Accelerated Apache Spark 3 leveraging GPUs on VMware Cloud

Table of Contents:

Accelerated Apache Spark 3 leveraging GPUs on VMware Cloudc.cccoovvviiiiiiniieie e 1
R 1| 8 oo (3Tt o] o OSSPSR 4
A N o T Uo] 1B o - U SO SR 4
2.1 SPArk 3 adds GPU AWAEIENESSeciuiiiiieiiieiteeitee et e steeataestaesbeesteesbaesseeabeesseeasseesseeasteesseeasseesseeabeeasees 4
2.2 Spark 3 provides enhanced support for Deep LEArNINGcovuuieiirrieieieeieeie e ans 4
2.3 Better KUDErnetes INTEGIatioNco.ooiieiiiiiieie ettt bbb 4
2.4 Spark 3.0 With KUDEIMETES OPEIALON:oiuiiiiiiiiiieiieie ettt bbbt 5
2.5 Accelerated Analytics and Al ON SPArK.........cceiieiieiiiie i 5
2.6 NVIDIA RAPIDS: ...ttt ettt bbbttt bbb bbbt bt e st et b e st b e e b e e b e e e e e e e 6
2.7 New RAPIDS Accelerator for SPark 3.0ccuviiiiiicie et 6
S D €1 = 10 10 1S) 1SS PO PR PSRRI 6
3 Other Components OF TNe SOIUTION ..ot 7
3.1 SPATK HISIOMY SEIVEL: ...ttt bbbttt bbbt bbb s et bbbt bt e e neen 7
3.2 Harbor CoNtaiNer REGISIIY:veieiieieee ettt et e te et e s s e steeneeereesbeeneesneenreeneennes 7
3.3 VMware Cloud FOUNdation WIth TANZUcccveiiiiieiiieiiesce et 7
I 1o (V1T I @o 401 010 1=) USSR 8
35 Building BIOCKS OF the SOIULION:ooiiieiecc e 8
4 Use Case 1: TPC-DS With NVIDIA RAPIDS ..ottt ettt 8
D=7 o] [0V 44 T=T 0 LAY =T oK UTPPOP TR P PPV URUPPROPPO 9
4.1 Installation of Spark operator for KUDEIMETES.........cc.oiiiiiiiicc e 9
4.2 INStall SPArK NISTOTY SEIVETeiieeeii ettt e st e et e e naesreesreeneeareeaeens 9
4.3 Creation of docker image to run tpcds application related taskscccocovveiiiieiieici e, 9
4.4 Build TPC-DS scala diStribution PACKAGEueivieiieiiieiie ettt 10
4.5 Install and CONFIGUIE HAIDOKoiuie et enes 10
4.6 TPC-DS Data gENEIALIONouviiitiitiitiiii ettt bbbt bbbt e e et e bt e bt b e b e bt ese e e e 11
4.7 Configure Kubernetes worker nodes for running GPU applicationsccccoovienineneneniniieeee, 11
4.8 TPC-DS validation tESTINGc.veiveiiieiieiesieee e et s e e se e e st e e sae s e teeaeaneesraeeeeneessaenteaneenneas 12
4.9 TPC-DS RESUILS ...ttt bbbttt et bbb b bt reeneene s 12
5 Use Case 2: Model mortgage data using Spark XGBoost running on Kubernetes with Spark
(@0 1=] 1 (0] T PSPPSR PR PP PR PPPTY 12
5.1 USE CaSE PrerBOUISTIESviteiieieesieteste ettt sttt b bbbt bbb et et e b et b e bt b e e e 13
5.2 Create docker image to run Spark XGBoost application related tasksccccccvvveviveiiiiiiciene e, 13
5.3 Data IeVEraged IN USE CASEvveiveerreiieeiteasiesieesieesieaseesteestesseesseessesseesseesseaseesssesseassesseesseasseaseesseensesneesses 13
5.4 Build Scala distribution jars for Mortgage ML...........cccviiiiiiiiiie e 13
55 ETL conversion of Mortgage data..........cocueiieiiiiie ettt 14
5.6 MOIgAge IML traINING.eiuiiiieieiieieit ettt ettt bbb e bbbt 14
5.7 MOTTGAGE ML TEST ...ttt e 14
G I @0 o] U] o] o SO 15
A Y o] o 1< o T 1 SRRSO 16

S Y o] o 1< o o 1 = TSSOSO OR 18

9

10
11
12
13
14

F AN o] o1 o | PSSO PRSPRSRRTN 19
F AN o] o LT Lo [l I T PSPPSR 20
APPENAIX E. .ot bbb R R Rt b bbbt b et 21
APPENIX . oottt b bRt E et b bbbttt e e 23
N o] 0 1=1 o [SR 24

Appendix H

Apache Spark is a unified analytics engine for large-scale data processing. The recent release of Apache Spark
3.0 includes enhanced support for accelerators like GPUs and for Kubernetes as the scheduler. VMware Cloud
Foundation 4.x supports Kubernetes via Tanzu and provides enhanced accelerator capabilities. VMware Cloud
Foundation can be a great platform for Apache Spark 3 as it supports the new capabilities of GPU acceleration
and Kubernetes. This solution seeks to validate the VVCF platform with Tanzu for Apache Spark 3. NVIDIA
RAPIDS and XGBOOST are important components that are optimized for Apache Spark 3 and our solution will
validate these use cases on the VMware Cloud platform.

Apache Spark is the de facto unified engine for big data processing, data science, machine learning and data
analytics workloads. This year is Spark’s 10-year anniversary as an open source project. Since its initial release
in 2010, Spark has grown to be one of the most active open source projects.

Recently released Apache Spark 3 adds compelling features like adaptive query execution; dynamic partition
pruning; ANSI SQL compliance; significant improvements in pandas APIs; new Ul for structured streaming; up
to 40x speedups for calling R user-defined functions; accelerator-aware scheduler; and SQL reference
documentation.

GPUs and other accelerators are widely used for accelerating specialized workloads like deep learning and HPC
applications. While Apache Spark is used to process large datasets and complex data scenarios like streaming,
GPUs that are needed for machine learning by data scientists were not supported until recently. Spark did not
have awareness of GPUs exposed to it and was not able to request GPUs and schedule them for users causing a
critical gap for the unification of big data and Al workloads.

Spark 3 bridges the gap between Big Data and Al workloads by

e Updating cluster managers to include GPU support and exposing user interfaces to allow for GPU
requests

o Updating the scheduler to understand availability of GPUs that are allocated to executors, user task
requests, and assign GPUs to tasks properly.

Deep Learning on Spark was possible in earlier versions, but Spark MLIib was not focused on Deep Learning,
its algorithms and didn't offer much support for image processing. Hybrid projects like TensorFlowOnSpark,
MMLSpark, etc. made it possible but using them presented significant challenges. Spark 3.0 handles the above
challenges much better with its added support for accelerators from NVIDIA, AMD, Intel, etc. In Spark 3.0
vectorized UDFs can leverage GPUs for acceleration.

