TECHNICAL WHITE PAPER
September 2025

S .\\\\\\\\\\}}\\\\\\\\_\‘\‘\)\‘

f
5
f

A
LI
8 ..l"l.'/f, |

Deploy Distributed LLM
Inference with

GPUDirect RDMA
over InfiniBand in
VMware Private Al

vmware

by Broadcom



o T
Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Table of contents

LIS [a) 1 feTe [8 Lot [o] o T PO PP PSR TPPPPPRN 5
2. Leverage HGX servers for MaXimUM PeI oI mMIaANC e .. ..ttt itieet it it eit et eat et easeeaeaasenserseseasesseaasensessensessesssessensenes 6
2.1 TYPICAl BX GPU HGX NOE ... ettt e e e ettt e et e e eeaas 6

2.2 INtra-Node COMMIUNICATION ... et ettt e et 7

2.3 INter-NOAE COMMUNICATION. ... ettt ettt ettt e et e e e 7

2.4 Distributed deploymMeEnt EXaMPDIE. ... .. e 7

2.5 Hardware used fOr AePIOYMENT . .. ... ettt e 8

3. GPUDITECE RDMA TN VCF .. e ettt ettt e ettt ettt et e et ta et et et ea et eaea e e e et an s e et eanensaneenaanans 9
4. Determine the number of HGX servers required for LLM iNfEreNCe ......oviiiiiiiiiiiiii ettt eeaeaaeas 1
4.1 Example of MOdel rEQUITEMENTS ... ... ettt e e e e M

5. ATCRIEECIUIE OVEIVIEW ... e et ettt ettt ettt e et et et e e et e en e s reeennas 13
5.1 Software Used for AeplOymMENT ... .. . et 14

(S D= o110} 0 21T al AV o] ¢ 24 Lo 1YY PPN 16
7. Recommended BlOS and firmMWare SE U tiNGS ...uiiiiiiiiiii i ettt et ettt ettt eas e aseasseasansenseaseaseaseensensenees 18
2 I S =11 ] g [ F- S TSP 19
8.11INStall NMST & MET fOr CONNECEX=7 .. oeiii e e 19

8.2 Sanity check the ACS-related SETtiNGS ... ..o e e 19

8.3 ENADIE ATS ON @Il CX 7 e e e e 21

8.4 Change the GPU reset 1y P 10 Il ... e e 22

8.5 Passthrough GPU, NVSwitch, and CX-7 with hardware labels. ... ..o 23

L I D L= oY Lo A=Y oV (ol Y A . - PN 24
9.1 Create @ DLVM CONTENT LIDIary ... .t 25

9.2 CUStOMIZE the DLV M LemMIDIate ..o 25
9.2.1 ASSIgN @ STAIC 1P @QOIESS ... 27

9.3 CONFIGUIE SEIVICE VM . e et e 28

9.4 Deploy FabriC Manager (FM) ...t et e e 29

9.5 Clone the Service VM 10 @aCh ESX NOST ... e 29

10. Deploy distributed LLM iNferenCe i VK S ... o e ettt ettt ettt et et ae et eateaeaseeaaanns 30
TO T CrEATE VMCIASS ..ttt ettt et e 30
10.2 DePIOy @ VKS OF TG ClUSTOE ...ttt e et 32
10.3 Deploy NVIDIA network, GPU operator, and NIiCCIUSTErPOIICY .......oiuiiiiii e 34
10.4 Deploy PVC and download model WEIGNTS .. ... e 35

wnwa re® Technical White Paper | 2

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

TO.A.T CrEate PV CS o 35

10.4.2 Create test pods for Mmodel AOWNIOAA ... ... ... e 36

10.4.3 Copy customized NCCL topology file ... .. e 37

10.5 DePIOY LeAEr-WOIKEE ST ... e et 38
10.6 DEPIOY LLM WITN SGLANG ...t ittt e e 39
10.6.1 Deploy DeepSeek-R1 0N 2 HGX NOAES IN VKS L. e 39

10.6.2 Deploy Llama-3.1-405B-Instruct or Qwen3-235B-A22B-thinking on 2 HGX nodes in VKS ...........cocooviian. 47

10.6.3 Launch parameters and GPU mMemoOry diSCUSSION ... ..ttt 47

10.6.4 Test inference API fUNCHIONAIITY . ... e 49

LI =T g (o) g 1 T=T o ol OO T PPN 51
11,7 LAUNCH GENAL-P eI  STrESS ST ..o 51

LIV =1=T ool ala g =10 24l o[ T PP PRPPRN 53
11.2.1 DeepSeek-R1-0528 PErfOrMANCE ...ttt et 54

11.2.2 LIama-3.1-405B PEIfOIMANCE ...t 56

LIS o0 T4 (ol [V 151 o] o E PP TP PP P PPPPPPPRN 58
L L (=T (=T o= S PP TP PPPPPPPPR 58
F AN o] o =] g Lo 1 G TSP 59
YN [0 01V = T gl U o T =) £ PPN 59

A.T Atlas2 PCle SWitch Board (PSB) fIrmMWare. ... ..o e e 59

B. INSTall MET @Nd NMST ON ESX .ottt et 61

C. VKS deploymMeENT Prar@QUISITES ... e e e 62
C.TVKS With VPC-NSX @rChitECTUIE ... e 62

C.2 Enable Workload ManagemENt. .. .. ... 64

C.3 Deploy Local Consumption INtErface (LCI) ... . 64

Cd Create @ NAMESPDACE. . ..ottt et e 66

C.5 Manage VM Classes iN NAMIESPDACE ... ...ttt et et et e e 67

D. Use LCI O dePloy @ VKS ClUSTOE ..ot e e 68

E. Deploy Network Operator and GPU Operator. ... ..o i e 72
E.TLOGIN 10 VS CIUS O .ot et e e e et et e eeans 72

B 2 INS Al H I e e 72

E.3 Install the NVIDIA NEtWOIrK OPEIatOr .. ... et e aeans 73

E.4 Install the NVIDIA GPU OPEIator ... ..ot et eeans 74

LD SaANItY CNECK .t 75

E.6 Deploy NICCIUSTEIPOICY CRD ... ..t ettt e aeans 76

ana re® Technical White Paper | 3

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

F. Verify RDMA performance via IB on two pods across tWo HGX NOAES ..ottt 80
G. Verify GPUDirect RDMA performance via IB on 2 pods across 2 HGX NOAES ..ot 83
H. Verify NCCL performance on tWo POAS IN VKS ... e 86
I. VM customized NCCL tOPOIOGY FIl@ ... i e e 95
N K= g 0l o] (o T | PPN 98
N o 10 == 10 1 (T R 99
PAYod 1 g ) VA = To [ ] =] o] KT 99

ana re® Technical White Paper | 4

by Broadcom



o T
Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

1. Introduction

When deploying state-of-the-art reasoning large language models (LLMs) such as DeepSeek-R1 or Meta Llama-3.01-405B-
Instruct, the memory and compute requirements often exceed the capacity of a single server with 8x HI00O GPUs. In these
cases, distributed inference becomes a necessity, allowing resources from multiple GPU-enabled nodes to be aggregated in
service of a single model. Distributed inferencing introduces new complexities in distributed infrastructure management,
interconnect performance optimization, and workload scheduling.

VMware Cloud Foundation® (VCF) is the industry’s first private cloud platform to deliver public cloud scale and agility with on-
premises security, resilience and performance, while lowering total cost of ownership. For distributed deployments, NVIDIA
NVLink, NVIDIA NVSwitch and GPUDirect® RDMA are critical, as they allow high-bandwidth, low-latency communication
between GPUs within and across nodes. VCF ensures network interconnects like InfiniBand (IB) and RDMA over Converged
Ethernet (RoCEV2) can be leveraged effectively, reducing communication overhead that often limits distributed inference
performance. With VCF, enterprises can enable production-grade distributed inference, ensuring that even the largest
reasoning model can be deployed reliably while maintaining predictable performance characteristics.

This paper examines the various components of the technology stack that make distributed inference feasible via Dynamic
DirectPath 1/0 on VCF, outlines the architectural considerations, and provides technical guidance required to effectively
operate LLMs across multiple GPU nodes.

ana re® Technical White Paper | 5

by Broadcom



o T
Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

2. Leverage HGX servers for maximum performance

When preparing for distributed inference, it is critical to validate the detailed specifications of the HGX servers in use.
Variations in interconnect topology (NVLink vs. PCle), networking hardware (InfiniBand vs. Ethernet), and auxiliary
components (cooling, power delivery, BIOS settings) can significantly impact distributed inference performance and
scalability. Ensuring hardware alignment and consistency across nodes is a prerequisite for achieving predictable results in
large-scale inference deployments. For architectural and deployment guidance, refer to our Reference Design for Inference
for deploying VMware® Private Al Foundation with NVIDIA on NVIDIA HGX servers.

2.1 Typical 8x GPU HGX node

An 8x GPU HGX server, commonly used in VMware Private Al Certified platforms!, typically contains the following
components.

« 4x Broadcom Atlas 2 (PEX89XXX) PCle Switches (synthetic mode enabled, each logically partitioned as 2)
+ 8x NVIDIA H100/H200 GPUs
- 8x NVIDIA ConnectX-7 IB HCAs or Ethernet NICs

Figure 1. Topology diagram of a typical HGX server

System Memory System Memory
LR T

CPU Package CPU Package

i | g e PC Bridge P T T e

y Logic PCle y Logic PCle yLogic Plle; i Logic Pllet PMC-Sierra 1 Logic PCle ! 1 Logic PCle ! ' Logic PCle 1 Logic PCle !

! Switch | | Switch | 1 Switch | 1 Switch | Inc. Device ! Switch | ! Switch | ! Switch | ! Switch !

;  Gens E . Gens | . Gens 5 i Gens5 | 4128 i Gen5 | i Gen5 | \ Gen5 | 1 Gen5

L L ! L L —— ' L 1 L 1 L 1 L 1
Q  ataszsr P a2z Q Q  Aas2#z ¢ C mas2ua

IB/Eth _[lB/Eth o0l /Eth IB/Eth IB/Eth _[IIB/Eth _[IIBIEth —I]IB/Eth
= \\VMe —-’?NVMe =2 \VMe =2 \VMe =2l \VMe % NVMe % NVMe —]?NVMe

H100 H100 H100 H100 H100 H100 H100  _ H100

¥ 1¥ 1 ¥ 1 3 1 1

CPU Interconnect
(]

1) -

) PCle Gen5x16
NVSwitch NVSwitch NVSwitch NVSwitch

NVLink Gen4

PCI Bridge

PMC-Sierra|

Inc. Device

4128

Note: To achieve optimal GPUDirect RDMA performance, assign each GPU and its paired NIC under the same PCle switch to
a VM. A 1:1 GPU-to-NIC ratio ensures every accelerator has a dedicated, high-bandwidth, low-latency network path. This
design becomes critical once workloads exceed a single HGX host’s max capacity, where collective operations (all-reduce, all-
gather, etc.) dominate performance for LLM inference and training. Sharing NIC bandwidth across GPUs can introduce
bottlenecks, but a 1:1 mapping allows parallel, oversubscription-free scaling across nodes.

1 Refer to the Broadcom compatibility guide (BCG) for details: After clicking the link to the BCG, click Select Desired
Compatibility Guide — Platform & Compute — Systems / Servers — under Features, select VMware Private Al, and then
scroll up and click View Results.

ana re® Technical White Paper | 6

by Broadcom



https://www.vmware.com/docs/ref-design-private-ai-nvidia-hgx-inference
https://compatibilityguide.broadcom.com/search?program=server&persona=live&column=partnerName&order=asc&features=%5BPrivate+AI+Foundation%5D&activePage=1&activeDelta=20
https://compatibilityguide.broadcom.com/search?program=server&persona=live&column=partnerName&order=asc&features=%5BPrivate+AI+Foundation%5D&activePage=1&activeDelta=20

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

2.2 Intra-node communication
Within a single HGX node, HIOO GPUs communicate via NVLink and NVSwitch.

NVLink provides point-to-point connectivity with up to 900 GB/s bidirectional bandwidth. Our HGX server utilizes NV18. As
depicted in Figure 1, each H100 connects to the 2 NVSwitches within its NUMA node via 4 links each, and to the remote
NVSwitch via 5 NVLinks, thus totaling 18 NVLinks per H100.

NVSwitch enables all-to-all GPU communication with up to 7.2 TB/s bidirectional bandwidth.

Together, NVLink and NVSwitch orchestrate high-speed communication between the 8 GPUs in a node, enabling efficient
inference with libraries such as NVIDIA Collective Communication Library (NCCL) and optimized runtimes like vLLM or
SGLang or NVIDIA TensorRT-LLM.

2.3 Inter-node communication

While NVLink and NVSwitch deliver extremely fast communication within an HGX node, they are limited to up to 8 GPUs per
chassis. Scaling inference across nodes requires additional interconnects.

Each HGX chassis typically includes:

» Low-bandwidth Ethernet NICs (management or VPC traffic)

» High-bandwidth NICs (for GPU-to-GPU communication across nodes)

For the high-bandwidth interconnect between HGX servers, customers can choose between:
- InfiniBand (I1B)

« RDMA over Converged Ethernet (RoCEv2)

Both options enable the low-latency, high-throughput communication required for distributed inference. Our configuration
utilized HGX servers equipped with InfiniBand HCAs. However, similar performance can be achieved with RoCE; for more
information, refer to https://www.vmware.com/docs/paif-hgx-brcm-eth.

2.4 Distributed deployment example

We recommend starting from a minimum configuration for a VCF Workload Domain (WLD) of:
+ 4 HGX servers

- 1 workload IB network switch

Cost optimization: For the first WLD, not all 4 servers must be GPU-enabled. A valid configuration includes 2 HGX servers
with GPUs and 2 standard compute servers (CPU-only), which also follows a VCF consolidated architecture design pattern to
support distributed LLM inference.

If the IB switch supports a higher port count than 32 per device (radix) or a multi-layer fabric is used, additional HGX servers
can be integrated. Figure 2 depicts the InfiniBand connection topology for 16 HGX servers with 2 IB switches.

wnwa re® Technical White Paper | 7

by Broadcom


https://docs.vllm.ai/en/latest/
https://docs.sglang.ai/
https://developer.nvidia.com/tensorrt#inference
https://www.vmware.com/docs/paif-hgx-brcm-eth
https://www.vmware.com/docs/paif-hgx-brcm-eth

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Figure 2. Physical architecture with 16 HGX servers (IB switch radix = 32)
Workload Network IB Switch #1

Workload Network IB Switch #2

Management & Storage Network
Ethernet Switch #1

O | [ | emmms [000 0] enmme | emmme [ | O

Workload -

Management
and Storage

Out-of-band —

Additonal Storage (Optional)

Out-of-band Switch

Management & Storage Network
Ethernet Switch #2

Mgmt ESXi#1__| | B_}

Mgmt ESXi#2 | | }),Jl

o]

Mgmt ESXi #3 | | S

ol

Mgmt ESXi #4 | | 3T

Management Servers

2.5 Hardware used for deployment

Table 1 shows the hardware used for launching distributed LLM inference in VCF 5.2.1and 9.0.

Table 1. Hardware components

Server

Processors

CPU RAM
GPUs
NVSwitch

Storage

Compute NIC

Compute Fabric switch

Dual Port OSFP transceiver for
switch

Compute cables
Management & storage NIC

Management switch

vmware

by Broadcom

Dell PowerEdge XE9680

Intel Platinum 8470, 52 cores per CPU package

32x DDR5 64GB DIMMs
NVIDIA H100-80G-SXM
Gen4

Dell (Samsung) Ent NVMe PM1733a RI 3.84TB,
Triple-Level Cell (TLC), PCle 4.0, NVMe 1.3

ConnectX-7 IB HCA

NVIDIA Quantum QM9700 NDR 400Gbps

InfiniBand

MMA4Z00-NS

NDR InfiniBand DAC, MCP4Y10

Intel Ethernet Controller E810-C 100 Gb/s

EdgeCore 100GbE

2x

104 logical cores per CPU
2x per server

2TB per server
8x per server
4x per server

8x per server

8x per server

1x per cluster

32x per switch

8x per server
2x per server

1x per cluster

Technical White Paper | 8




Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

3. GPUDirect RDMA in VCF

Enabling GPUDirect RDMA in VCF requires two key configurations:
1. Access Control Services (ACS) must be enabled in ESX.
2. Address Translation Services (ATS) must be enabled on the ConnectX-7 (CX-7) NICs.

Within virtualization, the Input-Output Memory Management Unit (IOMMU), implemented via Intel VT-d or AMD I/O
Virtualization (I0V) provides each PCle device with a unique translated virtual address space (IOVA). Meanwhile, ACS is
typically configured to redirect all peer-to-peer (P2P) requests and completions to the Root Complex for security
enforcement. For two devices (e.g., GPU and NIC) to exchange data directly over PCle, the IOMMU must establish mappings
so that each device can issue transactions into the other’s PCle address space.

While ACS offers fine-grained control over PCle transactions, it can block direct device-to-device communication by forcing all
traffic through the root complex—reducing bandwidth and increasing latency.

Figure 3. Illustration of how GPUDirect RDMA works in VCF

System Memory

CPU Package

[THT)
E IEPGI E— IOMMU Root complex
1L JF L A
TTvl i
ACS Root Port
ACS ;
o 5 PCle Switch
DirectTrans

GPU

Address Translation Services (ATS), facilitates direct DMA transactions between PCle endpoints, even when ACS and/or
IOMMU are active. As depicted in Figure 3, ATS achieves this by caching translation results in its Address Translation Cache
(ATC). This caching allows devices to bypass the root complex and continue direct GPU-to-NIC communication.

Note: VMware has collaborated with hardware vendors to fully enable ATS in ESX, a key PCle feature that lets devices cache
and share virtual-to-physical address translations directly. With ATS function in the hardware, VMware supports not only
GPUDirect RDMA for GPU-to-NIC transfers but also GPUDirect Storage (GDS) and general PCle peer-to-peer (P2P)
communication between compliant devices. This ensures efficient, low-latency data movement in virtualized environments,
delivering near bare-metal performance for Al, HPC, and data-intensive workloads.

ana re® Technical White Paper | 9

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Without ATS, ACS forwarding can cut available bidirectional bandwidth in half or more. With ATS enabled and Direct
Translation active on PCle switches, most traffic flows directly between the GPU and NIC again, restoring the low-latency path
required for GPUDirect RDMA. As a result, with ACS and ATS properly configured in Figure 4, GPUDirect RDMA can be
achieved across VCF hosts.

Figure 4. Conceptual view of GPUDirect RDMA across two hosts

Host 1

r_S stem Memo L _] r_
- |_ _| - -
LLLAL | |
GPU Y GPU
(Z—[]~—[egte—=lm~[]-—1=1
PCle Switch IB HCA | IB HCA PCle Switch
GPU Direct RDMA ]
L

~ |
LGPL.J Me;nory _J L GPU Mer.nory _J

ana re® Technical White Paper | 10

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

4. Determine the number of HGX servers required for LLM
inference

A key gquestion when planning inference at scale is: What is the minimum number of GPU servers required to serve a given
LLM? The answer depends on both the model architecture and hardware constraints.

One critical factor is the model’s num_attention_heads parameter (found in the config. json in each model’s Huggingface
repo). In multi-GPU inference, attention heads must be distributed evenly across GPUs. Since each HGX server typically
contains 8x H100 GPUs, the total number of GPUs across all servers must divide evenly into the number of attention heads.
For example, if a model defines 64 attention heads, it can be evenly distributed across 16 GPUs (2 HGX servers), but not
across 10 or 12 GPUs.

Another determining factor is context length. Models with extremely long context windows (e.g., up to 10M tokens) require
additional GPU memory and bandwidth, so additional GPU memory and bandwidth are necessary. To estimate memory
consumption, use the calculator provided in the LLM Inference Sizing and Performance Guidance. Even if the attention heads
divide evenly, a single HGX server might not have enough memory capacity to serve the full context length, forcing scale-out
across multiple servers.

4.1 Example of model requirements

Table 2 lists how these constraints apply to a range of popular LLMs. With the exception of Llama-3.1-405B, all of the listed
models are Mix of Expert (MoE) LLMs. The table includes each model’s parameter size, the number of attention heads, context
length, and the minimum number of HGX servers (8x HI00 GPUs per server) required to serve them at full context length.
For MoE models, an additional column is provided to show the number of Active parameters.

Table 2. Minimum HGX server requirements for LLM serving

Total Active num_attention_heads | Full Minimum Minimum HGX
parameters parameters context H100-80G servers
length required for required for
full context full context
length length
gpt-0ss-120b 17B 5.1B 64 128K 8 1
Llama-3.1-405B-Instruct 405B N/A 128 128K 16 2
DeepSeek-R1 671B 37B 128 128K 16 2
Mixtral-8x22B-Instruct-vO.1 141B 39B 48 64K 8 1
Qwen3-235B-A22B-Thinking- | 235B 22B 64 256K 16 2
2507
Kimi-K2-Instruct 1T 32B 64 128K 32 4
Llama-4-Maverick-17B-128E- 400B 17B 40 ™ 10 2 (only use 10
Instruct out of 16 GPUs)
Llama-4-Scout-17B-16E- 109B 17B 40 10M 5 1(only use 5
Instruct out of 8 GPUs)

ana re® Technical White Paper | 11

by Broadcom


https://blogs.vmware.com/cloud-foundation/2024/09/25/llm-inference-sizing-and-performance-guidance/
https://blogs.vmware.com/cloud-foundation/2024/09/25/llm-inference-sizing-and-performance-guidance/
https://huggingface.co/openai/gpt-oss-120b/blob/main/config.json
https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct/blob/main/config.json
https://huggingface.co/deepseek-ai/DeepSeek-R1/blob/main/config.json
https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1/blob/main/config.json
https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507/blob/main/config.json
https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507/blob/main/config.json
https://huggingface.co/moonshotai/Kimi-K2-Instruct/blob/main/config.json
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct/blob/main/config.json
https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct/blob/main/config.json
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct/blob/main/config.json
https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct/blob/main/config.json

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

I Note that:

« Single-node fit: Some models, like gpt-0ss-120b, can be fully served on 8x HI0OO GPUs in a single HGX server, even at
maximum context length.

- Distributed (multi-nodes) requirement: Larger models such as Llama-3.1-405B and DeepSeek-R1 require at least 2 HGX
servers, primarily due to the model weights demand.

« Scaling beyond 2 nodes: Ultra-large or long-context models (e.g., Kimi-K2) require 4 HGX servers. The high context length
(up to 10M tokens) and non-divisible attention head counts make them impossible to serve on fewer nodes.

Distributing Llama-4 across 16 H1I00 GPUs in two HGX servers is not applicable because SGLang's self.total_num_heads %
attn_tp_size == 0@ assertion (40 % 16 != 0O) is violated. This uneven division of Llama-4's 40 attention heads by the 16-GPU
attention tensor parallelism size prevents proper model partitioning and loading, causing inference deployment errors.
Solutions involve architectural modification, such as using 10 out of 16 GPUs for Llama-4-maverick and the remaining 6 for
other LLMs. As a result, we showcase how to deploy DeepSeek-R1-0528, Llama-3.1-405, and Qwen3-235B-A22B-Thinking-
2507 on multi-nodes in VCF. For our initial deployment of distributed LLM inference, we chose SGLang. A similar approach is
demonstrated in the NVIDIA doc Example: Helm chart for DeepSeek R1 using an SGLang Backend. In future revisions, we plan
to evaluate additional inference engines.

ana re® Technical White Paper | 12

by Broadcom


https://docs.nvidia.com/nim/large-language-models/latest/multi-node-deployment.html#example-helm-chart-for-deepseek-r1-using-an-sglang-backend

o T
Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

5. Architecture overview

Figure 5 shows an overview of the architecture used to deploy distributed LLM inference with GPUDirect RDMA by IB in
VMware Private Al on HGX servers.

