kind: Profile 

      metadata: 

      name: newuser’s namesmespacename   # replace with the name of profile you want 

      spec: 

      owner: 

      kind: User 

      name: newuser@example.com   # replace with the user email 

      EOF 

Add the user credentials in dex in Kubeflow for basic authentication. Generate the hash by using bcrypt in the 

dex configmap: 

kubectl edit cm dex -o yaml -n auth 

Add the new user under the staticPasswords section:   

-email: newuser@example.com 

 hash: $2v$12$4K/VkmDdla10rb3xAt82zu8qk7Ad6ReFR4ICP9UeYE9ONLiN9D£72 

https://bcrypt-generator.com/
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 username: newuser 

Figure 16: Add New User in Dex Configmap 

For more information, refer to Kubeflow Getting Started.  

 

https://www.kubeflow.org/docs/started/
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Kubeflow Function Validation 

Introduction 

Kubeflow allows a notebook-based modeling system to easily integrate with the data preparation on a local 

data lake or in the cloud in a similar way. Kubeflow supports multi-tenant machine learning environments by 

managing the container orchestration aspect of the infrastructure that enables simple and effective sharing. 

We validated the core functions from Notebooks to Pipelines and model serving and showcased an 

integrated end-to-end Pipeline example: 

• Kubeflow Notebooks 

• Run TensorFlow example 

• Run PyTorch example 

• Run Pipeline example 

• KServe inference example 

• End-to-end Pipeline example 

Kubeflow Notebooks 

Kubeflow Notebooks provides a way to run web-based development environments inside your Kubernetes 

cluster by running inside pods. It provides several default images. System administrators can provide 

customized notebook images for their organization with required packages pre-installed.  

Users can create notebook containers directly in the cluster. 

Creating a Kubeflow Notebook 

Data scientists can create notebook servers for their data preparation and model development. 

To spin up a notebook, perform the following steps: 

Click the Central Dashboard Notebooks tab and click New Notebook: 
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Figure 17: New Notebook Wizard 

Note: 

scheduling GPUs can be found in the Kubernetes Documentation). If we want to enable GPU on your 

notebook, in the GPU drop-

In our environment, as Figure 18 shows, we select NVIDIA GPU.  

We can configure a ReadWriteMany persistent volume according to Using ReadWriteMany Volumes on TKG 

Clusters. See example here. 

Note: RWM volume is not natively supported with vSAN File Services in the current version.  

Figure 19 -nfs- which is provisioned in the 

configuration section, also other ReadWriteOnce volumes in the user namespace are in the list.  

https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/
https://core.vmware.com/blog/using-readwritemany-volumes-tkg-clusters
https://core.vmware.com/blog/using-readwritemany-volumes-tkg-clusters
https://github.com/vsphere-tmm/run-kubeflow-on-tkg/tree/main/configure-pvc
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Figure 20: RWM Volume Backed by vSAN File Service 

We can attach the existing RWM volume to the new notebook. 

 

Figure 21: Attach the Existing Volume to New Notebook 
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For more information, see the notebooks quickstart guide. 

Run TensorFlow Example  

We use the BERT for TensorFlow Jupyter Notebook for testing. Bidirectional Embedding Representations 

from Transformers (BERT) is a method of pre-training language representations, which obtains state-of-the-

art results on a wide array of Natural Language Processing (NLP) tasks. NVIDIA's BERT is an optimized 

version of Google's official implementation. The notebook provides a worked example for utilizing the BERT 

for TensorFlow model scripts.  

After deploying the tensorflow-cuda image notebook, click on CONNECT, since the scripts are based on 

TensorFlow 1.15 version, either change some of the deprecated API to new ones or build a customized image 

on the same tensorflow version to make the code pass. 

We chose the notebook server image with tensorflow+cuda 11.  

Follow the steps to run an example use case of the BERT model for end user applications. Figure 22 shows 

inference using GPU. 

 

Figure 23: BERT_Jupyter Notebook using GPU 

Figure 24  is an example prediction result for using the BERT for TensorFlow. 

https://www.kubeflow.org/docs/components/notebooks/quickstart-guide/
https://github.com/google-research/bert
https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_tensorflow/performance
https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_tensorflow/performance
https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_tensorflow/performance
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Figure 25: Prediction Result  

Run Pytorch YOLOV5 Example 

We use YOLOV5 to verify the inference and validation, which is a family of object detection architectures and 

models pre-trained on the COCO dataset. 