Spark support for Kubernetes was rudimentary in the 2.x version as it was difficult to use in production. Its
performance was lacking when compared to that of the YARN cluster manager. Spark 3.0 introduces the new
shuffle service for Spark on Kubernetes that allows dynamic scale up and down of Spark executors in
Kubernetes.

ssand + &

kubernetes

Figure 1: GPU accelerated GPU Accelerated Apache Spark 3

Spark 3.0 also supports GPUs with Kubernetes providing for pod level isolation of executors, making
scheduling flexible on a GPU enabled cluster.

2.4 Spark 3.0 with Kubernetes operator:

The Kubernetes Operator for Apache Spark makes running Spark applications as easy and seamless as running
other workloads on Kubernetes. The Kubernetes Operator for Apache Spark ships with a command-line tool
called sparkct1 that offers additional features beyond what xubect1 is able to do. It uses Kubernetes custom
resources for specifying, running, and surfacing the status of Spark applications.

2.5 Accelerated Analytics and Al on Spark

Spark 3.0 marks a key milestone for analytics and Al, as ETL operations are now accelerated while ML and DL
applications leverage the same GPU infrastructure. The complete stack for this accelerated data science pipeline
is shown below. The use cases for this solution will leverage RAPIDS and XGBoost in this stack to validate the
capabilities of VMware Cloud Foundation.

DISTRIBUTED, SCALE-OUT DATA SCIENCE AND Al APPLICATIONS

END-TO-END APACHE SPARK 3.0 PIPELINE
ACCELERATED APACHE SPARK COMPONENTS ACCELERATED ML/DL FRAMEWORKS

Spark SQL DataFrames XGBoost TensorFlow

PyTorch Horovod

RAPIDS Accelerator for Apache Spark

GPU-ACCELERATED INFRASTRUCTURE

Figure 2: GPU accelerated GPU Accelerated Apache Spark 3. (Source: GPU Accelerated Apache Spark)

https://github.com/apache/spark
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://www.nvidia.com/en-us/deep-learning-ai/solutions/data-science/apache-spark-3/

2.6 NVIDIA RAPIDS:

The RAPIDS suite of software libraries, built on CUDA-X Al, gives you the freedom to execute end-to-end
data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level
compute optimization but exposes that GPU parallelism and high-bandwidth memory speed through user-
friendly Python interfaces. RAPIDS also focuses on common data preparation tasks for analytics and data
science. This includes a familiar DataFrame API that integrates with a variety of machine learning algorithms
for end-to-end pipeline accelerations without paying typical serialization costs. RAPIDS also includes support
for multi-node, multi-GPU deployments, enabling vastly accelerated processing and training on much larger
dataset sizes.

2.7 New RAPIDS Accelerator for Spark 3.0

NVIDIA CUDA® s a revolutionary parallel computing architecture that supports accelerating computational
operations on the NVIDIA GPU architecture. NVIDIA has created a RAPIDS Accelerator for Spark 3.0 that
intercepts and accelerates ETL pipelines by dramatically improving the performance of Spark SQL and
DataFrame operations.

RAPIDS offers a powerful GPU DataFrame based on Apache Arrow data structures. Arrow specifies a
standardized, language-independent, columnar memory format, optimized for data locality, to accelerate
analytical processing performance on modern CPUs or GPUs. With the GPU DataFrame, batches of column
values from multiple records take advantage of modern GPU designs and accelerate reading, queries, and
writing. (Additional details at Acceleration Apache Spark with GPUSs)

2.8 XGBOOST:

XGBoost is a well-known gradient boosted decision trees (GBDT) machine learning package used to tackle
regression, classification, and ranking problems. It’s written in C++ and NVIDIA CUDA® with wrappers for
Python, R, Java, Julia, and several other popular languages. XGBoost now includes seamless, drop-in GPU
acceleration, which significantly speeds up model training and improves accuracy for better predictions.

Spark 3.0

P O U USRS R S SIS Ui U S .

Data Preparation Model Training

< ,,g _ XGBoost | TensorFlow E
: Ceyroen K

GPU Powered Cluster

Spark Orchestrated

Data
Sources

Figure 3: XGBOOST for GPU powered Apache Spark 3 (Source: GPU Accelerated Apache Spark)

https://developer.nvidia.com/machine-learning
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/blog/accelerating-apache-spark-3-0-with-gpus-and-rapids/
https://www.nvidia.com/en-us/deep-learning-ai/solutions/data-science/apache-spark-3/

3 Other Components of the Solution:

3.1 Spark History server:

The Spark History Server is a User Interface that is used to monitor the metrics and performance of the
completed Spark applications. This is where Spark history Server comes into the picture, where it keeps the
history (event logs) of all completed applications and its runtime information which allows you to review
metrics and monitor the application later in time. History metrics are very helpful when you are trying to
improve the performance of the application where you can compare the previous runs metrics with the latest
run.

3.2 Harbor Container Registry:

Harbor is an open source trusted cloud native registry project that stores, signs, and scans content. Harbor
secures artifacts with policies and role-based access control, ensures images are scanned and free from
vulnerabilities, and signs images as trusted. Harbor extends the open source Docker Distribution by adding the
functionalities usually required by users such as security, identity and management. Having a registry closer to
the build and run environment can improve the image transfer efficiency. Harbor supports replication of images
between registries, and also offers advanced security features such as user management, access control and
activity auditing. Harbor is a CNCF Graduated project that securely manage artifacts across cloud native
compute platforms like Kubernetes and Docker.

3.3 VMware Cloud Foundation with Tanzu

VMware Cloud Foundation with Tanzu delivers hyper-speed Kubernetes that provides agility, flexibility and
security for modern apps. VMware Tanzu delivers the infrastructure, and services to meet changing business
needs to rapidly deploy new applications. VCF provides consistent infrastructure and operations with cloud
agility, scale and simplicity.

VMware Cloud Foundation

VMware Cloud Foundation Services
Developer Runtime Services Automation Services Infrastructure Services

07\‘_[13 Pipeline EI;);d
Tanzu Kubernetes vCenter

Grid Service Server

@Template Gool Custom ﬁl‘\'eglstry QNetwork

e‘
= = P < Eﬁ

vSphere NSX-T VvSAN vRealize

o
<
=
(%)
L
24
o3
wn
(]
-
(]
£
[}
Q
3
N

[Dirirkic Security & Lifecycle Automation l IT Admin

[|

Figure 4: VMware Cloud Foundation with Tanzu

VMware Cloud Foundation with Tanzu is a Hybrid Cloud Platform that accelerates development of modern
applications that automates the deployment and lifecycle management of complex Kubernetes environments.

https://sparkbyexamples.com/spark/spark-sql-performance-tuning-configurations/

- IT admins have complete visibility and control of virtualized compute, network and storage
infrastructure resources through VCF.

- Software defined compute, storage and networking with vSphere, NSX-T and vSAN/VVOL provides
ease of deployment and automation.