Figure 5. Solution architecture of deploying distributed LLM inference by GDR with IB in VCF

@ VMware Private Al

Al Kubernetes Cluster

T Y u@'
5 Microservices

: Model SGLang
i Kss
Operators @ i
GPU Dl LWS Service VM1 Service VM2

Operator ~ Operator

Namespace Namespace | vm | | vm |

Dynamic DirectPath 1/O

Supervisor
Control Plane

£ L L L ¢ vSphere Cluster

y
NVIDIA GPUs IB HCAs @ NVSwitches (&cm

The design incorporates several key components:

« Al Kubernetes Cluster: Hosts Al microservices like SGLang, Leader-Worker-Set (LWS), along with GPU and network
operators.

Supervisor Cluster: Provides namespace management, workload orchestration, security, governance, and policy
enforcement.

Service VMs: Each ESX host runs a dedicated lightweight VM (2 vCPUs and 4 GB memory) that always remain powered on
for high availability.

—The service VMs are connected to 4x NVSwitches in shared-passthrough mode.

—They run the NVIDIA Fabric Manager, ensuring NVSwitch interconnects remain fully operational.

- They subdivide the HGX system into GPU partitions without relying on vGPU.

Dynamic DirectPath I/O: Ensures the GPUs and NICs are directly accessible to the Service VMs and Workload VKS nodes.

ana re® Technical White Paper | 13

by Broadcom


https://www.google.com/url?q=https://docs.nvidia.com/datacenter/tesla/fabric-manager-user-guide/index.html&sa=D&source=docs&ust=1756838987100741&usg=AOvVaw0tv20clDTFTJQ4mMzj5ept

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

To ensure system stability and preserve fabric connectivity, Service VMs must be powered on before deploying any GPU-
attached VKS workload nodes. Workload VKS nodes must also follow an explicit GPU-NIC pairing policy based on PCle
device identifiers (SBDF: Segment-Bus—-Device-Function) exposed by ESX. In an 8x HIOO HGX system with 8x IB HCAs, this
policy can be aligned with a customized NCCL topology file for the VMClass, providing deterministic GPU-NIC assignments
and simplifying distributed scaling.

This layered design ensures optimal performance for distributed inference and training, while maintaining operational
consistency through VMware’s enterprise control plane.

5.1 Software used for deployment

Table 3 lists the software components used in this deployment. We have validated GPUDirect RDMA and distributed NCCL
performance on both VCF 5.2.1and VCF 9.

Table 3. VMware software components used in deployment

VCF 9 components

Hypervisor platform for running VMs and

vSphere ESX 9.0.0.0.24755229
Kubernetes
vCenter 9.0, 24755230 Management for ESX clusters
Network virtualization and security platform;
NSX 9.0.0.0.24733063 )
creates VPC networking
Kubernetes Service 3.3.1-embedded Kubernetes Service for orchestration
X v1.30.5+vmware.4-fips-vsc9.0.0.0- Built-in Kubernetes control plane (vSphere
Supervisor X
24686447 Supervisor)

v1.32.0---vmware.6-fips-vkr.2
VKS nodes OS for Kubernetes worker nodes
ubuntu 22.04.5

VCF 5.2.1 components

Hypervisor platform for running VMs and

vSphere ESX 8.0.3, 24280767
Kubernetes.
vCenter 8.0U3Db, 24305161 Management for ESX clusters
Tanzu Kubernetes Grid . X
. 3.3.0 Tanzu Kubernetes Grid for orchestration
Service
X v1.29.7+vmware.1-fips-vsc0.1.10- Built-in Kubernetes control plane (vSphere

Supervisor X

24224934 Supervisor)

v1.32.0---vmware.6-fips-vkr.2
TKG nodes OS for Kubernetes worker nodes
ubuntu 22.04.5

ana re® Technical White Paper | 14

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Software used within VKS or TKG cluster

GPU Operator
Network-operator

NVIDIA Driver

NVIDIA-Fabric Manager

CUDA

OFED Diriver
NCCL

SGLang
LeaderWorkerSet
MLNX_OS
GenAl-Perf

vmware

by Broadcom

v25.3.0 or NVIDIA Al Enterprise 6.3
v25.4.0
570.148.08

570.86.15

12.6

DOCA 25.04-0.6.1.0-2
2.27.3

0.5.0rc2

v0.6.2

3.12.4002

0.0.15.post1

Automatic management of GPU drivers
Configures InfiniBand and RoCE networking
GPU Driver (via GPU operator)

Manages GPU-NVSwitch communication (via
GPU operator)

GPU compute runtime

IB driver (via Network Operator)

Multi-GPU and distributed communication library
LLM Inference engine

PodGroup deployment API

IB Switch OS

Inference stress test benchmark tool

Technical White Paper | 15



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

6. Deployment workflow

The following workflow (steps 1~8) presents the complete process for deploying distributed LLM inference with GPUDirect
RDMA over InfiniBand in VMware Private Al. To avoid redundancy, the main sections of the following chapters focus only on
advanced configurations and important settings specific to distributed inference. Common configuration steps are not
repeated here but are instead consolidated in the appendices for reference.

1. Hardware and firmware preparation: (Ch. 7)
- Validate HGX server specifications for consistent performance.

— Update BIOS and firmware, enabling Access Control Services (ACS) and above 4G decoding. Determine whether to enable
or disable Sub-NUMA Cluster (SNC).

- Set the system power profile to Performance Per Watt (OS).
2. ESX configuration for GPUDirect RDMA enablement: (Ch. 8)
—Install NMST and MFT for ConnectX-7 NICs using vSphere Life Cycle Manager (LCM). (App. B.)

- Verify and configure ESX kernel settings for ACS (disableACSCheck=FALSE, atsSupport=TRUE, enableACSDTP2P=TRUE
for ESX 9). Reboot ESX if changes are made.

- Enable ATS on all ConnectX-7 NICs using mlxconfig. A host reboot is required.

- Change GPU’s reset type to flr in the /etc/vmware/passthru.map file in ESX.
- Configure GPUs, NVSwitches, and CX-7 NICs as passthrough devices with correct hardware labels in vSphere Client.

3. Service VM deployment: (Ch. 9)

- Deploy Service VMs using the DLVM template via pre-configured content library for Private Al Service (minimum 2 vCPUs
and 4GB RAM).

- Configure static IP and attach 4x NVSwitch devices via Dynamic DirectPath 1/0.

- Install, enable, and start the NVIDIA Fabric Manager service.

— Clone the validated Service VM to all other ESX hosts. Service VMs must be powered on before VKS nodes.
4. VKS setup: (Ch. 10)

- Review VKS architecture, port groups, and IP planning. (App. C.1)

— Enable Workload Management. (App. C.2)

— Deploy Local Consumption Interface (LCI). (App. C.3)

- Create a vSphere Namespace for LLM deployments. (App. C.4)

- Create custom VMClasses with passthrough devices (8 GPUs, 8 NICs) and configure advanced settings for P2P
communication and MMIO size. (Sec. 10.1)

- Manage VM Classes in the Namespace, assigning the custom GPU-enabled VMClass. (App. C.5)

— Deploy a TKG Cluster (via LCI Ul or YAML) with GPU-enabled worker nodes and persistent storage. (Sec. 710.3)

wnwa re® Technical White Paper | 16

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

5. Operator installation:
- Install the NVIDIA Network Operator first, then the NVIDIA GPU Operator (with driver.rdma.enabled=true). (Sec. 710.2
& App. E.1~5)
— Deploy NICClusterPolicy CRD (Custom Resource Definition). (App. E.6)
6. Storage and model download: (Sec. 710.4)

— Create PersistentVolumeClaims (PVCs) for LLM model weights.

- Deploy temporary pods to mount PVCs and download LLM models (e.g., Llama-3.1-405B) using huggingface-cli.

7. LLM deployment with SGLang:
— Deploy Leader-Worker Set (LWS). (Sec. 10.5)

- Deploy the desired LLM (e.g., Llama-3.1-405B, DeepSeek-R1) using SGLang with VM customized NCCL_TOPO_FILE in
Appendix |. (Sec. 10.6.7~10.6.2)

- Test inference API functionality and review launch parameters. (Sec. 10.6.3 ~ 10.6.4)

8. Performance verification: (Ch. 71)

- Verify RDMA and GPUDirect RDMA performance via InfiniBand across pods on different HGX nodes. (App. F & G)

- Verify NCCL performance. (App. H)
- Benchmark LLM performance using tools like GenAl-Perf Stress Test. (Sec. 711.1~11.2)

ana re® Technical White Paper | 17

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

7. Recommended BIOS and firmware settings

« Keep the BIOS and other firmware updated to the latest version provided by your OEM server vendor. Refer to Appendix A
about how to upgrade the firmware of the Atlas2 PCle Switch.

« Enable ACS: For Dell Servers, enable Virtualization Technology in the iDRAC. Find similar settings from your specific server
vendor.

« Enable SRIOV: For Dell servers, enable Global SRIOV. Although SRIOV was not enabled on CX-7 HCAs in this document,
enabling it will not negatively impact DirectPath 1/O performance and is beneficial for other and future workload testing
(e.g., VGPU, other IB or Ethernet NICs that require SRIOV).

« Enable above 4G decoding (also known as memory mapped I/O above 4GB or PCI 64-bit resource handling above 4G).
This setting is typically found under the Advanced, Processor Configuration, or Memory Configuration sections in the BIOS
setup.

« Performance Per Watt (OS) is the recommended system power profile setting. HPE servers have a similar profile setting.
Once this is set, choose High Performance for ESX power management.

« Sub-NUMA Cluster (SNC): Enable or disable this setting based on whether your workload heavily utilizes the last level cache
(LLC). If LLC is intensive, disable; otherwise, enable.

+ 1/O Snoop HoldOff Response (If exists): Set to 2K Cycles.

wnwa re® Technical White Paper | 18

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

8. ESX settings
8.1 Install NMST & MFT for ConnectX-7

We recommend you follow the “Steps to configure InfiniBand with vSphere 8.x” section in the InfiniBand Configuration on
VMware vSphere 8 to use LCM to install MFT and NMST. You can also refer to Appendix B for the command-line instructions.

8.2 Sanity check the ACS-related settings

In virtual environments, ESX enables PCle ACS by default for security. To verify the ACS-related variables on ESX, check the
following values.

Example 1. Check ACS-related settings by command lines in ESX

# 1. disableACSCheck
[esx] esxcli system settings kernel list -o disableACSCheck
Name Type Configured Runtime Default Description

disableACSCheck Bool FALSE FALSE FALSE Bypass ACS capability checks on all PCIE devices

# 2. atsSupport
[esx] esxcli system settings kernel list -o atsSupport
Name Type Configured Runtime Default Description

atsSupport Bool TRUE TRUE TRUE Enable Support for PCIe ATS.

# enableACSDTP2P (Available only in ESX 9)
[esx] esxcli system settings kernel list -o enableACSDTP2P
Name Type Configured Runtime Default Description

enableACSDTP2P Bool TRUE TRUE TRUE Enable ACS Direct Translated P2P.

# If any of these values deviate from their defaults, set them as follows:
[ESX] esxcli system settings kernel set -s enableACSDTP2P -v true

ana re® Technical White Paper | 19

by Broadcom


https://www.vmware.com/docs/infiniband-config-vsphere8-perf
https://www.vmware.com/docs/infiniband-config-vsphere8-perf

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Alternatively, you can use vCenter to check and configure these settings in Figure 6:

Figure 6. ACS-related setting in vSphere Ul

[$ Ivn-aias-xIr8or-n007.lvn.broadcom.net | : acrions
Summary Monitor Configure Permissions VMs Datastores Networks Updates \
SR ¥~ Advanced System Settings

Storage Adapters Filter the keys by "ACS”

Storage Devices Key ® Value v Summary v
Host Cache Configuration
) VMkernel.Boot.disableACSCheck false Bypass ACS capability checks on all PCIE devices
Protocol Endpoints
1/O Filters VMkernel.Boot.enableACSCheckForRP false Enable ACS capability checks for Root Port
VMkernel.Boot.enableACSDTP2P true Enable/Disable ACS Direct translated P2P

Storage Providers
Networking v
Virtual switches
VMkernel adapters
Physical adapters
TCP/IP configuration
Virtual Machines v
VM Startup/Shutdown
Agent VM Settings
Default VM Compatibility
Swap File Location
System v
Licensing
Host Profile
Time Configuration
Authentication Services

Certificate

Power Management ‘/
Advanced System Settin.

System Resource Reserv...
Firewall

Services

Security Profile

System Swap

Packages

1. Migrate or power off all running VMs and place the host into maintenance mode.
2. Navigate to the host's Configure tab.

3. In the middle pane, go to System and click on Advanced System Settings.

4. Click Edit.

5. Filter the keys by "ACS" and "atsSupport."

6. Review their current values.

7. If changes are required, remember that these VMkernel settings will require a host reboot to take effect.

ana re® Technical White Paper | 20

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

8.3 Enable ATS on all CX-7

1. Identify the CX-7 devices.

Run the following command to list CX-7 PCI devices. In this example, device dc :00.0 maps to mt4129_pciconf7:

# Check the ATS status of CX-7 in ESX
[ESX] /opt/mellanox/bin/mst status -vv
PCI devices:

DEVICE_TYPE MST PCI RDMA NET NUMA
ConnectX7(rev:0) mt4129_pciconfo 1a:00.0
ConnectX7(rev:0) mt4129_pciconf1 3c:00.0
ConnectX7(rev:0) mt4129_pciconf2 4d:00.0
ConnectX7(rev:0) mt4129_pciconf3 5e€:00.0
ConnectX7(rev:0) mt4129_pciconf4 9c:00.0
ConnectX7(rev:0) mt4129_pciconf5 bc:00.0
ConnectX7(rev:0) mt4129_pciconf6 cc:00.0
ConnectX7(rev:0) mt4129_pciconf7 dc:00.0

2. Check the current ATS status.
Use the following command to verify whether ATS is enabled on one of the devices (e.g., mt4129_pciconf7):

# Check ATS values
[ESX]/opt/mellanox/bin/mlxconfig -d mt4129_pciconf7 query | grep -i ATS_ENABLED
ATS_ENABLED True(1)

If the output shows True(1), ATS is already enabled on the NIC.
3. Enable ATS if it is disabled.
If ATS is not enabled, run:

# Enable ATS
/opt/mellanox/bin/mlxconfig -d mt4129_pciconf7 -y set ATS_ENABLED=true

4. Enable ATS on All CX-7 Interfaces
To enable ATS across all 8 ConnectX-7 devices in the host by a single loop:

# Loop to enable ATS on all CX-7 IB interfaces
for i in @12 3 456 7; do /opt/mellanox/bin/mlxconfig -d mt4129_pciconf$i -y set ATS_ENABLED=true; done

5. Reboot the ESX host (required).
A reboot of the ESX host is required for the ATS configuration changes to take effect.

As a final note, enabling GPUDirect RDMA in VCF requires careful attention to system configuration. To ensure stability and
avoid potential issues such as host failures (PSOD) or application errors (Segfault), it is recommended to:

- Keep hardware firmware (e.g., Atlas2 PCle switch) up to date.
« Configure Access Control Services (ACS) properly on ESX.
« Enable Address Translation Services (ATS) on ConnectX-7 NICs.

Following these steps helps create a reliable foundation for GPUDirect RDMA functionality and minimizes the risk of runtime
errors in production environments.

ana re® Technical White Paper | 21

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

8.4 Change the GPU reset type to fir

To change the GPU reset method to flr:

1. Edit the /etc/vmware/passthru.map file in ESX.

2. Find the entry for NVIDIA and change the resetMethod from bridge to fir.
3. Reboot the ESX host for the change to take effect.

# Original content in /etc/vmware/passthru.map in ESX

# NVIDIA (FLR issue on Ampere and Hopper GPUs)
10de ffff bridge false

# Change to the following

# NVIDIA (FLR issue on Ampere and Hopper GPUs)
1ede ffff flr false

ana re® Technical White Paper | 22

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

8.5 Passthrough GPU, NVSwitch, and CX-7 with hardware labels
Configure all GPUs, CX-7 HCAs, and NVSwitches across the ESX hosts in passthrough mode.

After enabling passthrough, label each device correctly according to its unique SBDF identifier. Figure 7 illustrates an example
of HGX servers equipped with 8 GPUs and 8 NICs. For configurations involving HGX servers with 4 GPUs and 4 NICs, please
contact Broadcom VCF support or consult an upcoming technical paper for labeling and mapping instructions.

Figure 7. Setting hardware labels for Passthrough GPU, CX-7, and NVSwitch

PCI Devices REFRESH
S T ae g ALL PCI DEVICES

HARDWARE LABEL

O w Passthrough v SR-IOV Hardware Label Vendor Name Device Name

O 0000:19:00.0 Enabled Not Configurable GPUO NVIDIA Corporation GH100 [H100 SXMS 80GB]
O 0000:1A:00.0 Enabled Not Configurable 1BO Mellanox Technologies MT2910 Family [ConnectX-7]
O 0000:3B:00.0 Enabled Not Configurable GPU1 NVIDIA Corporation GH100 [H100 SXMS 80GB]
O 0000:3C:00.0 Enabled Not Configurable 1B1 Mellanox Technologies MT2910 Family [ConnectX-7]
O 0000:4C:00.0 Enabled Not Configurable GPU2 NVIDIA Corporation GH100 [H100 SXMS 80GB]
O 0000:4D:00.0 Enabled Not Configurable 1B2 Mellanox Technologies MT2910 Family [ConnectX-7]
O 0000:5D:00.0 Enabled Not Configurable GPU3 NVIDIA Corporation GH100 [H100 SXMS 80GB]
O 0000:5E:00.0 Enabled Not Configurable 1B3 Mellanox Technologies MT2910 Family [ConnectX-7]
O 0000:83:00.0 Enabled Not Configurable NVSO NVIDIA Corporation GH100 [H100 NVSwitch]

O 0000:84:00.0 Enabled Not Configurable NVS1 NVIDIA Corporation GH100 [H100 NVSwitch]

|:\ 0000:85:00.0 Enabled Not Configurable NVS2 NVIDIA Corporation GH100 [H100 NVSwitch]

O 0000:86:00.0 Enabled Not Configurable NVS3 NVIDIA Corporation GH100 [H100 NVSwitch]

O 0000:9B:00.0 Enabled Not Configurable GPU4 NVIDIA Corporation GH100 [H100 SXMS 80GB]
O 0000:9C:00.0 Enabled Not Configurable B4 Mellanox Technologies MT2910 Family [ConnectX-7]
O 0000:BB:00.0 Enabled Not Configurable GPUS NVIDIA Corporation GH100 [H100 SXMS 80GB]
l:\ 0000:BC:00.0 Enabled Not Configurable IBS Mellanox Technologies MT2910 Family [ConnectX-7]
O 0000:CB:00.0 Enabled Not Configurable GPU6 NVIDIA Corporation GH100 [H100 SXM5 80GB]
O 0000:CC:00.0 Enabled Not Configurable 1B6 Mellanox Technologies MT2910 Family [ConnectX-7]
O 0000:DB:00.0 Enabled Not Configurable GPU7 NVIDIA Corporation GH100 [H100 SXMS 80GB]
O 0000:DC:00.0 Enabled Not Configurable 187 Mellanox Technologies MT2910 Family [ConnectX-7]

(Manage Columns | [ Deseiect A1l
To assign hardware labels in the vSphere Client, follow these steps:
1. In the VMware Host Client inventory, click Manage.
2. Open the Hardware tab and select PCI Devices.
3. Choose the desired device from the list and ensure passthrough is enabled.
4. Click Hardware Label.
5. In the Edit Hardware Label dialog box, update the label and click Save to apply the changes.

Note: For 8x GPU and 8x NIC HGX servers, the SBDF (each device’s PCle ID) is likely to match the configuration in Figure 8.
For other server configurations, such as 4-GPU HGX servers, please refer to an upcoming technical paper on Shared-Passthru
or contact VMware Support for guidance on specifying GPU and NIC IDs.

The goal of this deployment was to evaluate the performance of each HGX server when configured with DirectPath I/O
(passthrough), assigning all devices (GPUs and InfiniBand HCASs) to a single VKS worker node within an ESX host. Although it
is possible to distribute subsets of devices across multiple concurrent VMs in a single HGX server using a shared-nvswitch-
passthrough design, our objective here was to passthrough all GPUs and CX-7 HCAs to a single VKS worker node.

vmware

by Broadcom

Technical White Paper | 23



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

9. Deploy Service VMs

This deployment leverages the shared-NVSwitch-passthrough design, which subdivides an HGX system by using Dynamic
DirectPath I/O without requiring vGPU. The Service VM must remain powered on at all times to ensure high availability for the
workload VMs. Workload VMs use fixed passthrough to bind a specific set of GPUs (2, 4, or 8), ensuring proper utilize the
NVSwitch and alignment with the GPU partitions discovered by Fabric Manager. In this deployment guide, we assign all GPU-
NIC pairs within a physical server to a single workload VM (VKS node), but you can also define multiple VMClasses to
subdivide the system into smaller groups of GPU-NIC pairs.

Figure 8. Service VM in the shared-NVSwitch-passthrough design

J

-

Service VM Workload VMs

[ Fabric Manager ]
2

[ Datacenter GPU Driver] A

t7

w ) @& vSphere

p
J
( 7

J

|

y v A v

f |
i
Yy Y

[NVSwitch] [NVSwitch] [NVSwitch] [NVSwitch]
Hardware (CPU, GPU, NVSwitch, NVLink) in a single HGX system

\ J

Service VMs can be deployed using the Deep Learning VM (DLVM) template available in Private Al Service. These VMs act
as management nodes to support NVSwitch fabric services for multi-GPU systems. If you are not using DLVM, make sure
your VM hardware version is above 20.

ana re® Technical White Paper | 24

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

9.1 Create a DLVM content library

Follow the VMware Deep Learning VM Image Release Notes to download the DLVM template from
https://dl.broadcom.com/<download_token>/PROD/COMP/DLVM/9.0.0.0/1ib.json. The <download_token> can be

retrieved from the Broadcom Support Portal.

Next, follow this procedure to create a content library.

Figure 9. Import DLVM template to content library

B DLVM-9 | : acrions
f# DLVM-9

Summary ~ Templates  Other Types
[ Other Types €@ —

B) OVF & OVA Templates @ > OVF & OVA Templates

B) VM Templates @@
Quick Filter

Last
Last Sync Content Content

. Stored Security
O Name Guest 05 Loealy Complant size g:‘nemea Date Lirary uuip oo Description
O = VMware-Deep-Learning-VM-| No Yes 114.43 KB 09/01/20 09/01/20 DLVM-9 urn:vapi:com.vmware.content libr 2
mage-nv-vgpu-9.0.1.0.24882593 25,12:00; 25,12:00: ary.ltem:72fd43be-87b4-4e97-9
00 AM 00 AM 9le-e2bdbae7bl3b:98fadaf9-323

e-48da-a0f1-642399cbe09d

9.2 Customize the DLVM template

When deploying a DLVM via DirectPath 1/0O as shown in Figure 10, the template customization wizard (Step 7) presents three
main categories of configuration values:

1. Base OS Properties (required)
2. vGPU Driver Installation (not used in this guide)

3. DL Workload Automation (not used in this guide)

Figure 10. DLVM template deployment Ul

VMware-Deep-Learning- Customize template X
VM-Image-nv-
vgpu-9.0.1.0.24882593 - Customize the deployment properties of this software solution.
NeW Vlrtual Ma-ChIne @ All properties have valid values X
from Content Library
> Base OS Properties 6 settings
1 Select a name and folder > VGPU Driver Installation S settings
> DL Workload Automation 11 settings

2 Select a compute resource
3 Review details

4 License agreements

5 Select storage

6 Select networks

7 Customize template

ana re® Technical White Paper | 25

by Broadcom


https://techdocs.broadcom.com/us/en/vmware-cis/private-ai/foundation-with-nvidia/9-0/private-ai-release-notes/vmware-deep-learning-vm-image-release-notes.html
https://support.broadcom.com/web/ecx
https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/9-0/vsphere-virtual-machine-administration/using-content-librariesvsphere-vm-admin/create-and-edit-a-content-libraryvsphere-vm-admin/create-and-edit-a-content-libraryvsphere-vm-admin.html

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Since this deployment does not use vGPU stacks and workloads will be managed separately, you only need to configure
values in the Base OS Properties section.