 

Notes: Require customized image to have pycocotools library installed (which needs gcc library installed, this 

is not included in the default kubeflow notebook images). 

 

In our validation, the GPU is NVDIA A100, we installed pytorch with cuda v 11.3. In the Notebook, we first 

installed below: 

pip3 install torch torchvision torchaudio --extra-index-url 

https://download.pytorch.org/whl/cu113 

pip3 install pycocotools 

 

Then we followed the tutorial notebook to run the validation and inference case. 

 

 
 
Figure 26: YOLOV5 Validation on coco Dataset Screenshot Using A100 MIG  

https://github.com/ultralytics/yolov5
https://download.pytorch.org/whl/cu113
https://github.com/ultralytics/yolov5/blob/master/tutorial.ipynb
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Figure 27: YOLOV5 Inference Screenshot 

Run Pipeline Example 

A Kubeflow Pipeline is a portable and scalable definition of a machine learning workflow, based on containers. 

Kubeflow Pipelines are reusable end-to-end machine learning workflows composed of a set of input 

parameters and a list of the steps using the Kubeflow Pipelines SDK. 

You can follow https://www.kubeflow.org/docs/components/pipelines/tutorials/build-pipeline/ to upload a 

compiled pipeline. 

Kubeflow Pipelines offers a few samples that you can use to try out the pipelines quickly. 

To run a basic pipeline, perform the following steps: 

1. From the Kubeflow Pipeline UI 

Click the name of the sample XGBoost-iterative model training in Figure 28, the source code is  

https://github.com/kubeflow/pipelines/tree/master/samples/core/train_until_good  

https://www.kubeflow.org/docs/components/pipelines/tutorials/build-pipeline/
https://github.com/kubeflow/pipelines/tree/master/samples/core/train_until_good
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Figure 29: Example XGBoost Training Pipeline 

A component in a pipeline can be responsible for data preprocessing, data transformation, model training, 

and so on. 

 

The Artifacts include Pipeline packages, views, and large-scale metrics (time series). Use large-scale metrics 

the artifacts in an artifact store Minio server by default. Below is the pipeline running log stored in Artifacts: 

 

Figure 30: Artifact Stores in MinIO Server  

https://docs.minio.io/
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The lineage explorer displays the running flow of pipeline components: 

 

Figure 31: Artifacts for a Pipeline Running Log Lineage Explorer  

From the Kubeflow-user-example-  

 

Figure 32: Pipeline Pods Status Become Completed  

For more details, see Kubeflow pipeline introduction.  

https://www.kubeflow.org/docs/components/pipelines/introduction/
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KServe Inference Example 

KServe enables serverless inferencing on Kubernetes and provides performant, high abstraction interfaces 

for common machine learning frameworks like TensorFlow, XGBoost, scikit-learn, PyTorch, and ONNX to 

handle production model serving use cases. For more details, visit the KServe website. 

 

KServe provides a simple Kubernetes CRD to allow deploying single or multiple trained models onto model 

servers such as TFServing, TorchServe, ONNXRuntime, and Triton Inference Server. See samples for more 

information.  

 

We validated the basic inference service which loads a simple iris machine learning model, sends a list of 

attributes, and prints the prediction for the class of iris plant, see the YAML file. 

 

kubectl apply -f isvc.yaml -n kubeflow-user-example-com 

 

The inference service will be ready as the figure shows. 

 
 

 
 

Figure 33: inference Service Becomes Ready 

 
You can also check the inference service from the Model Servers tab in Figure 13.  

https://kserve.github.io/website/
https://github.com/kserve/kserve/tree/master/docs/samples
https://kserve.github.io/website/0.7/get_started/first_isvc/
https://github.com/vsphere-tmm/run-kubeflow-on-tkg/blob/main/inferenceserviceexample/isvc.yaml
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Figure 34: Deploy the Inference Service in the Model Servers Tab 

 
Figure 35 is the screenshot of Model server details including service URL, Storage URI, and Predictor type. 
 

 
 

Figure 36: Inference Service Details  
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Figure 15 is an example notebook to do prediction using the deployed inference service. 
 