- Developers have frictionless access to Kubernetes environments and infrastructure resources through
VCEF Services.

- VMware Cloud Foundation provides runtime services automation services and infrastructure Services,
all delivered via Kubernetes and RESTful APIs

3.4 Solution Components:
There are two distinct use cases that were deployed and validated in the solution. These include
1. TPC-DS with NVIDIA RAPIDS
» Execute TPC-DS queries using Spark operator on Tanzu Kubernetes Cluster(TKG) and
incorporating NVIDIA GPUs
» Validate Spark Performance with Tanzu and NVIDIA GPU leveraging RAPIDS

2. Machine Learning with XGBOOST

» Machine learning mortgage data using Spark operator with XGBOOST on Tanzu Kubernetes
Cluster (TKG) incorporating NVIDIA GPUs

3.5 Building Blocks of the solution:

Function Components

Figure 5: HW and Software components of the solutions

4 Use Case 1: TPC-DS with NVIDIA RAPIDS

NVIDIA RAPIDS:

RAPIDS offers a powerful GPU DataFrame based on Apache Arrow data structures. Arrow specifies a
standardized, language-independent, columnar memory format, optimized for data locality, to accelerate
analytical processing performance on modern CPUs or GPUs. With the GPU DataFrame, batches of column
values from multiple records take advantage of modern GPU designs and accelerate reading, queries, and
writing.

See https://developer.nvidia.com/blog/accelerating-apache-spark-3-0-with-gpus-and-rapids/ for more details.

In this use case NVIDIA RAPIDS is run with Apache Spark 3 and validated with a subset of TPC-DS queries.
Spark and other components needed for the solution are deployed. Approximately 1TB of data is generated to
run TPC-DS against. A subset of TPC-DS queries are then executed with CPU only followed by GPU based
acceleration and compared.

Spark operator for Kubernetes was installed using the steps in the Quick Start Guide

e The configuration, --set enableWebhook=true Was used during installation of the operator in order
for volume mounts to work in a spark operator application.

e A helm repository is then added:
O helm repo add incubator https://charts.helm.sh/incubator --force-update

e Then spark-operator is installed. Webhook parameter needs to be set to true for the volume mounts to
work. Note that in our case, we had given the operator a name: sparkoperator-ssgash

O helm install sparkoperator-ssgash incubator/sparkoperator --namespace spark-
operator --create-namespace --set sparkJobNamespace=default --set
enableWebhook=true

e Then cluster role binding was created as follows:
o kubectl create clusterrolebinding add-on-cluster-admin --clusterrole=cluster-
admin --serviceaccount=kube-system:default

Spark operator official documentation was used for the deployment in addition to the Spark Operator user
guide.

Spark History server is used to view the logs of either already finished or currently running Spark applications.
The Spark history server where the logs will be stored on a PVVC which is NFS based was deployed based on
this configuration guide

Created a custom docker image based on nvidia/cuda:10.2-devel-ubuntul8.04
that incorporates the following versions of dependency software:
- CUDA (10.2)

https://developer.nvidia.com/blog/accelerating-apache-spark-3-0-with-gpus-and-rapids/
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/docs/quick-start-guide.md
https://charts.helm.sh/incubator
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/tree/master/docs
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/docs/user-guide.md
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/docs/user-guide.md
https://github.com/helm/cots/tree/master/stable/spark-history-server#configurations

- UCX(1.8.1)
- spark v3.0.1
- CUDFv0.14
- Spark RAPIDS v2.12
- a GPU resources script that is needed by spark to make it discover and run tasks on GPUs

Apart from these, installed Java 1,8 SDK, Python 2 and 3 in the customer docker image.
Note that this combination of software was arrived at based on the Dockerfile contents mentioned in the

following refernce document:
https://docs.mellanox.com/pages/releaseview.action?pageld=25152352

The Dockerfile that we used for running tpcds on Kubernetes using spark operator is provided in Appendix A.

Build TPC-DS scala distribution along with the dependencies as specified in
https://github.com/NVIDIA/spark-rapids/blob/branch-0.3/docs/benchmarks.md

To run TPC/mortgage related applications with spark-rapids, we need this file:
rapids-4-spark-integration-tests 2.12-0.3.0-SNAPSHOT-jar-with-dependencies.jar

For building this application jar related to integration_test in spark/rapids, | referred to:
https://docs.mellanox.com/pages/releaseview.action?pageld=28938181 (slight variation - we used the branch
branch-0.3). To be more specifric, search for "To download RAPIDS plugin for Apache Spark" to reach the
appropriate section.

In our tpcds related applications, we used the jar file that was built with dependencies.

Installed and configured Harbor on a local server so that the custom docker images can be stored locally.
Completed harbor install by following directions from the official site.

A screenshot of the harbor dashboard is shown below.

https://docs.mellanox.com/pages/releaseview.action?pageId=25152352
https://github.com/NVIDIA/spark-rapids/blob/branch-0.3/docs/benchmarks.md
https://docs.mellanox.com/pages/releaseview.action?pageId=28938181
https://goharbor.io/docs/2.1.0/install-config/download-installer/

@ Harbor @ English ~ & admin ~

«

Projects

EVENT

épérk3—tpcds

Repositories

Logs

o Administration v

Figure 6: Harbor Repository used as image repository

TPC-DS data was generated as per procedure in the TPC-DS site.
The data was generated using default options for delimiter ('|') for csv file:

./dsdgen -DIR /sparknfs/sparkdata/gen data/1000scale -SCALE 1000

The above command generates a 1TB dataset for running TPC-DS queries. This 1TB TPC-DS dataset was
converted to parquet format using spark application. Note that you must configure spark-local-dir to have more
capacity so that the conversion job doesn't run out of space for storing intermediate files.

Important note: The converted data directories had a '.dat' suffix that needed to be dropped by renaming them in
order for the queries to run later.

The yaml file used to convert to parquet format is given in Appendix B.

Installed additional software on all kubernetes nodes as well as a kubernetes plugin to enable the cluster to run
GPU applications, namely:

¢ nvidia-docker installation and configuration (in each node)
e nvidia-device-plugin (on the cluster)

Here’s a screenshot showing nvidia device plugin in a Running state on all the worker nodes:

Figure 7: NVIDIA GPU being used across different systems in the worker nodes

http://www.tpc.org/tpcds/

In this exercise we ran a select set of TPC-DS queries (chosen based on run times) in both CPU mode and GPU
mode. The GPU mode uses the RAPIDS accelerator and Unified Communication X (UCX). UCX provides an
optimized communication layer for Message Passing (MP1), PGAS/OpenSHMEM libraries and RPC/data-
centric applications. UCX utilizes high-speed networks for inter-node communication, and shared memory
mechanisms for efficient intra-node communication.

In the CPU mode we used AQE ("adaptive query execution™). This is done by setting spark configuration
"spark.sqgl.adaptive.enabled": "true" asshown in AQE to speed up Spark SQL at runtime)

Currently GPU runs cannot be run with AQE ("adaptive query execution™) enabled. In both the CPU and GPU
cases, we ran a spark application that used one driver and 8 executors.