I Note: Ignore the 5 settings under vGPU Driver Installation and the 11 settings under DL Workload Automation in Figure 11.

Within Base OS Properties, you can set the hostname, user password, and Encoded user-data as shown in Figure 11. The
Encoded user-data allows you to provide a static IP configuration for the DLVM, which is discussed in the next section.

Flgure 11. Base OS properties

VMware-Deep-Learning-
VM-Image-nv-
vgpu-9.0.1.0.24882593 -
New Virtual Machine
from Content Library

1 Select a name and folder
2 Select a compute resource
3 Review details

4 License agreements

5 Select storage

6 Select networks

7 Customize template

vmware

by Broadcom

Customize template X
~
Customize the deployment properties of this software solution.
[@ All properties have valid values X }
v Base OS Properties 6 settings
Instance ID Required. A unique ID for the instance.
id-ovf
Hostname The hostname for the appliance.
divm
Url to seed instance data from This field is optional, but indicates that the instance should 'seed’
user-data and meta-data from the given url. If set to "http://
tinyurl.com/sm-' is given, meta-data will be pulled from http://
tinyurl.com/sm-meta-data and user-data from http://tinyurl.com/
sm-user-data. Leave this empty if you do not want to seed from a
url
SSH public key Optional. If set, the instance will populate the default user's
authorized_keys with this value.
Encoded user-data Base64-encoded text of user data for cloud-init. It typically
includes scripts, commands, or metadata that the VM instance
uses to configure itself, such as setting up users, installing
packages, and initiating DL workloads.
Default user's password Default single login password for the "vmware" user. The user will
use this password to login the VM for the first time, and will be v

CANCEL BACK NEXT

Technical White Paper | 26



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

9.2.1 Assign a static |IP address

The following cloud-config.yaml can be used to configure a static IP for the DLVM (ref: Assign a Static IP Address).

Example 2. cloud-config.yaml for setting static IP

#cloud-config.yaml
<instructions_for_your_DL_workload>

manage_etc_hosts . true

write_files:
- path: /etc/netplan/50-cloud-init.yaml
permissions: '06600'
content: |
network:
version: 2
renderer: networkd
ethernets:
ens33:
dhcp4: false # disable DHCP4
addresses: [x.x.x.x/x] # Set the static IP address and mask
routes:
- to: default
via: x.x.x.x # Configure gateway
nameservers:

addresses: [x.Xx.x.Xx, X.x.x.x] # Provide the DNS server address. Separate multiple DNS server
addresses with commas.

runcmd :
- netplan apply

For environments that require a proxy server to gain access to the internet, refer to Configure a Deep Learning VM with a
Proxy Server.

After your cloud-config.yaml file is prepared, encode it to Base64:

base64 -i cloud_init.yaml > encoded_output.txt

Finally, copy the Base64-encoded content from encoded_output.txt into the Encoded user-data field during deployment.

ana re® Technical White Paper | 27

by Broadcom


https://techdocs.broadcom.com/us/en/vmware-cis/private-ai/foundation-with-nvidia/9-0/private-ai-foundation-9-x/deploying-a-deep-learning-virtual-machine/customizing-deep-learning-vm-deployment.html#GUID-996EF091-31F6-4DC5-BBBB-DFB823D61870-en
https://techdocs.broadcom.com/us/en/vmware-cis/private-ai/foundation-with-nvidia/9-0/private-ai-foundation-9-x/deploying-a-deep-learning-virtual-machine/customizing-deep-learning-vm-deployment.html#GUID-ED1AF2B5-9307-47C4-A215-C078C73ED6D4-en
https://techdocs.broadcom.com/us/en/vmware-cis/private-ai/foundation-with-nvidia/9-0/private-ai-foundation-9-x/deploying-a-deep-learning-virtual-machine/customizing-deep-learning-vm-deployment.html#GUID-ED1AF2B5-9307-47C4-A215-C078C73ED6D4-en

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

9.3 Configure Service VM

Minimum configuration:

« 2 VvCPUs

- 4GB RAM

» 4x NVSwitch devices (attached via Dynamic DirectPath 1/O or DirectPath 1/O)

I Note: With vSphere 8 and above, memory is automatically reserved when a PCl device is added.

Flgure 12. Service VM configuration

Edit Settings | yk-nvswitch-shared-model-service-vm-O1 X

Virtual Hardware VM Options Advanced Parameters

ADD NEW DEVICE v

> CPU 2v ®

> Memory vV GB

> Hard disk 1 1 B8

> SCSlcontroller O VMware Paravirtual

> Network adapter 1 xIr8or-wld-xIr8or-cls02-vds-01-pg-jumpbox Connected
» CD/DVD drive 1 Datastore ISO File Connected

> PCl device O NVIDIA Corporation NVIDIA nvswitch

> PCldevice 1 NVIDIA Corporation NVIDIA nvswitch

> PCldevice 2 NVIDIA Corporation NVIDIA nvswitch

> PCl device 3 NVIDIA Corporation NVIDIA nvswitch

> Video card Specify custom settings

> Serial port1 Use physical serial port ] connected
> Security Devices Not Configured

> Other Additional Hardware

ana re® Technical White Paper | 28

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

9.4 Deploy Fabric Manager (FM)

The NVIDIA Fabric Manager (FM) package is required for servers with NVSwitch-connected GPUs. It installs the core
components and registers the nvidia-fabricmanager daemon as a system service. This service manages NVLink peer-to-

peer GPU communication.
Example 3. Deploy Fabric Manager

# 1. Install Fabric Manager

# Verify Fabric Manager package info
apt info nvidia-fabricmanager-575 -a

# Install matching Fabric Manager version for your GPU driver
sudo apt install nvidia-fabricmanager-575=575.57.08-1
sudo apt install nvidia-fabricmanager-dev-575=575.57.08-1

# 2. Enable and start service

sudo systemctl enable nvidia-fabricmanager
sudo systemctl start nvidia-fabricmanager
sudo systemctl status nvidia-fabricmanager

# 3. Validate service state with "Active" as shown

sudo systemctl status nvidia-fabricmanager

nvidia-fabricmanager.service - NVIDIA fabric manager service

Loaded: loaded (/1lib/systemd/system/nvidia-fabricmanager.service; enabled; vendor preset: enabled)
Active: active (running) since Thu 2025-06-26 16:16:48 UTC; 2 months 2 days ago

# 4. Troubleshooting

# 4.1 If status shows as masked, unmask it:
sudo systemctl unmask nvidia-fabricmanager.service

# 4.2 If needed, remove conflicting packages
sudo apt purge nvidia-fabricmanager-570
sudo apt purge nvidia-fabricmanager-dev-570

9.5 Clone the Service VM to each ESX host

After the Service VM has been validated, clone it to each additional ESX host in the vSphere cluster. Then change the static IP
on each cloned VM. This ensures that every host has a dedicated Service VM running the Fabric Manager for NVSwitch
operations.

ana re® Technical White Paper | 29

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

10. Deploy distributed LLM inference in VKS

Follow Appendix C to complete the prerequisites for deploying VKS.

10.1 Create VMClass

VMClasses in VKS define the compute and hardware profile of a VM that can be requested through the Kubernetes service.
For GPU-accelerated workloads, you must define a custom VMClass with passthrough devices.

1. Add the PCI devices:

Add the 8 GPUs, 8 NICs, and 4 NVSwitches to the VMClass in the following sequence: GPUO, NICO, GPU1, NICT, .., GPU7,
NIC7, NVSO, NVS1, NVS2, NVS3.

Figure 13. VMClass for an 8-GPU and 8-1B HCA

Edit VM Class | deepseek-8gpu-8ib X

Virtual Hardware VM Options Advanced Parameters

ADD NEW DEVICE v

> CPU 48 ©)

> Memory 512 v GB

> PCldevice NVIDIA Corporation GH100 [H100 SXM5 80GB] (GPUO)

» PCldevice1 Mellanox Technologies MT2910 Family [ConnectX-7] (IBO)
> PCl device 10 NVIDIA Corporation GH100 [H100 SXM5 80GB] (GPU6)

> PCldevice 11 Mellanox Technologies MT2910 Family [ConnectX-7] (IB6)
> PCldevice 12 NVIDIA Corporation GH100 [H100 SXM5 80GB] (GPU7)

> PCl device 13 Mellanox Technologies MT2910 Family [ConnectX-7] (I1B7)
> PCldevice 14 NVIDIA Corporation GH100 [H100 SXM5 80GB] (GPU1)

> PCl device 15 Mellanox Technologies MT2910 Family [ConnectX-7] (IB1)
> PCl device 2 NVIDIA Corporation GH100 [H100 SXM5 80GB] (GPU2)

> PCldevice 3 Mellanox Technologies MT2910 Family [ConnectX-7] (I1B2)
> PCldevice 4 NVIDIA Corporation GH100 [H100 SXM5 80GB] (GPU3)

> PCldevice 5 Mellanox Technologies MT2910 Family [ConnectX-7] (I1B3)
> PCldevice 6 NVIDIA Corporation GH100 [H1I00 SXM5 80GB] (GPU4)

> PCldevice 7 Mellanox Technologies MT2910 Family [ConnectX-7] (I1B4)
> PCldevice 8 NVIDIA Corporation GH100 [H100 SXM5 80GB] (GPUS)

> PCldevice 9 Mellanox Technologies MT2910 Family [ConnectX-7] (IBS)
> Video card Specify custom settings

> Security Devices Not Configured v

mwa re® Technical White Paper | 30

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Configure the VM Class advanced settings:

To ensure the VM can power on and leverage GPU-to-NIC peer-to-peer (P2P) communication, configure the following
advanced settings as shown in Figure 14.

Figure 14. Advanced parameters of VMClass for 8-GPU and 8-1B HCA

Edit VM Class | deepseek-8gpu-8ib X

Virtual Hardware VM Options Advanced Parameters

Advanced Configuration Parameters
Modify or add configuration parameters as needed for experimental features or as instructed by technical support. Empty
values will be removed (supported on ESXi 6.0 and later).

Attribute Value
Attribute 4 Value A 4
: pciPassthru.64bitMMIOSizeGB 1056
: pciPassthru.use64bitMMIO true
: pciPassthru.RelaxACSforP2P true
: pciPassthru.allowP2P true

Relaxing ACS settings for P2P between PCle devices:

» pciPassthru.allowP2P = true

» pciPassthru.relaxACSforP2P = true
Required settings for VM power-on:

« pciPassthru.use64bitMMIO = TRUE

» pciPassthru.64bitMMIOSizeGB = 1056

Without these settings, the VM with passthrough GPUs will not power on.
MMIO size calculation and considerations

Each passthrough NVIDIA H100 (or H200) GPU requires 128 GB of MMIO space. NICs typically require less, but a minimum of
32 GB must be reserved.

For a VM with 8 GPUs and 8 NICs, the required MMIO size is:

(128 GB * 8 GPUs) + (32 GB for NICs) = 1056 GB

Important: Do not set the MMIO size excessively higher than necessary. A very large MMIO allocation can increase the VM
boot time by a few seconds because the hypervisor needs additional time to allocate and configure the virtualized MMIO
address space for all passthrough devices.

ana re® Technical White Paper | 31

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

10.2 Deploy a VKS or TKG Cluster

A VKS cluster in VCF 9 or a Tanzu Kubernetes Grid (TKG) cluster in VCF 5.2.1 can be deployed in two main ways.
1. (Recommended) Using the Local Consumption Interface (LCI) Ul to deploy the TKG.

LCI streamlines the provisioning of Kubernetes clusters directly from the vSphere environment through a simplified, self-
service user experience. For detailed steps, refer to Appendix D.

2. Using a declarative YAML manifest.

Alternatively, you can define the cluster specifications in a YAML manifest and apply it directly. This method gives you full
control over network CIDRs, storage classes, VM classes, and worker node pool configurations.

Example 4 shows a YAML file that provisions a cluster named deepseek-test-cluster with GPU-enabled worker nodes
and custom storage volumes.

Example 4. Declarative YAML to deploy TKG cluster

apiVersion: cluster.x-k8s.io/v1betal
kind: Cluster
metadata:
name: deepseek-test-cluster
namespace: deepseek-test
labels:
tkg-cluster-selector: deepseek-test-cluster
spec:
clusterNetwork:
pods:
cidrBlocks:
- 192.168.156.0/20
services:
cidrBlocks:
- 10.96.0.0/12
serviceDomain: cluster.local
topology:
class: builtin-generic-v3.3.90
version: v1.32.0---vmware.6-fips-vkr.2
variables:
- name: vmClass
value: guaranteed-large
- name: storageClass
value: x1r8or-cls02-k8s-vsan
controlPlane:
replicas: 1
metadata:
annotations:
run.tanzu.vmware.com/resolve-os-image: os-name=ubuntu
workers:
machineDeployments:
- class: node-pool

ana re® Technical White Paper | 32

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

name: gpu
replicas: 2
metadata:
annotations:
run.tanzu.vmware.com/resolve-os-image: os-name=ubuntu
variables:
overrides:
- name: vmClass
value: deepseek-8gpu-8ib
- name: volumes
value:
- name: containerd
mountPath: /var/lib/containerd
storageClass: x1lr8or-cls@2-k8s-vsan
capacity: 500Gi

In this manifest:

» The control plane is deployed with 1 replica.
« The worker node pool (gpu) includes 2 replicas using a custom VM class (deepseek-8gpu-8ib).
» A dedicated containerd volume (500GiB) is attached to worker nodes for container runtime storage.

» Networking is defined with pod CIDR 192.168.156.0/20 and service CIDR 10.96.0.0/12.

ana re® Technical White Paper | 33

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

10.3 Deploy NVIDIA network, GPU operator, and NicClusterPolicy

To run high-performance GPU workloads with RDMA and InfiniBand in Kubernetes, you need to install both the NVIDIA
Network Operator and the NVIDIA GPU Operator. The recommended order is to deploy the Network Operator first, and
then the GPU Operator because GPU features such as GPUDirect RDMA depend on the networking stack.

In addition, you must deploy a NicClusterPolicy Custom Resource Definition (CRD) in the VKS cluster (i.e., the deepseek-

test-cluster created in the previous section). NicClusterPolicy CRD is used by the NVIDIA Network Operator to define and

manage the desired cluster-wide configuration for NVIDIA networking components. It provides a declarative API that tells the
operator how to set up networking features across nodes with NVIDIA-compatible hardware. This custom resource sets up
the Mellanox DOCA or OFED drivers and the RDMA Shared Device Plugin, enabling Kubernetes pods to use InfiniBand
devices efficiently.

Refer to Appendix E for the detailed deployment procedure.

ana re® Technical White Paper | 34

by Broadcom


https://docs.nvidia.com/networking/display/kubernetes2501/customizations/crds.html#nicclusterpolicy

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

10.4 Deploy PVC and download model weights
To prepare the cluster for large Al models, we first need to create PersistentVolumeClaims (PVCs).

Each PVC provides 4 TiB of storage and uses the ReadWriteOnce (RWO) access mode. With RWO, a block volume is
typically attached to a single pod at a time, which helps ensure reliable, exclusive access for downloading and storing large
Al models. This is the default behavior of the vSAN CSI driver for volumes formatted with ext4 or XFS.

Note: VSAN “file shares” (essentially NFS) can support ReadWriteMany (RWM) or ReadOnlyMany (ROX), allowing multiple
pods to access the same volume concurrently. If concurrent access is needed, an NFS-based volume would be an alternative.

Using RWO works well in this deployment to safely ingest LLMs, such as:

» DeepSeek-R1-0528 - 642 GB

 Llama-3.1-405B - 2.3 TB

+ Qwen3-235B-A22B-thinking-2507 - 438 GB

Provisioning 4 TiB per PVC provides ample space for these models, additional files, and future expansion.

Disclaimer: In our experiments, using a 100 GbE NIC to back vSAN ESA and loading DeepSeek-R1and Qwen3 across two
pods took approximately 7 minutes, while Llama-3.1-405B required about 12 minutes. Actual load times may vary based on
your specific management and storage network configuration.

10.4.1 Create PVCs
PVC-01 (ib-nas01)

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: ib-nas@1
namespace: deepseek
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 4Ti
storageClassName: x1lr8or-cls@2-k8s-vsan

Similarly, create create-pvc02 for ib-nas02.

# Apply the PVC manifests:
k apply -f create-pvcO1.yaml
k apply -f create-pvc02.yaml

# Expected output

k get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS VOLUMEATTRIBUTESCLASS AGE
ib-nas@1 Bound pvc-42bb7bad-70db-4906-8f54-ddfad1d666b5  4Ti RWO x1r8or-clsB2-k8s-vsan <unset> 43d
ib-nas02 Bound pvc-e89d100b-31fa-46d2-adeb-08fc370d9ddd  4Ti RWO x1r8or-clsB2-k8s-vsan <unset> 43d

wnwa re® Technical White Paper | 35

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

10.4.2 Create test pods for model download

To download models into the PVCs, we deploy temporary pods that mount the volumes. These pods use a lightweight Python
image with huggingface_hub installed.

Example of a pod manifest for PVC 1:

apiVersion: vi
kind: Pod
metadata:
name: test-pvc-pod-1
namespace: deepseek
spec:
containers:
- name: test-pvc-pod-1
image: python:3.9.23-slim-bookworm
imagePullPolicy: IfNotPresent
command :
- /bin/sh
- -C
-
apt-get update && \
apt-get install -y git && \
pip install --no-cache-dir huggingface_hub && \
sleep infinity
volumeMounts:
- name: ib-nas-volume
mountPath: /root/.cache/huggingface
readOnly: false
volumes:
- name: ib-nas-volume
persistentVolumeClaim:
claimName: ib-nas@1
readOnly: false

Similarly, create test-pvc-pod-2 for ib-nas02.

# Apply the pods
k apply -f pvc/test-pvc-pod@1.yaml
k apply -f pvc/test-pvc-pod@2.yaml

# Interactively login two pods
kubectl exec -it test-pvc-pod-1 -- bash
kubectl exec -it test-pvc-pod-2 -- bash

huggingface-cli login
# Paste your hf_key

ana re® Technical White Paper | 36

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

# Download each models

hf download meta-1llama/Llama-3.1-485B-Instruct
hf download deepseek-ai/DeepSeek-R1-0528

hf download Qwen/Qwen3-235B-A22B-Instruct-2507

# Check downloaded models' size
~/.cache/huggingface/hub# du -h -d 1

438G ./models--Qwen--Qwen3-235B-A22B-Thinking-2507
2.3T ./models--meta-1lama--Llama-3.1-405B-Instruct
642G ./models--deepseek-ai--DeepSeek-R1-0528

10.4.3 Copy customized NCCL topology file

For NCCL functionality and optimal performance within a virtual environment, a customized virtual topology tailored to the
previously defined VM Class is essential. Without it, NCCL cannot fully detect the underlying infrastructure, leading to
functional issues (such as SGLang failing to launch distributively) or low performance in virtual environments. The virtual
topology acts as a map, giving NCCL hints on how to find the fastest and nearest path between the virtualized devices and
network pathways, thereby enabling the high-performance, inter-GPU communication essential for distributed deep learning
workloads. The customized NCCL topology file vm_topo_8h100_8ib_mod.xml (In Appendix G) should be copied into the
pods to optimize multi-GPU communication:

# Copy vm_topo_8h100_8ib_mod.xml file

kubectl cp vm_topo_8h100_8ib_mod.xml test-pvc-pod-
1:/root/.cache/huggingface/vm_topo_8h100_8ib_mod.xml -n deepseek

kubectl cp vm_topo_8h100_8ib_mod.xml test-pvc-pod-
2:/root/.cache/huggingface/vm_topo_8h100_8ib_mod.xml -n deepseek

ana re® Technical White Paper | 37

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

10.5 Deploy Leader-Worker Set

The Leader-Worker Set (LWS) is a Kubernetes-native API designed to streamline the deployment and management of
distributed Al/ML inference workloads, particularly those involving large language models (LLMs) that span multiple nodes
and GPUs. For more information, refer to https://lws.sigs.k8s.io/docs/installation/.

Figure 15. LWS architecture

One leaders =3H
StatefulSet

A workers

Statefulet, #SH @1' =

per leader sts sts sts sts

group0@ groupl group2 group3

# Create namespace
kubectl create ns lws-system
kubectl label --overwrite ns lws-system pod-security.kubernetes.io/enforce=privileged

# Deploy LWS
VERSION=v0.6.2

kubectl apply --server-side -f https://github.com/kubernetes-
sigs/lws/releases/download/SVERSION/manifests.yaml

# Verify the deployment
k get pod -n lws-system

NAME READY  STATUS RESTARTS  AGE
lws-controller-manager-77cd846d69-hcbrx  1/1 Running © 133m
lws-controller-manager-77cd846d69-q6htl  1/1 Running © 133m

ana re® Technical White Paper | 38

by Broadcom


https://lws.sigs.k8s.io/docs/installation/

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

10.6 Deploy LLM with SGLang

We recommend referring to the following appendices before proceeding:

® Appendix F: Verify RDMA performance via IB on two pods across two HGX nodes.
® Appendix G: Verify GDR performance via IB on two pods across two HGX nodes.
® Appendix H: Verify NCCL performance on two pods in VKS.

Failure to meet the performance expectations in any of the above areas will impact distributed LLM inference on multi-nodes.

We use SGLang to deploy LLMs on multi-GPU HGX nodes within a VKS cluster. SGLang leverages Leader-Worker Sets
(LWS) for distributed inference, enabling efficient model parallelism across GPUs and nodes.

10.6.1 Deploy DeepSeek-R1 on 2 HGX nodes in VKS

The following LeaderWorkerSet YAML demonstrates deploying DeepSeek-R1-0528 on 2 HGX nodes:

» Leader: Coordinates the worker nodes and manages distributed computation.
« Workers: Execute inference tasks, holding model weights and KV caches.

« GPU & RDMA resources: Each container requests 8 GPUs and multiple RDMA shared devices to ensure high-throughput,
low-latency communication.

« Memory configuration: --mem-fraction-static=0.85 ensures sufficient memory for model weights, KV cache, and
temporary activations.

« The launch uses Bfloat16 (BF16) models for model accuracy performance, not quantized models.

» Use the customized virtual NCCL topology file (vm_topo_8h106_8ib_mod.xml) to ensure NCCL correctly detects the GPU-
NIC-NVSwitch-PCl_Switch topology in VCF, preventing SGLang segfaults during launch.