 
 

Figure 37: Call Inference Service for Prediction Example 

 
Check the examples running KServe on Istio/Dex to access the endpoint outside the cluster. 

End-to-End Pipeline Example  

We validated an integrated MNIST end-2-end pipeline test to perform the following tasks: 

• Hyperparameter tuning using Katib 

• Distributive training with the best hyperparameters using TFJob 

• Serve the trained model on local pvc using KServe 

Before validation, make sure to set a default storageclass and install the python libraries in the 

requirements.txt, also you can set the parameters in the settings.py.  

As shown in Figure 38, start the pipeline ./runner.sh 

https://github.com/vsphere-tmm/run-kubeflow-on-tkg/blob/main/inferenceserviceexample/sklearninference.ipynb
https://github.com/KServe/KServe/tree/master/docs/samples/istio-dex
https://github.com/kubeflow/manifests/tree/master/tests
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Figure 39: Kickoff the E2E Pipeline  

We can monitor the pipeline running from the central dashboard.

 

Figure 40: E2E mnist Pipeline Graph 

Figure 41 shows the component running steps. 

The first step is the Experiments to tune Hyperparameter using Katib. The Experiment uses a "random" 

algorithm and TFJob for the Trial's worker. 
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Figure 42: Katib AutoML Hyperparameter Tuning 

Then the pipeline created a pvc to store the model. Next is the TFJob runs the Chief and Worker with 1 

replica, and last is serving the model using the KServe inference service. And the pipeline runs status changed 

from running to success. 

 

 

Figure 43:  Pipeline Execution Steps and Status  

https://www.kubeflow.org/docs/components/training/tftraining/#what-is-tfjob
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Best Practices 

The following recommendations provide the best practices and sizing guidance to run Kubeflow on the AI-

Ready platform on vSphere 7 with Tanzu. 

• Tanzu Kubernetes Grid: 

• Start with a smaller size of Tanzu Kubernetes cluster with fewer GPU worker nodes, since 

Kubeflow component pods do not consume GPU resources, and limited CPU resources. The 

NVIDIA GPU Operator automatically manages newly added GPU worker nodes. We can 

dynamically resize a Tanzu Kubernetes cluster with more GPU worker nodes and non-GPU 

worker nodes if there are more workloads running in the system.  

• Customize and pre-allocate enough CPU and memory resources for the Tanzu Kubernetes 

cluster. Refer to Performance Best Practices for Kubernetes with VMware Tanzu for sizing 

guidance for Tanzu Kubernetes Grid. 

• vSAN Storage: 

• Using the vSAN file service for ReadWriteMany Persistent Volumes can easily scale out the 

file share and the security, failure tolerance, performance, and capacity-saving features. This 

architecture can also be easily balanced by manipulating the storage policy of the file share. 

• Failures to Tolerate (FTT) is recommended to set to 1 failure  RAID 1 (Mirroring), if 

considering space saving, use RAID 5, use stripe policy for a large file share. 

• Enable vSAN Trim/Unmap to allow space reclamation for persistent volumes. 

• Kubeflow: 

• Use the latest stable version and match the Kubernetes cluster version and related tools 

version. 

• Request enough CPU and RAM resources for notebooks or pods to run machine learning 

workload if the workload is resource intensive. 

• If Kubeflow is deployed in a restricted internet access environment, it is recommended to 

use a private registry. 

• For GPU-enabled jobs, the CUDA version may not be compatible, so you may need to build 

a matching image for your cluster. 

• Kubeflow is a loosely-coupled platform. You can use individual components to serve your 

specific needs in the machine learning workflow. 

https://www.vmware.com/techpapers/2021/vsphere-tanzu-kubernetes-perf.html
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Additional Resources 

For more information about Kubeflow on AI-Ready Enterprise Platform on VMware vSphere 7 with VMware 

Tanzu Kubernetes grid, explore the following resources: 

• VMware vSphere 

• VMware vSAN 

• VMware Tanzu Kubernetes Grid  

• vSphere AI/ML solutions 

• Kubeflow docs 

• https://github.com/kubeflow 

 

https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsan.html
https://tanzu.vmware.com/kubernetes-grid
https://www.vmware.com/products/vsphere/ai-ml.html
https://www.kubeflow.org/docs/
https://github.com/kubeflow
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