TPC-DS queries were run using 1TB TPC-DS data that was converted to parquet format.

The comparative runtimes of these queries are shown in the table below:

GPU CPU
TPC-DS Query Duration Duration

q98 1.7 min 1.4 min
q73 1.2 min 1.1 min
q68 1.9 min 2.1 min
q64 6.8 min 22 min
q63 1.3 min 1.2 min
q55 1.3 min 1.3 min
q52 1.3 min 1.4 min
ql0 1.5 min 1.4 min
q7 1.6 min 1.5 min
q6 1.6 min 6.8 min
a5 3.0 min 4.7 min
q4 11 min 13 min

Figure 8: Runtime comparison of select TPC-DS queries between CPUs and GPUs

The results show that for longer running transactions in many cases that the GPUs accelerate performance. As
we can see, GPU makes a significant improvement for the queries g6 and q64 and makes a noticeable
improvement for the queries g4 and g5. The remaining queries which have shorter duration, CPU and GPU run
with almost similar times.

In this use case we use an example mortgage applications to demonstrate the RAPIDS.ai GPU-accelerated
XGBoost-Spark project. Further details of the Spark XGBoost examples are described in the following page:

https://www.mpi-forum.org/
http://www.pgas.org/
http://www.openshmem.org/
https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html

https://github.com/NVIDIA/spark-xgboost-examples

This repo provides docs and example applications that demonstrate the RAPIDS.ai GPU-accelerated XGBoost-
Spark project. The scala programs in this reference were used for the solution. The Mortgage data from the link
provided on this page are used for the validation.

e Apache Spark 3.0+ (e.g.: Spark 3.0)
e Hardware Requirements
o NVIDIA Pascal™ GPU architecture or better
o Multi-node clusters with homogenous GPU configuration
o Software Requirements
o Ubuntu 16.04/CentOS7
o CUDA V10.1/10.2)
o NVIDIA driver compatible with your CUDA
o NCCL24.7
o Kubernetes 1.6+ cluster with NVIDIA GPUs
o See official Spark on Kubernetes instructions for detailed spark-specific cluster requirements
e kubectl installed and configured in the job submission environment
o Required for managing jobs and retrieving logs

Created a custom docker image based on nvidia/cuda:10.2-devel-ubuntul8.04 with XGBoost libraries.
This article was used as a reference for creation of XGBoost image using Docker and was very useful in order
to get the XGBoost libraries.

An example mortgage application was used to demonstrate the efficacy of XGBOOST leveraging GPUs with
Apache Spark and Kubernetes. The Mortgage data was downloaded from this location and data for the years
2000 and 2001 was used in our deployment. Dataset is derived from Fannie Mae’s Single-Family Loan
Performance Data.

Fannie Mae provides loan performance data on a portion of its single-family mortgage loans to promote better
understanding of the credit performance of Fannie Mae mortgage loans. The population includes two datasets.
The Single-Family Fixed Rate Mortgage (primary) dataset contains a subset of Fannie Mae’s 30-year and less,
fully amortizing, full documentation, single-family, conventional fixed-rate mortgages. The HARP dataset
contains approximately one million 30-year fixed rate mortgage loans that are in the primary dataset that were
acquired by Fannie Mae from January 1, 2000 through September 30, 2015 and then subsequently refinanced
into a fixed rate mortgage through HARP from April 1, 2009 through September 30, 2016.

We followed the instructions to build Scala distribution jar file for Mortgage ML programs that use XGBoost
libraries as given in the Maven Build instructions XGBoost scala code for mortgage.

https://github.com/NVIDIA/spark-xgboost-examples
https://docs.nvidia.com/datacenter/kubernetes/index.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html#prerequisites
https://kb.brightcomputing.com/knowledge-base/how-do-i-create-docker-images-to-use-nvidia-gpus-with-spark-and-xgboost-via-rapids/
https://rapidsai.github.io/demos/datasets/mortgage-data
http://www.fanniemae.com/portal/funding-the-market/data/loan-performance-data.html
http://www.fanniemae.com/portal/funding-the-market/data/loan-performance-data.html
https://github.com/NVIDIA/spark-xgboost-examples/blob/spark-3/getting-started-guides/building-sample-apps/scala.md

Before running ML training on the mortgage data, the data had to be converted using ETL programs. The
process described in this guide was used to convert the raw mortgage data to a format compatible with that of
the ML program. Some trial and error was used to get the right set of arguments for the Scala version of the
ETL program.

The relative sizes of the data before and after ETL conversion of mortgage data corresponding to the year 2000
are shown. The directory “/sparknfs/sparkdata/mortgage-data/m2000/parque out/data/”
contains the output of ETL program in parquet format as shown in the figure below.

Figure 9: ETL Data output in Parquet format

XGBoost was leveraged to run ML training on 1 year's mortgage data. As the results below in the Spark history
server shows the GPU run was much faster than CPU run.

e CPU took 33 minutes to do training.

e GPU completed training in just under 2 minutes.

sgaiks ., History Server

Event log directory: file:/data//
Last updated: 2021-02-11 23:49:33

Client local time zone: America/Los_Angeles

Show 20 w | entries Search

App ID App Name Started Completed Duration Spark User Last Updated Event Log

spark-42e4d5a2644d4d778a61319cae79117d Mortgage-GPU-parquet 2021-02-11 23:47:33 2021-02-11 23:49:25 1.9 min root 2021-02-11 23:49:25 Download

| owroad |
spark-df2eaac865164c0097b51bdi06256699 Mortgage-CPU-parquet 2021-02-11 23:06:20 2021-02-11 23:39:44 33 min root 2021-02-11 23:39:44 Download

Figure 10: XGBoost runtime comparison between CPUs and GPUs on Spark History Server

The results clearly show the massive 16X acceleration on GPU training runs with XGBoost versus CPU.

As is customary in testing, a small portion of the data not used in the training was used as the test data. We
created "test" data with one quarter's mortgage data (Q1-2001) using ETL to prepare the data. Then we tested
the model created in the training run in the previous step.

The results below shows that the trained model is efficacious with a 98% accuracy on the sample that we used:

==> Benchmark: Accuracy for [Mortgage GPU Accuracy parquet stub Unknown Unknown Unknown] :
0.9873203857439782

https://github.com/NVIDIA/spark-xgboost-examples/blob/spark-3/getting-started-guides/on-prem-cluster/standalone-scala.md#launch-mortgage-etl

We successfully deployed GPU accelerated Apache Spark 3 on VMware Tanzu Kubernetes Grid in this
solution. The solution effectively demonstrated that

* VMware Cloud Foundation is a great platform for Apache Spark 3

* VMware support for GPUs and Kubernetes can be effectively used with Apache Spark 3

« TPC-DS with NVIDIA RAPIDS and GPUs were effectively showcased in the solution

* NVIDIA GPUs were used with Kubernetes for Machine Learning with XGBoost

This is the listing of the Dockerfile used to create image to run TPC-DS
related spark applications with spark-rapids.

Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with

this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with

the License. You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

See the License for the specific language governing permissions and
limitations under the License.

#

#.
ARG CUDA_VER=10.2
ARG spark_uid=185

1.

ks

Use this base image
FROM nvidia/cuda:${CUDA_VER}-devel-ubuntu18.04

#.
Set MOFED version, OS version and platform
#.

ENV MOFED_VER 5.0-2.1.8.0

ENV OS_VER ubuntu18.04

ENV PLATFORM x86_64

ENV DEBIAN_FRONTEND=noninteractive

#

Set Unified Communication X {UCX) version, OS, MOFED and CUDA
versions

#
ENV UCX_VER v1.8.1
ENV OS_VER ubuntu18.04
ENV MOFED mofed5.0
ENV CUDA 10.2

H#
Set Spark, Hadoop, cuDF and RAPIDS versions
H#.

ENV SPARK_VER 3.0.1

ENV HADOOP_VER 2.7

ENV CUDF_VER 0.14

ENV RAPIDS_VER 0.1.0

ENV RAPIDS 4

ENV SPARK_RAPIDS spark_2.12
ENV CUDA_RAPIDS cuda10-2

#
Install dependencies
#

RUN apt-get update \

&& apt install -y git wget apt-utils scala libnuma1 udev libudev1 libcap2
dpatch libnl-3-200 gfortran automake Isof ethtool chrpath libmnlO pkg-config
m4 libnl-route-3-200 autoconf debhelper swig bison libltdl-dev kmod tcl libnl-
route-3-dev piutils tk autotools-dev flex libnl-3-dev graphviz libgfortran4
iproute2 iputils-ping \

&& rm -If /var/lib/apt/lists/ && rm -rf /root/.cache && rm -rf var/cache/apt/*

RUN In -fs /usr/share/zoneinfo/America/New_York /etc/localtime
RUN dpkg-reconfigure --frontend noninteractive tzdata

#
*

Install java dependencies
#

RUN apt-get update |
&& apt install -y --no-install-recommends openjdk-8-jdk openjdk-8-jre \
&& rm -f var/lib/apt/lists/ && rm -rf /root/.cache && rm -If /var/cache/apt/*

ENV JAVA_HOME /usr/lib/jvm/java-1.8.0-openjdk-amd64
ENV PATH $PATH:/usr/lib/jvm/java-1.8.0-openjdk-
amd64/jre/bin:/usr/lib/jvm/java-1.8.0-openjdk-amd64/bin

#

Install python 2 and python 3
Install numpy and pandas for XGBoost python api tests
#

RUN mkdir -p /opt/spark/python
RUN apt-get update \
&& apt install -y python python-pip \
&& apt install -y python3 python3-pip |
&& pip install --upgrade pip \
&& pip3 install --upgrade pip \
&& pip install numpy pandas \
&& pip3 install numpy pandas \
We remove ensurepip since it adds no functionality since pip is
installed on the image and it just takes up 1.6MB on the image
&& rm -r Jusr/lib/python*/ensurepip \
&& pip install --upgrade pip setuptools \
You may install with python3 packages by using pip3.6
Removed the .cache to save space
&& rm -f var/lib/apt/lists/ && rm -rf /root/.cache && rm -If /var/cache/apt/*

#

MOFED install
#
ENV OFED_FQN MLNX_OFED_LINUX-${MOFED_VER}-${OS_VER}-
${PLATFORM}

RUN wget --quiet http//content.mellanox.com/ofed/MLNX OFED-
$MOFED VERY${OFED FQNj}.tgz && \

tar -xf ${OFED_FQN}.tgz && \

${OFED_FQN}/minxofedinstall --user-space-only --without-fw-update -q
RUNcd .. &&\

rm -rf {MOFED_DIR} && |

rm -rf {9z

#

UCX install
#

RUN wget
https://qithub.com/openucx/ucx/releases/download/${UCX_VER}ucx-
${UCX_VER}-3{0S VER}-${MOFED}-cuda${CUDA}.deb &&\

dpkg -i ucx-${UCX_VER}-${0S_VER}-${MOFED}-cuda${CUDA}.deb

#

Before building the docker image, first build and make a Spark distribution
following

the instructions in http:/spark.apache.org/docs/latest/building-spark.html.

If this docker file is being used in the context of building your images from a
Spark

distribution, the docker build command should be invoked from the top
level directory

of the Spark distribution. E.g.:

docker build -t spark:latest -f kubernetes/dockerfiles/spark/Dockerfile .

#

s

RUN set -ex &&\

In-s /lib lib64 && \

mkdir -p /opt/spark && \

mkdir -p /opt/spark/jars && \

mkdir -p /opt/tpch && \

mkdir -p /opt/spark/examples && \
mkdir -p /opt/spark/work-dir && \
mkdir -p /opt/sparkRapidsPlugin && \
touch /opt/spark/RELEASE && |

http://www.apache.org/licenses/LICENSE-2.0
http://content.mellanox.com/ofed/MLNX_OFED-$%7BMOFED_VER%7D/$%7BOFED_FQN%7D.tgz
http://content.mellanox.com/ofed/MLNX_OFED-$%7BMOFED_VER%7D/$%7BOFED_FQN%7D.tgz
https://github.com/openucx/ucx/releases/download/$%7BUCX_VER%7D/ucx-$%7BUCX_VER%7D-$%7BOS_VER%7D-$%7BMOFED%7D-cuda$%7BCUDA%7D.deb
https://github.com/openucx/ucx/releases/download/$%7BUCX_VER%7D/ucx-$%7BUCX_VER%7D-$%7BOS_VER%7D-$%7BMOFED%7D-cuda$%7BCUDA%7D.deb
http://spark.apache.org/docs/latest/building-spark.html

rm /bin/sh && \

In -sv /bin/bash /bin/sh && \

echo "auth required pam_wheel.so use_uid" >> /etc/pam.d/su && \
chgrp root /etc/passwd && chmod ug+rw /etc/passwd

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/jars
/opt/spark/jars

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/bin
/Jopt/spark/bin

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/sbin
/opt/spark/shin

COPY spark-${SPARK_VER}-bin-
hadoop${HADOOP_VER}/kubernetes/dockerfiles/spark/entrypoint.sh /opt/
COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VERY}/examples
/opt/spark/examples

COPY spark-${SPARK_VER}-bin-
hadoop${HADOOP_VER}/kubernetes/tests /opt/spark/tests

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/data
/opt/spark/data

#

To run TPC/mortgage related applications with spark-rapids, need this file:
rapids-4-spark-integration-tests_2.12-0.3.0-SNAPSHOT-jar-with-
dependencies.jar

This file was created using a docker image that ran the base image,
"nvidia/cuda:10.2-devel-ubuntu18.04"

where we added all non GPU pieces needed to this as per that Dockerfile
and then did a mvn build

as given in
https.//docs.mellanox.com/pages/releaseview.action?pageld=28938181
(slight variation -

we used the branch branch-0.3)

#The following file is the jar file that contains even the dependencies.