Example 5. YAML to deploy DeepSeek-R1-0528

apiVersion: leaderworkerset.x-k8s.io/v1
kind: LeaderWorkerSet
metadata:
name: sglang
spec:
replicas: 1
leaderWorkerTemplate:
size: 2
restartPolicy: RecreateGroupOnPodRestart
leaderTemplate:
metadata:
labels:
role: leader
spec:
containers:
- name: sglang-leader
image: lmsysorg/sglang:v@0.5.0rc2-cul126
securityContext:
allowPrivilegeEscalation: true

ana re® Technical White Paper | 39

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

capabilities:
add: ["NET_ADMIN", "IPC_LOCK"]
privileged: true
env:
- name: PYTORCH_CUDA_ALLOC_CONF
value: expandable_segments:True
- name: GLOO_SOCKET_IFNAME
value: eth@
- name: NCCL_IB_HCA
value: "mlx5_0,mlx5_1,m1x5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_6,ml1x5_7"
- name: NCCL_P2P_LEVEL
value: "NVL"
- name: NCCL_IB_GID_INDEX
value: "0"
- name: NCCL_NVLS_ENABLE
value: "1"
- name: NCCL_IB_CUDA_SUPPORT
value: "1"
- name: NCCL_IB_DISABLE
value: "0"
- name: NCCL_SOCKET_IFNAME
value: "ethe"
- name: NCCL_DEBUG
value: "VERSION"
- name: NCCL_NET_GDR_LEVEL
value: "1"
- name: NCCL_TOPO_FILE
value: "/root/.cache/huggingface/vm_topo_8h100_8ib_mod.xml"
- name: LWS_WORKER_INDEX
valueFrom:
fieldRef:
fieldPath: metadata.labels['leaderworkerset.sigs.k8s.io/worker-index"']
command :
- python3
- -m
- sglang.launch_server
- '--model-path’
- 'deepseek-ai/DeepSeek-R1-0528"
- --attention-backend
- fa3
- --mem-fraction-static
- "0.85"
- --tp
- "16"
- --dist-init-addr
- S(LWS_LEADER_ADDRESS) :20000
- --nnodes
- $(LWS_GROUP_SIZE)

ana re® Technical White Paper | 40

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

- --node-rank
- S$(LWS_WORKER_INDEX)
- --trust-remote-code
- --enable-multimodal
- --host
- "0.0.0.0"
- --port
- "8000"
- --load-balance-method
- round_robin
resources:
requests:
rdma/rdma_shared_devices_a: 1
rdma/rdma_shared_devices_b: 1
rdma/rdma_shared_devices_c: 1
rdma/rdma_shared_devices_d: 1
rdma/rdma_shared_devices_e: 1
rdma/rdma_shared_devices_f: 1
rdma/rdma_shared_devices_g: 1
rdma/rdma_shared_devices_h: 1
nvidia.com/gpu: "8"
limits:
rdma/rdma_shared_devices_a:
rdma/rdma_shared_devices_b:
rdma/rdma_shared_devices_c:
rdma/rdma_shared_devices_d:
rdma/rdma_shared_devices_e:
rdma/rdma_shared_devices_f:
rdma/rdma_shared_devices_g:
rdma/rdma_shared_devices_h:
nvidia.com/gpu: "8"
ports:
- containerPort: 86000
readinessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 15600
periodSeconds: 30
timeoutSeconds: 10
failureThreshold: 5
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 1860
periodSeconds: 360
timeoutSeconds: 30

ana re® Technical White Paper | 41

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

failureThreshold: 3
volumeMounts:
- mountPath: /dev/shm
name: dshm
- name: model®@1
mountPath: /root/.cache/huggingface
imagePullSecrets:
- name: dockerhub-broadcom
- name: aips-prod-broadcom
- name: aips-dev-broadcom
volumes:
- name: dshm
emptyDir:
medium: Memory
sizelimit: 16Gi
- name: model®1
persistentVolumeClaim:
claimName: ib-nas@1
workerTemplate:
metadata:
labels:
role: worker
spec:
containers:
- name: sglang-worker
image: dockerhub.artifactory.vcfd.broadcom.net/1lmsysorg/sglang:v@.5.0rc2-cul126
securityContext:
allowPrivilegeEscalation: true
capabilities:
add: ["NET_ADMIN", "IPC_LOCK"]
privileged: true
env:
- name: PYTORCH_CUDA_ALLOC_CONF
value: expandable_segments:True
- name: GLOO_SOCKET_IFNAME
value: eth@
- name: NCCL_IB_HCA
value: "mlx5_0,ml1x5_1,m1x5_2,mlx5_3,mlx5_4,mlx5_5,mlx5_6,ml1x5_7"
- name: NCCL_P2P_LEVEL

value: "NVL"

- name: NCCL_NVLS_ENABLE
value: "1"

- name: NCCL_IB_GID_INDEX
value: "0"

- name: NCCL_IB_CUDA_SUPPORT
value: "1"

- name: NCCL_IB_DISABLE
value: "0"

ana re® Technical White Paper | 42

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

- name: NCCL_SOCKET_IFNAME
value: "ethe"
- name: NCCL_DEBUG
value: "VERSION"
- name: NCCL_NET_GDR_LEVEL
value: "1"
- name: NCCL_TOPO_FILE
value: "/root/.cache/huggingface/vm_topo_8h100_8ib_mod.xml"
- name: LWS_WORKER_INDEX
valueFrom:
fieldRef:
fieldPath: metadata.labels['leaderworkerset.sigs.k8s.io/worker-index"']
command :
- python3
- -m
- sglang.launch_server
- '--model-path’
- 'deepseek-ai/DeepSeek-R1-0528"
- --attention-backend
- fa3
- --mem-fraction-static
- "0.85"
- --tp
- "16"
- --dist-init-addr
- S(LWS_LEADER_ADDRESS) :20000
- --nnodes
- $(LWS_GROUP_SIZE)
- --node-rank
- S$(LWS_WORKER_INDEX)
- --trust-remote-code
- --enable-multimodal
ports:
- containerPort: 86000
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 18600
periodSeconds: 360
timeoutSeconds: 30
failureThreshold: 3
resources:
requests:
rdma/rdma_shared_devices_a:
rdma/rdma_shared_devices_b:
rdma/rdma_shared_devices_c:
rdma/rdma_shared_devices_d:

ana re® Technical White Paper | 43

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

rdma/rdma_shared_devices_e:
rdma/rdma_shared_devices_f:
rdma/rdma_shared_devices_g:
rdma/rdma_shared_devices_h:
nvidia.com/gpu: "8"
limits:
rdma/rdma_shared_devices_a:
rdma/rdma_shared_devices_b:
rdma/rdma_shared_devices_c:
rdma/rdma_shared_devices_d:
rdma/rdma_shared_devices_e:
rdma/rdma_shared_devices_f:
rdma/rdma_shared_devices_g:
rdma/rdma_shared_devices_h:
nvidia.com/gpu: "8"
volumeMounts:
- mountPath: /dev/shm
name: dshm
- name: model@2
mountPath: /root/.cache/huggingface
imagePullSecrets:
- name: dockerhub-broadcom
- name: aips-prod-broadcom
- name: aips-dev-broadcom
volumes:
- name: dshm
emptyDir:
medium: Memory
sizelimit: 16Gi
- name: model@2
persistentVolumeClaim:
claimName: ib-nas©2
apiVersion: vI1
kind: Service
metadata:
name: sglang-leader

spec:
type: LoadBalancer
selector:

leaderworkerset.sigs.k8s.io/name: sglang
role: leader

ports:
- protocol: TCP
port: 8000

targetPort: 8000

ana re® Technical White Paper | 44

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

After deployment, the logs in Example 6 confirm that the DeepSeek-R1 service successfully initializes distributed training with
Gloo/NCCL and loads model weights from safetensor checkpoints. This ensures both multi-node coordination and correct
weight sharding across GPUs.

Example 6. DeepSeek-R1 launching log

[deepseek-test-cluster|deepseek] root@head:/home/ml# kubectl logs sglang-0 --follow

[2025-88-13 14:29:45] server_args=ServerArgs(model_path="'deepseek-ai/DeepSeek-R1', tokenizer_path='deepseek-
ai/DeepSeek-R1",

[2025-88-13 14:29:55 TPB] Init torch distributed begin.

[Gloo] Rank
[Gloo] Rank
[Gloo] Rank
[Gloo] Rank
[Gloo] Rank
[Gloo] Rank
[Gloo] Rank
[Gloo] Rank
[Gloo] Rank
[Gloo] Rank
[Gloo] Rank
[Gloo] Rank is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
[Gloo] Rank 4 is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
[2025-88-13 14:29:58 TPO] sglang is using nccl==2.27.6

[Gloo] Rank 5 is connected to 15 peer ranks. Expected number of connected peer ranks is : 15

is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
is connected to 15 peer ranks. Expected number of connected peer ranks is : 15

W N =2 ONO o WODN =2 O

[Gloo] Rank 6 is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
[Gloo] Rank 7 is connected to 15 peer ranks. Expected number of connected peer ranks is : 15
<<cut for brevity>>

[2025-68-13 14:30:00 TPB] Init torch distributed ends. mem usage=1.75 GB

[2025-88-13 14:30:01 TPB] Load weight begin. avail mem=76.88 GB

<<cut for brevity>>

[2625-88-13 14:30:03 TP5] Using model weights format ['*.safetensors']

Loading safetensors checkpoint shards: 0% Completed | ©/163 [00:00<?, ?it/s]

Loading safetensors checkpoint shards: 2% Completed | 3/163 [00:00<00:06, 23.62it/s]

<<cut for brevity>>

Loading safetensors checkpoint shards: 100% Completed | 163/163 [02:27<00:00, 1.04s/it]
Loading safetensors checkpoint shards: 100% Completed | 163/163 [02:27<00:00, 1.10it/s]
<<cut for brevity>>

[2025-88-29 16:47:13 TPO] Load weight end. type=DeepseekV3ForCausallM, dtype=torch.bfloat16, avail mem=36.55 GB, mem
usage=40.33 GB.

[2025-88-29 16:47:14 TP3] KV Cache is allocated. #tokens: 381804, KV size: 24.99 GB

[2025-88-29 16:47:14 TP5] KV Cache is allocated. #tokens: 381804, KV size: 24.99 GB

[2025-88-29 16:47:14 TPO] KV Cache is allocated. #tokens: 381804, KV size: 24.99 GB

[2025-088-29 16:47:14 TPO] Memory pool end. avail mem=10.30 GB

[2025-88-29 16:47:14 TP1] KV Cache is allocated. #tokens: 381804, KV size: 24.99 GB

[2025-88-29 16:47:14 TP2] KV Cache is allocated. #tokens: 381804, KV size: 24.99 GB

[2025-88-29 16:47:14 TP7] KV Cache is allocated. #tokens: 381804, KV size: 24.99 GB

[2025-88-29 16:47:14 TP4] KV Cache is allocated. #tokens: 381804, KV size: 24.99 GB

[2025-88-29 16:47:14 TP6] KV Cache is allocated. #tokens: 381804, KV size: 24.99 GB

[2025-88-29 16:47:14 TPO] Capture cuda graph begin. This can take up to several minutes. avail mem=160.20 GB

ana re® Technical White Paper | 45

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

[2025-08-29 16:47:14 TPO] Capture cuda graph bs [1, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120,
128, 136, 144, 152, 160]

Capturing batches (bs=1 avail_mem=8.89 GB): 1ea%|—| 23/23 [01:54<00:00, 4.96s/it]
[2025-88-29 16:49:09 TPO] Capture cuda graph end. Time elapsed: 114.91 s. mem usage=1.34 GB. avail mem=8.86 GB.

[2025-88-29 16:49:10 TPB] max_total_num_tokens=381804, chunked_prefill_size=8192, max_prefill_tokens=16384,
max_running_requests=2048, context_len=163840, available_gpu_mem=8.86 GB

[2025-88-29 16:49:10] INFO: Started server process [1]

[2025-88-29 16:49:18] INFO: Waiting for application startup.

[2025-88-29 16:49:18] INFO: Application startup complete.

[2025-88-29 16:49:18] INFO: Uvicorn running on http://0.6.0.0:8000 (Press CTRL+C to quit)

The logs above illustrate the sequential stages of the inference server's startup:

Distributed Initialization

[2025-08-13 14:29:55 TPO] Init torch distributed begin.
[Gloo] Rank © is connected to 15 peer ranks. Expected number of connected peer ranks is : 15

[2025-08-13 14:30:00 TPO] Init torch distributed ends. mem usage=1.75 GB

Each rank confirms connectivity to all 15 peers, validating that the distributed backend (Gloo) is fully synchronized across 16
nodes. Memory usage is logged at this stage, showing minimal overhead before model loading.

Model checkpoint loading

[2025-08-13 14:30:83 TP5] Using model weights format ['*.safetensors']
Loading safetensors checkpoint shards: 100% Completed | 163/163 [02:27<00:00, 1.10it/s]

[2025-08-29 16:47:13 TPO] Load weight end. type=DeepseekV3ForCausallM, dtype=torch.bfloat16, avail mem=36.55
GB, mem usage=40.33 GB.

The system detects the safetensors format and loads all 163 shards in ~2.5 minutes. Once complete, the model

(DeepseekV3ForCausallM) is ready in bfloat16 precision with ~40 GB GPU memory usage.

KV cache allocation

[2025-08-29 16:47:14 TPO] KV Cache is allocated. #tokens: 381804, KV size: 24.99 GB

Multiple threads allocate KV cache, which stores attention keys and values for efficient inference on long sequences. The
cache size (~25 GB) matches the configured token capacity (381,804).

CUDA graph capture

[2025-08-29 16:47:14 TPO] Capture cuda graph begin.

Capturing batches (bs=1 avail_mem=8.89 GB): 100% |||l 23/23 [01:54<00:00, 4.96s/it]

[2025-08-29 16:49:09 TPO] Capture cuda graph end. Time elapsed: 114.91 s. mem usage=1.34 GB. avail mem=8.86
GB.

CUDA graphs are pre-captured for multiple batch sizes (1-160), which reduces kernel launch overhead and improves
inference latency. This step takes ~2 minutes and optimizes the GPU for stable throughput under varying workloads. The

avail_memis 8.89 GB in the end, which aligns with SGLang's recommended good setting (discussed in Section 10.6.3).

Server startup

[2025-08-29 16:49:10] INFO: Application startup complete.
[2025-08-29 16:49:10] INFO: Uvicorn running on http://0.0.0.0:8000

Finally, the inference server (Uvicorn) starts, confirming readiness to accept API requests.

ana re® Technical White Paper | 46

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

10.6.2 Deploy Llama-3.1-405B-Instruct or Qwen3-235B-A22B-thinking on 2 HGX nodes in
VKS

To deploy additional models using the same YAML structure, update the --model-path parameter. Examples include:
 Llama-3.1-405B-Instruct: 'meta-llama/Llama-3.1-405B-Instruct’
« Qwen3-235B-A22B-Thinking-2507: 'Qwen/Qwen3-235B-A22B-Thinking-2507'

This approach allows you to leverage the existing distributed setup with optimized GPU and RDMA resources. Additionally,

the --mem-fraction-static parameter also needs to be changed, as discussed below.

10.6.3 Launch parameters and GPU memory discussion

This discussion is based on the SGLang documentation regarding hyperparameter tuning, specifically:
https://docs.sglang.ai/advanced features/hyperparameter_tuning.html

During inference, SGLang manages GPU memory according to the following formula:

Total memory usage = model weights + KV cache pool + CUDA graph buffers + temporary activations
1. Model weights: Core parameters of the model.

2. KV cache: Key-value cache used during attention for long-sequence inference.

3. CUDA graph buffers: Pre-allocated memory for recording GPU operations. These buffers enhance latency and throughput,
particularly for small-batch or high-QPS inference, by reducing kernel launch overhead. SGLang suggests checking the

available_gpu_mem value in the logs; an optimal setting is typically between 5-8 GB.

4. Temporary activations: These are the intermediate outputs generated by each layer, held in memory temporarily during
the token generation process.

Memory Allocation Control (--mem-fraction-static): This parameter balances memory between model weights, KV
cache, CUDA graph buffers, and activations:

» Too high: Leaves insufficient memory for activations and CUDA graph buffers.

« Too low: Underutilizes GPU memory, potentially reducing performance.

Example: On an 80 GB GPU with 60 GB model weights and --mem-fraction-static=0.9:
« Memory for KV cache: 80 x 0.9 - 60 =12 GB

« Memory for intermediate activations: 80 x (1 - 0.9) = 8 GB

For the three models, we set the mem-fraction-static as below

Table 4. Model launch parameters

DeepSeek-R1-0528 0.85
Llama-3.1-405B 0.92
Qwen3-235B-A22B-Thinking-2507 | 0.8

For more model weights and KV cache, refer to LLM Inference Sizing and Performance Guidance.

wnwa re® Technical White Paper | 47

by Broadcom



https://docs.sglang.ai/advanced_features/hyperparameter_tuning.html
https://blogs.vmware.com/cloud-foundation/2024/09/25/llm-inference-sizing-and-performance-guidance/

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

CUDA graph buffers:

- Purpose: CUDA graphs are a feature in NVIDIA CUDA that lets you “record” a fixed sequence of GPU operations (kernels,
memory copies, etc.) once and then “replay” them many times without the CPU needing to relaunch each kernel.

« Why: This cuts down kernel launch overhead and improves latency/throughput. This is especially useful in high QPS
inference or small-batch scenarios.

« Memory use:

- To use CUDA graphs, the framework pre-allocates a fixed set of GPU buffers to hold all intermediate tensors for that
sequence.

- These buffers must be large enough for the largest request the graph will handle, so the memory is held even if smaller
requests run.

- Think of it as reserved space for the replay template.
Activations:
- Activations are intermediate outputs of each layer, needed temporarily even during inference.
« Unlike encoded prompts (token IDs or embeddings), activations require significantly more memory.
« Memory usage depends on:
- Batch size
- Sequence length (prompt or generation step)
— Model hidden size (vector width)
- Number of layers processed before discarding activations

- In prefill (processing the prompt), activations scale with prompt length x batch size x hidden size. In decode (generating one
token at a time), activations are smaller because sequence length is 1.

ana re® Technical White Paper | 48

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

10.6.4 Test inference API functionality

Example 7. Test inference API functionality

# 1. Check the service
kubectl get service sglang-leader -o wide

# Example output:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE  SELECTOR

sglang-leader LoadBalancer 10.105.76.23 10.191.83.196 8000:32286/TCP 33m
leaderworkerset.sigs.k8s.io/name=sglang, role=1eader

# Note the External IP (10.191.83.196) and port (8000) for API queries.

# 2. Query the vi1/chat/completions API
curl -s http://16.191.83.196:8000/v1/chat/completions \
-H "Content-Type: application/json” \
-d '{
"model”: "deepseek-ai/DeepSeek-R1",
"messages": [

{
"role": "user",
"content”: "Explain quantum mechanics clearly and concisely. Using chain of thought if necessary.
You can use table or graph to help you explain. You can use markdown to format your response."
}

1

"temperature": 0.7,
"max_tokens": 8000,
"stream": false

Folia

ana re® Technical White Paper | 49

by Broadcom


http://leaderworkerset.sigs.k8s.io/name=sglang,role=leader

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Below is a portion of the model response, formatted for readability:

Figure 16. DeepSeek-R1-0528’s response

Key Principles (Chain of Thought)

1. Wave-Particle Duality

- Particles (e.g., electrons) behave as waves (spread-out probabilities) or particles (localized)
depending on observation.

- Example: Double-slit experiment. Electrons create an interference pattern (wave-like) unless
measured (particle-like).

e o — |

| Particle |— Wave-like |

| (measured) | | (unmeasured) |

| S ——

2. Superposition
- A system exists in multiple states simultaneously until measured.
- Example: A quantum bit (qubit) can be in state |0y, |15, or both (a|0) + B|D).

3. Uncertainty Principle (Heisenberg)
- Position and momentum cannot both be precisely known:
Ax-Ap = h/2 (h = reduced Planck’s constant).

4. Entanglement
- Particles become correlated; measuring one instantly affects the other, regardless of distance.
- Basis for quantum teleportation and cryptography.

5. Measurement Collapse
- Observing a quantum system forces it into a definite state (collapses the wavefunction).

You can see the model’s structured response, which can include markdown, tables, or graphs as requested.

ana re® Technical White Paper | 50

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

11. Performance

This section details how to use and validate the GenAl-Perf benchmark to assess virtual infrastructure performance
requirements or establish a baseline. GenAl-Perf is a convenient command-line tool for measuring the throughput and latency
of generative Al models served through an inference server. The instructions provided here are adapted from the step-by-
step documentation on Using GenAl-Perf to Benchmark. We use GenAl-Perf to benchmark two LLMs across two pods on 2
ESX hosts. Please note that the examples are for reference only and do not guarantee specific performance outcomes.

11.1 Launch GenAl-Perf stress test
We launch GenAl-Perf in a VM that resides on the same network as the SGLang-leader’s external IP.

As shown in Example 8, we first launch a 7riton inference server container without GPU support. Within this CPU-only
container, the GenAl-Perf parameters outlined in Table 5 are used to run a warm-up load test on the SGLang backend. For
additional model input parameters, refer to this link. In this setup, the GenAl-Perf tool inside the CPU-only Triton container
sends prompt requests to the GPU-enabled SGLang backend, thereby validating its functionality in Figure 24.

Table 5. GenAl-perf launch parameters

Parameters Value

Input Sequence Length 200
Output Sequence Length 50
Output Sequence Std 10
Concurrency 5

Note: With concurrency=N, GenAl-Perf maintains N active inference requests during profiling. For example, with a
concurrency of 4, it sustains 4 simultaneous requests, issuing a new request as each one completes.

For understanding additional metrics and parameters to run GenAl-Perf, consult the Metrics and Parameters and Best
Practices page.

wnwa re® Technical White Paper | 51

by Broadcom


https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/perf_analyzer/genai-perf/README.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/perf_analyzer/genai-perf/README.html
https://docs.nvidia.com/nim/benchmarking/llm/latest/step-by-step.html
https://docs.nvidia.com/nim/benchmarking/llm/latest/step-by-step.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/perf_analyzer/genai-perf/README.html#model-inputs
https://docs.nvidia.com/nim/benchmarking/llm/latest/metrics.html
https://docs.nvidia.com/nim/benchmarking/llm/latest/parameters.html
https://docs.nvidia.com/nim/benchmarking/llm/latest/parameters.html

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Example 8. Setting up GenAl-Perf and warm up load test

# Launch a triton inference server container with only CPU
export RELEASE="24.10"
docker run -it --rm --runtime=nvidia \
--net=host \
-v $(pwd) :/workspace/host \
nvcr.io/nvidia/tritonserver:${RELEASE}-py3-sdk \
/bin/bash

# Update genai-perf
pip install -U genai-perf

# Log in with your Huggingface credential for accessing llama-3 tokenizer
pip install huggingface_hub

huggingface-cli login

# Run GenAI-Perf within triton inference server container for a warm up test: ISL=200, 0SL=50
export INPUT_SEQUENCE_LENGTH=200

export INPUT_SEQUENCE_STD=10

export OUTPUT_SEQUENCE_LENGTH=50

export CONCURRENCY=5

genai-perf profile \
-m deepseek-ai/DeepSeek-R1-0528 \
--endpoint-type chat \
--streaming \
-u http://106.191.83.196:8000 \
--synthetic-input-tokens-mean SINPUT_SEQUENCE_LENGTH \
--synthetic-input-tokens-stddev SINPUT_SEQUENCE_STD \
--concurrency SCONCURRENCY \
--output-tokens-mean SOUTPUT_SEQUENCE_LENGTH \
--extra-inputs max_tokens:SOUTPUT_SEQUENCE_LENGTH \
--extra-inputs min_tokens:SOUTPUT_SEQUENCE_LENGTH \
--extra-inputs ignore_eos:true \
--measurement-interval 30000

Figure 17. Sample output of warm up test

NVIDIA GenAI-Perf | LLM Metrics

Statistic 669 avg |

Request Latency
Inter Token Latency (

Output Token Throughput Per User
(tokens/sec/user)
Output Sequence Length (tokens)
Input Sequence Length (tokens)
Output Token Throughput (tokens/sec)
Request Throughput (per sec)
Request Count (count)

Vmwa re® Technical White Paper | 52

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

11.2 Benchmarking

We assessed the performance of DeepSeek-R1-0528 and Llama-3.1-405B in four typical workload scenarios, using a
MEASURE_INTERVAL=100k. Please note that the performance data presented here may vary based on different conditions. We
are continuously working to enhance this performance by tuning different parameters in future releases.

The scenarios tested were:

1. Short Translation (200 input / 200 output tokens) - lightweight translation task with short sequences.

2. Medium Translation (1,000 / 1,000) - translation with longer input and output sequences, stressing context handling.
3. Generation (500 / 2,000) - text generation with relatively small prompts and long outputs.

4. Summarization (5,000 / 500) - large input document summarization with modest output length.

Plot description:
» The x-axis represents latency (TTFT: Time to First Token).
» The y-axis represents throughput (tokens per second).

» Points are connected by lines, with the concurrency level indicated (1, 2, ..., 125).

Interpreting the graph:

- For optimal performance, select the latency that best suits each use case. This point will be closest to the top-left corner of
your desired TTFT. To accommodate a larger user base, scale horizontally by adding more copies of this LLM.

« Higher points indicate higher throughput.

 Points further to the left indicate lower latency.

ana re® Technical White Paper | 53

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

11.2.1 DeepSeek-R1-0528 Performance

The enhanced DeepSeek-R1-0528 model, an improved version of DeepSeek-R1 with superior reasoning capabilities,
demonstrated stronger benchmark performance. Under the same test conditions, it achieved a peak throughput of
approximately 3,500 tokens/second at concurrency=125 for Tasks 1~3, and around 2,200 tokens/second for Task 4. An
outlier was observed at concurrency=100, which will be further investigated with the community.

Figure 18. Short translation (200/200) for DeepSeek-R1

DeepSeek-R1-0528: Virtual on 2x Dell XE9680 ISL=200, OSL=200

125

3500
o 3000 L
C
3 7
9 2500
™
g
S 2000 50
c
g
S 1500
-
3 1000
=2
o

500 1

1
0
200 250 300 350 400 450 500 550
TTFT (ms)

Figure 19. Medium translation (1000/1000) for DeepSeek-R1

DeepSeek-R1-0528: Virtual on 2x Dell XE9680 ISL=1000, OSL=1000

3500 125

3000 100
o
5
8 2500 75
w
@
a 2000
" 50
5]
X 1500
-
s 25
2 1000
P
=
(@]

500 5

1
0
200 300 400 500 600 700 800
TTFT (ms)

ana re® Technical White Paper | 54

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Figure 20. Generation (500/2000) for DeepSeek-R1

DeepSeek-R1-0528: Virtual on 2x Dell XE9680 ISL=500, OSL=2000

3500 125

3000 100
©
5
g 2500 75
w
p
& 2000 50
w
5]
X 1500
8
= 25
a 1000
.-
32
o

500 5

1
0
350 400 450 500 550 600 650 700 750
TTFT (ms)

Figure 21. Summarization task (5000/500) for DeepSeek-R1

DeepSeek-R1-0528: Virtual on 2x Dell XE9680 ISL=5000, OSL=500

125
2000 0
e
[ =4
3
2 75
S 1500
a
" 50
c
g
< 1000 25
-~
-t
s |
a
5
o 500
5
1
0
500 1000 1500 2000 2500 3000 3500 4000 4500
TTFT (ms)

ana re® Technical White Paper | 55

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

11.2.2 Llama-3.1-405B performance

This model achieved a peak throughput of ~2,200 tokens/second at concurrency=125 for Task 1~3 and get around 650
tokens/s for Task-4.

Figure 22. Short translation (200/200) for Llama-3.1-405B

Llama-3.1-405B-Instruct: Virtual on 2x Dell XE9680 ISL=200, OSL=200

125

2000
o 100
c
[e]
b5
& 1500 75
1
(]
[«8
o 50
2 1000
[e]
2
5 25
[N
S s00
o

5
1
0 —
150 200 250 300 350

TTFT (ms)

Figure 23. Medium translation (1000/1000) for Llama-3.1-405B

Llama-3.1-405B-Instruct: Virtual on 2x Dell XE9680 ISL=1000, OSL=1000

125

2000
bl 100
[ =
[e]
(9]
2 1500 75
1
[+
Q
@ 50
2 1000
8
5 25
(=1
S s00
o

5
1
0
200 250 300 350 400 450 500
TTFT (ms)

ana re® Technical White Paper | 56

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Figure 24. Generation (500/2000) for Llama-3.1-405B

Llama-3.1-405B-Instruct: Virtual on 2x Dell XE9680 ISL=500, OSL=2000

125

2000
o 100
=
[e]
Q
& 1500 75
}
()
Q.
o 50
2 1000
o
-~
5 25
Q
S s00
o

5
1
0
150 200 250 300 350 400 450
TTFT (ms)

Figure 25. Summarization task (5000/500) for Llama-3.1-405B

Llama-3.1-405B-Instruct: Virtual on 2x Dell XE9680 ISL=5000, OSL=500

125
600
50
500 100
400 25

300

200

Output tokens per second

100

0 10k 20k 30k 40k 50k
TTFT (ms)

ana re® Technical White Paper | 57

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

12. Conclusion

This document provides a comprehensive guide for deploying distributed LLM inference in VMware Private Al, leveraging
GPUDirect RDMA over InfiniBand. It covers critical architectural components, from high-performance NVIDIA HGX servers
with NVLink and NVSwitch for intra-node communication to high-bandwidth InfiniBand interconnects for seamless inter-node
scaling.

A key focus is on enabling GPUDirect RDMA in VCF through proper configuration of ACS and ATS settings in ESX and on
ConnectX-7 NICs, ensuring low-latency, high-throughput data transfer between GPUs and network adapters in a virtualized
environment. The guide also provides methods for determining the minimum number of HGX servers needed for different
LLMs, accounting for attention heads, context length, and resource bottlenecks.

Practical step-by-step instructions are included for configuring BIOS and ESX settings, deploying Service VMs for Fabric
Manager operations, and setting up a Kubernetes-native environment using vSphere Kubernetes Service (VKS). This includes
deploying VPC, enabling Workload Management, creating custom VMClasses with passthrough devices, and installing
NVIDIA Network and GPU Operators to expose and manage GPU resources effectively.

Finally, the guide addresses best practices for persistent storage with PVCs for model weights and details the deployment of
LLMs with SGLang, preparing the reader for robust, scalable Al inference in a VCF private cloud.

13. References

1. VMware Private Al

2. VMware Private Al Foundation with NVIDIA on HGX Servers Reference Design for Inference

3. LLM Inference Sizing and Performance Guidance - VMware Cloud Foundation (VCF) Blog

4. InfiniBand Configuration on VMware vSphere 8

5. InfiniBand and RoCE Setup and Performance Study on vSphere 7.x

Ready to get started on your Al and ML journey? Check out these helpful resources:

« Complete this form to contact us!

» Read the VMware Private Al solution brief.

» Learn more about VMware Private Al.

Connect with us on X at @VMwareVCF and on LinkedIn at VMware VCF.

ana re® Technical White Paper | 58

by Broadcom


https://www.vmware.com/solutions/cloud-infrastructure/private-ai
https://www.vmware.com/docs/ref-design-private-ai-nvidia-hgx-inference
https://blogs.vmware.com/cloud-foundation/2024/09/25/llm-inference-sizing-and-performance-guidance/
https://www.vmware.com/docs/infiniband-config-vsphere8-perf
https://www.vmware.com/docs/infiniband-roce-directpathio-vsphere7-perf
https://go-vmware.broadcom.com/aiml-nvidia?_gl=1*ny9hjj*_ga*MTM2MTIzMzAxNy4xNzQ4MDQ1NjUw*_ga_8VJHMNGE3E*czE3NDg1MjEyOTUkbzE4JGcxJHQxNzQ4NTIyNDc0JGo2MCRsMCRoMA..
https://www.vmware.com/docs/vmw-solution-brief-vmwareprivate-ai
https://www.vmware.com/solutions/cloud-infrastructure/private-ai
https://twitter.com/vmwarevcf
https://www.linkedin.com/company/vmwarevcf/

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

14. Appendix
A. Firmware update

A.1 Atlas2 PCle Switch Board (PSB) firmware

For the latest PSB firmware updates, please contact your vendor. This document is based on version 4.160.3.0 and above. A
new firmware update will be released soon; please install the most recent version when available.

For servers with dual-system installations
Reboot to bare metal and update the PSB using the command:

chmod +x Firmware_xxx.BIN
sudo ./Firmware_xxx.BIN

For servers with only ESX installed:

1. To update the PSB's firmware, you will need to boot into an Ubuntu live-ISO. This process may take approximately 30
minutes to load into RAM.

Virtual Media
Connect Virtual Virtual Media Statistics
Media
Transfer Rate: 0! kb/sec
Virtual Media
Statistics Target Drive Mapped To Read-Only Duration Read/Write Bytes
CD/DVD ubuntu-22.04.... Yes 03:17:33  13.346 GB/0
Create Image ) ) ,
Removable Disks PSB-idracimg  Yes 03:17:33  48.093 MB/0

ana re® Technical White Paper | 59

by Broadcom


https://www.dell.com/support/home/en-us/drivers/driversdetails?driverid=fgpjp&oscode=xi80&productcode=poweredge-xe9680

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

2. Select Try or install Ubuntu.
GNU GRUB wversion 2.06

setparams 'Try or Install Ubuntu’

set \]fﬂ.[ml| load }.l'»'l!

linux /casper/y z /cdrom/preseed/ubuntu.seed maybe-\

ubiquity quiet toram gplash

initrd asper/initrd

Minimum Emacs-like screen editing is supported. TAB lists
completions. Press Ctrl-x or F10 to boot, Ctrl-c or F2 for a
command-line or to discard edits and return to the GRUB menu.

3. Once logged into the live-1SO, run the same bare metal commands to upgrade the PSB's firmware (this will take around 3
minutes). You can check the logs to verify which firmware version has been installed.

@ 3 User: m

PP 4. . - o
O & = broadcom.net

w
= E E = ] ] = ] = =S

MVirtual Media is connected W Devices Mapped:2 ubur t is mapped to CD/DVD drive.(Read Only)

Activities () Terminal May 1 05:20
M ubuntu@ubuntu: ~

[ 18.905139] mpt3sas_cm7: " 89144" : FWVersion(04.103.00.00), ChipRevision(0xb0), BiosVersion(©
0.00.00.00)

:$ chmod +x Firmware_FGPJP_LN64_4.160.3.0_A00.BIN

:$ sudo ./Firmware_FGPJP_LN64_4.160.3.0_A00.BIN
Collecting inventory...

Running validatio .
Update Package is valid for this system

Device: PowerEdge XE9680 PSB Firmware

The version of this Update Package is greater than currently installed version.
Software application name: Fryer U.2 (SW1)

Package version: 4.160.3.0

Installed version: 4.103.0.6

Device: PowerEdge XE9680 PSB Firmware

The version of this Update Package is greater than currently installed version.
Software application name: Fryer U.2 (SW2)

Package version: 4.160.3.0

Installed version: 4.103.0.6

Device: PowerEdge XE9680 PSB Firmware

The version of this Update Package is greater than currently installed version.
Software application name: Fryer U.2 (SW3)

Package version

Installed vers

Device: PowerEdge XE9680 PSB Firmware

The version of this Update Package is greater than currently installed version.
Software application name: Fryer U.2 (SW4)

Package version: 4.160.3.0

Installed versi 4.103.0.6

Requires Power Cycle for activating the updated firmware

4. Reboot the host normally into ESX.

mwa re® Technical White Paper | 60

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

B. Install MFT and NMST on ESX

Download MFT & NMST from https://network.nvidia.com/products/adapter-software/firmware-tools/, then extract them

# Check existing CX-7
[ESX] 1lspci | grep -i mellanox
0000:1a:00.0 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-7]

0000:3c:00.0 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-7]
0000:4d:00.0 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-7]
0000:5e:00.0 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-7]
0000:9c:00.0 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-7]
0000:bc:00.0 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-7]
0000:cc:00.0 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-7]
0000:dc:00.0 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-7]

# Install NMST

[ESX] esxcli software vib install -v
/vinfs/volumes/datastore_n008_1.5T/VIBs/MEL_bootbank_nmst_4.31.0.149-10EM.801.0.0.21495797.vib

# Install MFT by VIB

[ESX] esxcli software vib install -v
/vimfs/volumes/datastore_n008_1.5T/VIBs/MEL_bootbank_mft_4.31.0.149-10EM.801.0.0.21495797.vib

# Or Install MFT or NMST by the zip file by using the -d flag
[ESX] esxcli software vib install -d /vmfs/volumes/vsan\:52dacel1d26e912ce-
28312041578d40cf/VIBs/Mellanox-NATIVE-NMST_4.32.0.120-10EM.801.0.0.21495797_24731977.zip

# Check whether mellanox's VIBs are installed
[ESX] esxcli software vib list | grep -i mel

If this is first time install, you may need to enter the recovery mode, please check the section 2.4 in
https://www.vmware.com/docs/infiniband-config-vsphere8-perf by running the following example.

# Enabling Recovery Mode
esxcli system module parameters set -m nmlx5_core -p "mst_recovery=1"

# After reboot, check CX-7 status
/opt/mellanox/bin/mst status -vvv

# Reverting to Normal Mode
esxcli system module parameters set -m nmlx5_core -p "mst_recovery=0"

ana re® Technical White Paper | 61

by Broadcom


https://network.nvidia.com/products/adapter-software/firmware-tools/
https://www.vmware.com/docs/infiniband-config-vsphere8-perf

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

C. VKS deployment prerequisites

The following appendix applies to VCF 9, if for VCF 5.2.1, refer to page 21 in https://www.vmware.com/docs/ref-design-
private-ai-nvidia-hgx-inference.

C.1 VKS with VPC-NSX architecture

NSX integrates with the VKS cluster to manage networking for vSphere namespaces and workloads, such as Kubernetes
clusters, pods and supervisor services. NSX Virtual Private Clouds enhance this by creating namespace-specific, isolated
networking domains, each with dedicated subnets, NAT, DHCP, and firewall policies, mimicking public cloud networking
models. This allows for fine-grained control, enabling secure multi-tenancy and simplified traffic management.

All the ingress and egress of the workloads running natively on VKS Kubernetes Clusters will be exposed through an external
network, simplifying the network setup, internal communication of vSphere Pods, containers and VKS Kubernetes clusters
happens on internal VPC subnets.

VCF Supports multiple network topologies for VKS networking, ranging from Foundation Load Balance (FLB), NSX with AVI
and NSX Native Load Balancing. Refer to https://techdocs.broadcom.com/us/en/vmware-cis/vcf/vcf-9-0-and-later/9-
O/vsphere-supervisor-installation-and-configuration.html for more details on the different architectural approaches.

Figure 26. Supervisor networking with NSX VPC (image source)

Default Transit Transit Transit
gateway gateway gateway
Supervisor | VCF Automation Organization 1 VCF Automation Organization 2
NSX System Project NSX Project 1 ¢ | NSX Project 2
e amespace vSphere Namespace 1 vSphere Namespace 2 vSphere Namespace 3
Default VPC VPC1 VPC VPC2 VPC : VPC3 VPC
VPC Gateway Gateway Gateway
Gateway : :
: : VPC )
: VPC private VPC VPC private VPC : private VPC private
VPC private subnet transit subnet private transit subnet private e transit subnet
subnet subnet subnet
a0 a5
N7 562)
Control plane VMs VKS VKS vSphere  vSphere VKS
: cCluster cluster pod pod : cluster

@ M NSX @ Vcenter
anager Management Network (distributed port group)

Supervisor Cluster

» The core Kubernetes control plane of the entire VKS environment is composed of a cluster or control plane VMs and the ESX
hosts, and it exposes the Kubernetes API.

« Uses the Management Network for vCenter management and control plane communication.

ana re® Technical White Paper | 62

by Broadcom


https://www.vmware.com/docs/ref-design-private-ai-nvidia-hgx-inference
https://www.vmware.com/docs/ref-design-private-ai-nvidia-hgx-inference
https://techdocs.broadcom.com/us/en/vmware-cis/vcf/vcf-9-0-and-later/9-0/vsphere-supervisor-installation-and-configuration.html
https://techdocs.broadcom.com/us/en/vmware-cis/vcf/vcf-9-0-and-later/9-0/vsphere-supervisor-installation-and-configuration.html
https://techdocs.broadcom.com/us/en/vmware-cis/vcf/vcf-9-0-and-later/9-0/vsphere-supervisor-installation-and-configuration/supervisor-networking-with-virtual-private-clouds/supervisor-architecture-with-vpc-networking.html

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Management Network

» Provides the management interface for Supervisor Control Plane nodes.
« Integrated with the VDS network for vCenter control communication.

» Does not carry user workloads.

Workload Networks

« VPC Private subnets: These subnets are the default access mode for VPC workloads and are only accessible only within the
NSX VPC.

« External subnets: These are public or external IPs that are accessible both from the project and outside the project. These
are primarily used for LoadBalancer-type services and ingresses and egress of the NSX project.

- Private Transit Gateway subnets: These subnets are accessible by other workloads in different VPCs within the same NSX
project. These subnets are primarily used by SNAT on egress of the VPC and vSphere Pods.

VKS Clusters

» Deployed on a Private VPC subnets, ingress and egress traffic is provided by the External network.
« Each Kubernetes cluster node communicates through the same NSX Logical segment.

DevOps Users / External Services

» Kubernetes API access for the Supervisor and Kubernetes clusters is provided via a VIP managed by the NSX load balancer.
This VIP, on TCP port 6443, distributes traffic across control plane nodes for high availability.

» Kubernetes Services of type LoadBalancer in guest Kubernetes Clusters on the Supervisor are exposed via a Virtual IP (VIP)
provisioned by the NSX load balancer. This VIP is assigned from the external network, routes external traffic to the Service’s
endpoints, ensuring load balancing across pods.

Table 6. Network requirements for the VKS setup.

Network Function VLAN or Routed or
Overlay Internal

Management Routable network with reachability to ESX hosts, vCenter, Supervisor VLAN Routed

Network for and other components. Control Plane VMs of the supervisor will be

Supervisor connected to this network.

Control Plane

External IP Block Required for VPC Connectivity Profile with Centralized Gateway. This Overlay Routed
non-overlapping subnet provided will be configured as an NSX overlay
and should be routable via the Edge Cluster. Provides external
connectivity for services.

Private Transit Configured in VPC Connectivity Profile for transit connectivity. Overlay Internal
Gateway IP

Blocks

Private (VPC) Private non-overlapping IP range for VPC segments and IP allocation. Overlay Internal
CIDRs Ideally a /16 network for scalability

Service CIDR IP range for Kubernetes services in the Supervisor. Overlay Internal

ana re® Technical White Paper | 63

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

C.2 Enable Workload Management

Once the network pre-requisites have been documented the next step is to enable the Workload Management with VPC
networking in vSphere. This transforms your vSphere cluster into a Supervisor Cluster capable of running Kubernetes
workloads directly on ESX hosts within a Virtual Private Cloud (VPC) networking model using NSX native load balancing.

Follow the detailed procedure to configure NSX and enable the Supervisor with VPC, refer to the VMware documentation at
https://techdocs.broadcom.com/us/en/vmware-cis/vcf/vcf-9-0-and-later/9-0/vsphere-supervisor-installation-and-
configuration/supervisor-networking-with-virtual-private-clouds.html

Enabling the Supervisor with VPC sets up the Supervisor control plane VMs, integrates them with NSX native load balancing
for traffic management, and configures VPC-based networking to support isolated and scalable Kubernetes workloads.

C.3 Deploy Local Consumption Interface (LCI)

Follow the steps in https://vsphere-tmm.github.io/Supervisor-Services/ to download LCI service YAML file. Then click
Workload Management — Services — Add New Service — Upload the YAML File.

Then the LCI service will show up as demonstrated below.

Workload Management

Namespaces Supervisors Services Updates

Supervisor Services @ XLRSOR-VC.AIPS ALBROADCOM.NET v

Supervisor Services is a platform for managing core infrastructure components, such as virtual machines. Application teams are able to deploy instances of Supervisor Services
within their own Namespaces using industry standard tools and practices. Discover and download available Supervisor Services here. [7

AN

SortBy:  Recently added

Below are the services registered to this vCenter Server system. You can manage services with multiple versions from the same service card.

@ VM Service @ Consumption Interface
Add New Service This service allows developers to self-service Status: Active
or drop a service bundle file VMs and allows you to set policies for VM (Ac! ve Versions o> (suocwsovs 0)
deployment.

Provides the Local Consumption Interface (LC) f...

MANAGE ACTIONS Vv
Manage Service
@ Velero vSphere Operator @ Tanzu Kubernetes Grid Service Add New Version
. . M Versi
Status: Active (  core Service Status: Active (  core Service ) anage Versions
(A(lwo Versions 0) (Supf:vwsovs o> CA([wc Versions Q) (Suocvwsovs o> Edit
. . Delete

Helps users install Velero and the vSphere plugi... Cluster management
ACTIONS Vv ACTIONS Vv

ana re® Technical White Paper | 64

by Broadcom


https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-with-tanzu/GUID-5B4F6E0F-4AEB-4E3E-BD4E-5B5C6B2C6F5C.html
https://docs.vmware.com/en/VMware-vSphere/8.0/vsphere-with-tanzu/GUID-5B4F6E0F-4AEB-4E3E-BD4E-5B5C6B2C6F5C.html
https://techdocs.broadcom.com/us/en/vmware-cis/vcf/vcf-9-0-and-later/9-0/vsphere-supervisor-installation-and-configuration/supervisor-networking-with-virtual-private-clouds.html
https://techdocs.broadcom.com/us/en/vmware-cis/vcf/vcf-9-0-and-later/9-0/vsphere-supervisor-installation-and-configuration/supervisor-networking-with-virtual-private-clouds.html
https://vsphere-tmm.github.io/Supervisor-Services/

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Manage Service - Activate Consumption Interface service

Manage Versions: Consumption Interface X
Service ID: cci-service.fling.vsphere.vmware.com

Find details about all versions of '‘Consumption Interface' in the below table.

* To delete a service version, first deactivate the version and then remove it from the Supervisors where it is installed.

* To delete a service, first deactivate the entire service and then remove all of its versions from the Supervisors where it is
installed.

You cannot create instances on Supervisors with deactivated versions and services.

Service Version Name 4 Version v r Status 4 Supervisors 4

O Consumption Interface 1.0.2 Active 1

Manage Columns 1item

Deactivate entire service conrFirM

You must deactivate a service before deleting it.

* By deactivating the service you deactivate all its service versions.
* You will be unable to add or change service versions.
* You will be unable to install service versions on Supervisors.

Manage Configure X
Select a version and a supervisor on which to install the service.
1 Configure
Service Name Consumption Interface
Install Version 1.0.2
Supervisor A 4 Service Version Name A d Version A d Service Status A 4
Q) xIr8or-cls02 Consumption Interface 1.0.2 © Configured

Manage Columns 1item

Next, verify that the Cloud Consumption Interface (CCI) service and its pods are visible in the inventory.

Note: In this context, Local Consumption Interface (LCI) and CCI refer to the same component—the terms are used
interchangeably in VMware documentation.

v (@) svc-cci-service-domain-c2009
& cci-ns-controller-manager-58f98d6449-t94fk
& cci-service-866f6b849f-liczs

ana re® Technical White Paper | 65

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

C.4 Create a Namespace

Namespaces in VKS are logical constructs used to provide multi-tenancy and resource isolation for developers. Create a
Supervisor Namespace to serve as the environment where you will provision and manage workloads.

This namespace will later host your custom VMClasses, which define VM sizing, resource allocation, and passthrough device
configurations.