COPY jars/rapids-4-spark-integration-tests_2. 12-0.3.0-SNAPSHOT-jar-with-
dependencies.jar /opt/sparkRapidsPlugin

#

Download RAPIDS Spark, cuDF Packages and a get GPU resources script
RUN cd /opt/sparkRapidsPlugin && \

wget https://repo1.maven.org/maven2/com/nvidia/rapids-${RAPIDS}-
${SPARK RAPIDSY${RAPIDS VER}/rapids-${RAPIDS}-
${SPARK_RAPIDS}-${RAPIDS VERLjar && \

wget https://repo1.maven.org/mavenZ2/ai/rapids/cudf/${CUDF VER}/cudf-
${CUDF_VER}-${CUDA_RAPIDS}.jar && \

wget
https.//raw.githubusercontent.com/apache/spark/master/examples/src/main/s
cripts/getGpusResources.sh

Created the following file, getSRIOVResources.sh, as given in
https.//docs.mellanox.com/pages/releaseview.action?pageld=25152352
COPY jars/getSRIOVResources.sh
/Jopt/sparkRapidsPlugin/getSRIOVResources.sh

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/python/pyspark
/opt/spark/python/pyspark

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VERY}/python/lib
/Jopt/spark/python/lib

ENV SPARK_HOME /opt/spark
WORKDIR /opt/spark/work-dir
RUN chmod g+w /opt/spark/work-dir

#
Use tini
#

T

ENV TINI_VERSION v0.18.0

ADD https://qithub.com/krallin/tini/releases/download/${TINI_VERSION}ini
Jusr/binftini

RUN chmod +rx /usr/bin/tini

RUN chmod -R 777 /opt/sparkRapidsPlugin

ENTRYPOINT ["/opt/entrypoint.sh"]

#

Specify the User that the actual main process will run as
USER ${spark_uid}

#
#

https://docs.mellanox.com/pages/releaseview.action?pageId=28938181
https://repo1.maven.org/maven2/com/nvidia/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D/$%7BRAPIDS_VER%7D/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D-$%7BRAPIDS_VER%7D.jar
https://repo1.maven.org/maven2/com/nvidia/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D/$%7BRAPIDS_VER%7D/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D-$%7BRAPIDS_VER%7D.jar
https://repo1.maven.org/maven2/com/nvidia/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D/$%7BRAPIDS_VER%7D/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D-$%7BRAPIDS_VER%7D.jar
https://repo1.maven.org/maven2/ai/rapids/cudf/$%7BCUDF_VER%7D/cudf-$%7BCUDF_VER%7D-$%7BCUDA_RAPIDS%7D.jar
https://repo1.maven.org/maven2/ai/rapids/cudf/$%7BCUDF_VER%7D/cudf-$%7BCUDF_VER%7D-$%7BCUDA_RAPIDS%7D.jar
https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scripts/getGpusResources.sh
https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scripts/getGpusResources.sh
https://docs.mellanox.com/pages/releaseview.action?pageId=25152352
https://github.com/krallin/tini/releases/download/$%7BTINI_VERSION%7D/tini%20/usr/bin/tini
https://github.com/krallin/tini/releases/download/$%7BTINI_VERSION%7D/tini%20/usr/bin/tini

This is the yaml used to run tpcds data conversion to parquet format.

#
Copyright 2017 Google LLC
#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

hitps://Iwww.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

See the License for the specific language governing permissions and
limitations under the License.

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication

metadata:
name: spark-convert
namespace: default
spec:
type: Scala
mode: cluster
image: "sc2k8cl2.vslab.local/spark3-tpcds/spark_v3_0_1_ubuntu_18_04"
imagePullPolicy: IfNotPresent
#
mainClass: com.nvidia.spark.rapids.tests.tpcds.ConvertFiles
mainApplicationFile: "local:///gpu_data/miperf-data/sparkdata/jars/rapids-4-
spark-integration-tests_2.12-0.3.0-SNAPSHOT-jar-with-dependencies jar"
arguments: ["--input", "/sparknfs/sparkdata/gen_data/1000scale", "--output",
"Isparknfs/sparkdata/gen_data/1000scale_parq", "--output-format", "parquet”,
"--coalesce", "customer_address=1", "--repartition", "web_sales=256",
"inventory=128"]
sparkVersion: "3.0.0"
restartPolicy:
type: Never
volumes:
- name: "sparkcode"
nfs:
server: "172.16.35.40"
path: "/GPU_DB"
readOnly: false
- name; "sparkdata"
nfs:
server: "172.16.35.60"
path: "/SPARKNFS01"
readOnly: false
- name: "pvc-storage”
persistentVolumeClaim:
claimName: nfs
- name: "spark-local-dir-1"
hostPath:
path: "/tmp/spark-local-dir"
sparkConf:
Enable to store the event log
"spark.eventLog.enabled": "true"
#Location where to store event log - match the pvc
"spark.eventLog.dir"; "file:/mnt"
#
Restart policies (if | did not specify this, it kept trying executors 500+
times and exceeded the limits for image-pull).
restartPolicy:
type: Never
driver:
cores: 1
coreLimit: "1200m"
memory: "16384m"
labels:

version: 3.0.0

serviceAccount: sparkoperator-ssgash-spark

volumeMounts:

name(s) must match the volume name(s) above

- name: "sparkcode"
mountPath: "/gpu_data"

- name: "sparkdata”
mountPath: "/sparknfs"

- name: "pvc-storage”
mountPath: "/mnt"

executor:
cores: 1
instances: 6
memory: "16384m"
labels:
version: 3.0.0
volumeMounts:

- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"
- name: "spark-local-dir-1"
mountPath: "/tmp/spark-local-dir"

https://www.apache.org/licenses/LICENSE-2.0
/mnt

This is the template yaml file used to run tpcds queries on spark operator
using CPU:

#
Copyright 2017 Google LLC
#

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

hitps:/lwww.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
apiVersion: "sparkoperator.k8s.io/v1beta2"

kind: SparkApplication

metadata:
name: spark-tpcds-%CPU_OR_GPU%-%QUERY_NAME%-run
namespace: default
spec:
type: Scala
mode: cluster
image: "sc2k8cl2.vslab.local/spark3-tpcds/spark_v3_0_1_ubuntu_18_04"
imagePullPolicy: Always
#
mainClass: com.nvidia.spark.rapids.tests.BenchmarkRunner
mainApplicationFile: "local:///opt/sparkRapidsPlugin/rapids-4-spark-
integration-tests_2.12-0.3.0-SNAPSHOT-jar-with-dependencies.jar"
Other spark-submit arguments for the specific application
SCALE = 1000
arguments: ["--benchmark", "tpcds", "--query", "%QUERY_NAME%", "--
input", "/sparknfs/sparkdata/gen_data/1000scale_parq", "--input-format",
"parquet", "--output", "/sparknfs/sparkdata/gen_data/1000scale_parqg/tpcds-
output/tpcds-%QUERY_NAME%-%UNIQUE_SUFFIX%-
%CPU_OR_GPU%", "--output-format", "parquet", "--summary-file-prefix",
"Isparknfs/sparkdata/gen_data/1000scale_parqg/tpcds-output/tpcds-
%QUERY_NAME%-%UNIQUE_SUFFIX%-%CPU_OR_GPU%", "--
iterations", "1"]
#
sparkVersion: "3.0.0"
restartPolicy:
type: Never
volumes:
volumes:
- name; "sparkcode"
nfs:
server: "172.16.35.40"
path: "/GPU_DB"
readOnly: false
- name: "sparkdata"
nfs:
server: "172.16.35.60"
path: "/SPARKNFS01"
readOnly: false
- name: "pvc-storage”
persistentVolumeClaim:
claimName: nfs
- name: "spark-local-dir-1"
hostPath:
path: "/tmp/spark-local-dir"
sparkConf:
Adaptive QueryExecution - supported in spark 3.x and above - turning it
on.
"spark.sql.adaptive.enabled": "true"
"spark.sql.broadcastTimeout": "600"
Enable to store the event log
"spark.eventLog.enabled": "true"
#Location where to store event log - match the pve
"spark.eventLog.dir": "file:/mnt"
Logs the effective SparkConf as INFO when a SparkContext is started
"spark.logConf": "true"

Driver and executor configs

driver:
cores: 1
coreLimit: "1200m"
memory: "12G"
labels:
version: 3.0.0

serviceAccount: sparkoperator-ssgash-spark
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"

executor:
cores: 1
instances: 8
memory: "16G"
labels:
version: 3.0.0
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: “/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"
- name: "spark-local-dir-1"
mountPath: "ftmp/spark-local-dir"

https://www.apache.org/licenses/LICENSE-2.0
/mnt

This is the template yaml file used to run tpcds queries on spark operator
using GPU:

#
Copyright 2017 Google LLC
#

Licensed under the Apache License, Version 2.0 (the "License");
apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication

metadata:

name: spark-tpcds-%CPU_OR_GPU%-%QUERY_NAME%-run

namespace: default
spec:

type: Scala

mode: cluster

#Now using local harbor as docker repo - with a newly built image.

image: "sc2k8cl2.vslab.local/spark3-tpcds/spark_v3_0_1_ubuntu_18_04"

imagePullPolicy: Always

#

mainClass: com.nvidia.spark.rapids.tests.BenchmarkRunner

mainApplicationFile: "local:///opt/sparkRapidsPlugin/rapids-4-spark-
integration-tests_2.12-0.3.0-SNAPSHOT-jar-with-dependencies.jar"

Other spark-submit arguments for the specific application

Running just one query: %QUERY_NAME%

SCALE = 1000

arguments: ["--benchmark", "tpcds", "--query", "%QUERY_NAME%", "--
input", "/sparknfs/sparkdata/gen_data/1000scale_parq", "--input-format",
"parquet”, "--output", "/sparknfs/sparkdata/gen_data/1000scale_parg/tpcds-

output/tpcds-%QUERY_NAME%-%UNIQUE_SUFFIX%-%CPU_OR_GPU%-

newnodes", "--output-format", "parquet", "--summary-file-prefix",
"[sparknfs/sparkdata/gen_data/1000scale_parg/tpcds-output/tpcds-
%QUERY_NAME%-%UNIQUE_SUFFIX%-%CPU_OR_GPU%-newnodes",
"--iterations”, "1"]
#
sparkVersion: "3.0.0"
restartPolicy:
type: Never
volumes:
volumes:
- name: "sparkcode"
nfs:
server: "172.16.35.40"
path: "/GPU_DB"
readOnly: false
- name; "sparkdata"
nfs:
server: "172.16.35.60"
path: "/SPARKNFS01"
readOnly: false
- name: "pvc-storage”
persistentVolumeClaim:
claimName: nfs
- name: "spark-local-dir-1"
hostPath:
path: "/tmp/spark-local-dir"
sparkConf:
"spark.sql.broadcastTimeout": "600"

Enable to store the event log
"spark.eventLog.enabled": "true"

#Location where to store event log - match the pvc
"spark.eventLog.dir"; "file:/mnt"

Logs the effective SparkConf as INFO when a SparkContext is started
"spark.logConf": "true"

Following configs are from TCP with GPU/RAPIDS and without UCX:

Pinned memory refers to memory pages that the OS will keep in system
RAM and will not relocate or swap to disk

"spark.rapids.memory.pinnedPool.size": "4G"

"spark.rapids.memory.gpu.pooling.enabled": "true"
"spark.rapids.memory.gpu.allocFraction"; "0.5"
"spark.rapids.memory.gpu.maxAllocFraction": "0.70"
"spark.rapids.memory.gpu.debug": "STDOUT"

"spark.task.resource.gpu.amount": "0.25"
"spark.rapids.sql.enabled": "true"

"spark.rapids.sql.concurrentGpuTasks": "1"
"spark.sql.files.maxPartitionBytes": "512m"
"spark.sql.shuffle.partitions": "200"

UCX config

"spark.shuffle.manager": "com.nvidia.spark.RapidsShuffleManager”

"spark.rapids.shuffle.transport.enabled": "true"

"spark.executorEnv.UCX_TLS": "cuda_copy,cuda_ipc,tcp"

"spark.executorEnv.UCX_NET_DEVICES": "eth0"

Other spark configs
"spark.locality.wait": "0s"

"spark.driver.extraClassPath": "/opt/sparkRapidsPlugin/*"

"spark.plugins": "com.nvidia.spark.SQLPIugin"

"spark.executor.extraClassPath":

"lopt/sparkRapidsPlugin/*:/usr/lib/:/data/jar/*"

"spark.executor.resource.gpu.amount": "1"
"spark.executor.resource.gpu.discoveryScript":

"lopt/sparkRapidsPlugin/getGpusResources.sh"

"spark.executor.resource.gpu.vendor": "nvidia.com"

"spark.executorEnv.LD_LIBRARY_PATH": "/usr/local/cuda/lib64"

"spark.executorEnv.CUDA_HOME": "/usr/local/cuda"

Driver and executor configs

driver:
cores: 1
coreLimit: "1200m"
memory: "12G"
labels:
version: 3.0.0

serviceAccount: sparkoperator-ssgash-spark
volumeMounts:
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"

executor:
cores: 1
instances: 8
memory: "16G"
labels:
version: 3.0.0
volumeMounts:
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"
- name: "spark-local-dir-1"
mountPath: "/ftmp/spark-local-dir"

/mnt

This is the listing of the Dockerfile used to create image to run Mortgage ML
related spark applications with XGBoost.

Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.

Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.

The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with

the License. You may obtain a copy of the License at

#

http://www.apache.orgllicenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS [S" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

See the License for the specific language governing permissions and
limitations under the License.