(=) deepseek-test = : actions

Summary Monitor Configure Permissions Compute Storage Network Resources

Status ¢ Permissions - Storage - Capacity and Usage - Tanzu Kubernetes Grid
Created 6/26/25 Service

Can view ©@ 6 cPU No fimit 1

No users have permission to only
Config Status i i

9 ) ® view namespaces. Persistent Volume Claims 8 GHZ used Tanzu Kubernetes clusters
© Running - Policies @
: orage Policies

Can edit @ vsANiSAD fault Poil_. | No limit Memory No limit Content Library

Kubernetes Status @ No users have permission to edit erault Poll.. | Nolimi Kubernetes Service Content
xir8or-cls02-k8s-vsan | No limit L,l" _." 1.02 TB d Lib
© Active namespaces. . use ibrary
Storage No limit

Location Owner @ 9
1 xIr8or-cls02 Administrator @ 898 TB used
[ xir8or-vc.aips.ai.broadco...

MANAGE PERMISSIONS EDIT STORAGE EDIT LIMITS VIEW ALL
Link to CLI Tools v
VM Service @® - Pods
Associated VM Classes
MANAGE VM CLASSES -~ Running Pending @ Failed =
Associated Content Libraries

ADD CONTENT LIBRARY

GO TO VM SERVICE

ana re® Technical White Paper | 66

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

C.5 Manage VM Classes in Namespace

Once the VMClass has been created, assign it to your Supervisor Namespace so that developers and workloads within that
namespace can request VMs with the defined passthrough hardware configuration.

For this environment, two VMClasses will be used in later deployment stages:
1. An 8xGPU-8xIB VMClass for compute-intensive workloads.

2. A standard VMClass for non-GPU workloads (e.g., management or lightweight applications).
Manage VM Classes | deepseek-test X

Add or remove VM Classes used by your developers to self-service on this Namespace. VM Classes shown here were created using VM Service.

& Removing a VM Class being used by Tanzu Kubernetes Grid Service could affect operations. X

& This namespace does not support Instance Storage. VM Classes with Instance Storage can not be associated to it. X

MANAGE VM CLASSES

[ VM Class Name T ® CcPU CPU Reservation Memory Memory Reservation PCl Devices Namespaces VMs
O S best-effort-2xlarge 8 vCPUs - 64 GB - No 1 0
([l , best-effort-4xlarge 16 vCPUs - 128 GB - No 1 0
\:\ S best-effort-8xlarge 32 vCPUs - 128 GB - No 1 0
O > best-effort-large 4 vCPUs - 16 GB - No 1 0]
O ; best-effort-xlarge 4 vCPUs - 32GB - No 1 0
deepseek-8gpu-8ib 48 vCPUs
\:\ 8 guaranteed-2xlarge 8 vCPUs 100% 64 GB 100% No 1 (0]
O > guaranteed-4xlarge 16 vCPUs 100% 128 GB 100% No 1 o]
M) 8 guaranteed-8xlarge 32 vCPUs 100% 128 GB 100% No 1 (0]

nteed-large 4 vCPUs 100%

2 | Manage Columns | | Deselect All tems per page 10 1-10 of 15 items 1 /2 ) 3l

ana re® Technical White Paper | 67

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

D. Use LCI to deploy a VKS cluster

The following is a step-by-step guide to create a VKS cluster in VCF 9 (or a TKG cluster in VCF 5.2.1) by LCI.

(=) deepseek-test = : actions

Summary Monitor Configure Permissions Compute Storage Network Resources

deepseek-test > Tanzu Kubernetes Grid service > create-cluster

New Kubernetes Cluster » Kubernetes Resource
YAML
A Tanzu Kubernetes cluster is an opinionated, production-ready full distribution of the open-source Kubernetes container
orchestration platform that is built, signed, and supported by VMware. v  Cluster
tkg-cluster-leav
v © Configuration Type How would you like to configure your Kubernetes workload cluster?
Select the cluster type and configuration to provision a Kubernetes workload cluster.
Cluster Type () © Cluster APl () TanzuKubernetesCluster API
Configuration Type O Default Configuration ° Custom Configuration
1 apiversion: cluster.x-k8s. |
2 kind: Cluster
3 metadata:
. . . . . 4 name: tkg-cluster-leav
2. General Settings Define the storage and networking settings for this cluster 5 namespace: deepseek-test
6 labels:
X 7 tkg-cluster-selector:
3. Control Plane Define the topology of the cluster controller 8  spec:
9 clusterNetwork:
. . 10 pods:
4. Nodepools Add nodepool information 11 cidrBlocks:
12 - 192.168.156.8/20
. . . ; X 13 services:
5. Review and Confirm Review all the details before you deploy this cluster 14 cidrBlocks:
15 - 10.96.0.0/12
16 serviceDomain: cluster
17 topology:
18 class: builtin-generic
19 version: v1.32.08---vmw
20

mwa re® Technical White Paper | 68

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

(=) deepseek-test ACTIONS
Summary  Monitor  Configure  Permissions ~ Compute  Storage  Network  Resources
deepseek-test » Tanzu Kubernetes Grid service > create-cluster
Cluster Type Cluster API

I > @ Configuration Type

General Settings

Cluster Name ()

Cluster Class (D

Tanzu Kubernetes Release ()
Labels (Optional)

Volumes (Optional)

Network Settings
[« K6

Pods CIDR (D)
Services CIDR (D)

Service Domain (1)
Persistent Volume Storage

Available Storage Classes (Optional) (D)
NEXT

Control Plane

Replicas ()

VM Class @

Storage Class ()
TKR OSImage Format ()

Volumes (Optional) ()

Configuration Type Custom Configuration

Define the storage and networking settings for this cluster

deepseek-test-cluster

builtin-generic-v330 v

V1.32.0--vmware 6-fips-vkr.2 v
keyvalue ADD
Name v | Mountpath v  Storage Class v

No item found

© Antrea (O Calico

192168156.0/20

The custom CIDR block cannot overiap with the Supervisor workload network.

10.96.0.0/12

The custom CIDR block cannot overiap with the Supervisor workload network.

cluster.Jocal

xlr8or-cls02-k8s-vsan v ADD

Define the topology of the cluster controller

1 v
Name v CPU 1 y  CPUReservation v Memory v
O guaranteed-medium 2 vCPUs 0% 8GiB
O best-effort-large 4 vCPUs 0% 16 GiB
©  guaranteed-large 4VCPUs 0% 16 GiB
O | besteffort-xlarge 4VCPUs 0% 3268
(O  guaranteed-xlarge 4VvCPUs 0% 326GiB

VM Classes per page 5 v 6-100f 18 VM Classes

xIr8or-cls02-k8s-vsan v

Photon v

-+ ADD VOLUME

Name T Mount path T Storage Class T

H etcd-we2p Nvarfiib/etcd xIr8or-cls02-k8s-vsan

Add nodepool information

vmware

by Broadcom

Capacity r

1-50f 0 Volumes

Memory Reservation v
0%
0%
0%
0%
0%
K < 2/4 > )l
Capacity T
128 GiB

1-10f 1 Volumes.

~

»

Kubernetes Resource YAML

v Cluster

deepseek-test-cluster

apiVersion: cluster.x-k8s.io/vibetal
kind: Cluster
metadata:
name: deepseek-test-cluster
namespace: deepseek-test
labels:
tkg-cluster-selector: deepseek-test-
spec:
clusterNetwork:
pods:
cidrBlocks:
- 192.168.156.0/20
services:
cidrBlocks:
- 10.96.0.0/12
serviceDomain: cluster.local
topology:
class: builtin-generic-v3.3.0
version: v1.32.0---vmware.6-fips-vkr

1  apiVersion: cluster.x-k8s.io/vibetal
2 kind: Cluster

3 metadata:

a name: deepseek-test-cluster

5 namespace: deepseek-test

6 labels:

7 tkg-cluster-selector: deepseek-test-c
8  spec:

9 clusterNetwork:

10 pods:

1 cidrBlocks:

12 - 192.168.156.0/20

13 services:

14 cidrBlocks:

15 - 10.96.0.0/12

16 serviceDomain: cluster.local

17 topology:

18 class: builtin-generic-v3.3.0
19 version: v1.32.0---vmware.6-fips-vkr.:
20 variables:

2 - name: vmClass

22 value: guaranteed-large

23 - name: storageClass

24 value: xlr8or-cls@2-k8s-vsan
25 controlPlane:

26 replicas: 1

27 metadata:

28 annotations:

29 run.tanzu.vmware . com/resolve-os
30 variables:

31 overrides:

32 - name: volumes

33 value:

34 - name: etcd-wc2p

35 mountPath: /var/lib/etcd

36 storageClass: xlr8or-clse:
37 capacity: 1286
3R

Technical White Paper

69



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Add Nodepool Configuration X

1 Configuration Set the configuration for this nodepool.

tkg-cluster-nodepool-d2yr
2 Volumes Y
node-pool v
3 Review and Confirm Class ©
Replicas (D) 2
VM Class (D deepseek-8gpu-8ib (48 vCPUs and 512Gi RAM) v

48 vCPUs - 0%, 512 GiB - 0%

Storage Class (D) xIr8or-cls02-k8s-vsan v

TKR OSImage Format Photon v

®

Labels key:value ADD
Volumes () 1 would like to configure volumes

CANCEL NEXT

Add Nodepool Volumes X

List of Persistent Volume Claims to create and attach to each node for high-
churn worker node components such as the container runtime.

1 Configuration

2 Volumes Name containerd-2i1o
3 Review and Confirm Mount path (D) /var/lib/containerd
Storage Class xir8or-cls02-k8s-vsan v
Capacity GiB
Maximum 8589924900 GiB
CREATE
Name v Mount path ¢ Storage Class T Capacity
containerd Ivar/lib/ xir8or-cls02- 500 GiB
containerd k8s-vsan
< >

1-10f 1 Volumes

mwa re® Technical White Paper | 70

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

(=) deepseek-test ! ACTIONS

Summary Monitor Configure Permissions Compute Storage Network Resources

deepseek-test > Tanzu Kubernetes Grid service > create-cluster

New Kubernetes Cluster » Kubernetes Resource YAML
A Tanzu Kubernetes cluster is an opinionated, production-ready full distribution of the open-source Kubernetes container orchestration platform v Cluster
that is built, signed, and supported by VMware.
deepseek-test-cluster
s © Configuration Type Cluster Type Cluster API
Configuration Type Custom Configuration
Cluster Name deepseek-test-cluster
Cluster Class builtin-generic-v3.3.0
Tanzu Kubernetes V1.32.0---vmware.6-fips-vkr.2
Release
> @ General Settings volumes Added
Pods CIDR 192.168.156.0/20 . i R
1 apiversion: cluster.x-k8s.io/v.
Services CIDR 10.96.0.0/12 2 kind: Cluster
Service Domain cluster.local 3 metadata:
4 name: deepseek-test-cluster
N 5 namespace: deepseek-test
Replicas 1 6 1abels:
VM Class guaranteed-large 7 tkg-cluster-selector: deep:
> © Control Plane Storage Class xIr8or-cls02-k8s-vsan 5 Spi;;stemetmrk:
TKR OSIimage Photon 10 pods:
Format 11 cidrBlocks:
Volumes Added 12 - 192.168.156.0/20
13 services:
14 cidrBlocks:
> © Nodepools deepseek-test-cluster 15 - 10.96.0.0/12
16 serviceDomain: cluster.loc:
17 topology:
v 5. Review and Confirm Review all the details before you deploy this cluster 18 class: builtin-generic-v3.
19 version: v1.32.0---vmware.!
20 variables:
21 - name: vmClass
Review the configuration and the YAML file generated. Then, click FINISH to start deploying this cluster. 22 value: guaranteed-larg
23 - name: storageClass
24 value: x1lr8or-clse2-ks:
25 - name: volumes
26 value:
27 - name: etcd-c2i4
28 mountPath: /var/lil
29 storageClass: x1r8:
30 capacity: 128Gi
31 controlPlane:
32 replicas: 1

mwa re® Technical White Paper | 71

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

E. Deploy Network Operator and GPU Operator

To enable high-performance GPU workloads with RDMA and InfiniBand support in Kubernetes, both the NVIDIA Network
Operator and the NVIDIA GPU Operator need to be installed. The recommended sequence is to deploy the Network
Operator first, followed by the GPU Operator, since GPU features such as GPUDirect RDMA depend on the networking
components.

E.1 Login to VKS cluster

# Log into supervisor cluster:
kubectl vsphere login --server=10.191.83.194 --vsphere-username administrator@vsphere.local --insecure-skip-tls-
verify

# Log into workload cluster:

kubectl vsphere login --server=10.191.83.194 --tanzu-kubernetes-cluster-name deepseek-test-cluster --tanzu-
kubernetes-cluster-namespace deepseek-test --vsphere-username administrator@vsphere.local --insecure-skip-tls-
verify

E.2 Install Helm

Helm is a package manager for Kubernetes that simplifies the deployment and management of applications. It uses "charts"
which are packages of pre-configured Kubernetes resources.

# Add the GPG key for the Helm repository
curl https://baltocdn.com/helm/signing.asc | gpg --dearmor | sudo tee /usr/share/keyrings/helm.gpg > /dev/null

# Install apt-transport-https to allow apt to retrieve packages over HTTPS
sudo apt-get install apt-transport-https --yes

# Add the Helm stable Debian repository to your apt sources list

echo "deb [arch=$§(dpkg --print-architecture) signed-by=/usr/share/keyrings/helm.gpg]
https://baltocdn.com/helm/stable/debian/ all main" | sudo tee /etc/apt/sources.list.d/helm-stable-debian.list

# Update your package list to include the new Helm repository
sudo apt-get update

# Install Helm
sudo apt-get install helm

# Verify the Helm installation by checking its version
helm version

ana re® Technical White Paper | 72

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

E.3 Install the NVIDIA Network Operator

The Network Operator automates the deployment of network components (e.g., RDMA, SR-10V device plugins, Multus CNI)
required for GPU communication and high-speed networking.

# Add NVIDIA Helm repo
sudo helm repo add nvidia https://helm.ngc.nvidia.com/nvidia

# Create namespace for network-operator
sudo kubectl create ns nvidia-network-operator

# Label namespace to allow privileged workloads
sudo kubectl label --overwrite ns nvidia-network-operator \
pod-security.kubernetes.io/enforce=privileged

# Install the Network Operator
sudo helm install network-operator nvidia/network-operator \
-n nvidia-network-operator \
--create-namespace \
--version v25.4.0 \
--wait

# Verify the deployment
kubectl -n nvidia-network-operator get pods

You should see the network-operator and node-feature-discovery pods in a Running state, for example:

kubectl -n nvidia-network-operator get pods

NAME READY  STATUS RESTARTS  AGE
network-operator-798476bc67-zbwck 1/1 Running 0 66s
network-operator-node-feature-discovery-gc-5549bd5db-mx5t4 1/1 Running 0 66s
network-operator-node-feature-discovery-master-865bfff66d-smtd8 1/1 Running 0 66s
network-operator-node-feature-discovery-worker-q7tpn 1/1 Running 0 67s
network-operator-node-feature-discovery-worker-vtjg9 1/1 Running 0 67s
network-operator-node-feature-discovery-worker-wgqlr 1/1 Running 0 67s

ana re® Technical White Paper | 73

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

E.4 Install the NVIDIA GPU Operator

The GPU Operator manages all NVIDIA software components required to expose GPUs in Kubernetes, including:
« Driver installation

« Container runtime hooks (NVIDIA Container Toolkit)

- Device plugins

« Monitoring (DCGM Exporter)

« MIG management (if supported)

I Deploy the GPU Operator (after the Network Operator is running):

# Install GPU operator

helm install --wait --generate-name \
-n gpu-operator --create-namespace \
nvidia/gpu-operator \
--version=v25.3.0 \
--set driver.rdma.enabled=true

The driver.rdma.enabled=true flag ensures RDMA support is enabled, which is critical for GPU workloads leveraging
InfiniBand or RoCE.

ana re® Technical White Paper | 74

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

E.5 Sanity check

Once installed, confirm that all pods in the gpu-operator namespace are either Running or Completed (for validator jobs):

kubectl -n gpu-operator get pods

You should see components such as:

nvidia-driver-daemonset (GPU drivers)

nvidia-device-plugin-daemonset (device plugins for Kubernetes)

nvidia-container-toolkit-daemonset (runtime hooks)

nvidia-dcgm-exporter (GPU monitoring)

nvidia-mig-manager (if MIG is enabled)

nvidia-operator-validator and nvidia-cuda-validator (sanity checks)
Sample output:

# Sanity Check
# Wait for all Status shows completed / running (instead of showing init or PodInitializing)
k -n gpu-operator get pods

NAME READY  STATUS RESTARTS  AGE

gpu-feature-discovery-j6t68 1/1 Running 0 3m47s
gpu-feature-discovery-zjlm8 1/1 Running 0 3m45s
gpu-operator-666bbffcd-bd7g7 1/1 Running 0 Am17s
gpu-operator-node-feature-discovery-gc-7c7f68d5f4-fn4pl 1/1 Running 0 Am17s
gpu-operator-node-feature-discovery-master-58588c6967-hs5dv 1/1 Running 0 Am17s
gpu-operator-node-feature-discovery-worker-29cz2 1/1 Running 0 Am17s
gpu-operator-node-feature-discovery-worker-2jhgm 1/1 Running 0 Am17s
gpu-operator-node-feature-discovery-worker-msmxr 1/1 Running 0 Am17s
nvidia-container-toolkit-daemonset-kznzg 1/1 Running 0 3m45s
nvidia-container-toolkit-daemonset-zfxz4 1/1 Running 0 3m47s
nvidia-cuda-validator-ps7z9 0/1 Completed 0 75s

nvidia-cuda-validator-x27vg 0/1 Completed 0 48s

nvidia-dcgm-exporter-8dhrd 1/1 Running 0 3m45s
nvidia-dcgm-exporter-tgdqg 1/1 Running 0 3m47s
nvidia-device-plugin-daemonset-6gbdm 1/1 Running 0 3m47s
nvidia-device-plugin-daemonset-b6hsz 1/1 Running 0 3m45s
nvidia-driver-daemonset-g8kj5 1/1 Running 0 4m7s
nvidia-driver-daemonset-qvfok 1/1 Running 0 4m7s
nvidia-mig-manager-218mk 1/1 Running 0 20s

nvidia-mig-manager-gsrmt 1/1 Running 0 16s

nvidia-operator-validator-bz5p2 1/1 Running 0 3m47s
nvidia-operator-validator-gkh99 1/1 Running 0 3m45s

ana re® Technical White Paper | 75

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

E.6 Deploy NicClusterPolicy CRD

To enable RDMA capabilities across the cluster, we deploy a NicClusterPolicy. This custom resource definition (CRD)
configures both the Mellanox OFED drivers and the RDMA Shared Device Plugin, allowing Kubernetes pods to leverage
InfiniBand devices efficiently.

The example nicCLusterPolicy-rdma-share-dp-separate.yaml defines:
- OFED driver:
- Uses the doca-driver from NVIDIA’s Mellanox repository (nvcr.io/nvidia/mellanox:25.04-0.6.1.0-2).

- Supports automatic upgrades with controlled pod draining and parallelism.
- Includes startup, liveness, and readiness probes to ensure reliability.

+« RDMA shared device plugin:

- Deploys the plugin (ghcr.io/mellanox/k8s-rdma-shared-dev-plugin:v1.5.3) to expose virtualized RDMA devices to

pods.

- Configures multiple RDMA resource groups (rdma_shared_devices_a through rdma_shared_devices_h) with
dedicated selectors for vendor ID, device ID, driver, and interface name.

- Each group can expose up to 63 virtual RDMA devices, enabling high-density GPU-to-NIC connectivity.

Each RDMA group is mapped to a specific InfiniBand interface (1bs65, ibs67, etc.), ensuring dedicated virtual RDMA
devices for workloads without conflicts.

I nicCLusterPolicy-rdma-share-dp-separate.yaml

apiVersion: mellanox.com/vlalphal
kind: NicClusterPolicy
metadata:
name: nic-cluster-policy
namespace: nvidia-network-operator
spec:
ofedDriver:
image: doca-driver
repository: nvcr.io/nvidia/mellanox
version: 25.04-0.6.1.0-2
upgradePolicy:
autoUpgrade: true
drain:
deleteEmptyDir: true
enable: true
force: true
timeoutSeconds: 300
maxParallelUpgrades: 1
startupProbe:
initialDelaySeconds: 10
periodSeconds: 20
livenessProbe:

ana re® Technical White Paper | 76

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

initialDelaySeconds: 30
periodSeconds: 30
readinessProbe:
initialDelaySeconds: 10
periodSeconds: 30
rdmaSharedDevicePlugin:
image: k8s-rdma-shared-dev-plugin
repository: ghcr.io/mellanox
version: v1.5.3
imagePullSecrets: []

config: |
{
"configlList": [
{
"resourceName": "rdma_shared_devices_a",
"rdmaHcaMax": 63,
"selectors": {
"vendors": ["15b3"],
"deviceIDs": ["1021"],
"drivers": ["mlx5_core"],
"ifNames": ["ibs65"]
"linkTypes": []
}
H
{
"resourceName" : "rdma_shared_devices_b",
"rdmaHcaMax": 63,
"selectors": {
"vendors": ["15b3"],
"deviceIDs": ["1021"],
"drivers": ["mlx5_core"],
"ifNames": ["ibs67"],
"linkTypes": []
}
H
{
"resourceName": "rdma_shared_devices_c",
"rdmaHcaMax": 63,
"selectors": {
"vendors": ["15b3"],
"deviceIDs": ["1021"],
"drivers": ["mlx5_core"],
"ifNames": ["ibs69"],
"linkTypes": []
}
H

ana re® Technical White Paper | 77

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

{
"resourceName": "rdma_shared_devices_d",
"rdmaHcaMax": 63,
"selectors": {
"vendors": ["15b3"],
"deviceIDs": ["1021"],
"drivers": ["mlx5_core"],
"ifNames": ["ibs71"],
"linkTypes": []
}
H
{
"resourceName" : "rdma_shared_devices_e",
"rdmaHcaMax": 63,
"selectors": {
"vendors": ["15b3"],
"deviceIDs": ["1021"],
"drivers": ["mlx5_core"],
"ifNames": ["ibs73"],
"linkTypes": []
}
H
{
"resourceName": "rdma_shared_devices_f",
"rdmaHcaMax": 63,
"selectors": {
"vendors": ["15b3"],
"deviceIDs": ["1021"],
"drivers": ["mlx5_core"],
"ifNames": ["ibs75"]
"linkTypes": []
}
H
{
"resourceName": "rdma_shared_devices_g",
"rdmaHcaMax": 63,
"selectors": {
"vendors": ["15b3"],
"deviceIDs": ["1021"],
"drivers": ["mlx5_core"],
"ifNames": ["ibs77"],
"linkTypes": []
}
H
{

"resourceName": "rdma_shared_devices_h",

ana re® Technical White Paper | 78

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

"rdmaHcaMax": 63,
"selectors": {
"vendors": ["15b3"],
"deviceIDs": ["1021"],
"drivers": ["mlx5_core"],
"ifNames": ["ibs79"],
"linkTypes": []

}

After applying the NicClusterPolicy, you can list the pods in the nvidia-network-operator namespace to confirm that the
RDMA Shared Device Plugin DaemonSets are running:

# kubectl -n nvidia-network-operator get pods

NAME READY  STATUS RESTARTS  AGE
mofed-ubuntu22.64-5dd9bbcc4d-ds-dfhlt 1/1 Running 0 32d
mofed-ubuntu22.64-5dd9bbcc4d-ds-kctch 1/1 Running 0 32d
network-operator-798476bc67-8kqqj 1/1 Running 0 32d
network-operator-node-feature-discovery-gc-5549bd5db-mnx6r 1/1 Running 0 32d
network-operator-node-feature-discovery-master-865bfff66d-tc46q 1/1 Running 0 32d
network-operator-node-feature-discovery-worker-4rdvs 1/1 Running 0 32d
network-operator-node-feature-discovery-worker-vpgtl 1/1 Running 0 32d
network-operator-node-feature-discovery-worker-xw4mw 1/1 Running 0 32d
rdma-shared-dp-ds-6t8m9 1/1 Running 0 32d
rdma-shared-dp-ds-phgég 1/1 Running 0 32d

These pods indicate that the RDMA shared device plugin is active, making virtualized RDMA devices available for Kubernetes
workloads.

ana re® Technical White Paper | 79

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

F. Verify RDMA performance via IB on two pods across two HGX nodes

Create two test pod YAML files .

Pod 1: test-mofed-pod1.yaml

# test-mofed-pod1.yaml
apiVersion: vi
kind: Pod
metadata:
name: mofed-test-pod-1
spec:
restartPolicy: OnFailure
containers:
- image: mellanox/mofed:23.10-1.1.9.0-ubuntu22.04-amd64
name: mofed-test-ctr
securityContext:
capabilities:
add: [ "IPC_LOCK", "SYS_RESOURCE" ]
resources:
requests:
rdma/rdma_shared_devices_a:
rdma/rdma_shared_devices_b:
rdma/rdma_shared_devices_c:
rdma/rdma_shared_devices_d:
rdma/rdma_shared_devices_e:
rdma/rdma_shared_devices_f:
rdma/rdma_shared_devices_g:
rdma/rdma_shared_devices_h:

S UL U A WK W UL (i ¥

command :
- sh

1s -1 /dev/infiniband /sys/class/infiniband /sys/class/net
sleep 1000000

Pod 2: test-mofed-pod2.yaml (identical, name and IP differ)
Then we can validate RDMA performance using InfiniBand between two pods on separate HGX nodes, follow these steps,

# 1. Deploy two test pods
k apply -f test-mofed-podil.yaml
k apply -f test-mofed-pod2.yaml

ana re® Technical White Paper | 80

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

# Check that the pods are running and note their node assignments
k get pods -o wide

NAME READY  STATUS RESTARTS  AGE IpP NODE

NOMINATED NODE  READINESS GATES

mofed-test-pod-1 1/1 Running © 10m 192.168.146.75  deepseek-test-cluster-gpu-
x9d2k-82mgg-kh5jm  <none> <none>

mofed-test-pod-2  1/1 Running © 5m36s  192.168.145.61 deepseek-test-cluster-gpu-
x9d2k-82mqg-xh2bg  <none> <none>

# 2. Inspect Mellanox CX-7 Devices
# Login to Pod 1 interactively
k exec -it mofed-test-pod-1 -- bash

# Check CX-7 devices

lspci | grep -i mellanox

04:01.0 Ethernet controller: Mellanox Technologies MT2910 Family [ConnectX-7]
04:03.0 Ethernet controller: Mellanox Technologies MT2910 Family [ConnectX-7]
04:05.0 Ethernet controller: Mellanox Technologies MT2910 Family [ConnectX-7]
04:07.0 Ethernet controller: Mellanox Technologies MT2910 Family [ConnectX-7]
04:09.0 Ethernet controller: Mellanox Technologies MT2910 Family [ConnectX-7]
04:0b.0 Ethernet controller: Mellanox Technologies MT2910 Family [ConnectX-7]
04:0d.0 Ethernet controller: Mellanox Technologies MT2910 Family [ConnectX-7]
04:0f.0 Ethernet controller: Mellanox Technologies MT2910 Family [ConnectX-7]

# 3. Run Bandwidth Test
# On Pod 1 (server):
# -F, --CPU-freq suppresses CPU frequency warnings even if cpufreq_ondemand is loaded.

root@mofed-test-pod-1:~# ib_send_bw -d mlx5_0 -a -F --report_gbits -q 4

khkkkkkhkkkkkhhhhhkdhhhhhhhhkhkhhhhxdhihxx

* Waiting for client to connect... *
kkkkkhkkhkkkkkhkkhkkhkkhkkkhkkhkkhkkhkkkhkkhkkkk

# On Pod 2 (client):
k exec -it mofed-test-pod-2 -- bash

root@mofed-test-pod-2:~# ib_send_bw -d mlx5_1 -a --report_gbits -q 4 192.168.146.75

Send BW Test

Dual-port : OFF Device : mlx5_1
Number of gps 14 Transport type : IB
Connection type : RC Using SRQ : OFF
PCIe relax order: ON

ibv_wr#* API : ON

TX depth : 128

ana re® Technical White Paper | 81

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

CQ Moderation : 100
Mtu : 4096[B]
Link type : IB

Max inline data : 9[B]
rdma_cm QPs : OFF

Data ex. method : Ethernet

local address: LID 0x27 QPN 0x0046 PSN ©xa8fad9

local address: LID 8x27 QPN 0x0047 PSN 0x252e4f

local address: LID 0x27 QPN 0x0048 PSN 0xb532ed

local address: LID 0x27 QPN 0x0049 PSN 0x8a3c38

remote address: LID Ox12 QPN 0x005c PSN 0xb304a3
remote address: LID Ox12 QPN 0x005d PSN @x6ed551
remote address: LID Ox12 QPN 0x005e PSN Oxf51ac7
remote address: LID Ox12 QPN 0x005f PSN 0x5d00a

#bytes #iterations BW peak[Gb/sec] BW average[Gb/sec] MsgRate[Mpps]
2 4000 0.066253 0.064243 4.015187
4 4000 0.13 0.13 4.176859
8 4000 0.27 0.26 4.029413
16 4000 0.53 0.53 4.106850
32 4000 1.07 1.07 4.164123
64 4000 2.14 2.13 4.158780
128 4000 4.28 4.27 4.166929
256 4000 8.55 8.44 4.120146
512 4000 17.17 17.09 4.173372
1024 4000 34.35 34.20 4.174527
2048 4000 68.70 68.37 4.173133
4096 4000 134.30 132.34 4.038705
8192 4000 270.25 269.50 4.112174
16384 4000 391.26 390.76 2.981258
32768 4000 394.50 394.25 1.503944
65536 4000 395.24 395.19 0.753771
131072 4000 396.06 396.02 0.377673
262144 4000 396.29 396.26 0.188953
524288 4000 396.38 396.38 0.094504
1048576 4000 396.45 396.44 0.047259
2097152 4000 396.47 396.47 0.023632
4194304 4000 396.49 396.49 0.011816
8388608 4000 396.50 396.50 0.005908

We achieved an expected peak performance of 396.5 GB/s across 2 nodes without GPU involvement, closely
aligning with the CX-7 line rate of 400 Gb/s.

# 4. Cleanup: Remove the test pods after validation
kubectl delete pods --all -n deepseek

ana re® Technical White Paper | 82

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

G. Verify GPUDirect RDMA performance via IB on 2 pods across 2 HGX nodes

Create two test Pod YAML files.
Pod 1: gdr-test-pod-1.yaml

apiVersion: vi
kind: Pod
metadata:
name: gdr-test-pod-1
annotations:
k8s.v1.cni.cncf.io/networks: hostdev-net
spec:
restartPolicy: OnFailure
containers:
- name: cuda-perftest-ctr
image: mellanox/cuda-perftest:latest
imagePullPolicy: IfNotPresent
securityContext:
capabilities:
add: [ "IPC_LOCK" ]
resources:
requests:
rdma/rdma_shared_devices_a:
rdma/rdma_shared_devices_b:
rdma/rdma_shared_devices_c:
rdma/rdma_shared_devices_d:
rdma/rdma_shared_devices_e:
rdma/rdma_shared_devices_f:
rdma/rdma_shared_devices_g:
rdma/rdma_shared_devices_h:
nvidia.com/gpu: 8

command :
- sh
- -C
- sleep inf
Pod 2: gdr-test-pod-2.yaml (identical, except name is gdr-test-pod-2)
To validate GPUDirect RDMA performance via InfiniBand, you must set MLX5_SCATTER_TO_CQE=0.

# 1. Deploy test pods

# Refer to the YAML files in Appendix E:
kubectl apply -f gdr-test-pod-1.yaml
kubectl apply -f gdr-test-pod-2.yaml

ana re® Technical White Paper | 83

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

# Check pod status and node assignment
kubectl get pods -o wide

# 2. Run GPUDirect RDMA bandwidth test

# On Pod 1 (server):

root@gdr-test-pod-1:~# MLX5_SCATTER_TO_CQE=0 ib_send_bw -a --report_gbits -d mlx5_0 --use_cuda=0 -q
4

khkkkkkhkkkkhhhhhkhhhhhhhhhkhkhhhhxdhihxx

* Waiting for client to connect... *
kkkkkhkkhkkhkkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkhkkhkkkk

# On Pod 2 (client):

root@gdr-test-pod-2:~# MLX5_SCATTER_TO_CQE=0 ib_send_bw -a --report_gbits -d mlx5_0 --use_cuda=0 -q
4 192.168.146.75

initializing CUDA

Listing all CUDA devices in system:
CUDA device 0: PCIe address is 04:00
CUDA device 1: PCIe address is 04:02
CUDA device 2: PCIe address is 04:04
CUDA device 3: PCIe address is 04:06
CUDA device 4: PCIe address is 04:08
CUDA device 5: PCIe address is 04:0A
CUDA device 6: PCIe address is 04:0C
CUDA device 7: PCIe address is 04:0E

Picking device No. ©

[pid = 31, dev = 0] device name = [NVIDIA H100 80GB HBM3]

creating CUDA Ctx

making it the current CUDA Ctx

cuMemAlloc() of a 67108864 bytes GPU buffer

allocated GPU buffer address at 00007f6a1c000000 pointer=0x7f6a1c000000

Send BW Test

Dual-port : OFF Device : mlx5_90
Number of gps 14 Transport type : IB
Connection type : RC Using SRQ : OFF
PCIe relax order: ON

ibv_wr* API : ON

TX depth : 128

CQ Moderation : 100

Mtu : 4096[B]

Link type : IB

Max inline data : 9[B]

rdma_cm QPs : OFF

ana re® Technical White Paper | 84

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

Data ex. method : Ethernet

local address: LID 0x8c QPN 0x0046 PSN 0x3562d8

local address: LID 0x8c QPN 0x0047 PSN 0xe70319

local address: LID 6x0c QPN 0x0048 PSN 0x2bd5b9

local address: LID 0x0c QPN 0x0049 PSN Oxea61dd

remote address: LID Ox12 QPN 0x0060 PSN 0x90ae79
remote address: LID Ox12 QPN 0x0061 PSN 0x24dcab
remote address: LID Ox12 QPN 0x0062 PSN 0xf224c2
remote address: LID Ox12 QPN 0x0063 PSN Oxa81eb2

#bytes #iterations BW peak[Gb/sec] BW average[Gb/sec]  MsgRate[Mpps]
2 4000 0.064516 0.063100 3.943768
4 4000 0.13 0.13 4.023487
8 4000 0.26 0.26 4.070511
16 4000 0.52 0.52 4.072181
32 4000 1.04 1.03 4.040300
64 4000 2.09 2.09 4.072563
128 4000 4.20 4.18 4.084949
256 4000 8.38 8.35 4.077000
512 4000 16.68 16.21 3.957823
1024 4000 33.51 33.38 4.074230
2048 4000 67.01 66 .81 4.077857
4096 4000 134.02 133.50 4.074127
8192 4000 267.49 266.37 4.064415
16384 4000 393.02 392.49 2.994425
32768 4000 394.79 394.75 1.505861
65536 4000 395.69 395.60 0.754548
131072 4000 396.14 396.12 0.377776
262144 4000 396.32 396.32 0.188979
524288 4000 396.42 396.41 0.094512
1048576 4000 396.46 396.46 0.047262
2097152 4000 396.48 396.48 0.023632
4194304 4000 396.50 396.560 0.011817
8388608 4000 396.50 396.50 0.005908

deallocating RX GPU buffer 00007f6a1c000000
destroying current CUDA Ctx

We achieved an expected peak performance of 396.5 GB/s across 2 nodes without GPU involvement, closely aligning with the
CX-7 line rate of 400 Gb/s.

# 3. Cleanup
kubectl delete pods --all -n deepseek

ana re® Technical White Paper | 85

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

H. Verify NCCL performance on two pods in VKS

The Docker file for CUDA + NCCL + MPI development environment follows.

# Dockerfile for CUDA + NCCL + MPI development environment
# Base image
FROM nvcr.io/nvidia/cuda:12.8.0-devel-ubuntu22.04

# Build arguments

ARG OMPI_VERSION=4.1.8

ARG SSH_PORT=22

ARG ROOT_PASSWORD=your_secure_password

# Labels for metadata

LABEL maintainer="Yuankun Fu"

LABEL description="Development environment with CUDA, NCCL, and OpenMPI support"
LABEL version="0.1"

# Environment variables

ENV
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/1ib64:/workspace/ucx/ucx_install/lib:/workspace/ompi/omp
i_install/lib:/usr/local/1lib:$SLD_LIBRARY_PATH \

PATH=/usr/local/bin:/workspace/ucx/ucx_install/bin:/workspace/ompi/ompi_install/bin:$PATH \
NCCL_DEBUG=VERSION

# Set working directory
WORKDIR /workspace

# Copy all configuration and script files at once
# This creates a single layer for all static files
COPY vm_topo_8h1006_8ib_mod.xml \

run_gdr.sh \

run_nccl_test.sh \

run_2nodes_nccl_test.sh \

/workspace/

# Set proper permissions for scripts
RUN chmod +x /workspace/*.sh && \

# Validate script syntax

bash -n /workspace/*.sh

# Install system dependencies
RUN apt-get update && \
DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
# Build essentials
build-essential \
autoconf \
automake \
libtool \
devscripts \
debhelper \
fakeroot \

ana re® Technical White Paper | 86

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

pkg-config \

dkms \

# Development tools

git \

wget \

vim \

unzip \

plocate \

# RDMA dependencies

libsysfs-dev \

libibverbs-dev \

librdmacm-dev \

libibumad-dev \

# InfiniBand tools

infiniband-diags \

ibverbs-utils \

rdma-core \

# Network tools

iproute2 \

net-tools \

iputils-ping \

# PCI tools

libpci-dev \

pciutils \

# SSH server

openssh-server \

openssh-client && \
updatedb && \
# Configure SSH
mkdir /var/run/sshd && \
echo "root:${ROOT_PASSWORD}" | chpasswd && \
sed -1 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config && \
# Generate SSH key for root user
mkdir -p /root/.ssh && \
ssh-keygen -t rsa -f /root/.ssh/id_rsa -N "" && \
cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys && \
chmod 600 /root/.ssh/authorized_keys

# Install gdr-copy
RUN mkdir /workspace/gdrcopy && cd /workspace/gdrcopy && \
wget https://github.com/NVIDIA/gdrcopy/archive/refs/tags/v2.5.zip && \
unzip -q v2.5.zip && \
cd gdrcopy-2.5/packages && \
CUDA=/usr/local/cuda ./build-deb-packages.sh && \
dpkg -i *.deb
# && \
# rm -rf /workspace/gdrcopy/v2.5.zip

# Install UCX
RUN mkdir -p /workspace/ucx && cd /workspace/ucx && \
git clone https://github.com/openucx/ucx.git && \

ana re® Technical White Paper | 87

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

cd ucx && \

./autogen.sh && \

mkdir build && \

cd build && \

../contrib/configure-release \
--prefix=/workspace/ucx/ucx_install \
--with-cuda=/usr/local/cuda \
--with-verbs \
--enable-debug && \

make -j$(nproc) && \

make install

# Install OpenMPI
RUN mkdir /workspace/ompi && cd /workspace/ompi && \

wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-S$S{OMPI_VERSION}.tar.gz && \

tar zxf openmpi-${OMPI_VERSION}.tar.gz && \

cd openmpi-${OMPI_VERSION} && \

./configure --prefix=/workspace/ompi/ompi_install \
--with-cuda=/usr/local/cuda \
--with-cuda-libdir=/usr/local/cuda/targets/x86_64-1linux/1lib/stubs \
--with-verbs \
--with-ucx=/workspace/ucx/ucx_install \
--enable-debug && \

make -j$(nproc) && \

make install

# Install CUDA perftest

RUN wget https://github.com/linux-rdma/perftest/releases/download/25.01.0-0.80/perftest-25.01.0-
0.80.96730e97.tar.gz && \

tar zxf perftest-25.01.0-0.80.96730e97.tar.gz && \

cd perftest-25.01.08/ && \

./autogen.sh && \

./configure CUDA_H_PATH=/usr/local/cuda/include/cuda.h && \
make -j$(nproc) && \

rm -f /workspace/perftest-25.01.0-0.80.96730e97.tar.gz

# Install NCCL tests
RUN git clone https://github.com/NVIDIA/nccl-tests.git && \
cd nccl-tests && \
make MPI=1 NAME_SUFFIX=_mpi MPI_HOME=/workspace/ompi/ompi_install -jS$(nproc) && \
# Create symbolic links for executables only (excluding .o files)
find /workspace/nccl-tests/build -type f -executable -exec 1n -s {} /usr/local/bin/ \;

# Expose SSH port
EXPOSE ${SSH_PORT}

# Start SSH daemon
CMD ["/usr/sbin/sshd", "-D"]

ana re® Technical White Paper | 88

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

StatefulSet for distributed NCCL pods

apiVersion: apps/vi
kind: StatefulSet
metadata:
name: mpi-nccl-cluster
spec:
serviceName: mpi-nccl-svc
replicas: 2 # 2 servers with 8x GPU + 8x IB
selector:
matchlLabels:
app: mpi-nccl
template:
metadata:
labels:
app: mpi-nccl
spec:
dnsPolicy: ClusterFirstWithHostNet
hostNetwork: true # Passthru host interface to pod

hostPID: true # Enable host PID namespace for better networking
hostIPC: true # Enable host IPC namespace
containers:

- name: mpi-node
image: {Your_harbor_repo}/cuda-nccl-mpi:latest
command: ["/bin/bash", "-c", "sleep infinity"]
securityContext:
privileged: true # Required for RDMA and GPU access
volumeMounts:
- name: nvidia-driver
mountPath: /run/nvidia/driver
mountPropagation: HostToContainer
- name: rdma-devices
mountPath: /dev/infiniband
- name: gdr-device
mountPath: /dev/gdrdrv
- name: ib-tools
mountPath: /usr/sbin/ibstat
subPath: ibstat
- name: ib-tools
mountPath: /usr/sbin/ibnetdiscover
subPath: ibnetdiscover
resources:
limits:
nvidia.com/gpu: 8
rdma/rdma_shared_devices_a: 1
rdma/rdma_shared_devices_b: 1
rdma/rdma_shared_devices_c: 1
rdma/rdma_shared_devices_d: 1
rdma/rdma_shared_devices_e: 1
rdma/rdma_shared_devices_f: 1
rdma/rdma_shared_devices_g: 1

ana re® Technical White Paper | 89

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

rdma/rdma_shared_devices_h: 1
ports:
- containerPort: 2222 # SSH ports
volumes:
- name: nvidia-driver
hostPath:
path: /run/nvidia/driver
- name: rdma-devices
hostPath:
path: /dev/infiniband
- name: gdr-device
hostPath:
path: /run/nvidia/driver/dev/gdrdrv
- name: ib-tools
hostPath:
path: /usr/sbin
nodeSelector:
nvidia.com/gpu.present: "true"

Deploy the statefulsets

k apply
k get po -o wide

NAME READY  STATUS RESTARTS AGE IP NODE

NOMINATED NODE  READINESS GATES

mpi-nccl-cluster-0 1/1 Running 0 11m 192.168.145.94 deepseek-test-cluster-gpu-x9d2k-82mqg-
xh2bq <none> <none>

mpi-nccl-cluster-1 1/1 Running 0 11m 192.168.146.119 deepseek-test-cluster-gpu-x9d2k-82mqg-
kh5jm <none> <none>

# Generate ssh-key

ssh-keygen -t rsa

# Set password on 2 pods

passwd

# Allow root login, modify /etc/ssh/sshd_config
echo "PermitRootlLogin yes" >> /etc/ssh/sshd_config

# Startup sshd in each pod

nohup /usr/sbin/sshd -D > /dev/null 2>&1 &

# Copy ssh key to all Pods including itself
ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.146.133
ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.145.109

# Get IP from the two pods
kubectl get po -o wide | tail -n +2 | awk '{print S6, $1}'

echo "192.168.145.111 mpi-nccl-cluster-0
192.168.146.135 mpi-nccl-cluster-1" | tee -a /etc/hosts

echo "192.168.145.111 mpi-nccl-cluster-0

ana re® Technical White Paper | 90

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

192.168.146.135 mpi-nccl-cluster-1" | tee -a ~/.ssh/known_hosts

# Test hostname in each pod
cat /etc/hosts

ping -c¢ 3 mpi-nccl-cluster-0
ping -c¢ 3 mpi-nccl-cluster-1

# Test ssh login functionality on both pods
ssh mpi-nccl-cluster-0 # Then exit
ssh mpi-nccl-cluster-1 # Then exit

Next, we conduct NCCL-all-reduce test on single pods and on 2 pods.

# Interactively
k exec -it mpi-nccl-cluster-0 -- bash
k exec -it mpi-nccl-cluster-1 -- bash

# 1. Single-node NCCL performance test

# nThread 1 nGpus 8 minBytes 8 maxBytes 17179869184 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1
validation: 1 graph: @

#
# Using devices
# Rank © Group © Pid 78123 on pto@1 device © [0000:04:00] NVIDIA H100 80GB HBM3
# Rank 1 Group © Pid 78123 on pto@1 device 1 [0000:06:00] NVIDIA H100 80GB HBM3
# Rank 2 Group © Pid 78123 on pto@1 device 2 [0000:0e:00] NVIDIA H100 80GB HBM3
# Rank 3 Group © Pid 78123 on pto@1 device 3 [0000:10:00] NVIDIA H100 80GB HBM3
# Rank 4 Group © Pid 78123 on pto@1 device 4 [0000:17:00] NVIDIA H100 80GB HBM3
# Rank 5 Group © Pid 78123 on pto@1 device 5 [0000:19:00] NVIDIA H100 80GB HBM3
# Rank 6 Group © Pid 78123 on pto@1 device 6 [0000:21:00] NVIDIA H100 80GB HBM3
# Rank 7 Group © Pid 78123 on pto@1 device 7 [0000:23:00] NVIDIA H100 80GB HBM3
#
# out-of-place in-place
# size count type redop root time algbw busbw #wrong time algbw busbw #wrong
# (B) (elements) (us) (GB/s) (GB/s) (us) (GB/s) (GB/s)
8 2 float sum -1 41.81 0.00 0.00 0 41.62 0.00 0.00 0
16 4 float sum -1 40.53 0.00 0.00 0 40.90 0.00 0.00 0
32 8 float sum -1 41.85 0.00 0.00 0 41.31 0.00 0.00 0
64 16 float sum -1 42.05 0.00 0.00 0 41.42 0.00 0.00 0
128 32 float sum -1 41.16 0.00 0.01 0 41.57 0.00 0.01 0
256 64 float sum -1 41.38 0.01 0.01 0 41.64 0.01 0.01 0
512 128 float sum -1 41.34 0.01 0.02 0 41.92 0.01 0.02 0
1024 256 float sum -1 43 .00 0.02 0.04 0 41.31 0.02 0.04 0
2048 512 float sum -1 41.89 0.05 0.09 0 41.48 0.05 0.09 0
4096 1024 float sum -1 41.46 0.10 0.17 0 41.36 0.10 0.17 0
8192 2048 float sum -1 41.19 0.20 0.35 0 41.57 0.20 0.34 0
16384 4096 float sum -1 41.77 0.39 0.69 0 41.21 0.40 0.70 0
32768 8192 float sum -1 41.60 0.79 1.38 0 42.23 0.78 1.36 0
65536 16384 float sum -1 41.48 1.58 2.76 0 42.29 1.55 2.71 0
131072 32768 float sum -1 42 .89 3.06 5.35 0 43 .49 3.01 5.27 0
262144 65536 float sum -1 43.70 6.00 10.50 0 44 .90 5.84 10.22 0
524288 131072 float sum -1 47 .07 11.14 19.49 0 46.99 11.16 19.53 0

ana re® Technical White Paper | 91

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

1048576 262144 float sum -1 49.65 21.12 36.96 0 47.89 21.90 38.32 0
2097152 524288 float sum -1 46.48  45.12 78.96 0 46.91 44 .71 78.24 0
4194304 1048576 float sum -1 56.45 74.31 130.04 0 55.39 75.72 132.51 0
8388608 2097152 float sum -1 85.45 98.17 171.79 0 84.47 99.31 173.79 0
16777216 4194304 float sum -1 125.8 133.39 233.44 0 125.2 134.05 234.58 0
33554432 8388608 float sum -1 200.9 167.05 292.34 0 201.7 166.35 291.10 0
67108864 16777216 float sum -1 328.3 204.40 357.70 0 328.9 204.85 357.08 0
134217728 33554432 float sum -1 589.5 227.68 398.44 0 590.4 227.33 397.82 0
268435456 67108864 float sum -1 1115.4 240.67 421.17 0 1115.6 240.63 421.10 0
536870912 134217728 float sum -1 2153.9 249.26 436.20 0 2152.8 249.38 436.41 0
1073741824 268435456 float sum -1 4014.0 267.50 468.12 0 4015.6 267.40 467.94 0
2147483648 536870912 float sum -1 7918.9 271.18 474.57 0 7931.8 270.74 473.80 0
4294967296 1073741824 float sum -1 15763 272.48 476.84 0 15779 272.20 476.35 0
8589934592 2147483648 float sum -1 31325 274.22 479.88 0 31288 274.54 480.45 0
17179869184 4294967296 float sum -1 62235 276.05 483.08 0 62311 275.71 482.50 0

# Out of bounds values : @ OK

# Avg bus bandwidth : 155.669

#

Finished command at 2025-05-13 02:52:51
Elapsed time: 39 seconds

# 2-node NCCL performance test
root@mpi-nccl-cluster-1:/workspace#
mpirun -np 16 \
-H mpi-nccl-cluster-0:8,mpi-nccl-cluster-1:8 \
-Xx NCCL_TOPO_FILE=/workspace/vm_topo_8h100_8ib_mod.xml \
--allow-run-as-root \
-x NCCL_DEBUG=VERSION \
--mca pml ucx --mca btl_openib_warn_no_device_params_found @ --mca btl “openib \
--prefix /workspace/ompi/ompi_install \
-x NCCL_SOCKET_IFNAME=eth@ \
-x NCCL_NET_GDR_LEVEL=1 \
-x NCCL_P2P_LEVEL=NVL \
-x NCCL_IB_DISABLE=0 \
-Xx NCCL_IB_HCA=m1lx5_0:1,mlx5_1:1,mlx5_2:1,m1x5_3:1,m1x5_4:1,m1x5_5:1,m1x5_6:1,mIx5_7:1 \
-x NCCL_IB_GID_INDEX=0 \
/workspace/nccl-tests/build/all_reduce_perf_mpi -b 8 -e 16G -f 2 -g 1

# nThread 1 nGpus 1 minBytes 8 maxBytes 17179869184 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1
validation: 1 graph: @

#

# Using devices

# Rank © Group © Pid 254 on mpi-nccl-cluster-1 device © [0000:04:00] NVIDIA H100 86GB HBM3
# Rank 1 Group © Pid 255 on mpi-nccl-cluster-1 device 1 [0000:04:02] NVIDIA H100 86GB HBM3
# Rank 2 Group © Pid 256 on mpi-nccl-cluster-1 device 2 [0000:04:04] NVIDIA H100 86GB HBM3
# Rank 3 Group © Pid 257 on mpi-nccl-cluster-1 device 3 [0000:04:06] NVIDIA H100 80GB HBM3
# Rank 4 Group © Pid 258 on mpi-nccl-cluster-1 device 4 [0000:04:08] NVIDIA H100 86GB HBM3
# Rank 5 Group © Pid 259 on mpi-nccl-cluster-1 device 5 [0000:04:0a] NVIDIA H100 80GB HBM3
# Rank 6 Group © Pid 261 on mpi-nccl-cluster-1 device 6 [0000:04:0c] NVIDIA H100 86GB HBM3
# Rank 7 Group © Pid 263 on mpi-nccl-cluster-1 device 7 [0000:04:0e] NVIDIA H100 80GB HBM3
# Rank 8 Group © Pid 273 on mpi-nccl-cluster-0 device © [0000:04:00] NVIDIA H100 80GB HBM3

ana re® Technical White Paper | 92

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

# Rank 9 Group © Pid 274 on mpi-nccl-cluster-0 device 1 [0000:04:02] NVIDIA H100 86GB HBM3
# Rank 10 Group © Pid 275 on mpi-nccl-cluster-0 device 2 [0000:04:04] NVIDIA H100 86GB HBM3
# Rank 11 Group © Pid 276 on mpi-nccl-cluster-0 device 3 [0000:04:06] NVIDIA H100 86GB HBM3
# Rank 12 Group © Pid 277 on mpi-nccl-cluster-0 device 4 [0000:04:08] NVIDIA H100 80GB HBM3
# Rank 13 Group © Pid 278 on mpi-nccl-cluster-0 device 5 [0000:04:0a] NVIDIA H100 80GB HBM3
# Rank 14 Group © Pid 280 on mpi-nccl-cluster-0 device 6 [0000:04:0c] NVIDIA H100 86GB HBM3
# Rank 15 Group © Pid 282 on mpi-nccl-cluster-0 device 7 [0000:04:0e] NVIDIA H100 80GB HBM3
NCCL version 2.25.1+cuda12.8
#
# out-of-place in-place
# size count type redop root time algbw busbw #wrong time algbw busbw #wrong
# (B) (elements) (us) (GB/s) (GB/s) (us) (GB/s) (GB/s)
8 2 float sum -1 71.30 0.00 0.00 (%] 25.09 0.00 0.00 (%]
16 4 float sum -1 25.19 0.00 0.00 (%] 25.20 0.00 0.00 (%]
32 8 float sum -1 25.55 0.00 0.00 (%] 25.57 0.00 0.00 (%]
64 16 float sum -1 26.87 0.00 0.00 (%] 25.72 0.00 0.00 (%]
128 32 float sum -1 26.37 0.00 0.01 (%] 26.13 0.00 0.01 (%]
256 64 float sum -1 77 .68 0.00 0.01 (%] 26.62 0.01 0.02 (%]
512 128 float sum -1 40.41 0.01 0.02 (%] 27.04 0.02 0.04 (%]
1024 256 float sum -1 30.07 0.03 0.06 (%] 27 .47 0.04 0.07 (%]
2048 512 float sum -1 28.83 0.07 0.13 (%] 28.72 0.07 0.13 (%]
4096 1024 float sum -1 30.86 0.13 0.25 (%] 30.51 0.13 0.25 (%]
8192 2048 float sum -1 36.59 0.22 0.42 (%] 34.73 0.24 0.44 (%]
16384 4096 float sum -1 37.05 0.44 0.83 (%] 35.30 0.46 0.87 (%]
32768 8192 float sum -1 37.90 0.86 1.62 (%] 36.78 0.89 1.67 (%]
65536 16384 float sum -1 38.41 1.71 3.20 (%] 36.55 1.79 3.36 (%]
131072 32768 float sum -1 39.08 3.35 6.29 (%] 37.12 3.53 6.62 (%]
262144 65536 float sum -1 47 .17 5.56 10.42 (%] 46 .48 5.64 10.57 (%]
524288 131072 float sum -1 81.93 6.40 12.00 (%] 70.76 7.41 13.89 (%]
1048576 262144 float sum -1 73.31 14.30 26.82 (%] 73.24 14.32 26.84 (%]
2097152 524288 float sum -1 78.37 26.76 50.17 (%] 77 .47 27 .07 50.76 (%]
4194304 1048576 float sum -1 95.22 44 .05 82.59 (%] 94.78 44 .25 82.97 (%]
8388608 2097152 float sum -1 133.7 62.74 117.63 (%] 132.2 63.45 118.97 (%]
16777216 4194304 float sum -1 187.1 89.68 168.16 (%] 184.5 90.96 170.54 (%]
33554432 8388608 float sum -1 269.0 124.75 233.90 (%] 267.5 125.43 235.17 (%]
67108864 16777216 float sum -1 468.2 143.32 268.73 (%] 465.8 144.06 270.11 (%]
134217728 33554432 float sum -1 744.8 180.21 337.89 (%] 740.5 181.24 339.83 (%]
268435456 67108864 float sum -1 1289.0 208.25 390.47 (%] 1287.5 208.49 390.91 (%]
536870912 134217728 float sum -1 2349.8 228.48 428.39 (%] 2357.6 227.72 426.97 (%]
1073741824 268435456 float sum -1 4469.2 240.25 450.47 (%] 4482 .3 239.55 449.16 (%]
2147483648 536870912 float sum -1 8722.2 246.21 461.64 (%] 8722.1 246.21 461.65 (%]
4294967296 1073741824 float sum -1 17233 249.23 467.31 (%] 17248 249.01 466.89 (%]
8589934592 2147483648 float sum -1 34338 250.16 469.05 (%] 34352 250.06 468.85 (%]
17179869184 4294967296 float sum -1 68599 250.44 469.58 (%] 68550 250.62 469.91 (%]
# Out of bounds values : @ OK
# Avg bus bandwidth : 139.462
# Cleanup

kubectl delete -f test-mpi-statefulsets.yaml

For more information about whether you achieved your expected NCCL performance more 4 or more nodes, refer to
https://github.com/NVIDIA/nccl-tests/issues/309.

ana re® Technical White Paper | 93

by Broadcom


https://github.com/NVIDIA/nccl-tests/issues/309

Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

You should verify the performance from the following key points:

« NCCL version: 2.25.1+CUDA12.8

 Devices: 8 GPUs per node, properly mapped by customized NCCL topology file (vm_topo_8h100_8ib_mod.xml) as shown
Appendix I.

- Expected peak performance (2 nodes): ~470 GB/s with the TREE protocol (idealized case). Two-node NCCL results should
be interpreted with caution, as they often appear artificially high—this is essentially a best-case scenario for the TREE

protocol. In practice, forcing the use of the Ring protocol for 2-node testing provides a more realistic picture of distributed
performance, and aligns better with what can be expected when scaling beyond two nodes.

« Realistic distributed performance: For multi-node scaling (especially with 4+ nodes), NCCL_ALGO=Ring provides more

consistent results. Additional tuning — such as NCCL_MIN_CTAS=24 or NCCL_IB_QPS_PER_CONNECTION=2 — can help

benchmarks approach the InfiniBand line-rate limit of ~392 GB/s. can push benchmarks closer to the InfiniBand line-rate
limit of ~392 GB/s. However, these optimizations also increase GPU compute overhead, which can reduce actual application
performance. We observed this trade-off during real workload testing.

ana re® Technical White Paper | 94

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

. VM customized NCCL topology file

The following NCCL topology file is suited for VMs that have 8x H100 and 8x CX-7 IB HCAs.
I vm_topo_8h106_8ib_mod.xml

<system version="1">
<cpu host_hash="08xabd045be9cccc99" numaid="0" affinity="5555,55555555,55555555, 55555555, 55555555, 55555555, 55555555"
arch="x86_64" vendor="GenuineIntel" familyid="6" modelid="143">

<pci busid="0000:16:00.0" class="0x060400" vendor="0x1000" device="0xc030" subsystem_vendor="0x1028"
subsystem_device="0x2330" link_speed="32.0 GT/s PCIe" link_width="16">
<pci busid="0000:04:00.0" class="0x030200" vendor="0x10de" device="0x2330" subsystem_vendor="0x10de"
subsystem_device="0x16c1" link_speed="32.0 GT/s PCIe" link_width="16">
<gpu dev="0" sm="90" rank="0" gdr="1">
<nvlink target="0000:04:12.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:11.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:10.0" count="4" tclass="0x068000"/>
<nvlink target="0000:04:13.0" count="4" tclass="0x068000"/>
</gpu>
</pci>
<pci busid="0000:04:01.0" class="0x020000" vendor="0x15b3" device="0x1021" subsystem_vendor="0x15b3"
subsystem_device="0x0041" link_speed="32.0 GT/s PCIe" link_width="16">
<nic>
<net name="mlx5_0" dev="0" latency="0" speed="400000" port="1" guid="0x5c24fbB003ae6d94" maxconn="131072"
gdr="1"/>
</nic>
</pci>
</pci>
<pci busid="0000:38:00.0" class="0x060400" vendor="0x1000" device="0xc030" subsystem_vendor="0x1028"
subsystem_device="0x2330" link_speed="32.0 GT/s PCIe" link_width="16">
<pci busid="000004:03.0" class="0x020000" vendor="0x15b3" device="0x1021" subsystem_vendor="0x15b3"
subsystem_device="0x0041" link_speed="32.0 GT/s PCIe" link_width="16">
<nic>
<net name="mlx5_1" dev="1" latency="0" speed="400000" port="1" guid="0x1c24fbB0B3ae6d94" maxconn="131072"
gdr="1"/>
</nic>
</pci>
<pci busid="0000:04:02.0" class="0x030200" vendor="0x10de" device="0x2330" subsystem_vendor="0x10de"
subsystem_device="0x16c1" link_speed="32.0 GT/s PCIe" link_width="16">
<gpu dev="1" sm="90" rank="1" gdr="1">
<nvlink target="0000:04:12.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:11.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:10.0" count="4" tclass="0x068000"/>
<nvlink target="0000:04:13.0" count="4" tclass="0x068000"/>
</gpu>
</pci>
</pci>
<pci busid="0000:49:00.0" class="0x060400" vendor="0x1000" device="0xc030" subsystem_vendor="0x1028"
subsystem_device="0x2331" link_speed="32.0 GT/s PCIe" link_width="16">
<pci busid="0000:04:05.0" class="0x020000" vendor="0x15b3" device="0x1021" subsystem_vendor="0x15b3"
subsystem_device="0x0041" link_speed="32.0 GT/s PCIe" link_width="16">
<nic>
<net name="mlx5_2" dev="2" latency="0" speed="400000" port="1" guid="0x820fbB003ae6d94" maxconn="131072"
gdr="1"/>
</nic>
</pci>

ana re® Technical White Paper | 95

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

<pci busid="0000:04:04.0" class="0x030200" vendor="0x10de" device="0x2330" subsystem_vendor="0x10de"
subsystem_device="0x16c1" link_speed="32.0 GT/s PCIe" link_width="16">
<gpu dev="2" sm="90" rank="2" gdr="1">
<nvlink target="0000:04:12.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:11.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:10.0" count="4" tclass="0x068000"/>
<nvlink target="0000:04:13.0" count="4" tclass="0x068000"/>
</gpu>
</pci>
</pci>
<pci busid="0000:5a:00.0" class="0x060400" vendor="0x1000" device="0xc030" subsystem_vendor="0x1028"
subsystem_device="0x2331" link_speed="32.0 GT/s PCIe" link_width="16">
<pci busid="0000:04:07.0" class="0x020000" vendor="0x15b3" device="0x1021" subsystem_vendor="0x15b3"
subsystem_device="0x0041" link_speed="32.0 GT/s PCIe" link_width="16">
<nic>
<net name="mlx5_3" dev="3" latency="0" speed="400000" port="1" guid="0x3424fbB003ae6d94" maxconn="131072"
gdr="1"/>
</nic>
</pci>
<pci busid="0000:04:06.0" class="0x030200" vendor="0x10de" device="0x2330" subsystem_vendor="0x10de"
subsystem_device="0x16c1" link_speed="32.0 GT/s PCIe" link_width="16">
<gpu dev="3" sm="90" rank="3" gdr="1">
<nvlink target="0000:04:12.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:11.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:10.0" count="4" tclass="0x068000"/>
<nvlink target="0000:04:13.0" count="4" tclass="0x068000"/>
</gpu>
</pci>
</pci>
</cpu>

<cpu host_hash="0xabd@45be9ccccB99" numaid="1" affinity="aaaa,aaaaaaaa,aaaaaaaa,aaaaaaaa,aaaaaaaa,aaaaaaaa,aaaaaaaa
arch="x86_64" vendor="GenuineIntel" familyid="6" modelid="143">
<pci busid="0000:98:00.0" class="0x060400" vendor="0x1000" device="0xc030" subsystem_vendor="0x1028"
subsystem_device="0x2333" link_speed="32.0 GT/s PCIe" link_width="16">
<pci busid="0000:04:09.0" class="0x020000" vendor="0x15b3" device="0x1021" subsystem_vendor="0x15b3"
subsystem_device="0x0041" link_speed="32.0 GT/s PCIe" link_width="16">
<nic>
<net name="mlx5_4" dev="4" latency="0" speed="400000" port="1" guid="0xac22fbB003ae6d94" maxconn="131072"
gdr="1"/>
</nic>
</pci>
<pci busid="0000:04:08.0" class="0x030200" vendor="0x10de" device="0x2330" subsystem_vendor="0x10de"
subsystem_device="0x16c1" link_speed="32.0 GT/s PCIe" link_width="16">
<gpu dev="4" sm="90" rank="4" gdr="1">
<nvlink target="0000:04:12.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:11.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:10.0" count="4" tclass="0x068000"/>
<nvlink target="0000:04:13.0" count="4" tclass="0x068000"/>
</gpu>
</pci>
</pci>
<pci busid="0000:b8:00.0" class="0x060400" vendor="0x1000" device="0xc030" subsystem_vendor="0x1028"
subsystem_device="0x2333" link_speed="32.0 GT/s PCIe" link_width="16">
<pci busid="0000:04:0b.0" class="0x020000" vendor="0x15b3" device="0x1021" subsystem_vendor="0x15b3"
subsystem_device="0x0041" link_speed="32.0 GT/s PCIe" link_width="16">
<nic>

ana re® Technical White Paper | 96

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

<net name="mlx5_5" dev="5" latency="0" speed="400000" port="1" guid="0x5420fbB003ae6d94" maxconn="131072"
gdr="1"/>
</nic>
</pci>
<pci busid="0000:04:0a.0" class="0x030200" vendor="0x10de" device="0x2330" subsystem_vendor="0x10de"
subsystem_device="0x16c1" link_speed="32.0 GT/s PCIe" link_width="16">
<gpu dev="5" sm="90" rank="5" gdr="1">
<nvlink target="0000:04:12.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:11.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:10.0" count="4" tclass="0x068000"/>
<nvlink target="0000:04:13.0" count="4" tclass="0x068000"/>
</gpu>
</pci>
</pci>
<pci busid="0000:c8:00.0" class="0x060400" vendor="0x1000" device="0xc030" subsystem_vendor="0x1028"
subsystem_device="0x2332" link_speed="32.0 GT/s PCIe" link_width="16">
<pci busid="0000:04:0d.0" class="0x020000" vendor="0x15b3" device="0x1021" subsystem_vendor="0x15b3"
subsystem_device="0x0041" link_speed="32.0 GT/s PCIe" link_width="16">
<nic>
<net name="mlx5_6" dev="6" latency="0" speed="400000" port="1" guid="0x6024fbB0B3ae6d94" maxconn="131072"
gdr="1"/>
</nic>
</pci>
<pci busid="0000:04:0c.0" class="0x030200" vendor="0x10de" device="0x2330" subsystem_vendor="0x10de"
subsystem_device="0x16c1" link_speed="32.0 GT/s PCIe" link_width="16">
<gpu dev="6" sm="90" rank="6" gdr="1">
<nvlink target="0000:04:12.08" count="5" tclass="0x0686000"/>
<nvlink target="0000:04:11.08" count="5" tclass="0x0686000"/>
<nvlink target="0000:04:10.0" count="4" tclass="0x068000"/>
<nvlink target="0000:04:13.0" count="4" tclass="0x068000"/>
</gpu>
</pci>
</pci>
<pci busid="0000:d8:00.0" class="0x060400" vendor="0x1000" device="0xc030" subsystem_vendor="0x1028"
subsystem_device="0x2332" link_speed="32.0 GT/s PCIe" link_width="16">
<pci busid="0000:04:0f.0" class="0x020000" vendor="0x15b3" device="0x1021" subsystem_vendor="0x15b3"
subsystem_device="0x0041" link_speed="32.0 GT/s PCIe" link_width="16">

<nic>
<net name="mlx5_7" dev="7" latency="0" speed="400000" port="1" guid="0xbc22fbB003ae6d94" maxconn="131072"
gdr="1"/>
</nic>
</pci>
<pci busid="0000:04:0e.0" class="0x030200" vendor="0x10de" device="0x2330" subsystem_vendor="0x10de"
subsystem_device="0x16c1" link_speed="32.0 GT/s PCIe" link_width="16">
<gpu dev="7" sm="90" rank="7" gdr="1">
<nvlink target="0000:04:12.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:11.08" count="5" tclass="0x068000"/>
<nvlink target="0000:04:10.0" count="4" tclass="0x068000"/>
<nvlink target="0000:04:13.0" count="4" tclass="0x068000"/>
</gpu>
</pci>
</pci>
</cpu>
</system>

ana re® Technical White Paper | 97

by Broadcom



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

J. Terminology

This section provides terminology definitions for terms used in this document.

ACS
BTL
CRD
DLVM
FLB
HA
IOMMU
B

LCI
LCM
LLM
NGC
OOB
RDMA
RoCE
SBDF
TKG Cluster
VCF
vGPU
VIB
VKS

VM
VPC
VCF WLD

vmware

by Broadcom

PCle Access Control Service
Byte Transfer Layer

Custom Resource Definition
Deep Learning Virtual Machines
Foundation Load Balancer

High Availability

Input Output Memory Management Unit

InfiniBand

Local Consumption Interface
Life Cycle Management

Large Language Model

NVIDIA GPU Cloud
Out-Of-Band

Remote Direct Memory Access
RDMA over Converged Ethernet
Segment-Bus-Device-Function
Tanzu Kubernetes Grid Cluster
VMware Cloud Foundation
NVIDIA GRID Virtual GPU (C-Series)
vSphere Installation Bundles
vSphere Kubernetes Service
Virtual Machine

Virtual Private Cloud

VCF Workload Domain

Technical White Paper | 98



Deploy Distributed LLM Inference with GPUDirect RDMA over InfiniBand in VMware Private Al

About the author

Dr. Yuankun Fu is a performance engineer at Broadcom focusing on optimizing Al and HPC performance.

Acknowledgments

The author would like to thank Ramesh Radhakrishnan, Yang Lu, Agustin Malanco, and Chris Wolf from Broadcom’s
VMware Cloud Foundation division for their support in the development of this paper. Appreciation is also extended to Frank
Denneman, Justin Murray, and Chris Gully for their thoughtful review and constructive feedback. A special thanks goes to
Julie Brodeur for her careful editing and formatting contributions.

ana re® Technical White Paper | 99

by Broadcom



vmware

by Broadcom

Copyright © 2025 Broadcom. All rights reserved.

The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. For more information, go to www.broadcom.com. All trademarks, trade
names, service marks, and logos referenced herein belong to their respective companies. Broadcom reserves the right to make changes without
further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be
accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application
or use of any product described herein, neither does it convey any license under its patent rights nor the rights of others.



	Table of contents
	1. Introduction
	2. Leverage HGX servers for maximum performance
	3. GPUDirect RDMA in VCF
	4. Determine the number of HGX servers required for LLMinference
	5. Architecture overview
	6. Deployment workflow
	7. Recommended BIOS and firmware settings
	8. ESX settings
	9. Deploy Service VMs
	10. Deploy distributed LLM inference in VKS
	11. Performance
	12. Conclusion
	13. References
	14. Appendix
	About the author
	Acknowledgments