#

#.
ARG CUDA_VER=10.2
ARG spark_uid=185

1.

s

Use this base image
FROM nvidia/cuda:${CUDA_VER}-devel-ubuntu18.04

1.
Set MOFED version, OS version and platform
#.

ENV MOFED_VER 5.0-2.1.8.0

ENV OS_VER ubuntu18.04

ENV PLATFORM x86_64

ENV DEBIAN_FRONTEND=noninteractive

#.

Set Unified Communication X {UCX) version, OS, MOFED and CUDA
versions

#
ENV UCX_VER v1.8.1
ENV OS_VER ubuntu18.04
ENV MOFED mofed5.0
ENV CUDA 10.2

#.
Set Spark, Hadoop, cuDF and RAPIDS versions
1.

ENV SPARK_VER 3.0.1

ENV HADOOP_VER 2.7

ENV CUDF_VER 0.14

ENV RAPIDS_VER 0.1.0

ENV RAPIDS 4

ENV SPARK_RAPIDS spark_2.12
ENV CUDA_RAPIDS cuda10-2

#
Install dependencies
#.

RUN apt-get update \

&& apt install -y git wget apt-utils scala libnuma1 udev libudev1 libcap2
dpatch libnl-3-200 gfortran automake Isof ethtool chrpath libmnl0 pkg-config
m4 libnl-route-3-200 autoconf debhelper swig bison libltdl-dev kmod tcl libnl-
route-3-dev pciutils tk autotools-dev flex libnl-3-dev graphviz libgfortrand
iproute2 iputils-ping \

&& rm -rf var/lib/apt/lists/ && rm -rf froot/.cache && rm -rf /var/cache/apt/*

RUN In -fs /usr/share/zoneinfo/America/New_York /etc/localtime
RUN dpkg-reconfigure --frontend noninteractive tzdata

#
#+

Install java dependencies
#

RUN apt-get update \
&& apt install -y --no-install-recommends openjdk-8-jdk openjdk-8-jre \
&& rm -rf var/lib/apt/lists/ && rm -rf froot/.cache && rm -rf var/cache/apt/*

ENV JAVA_HOME /usr/lib/jvm/java-1.8.0-openjdk-amd64
ENV PATH $PATH:/usr/lib/jivm/java-1.8.0-openjdk-
amd64/jre/bin:/usr/lib/jvm/java-1.8.0-openjdk-amd64/bin

#

Install python 2 and python 3
Install numpy and pandas for XGBoost python api tests
#

RUN mkdir -p /opt/spark/python
RUN apt-get update \
&& apt install -y --no-install-recommends python python-pip libgomp1 \
&& apt install -y --no-install-recommends python3 python3-pip \
&& pip install --upgrade pip \
&& pip3 install --upgrade pip \
&& pip install numpy pandas \
&& pip3 install numpy pandas \
We remove ensurepip since it adds no functionality since pip is
installed on the image and it just takes up 1.6MB on the image
&& rm -r fusr/lib/python*/ensurepip \
&& pip install --upgrade pip setuptools \
You may install with python3 packages by using pip3.6
Removed the .cache to save space
&& rm -rf var/lib/apt/lists/ && rm -rf froot/.cache && rm -rf var/cache/apt/*

RUN apt-get update \
&& apt-get install -y --no-install-recommends apt-utils \
Removed the .cache to save space
&& rm -rf var/lib/apt/lists/ && rm -rf froot/.cache && rm -rf /var/cache/apt/*

#

MOFED install
#
ENV OFED_FQN MLNX_OFED_LINUX-${MOFED_VER}-${OS_VER}-
${PLATFORM}

RUN wget --quiet http://content.mellanox.com/ofed/MLNX_OFED-
${MOFED_VER}/${OFED_FQN}.tgz &&\

tar -xf $§{OFED_FQN}.tgz &&\

${OFED_FQN}/minxofedinstall --user-space-only --without-fw-update -q
RUNcd .. &&\

rm -rf ${MOFED_DIR} &&\

rm -rf * gz

#

UCX install
#
RUN wget
https:/github.com/openucx/ucx/releases/download/${UCX_VER}ucx-
${UCX_VER}-${0S_VER}-${MOFED}-cuda${CUDA}.deb &&\

dpkg -i ucx-${UCX_VER}-${OS_VER}-${MOFED}-cuda${CUDA}.deb

#

#
Copy spark3 directories
#

Before building the docker image, first build and make a Spark distribution
following

the instructions in http://spark.apache.org/docs/latest/building-spark.html.

If this docker file is being used in the context of building your images from a
Spark

distribution, the docker build command should be invoked from the top
level directory

of the Spark distribution. E.g.:

docker build -t spark:latest -f kubernetes/dockerfiles/spark/Dockerfile .

RUN set -ex &&\
In -s /lib /lib64 &&\

http://www.apache.org/licenses/LICENSE-2.0
http://content.mellanox.com/ofed/MLNX_OFED-$%7BMOFED_VER%7D/$%7BOFED_FQN%7D.tgz
http://content.mellanox.com/ofed/MLNX_OFED-$%7BMOFED_VER%7D/$%7BOFED_FQN%7D.tgz
https://github.com/openucx/ucx/releases/download/$%7BUCX_VER%7D/ucx-$%7BUCX_VER%7D-$%7BOS_VER%7D-$%7BMOFED%7D-cuda$%7BCUDA%7D.deb
https://github.com/openucx/ucx/releases/download/$%7BUCX_VER%7D/ucx-$%7BUCX_VER%7D-$%7BOS_VER%7D-$%7BMOFED%7D-cuda$%7BCUDA%7D.deb
http://spark.apache.org/docs/latest/building-spark.html

mkdir -p /opt/spark && \

mkdir -p /opt/spark/jars && \

mkdir -p /opt/spark/data && \

mkdir -p /opt/spark/examples && \

mkdir -p /opt/spark/work-dir && \

mkdir -p /opt/sparkRapidsPlugin && \

touch /opt/spark/RELEASE && \

rm /bin/sh &&\

In -sv /bin/bash /bin/sh &&\

echo "auth required pam_wheel.so use_uid" >> /etc/pam.d/su && \
chgrp root /etc/passwd && chmod ug+rw /etc/passwd

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/jars
lopt/spark/jars

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/bin
Jopt/spark/bin

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/shin
Jopt/spark/sbin

COPY spark-${SPARK_VERY}-bin-
hadoop${HADOOP_VER}/kubernetes/dockerfiles/spark/entrypoint.sh /opt/
COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/examples
lopt/spark/examples

COPY spark-${SPARK_VERY}-bin-
hadoop${HADOOP_VER}/kubermetes/tests /opt/sparkitests

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/data
lopt/spark/data

ENV SPARK_HOME /opt/spark

H.
Install XGBoost
H.

RUN pushd $SPARK_HOME/jars \

&& wget
https://repo1.maven.org/maven2/com/nvidia/XGBoost4j_3.0/1.0.0-
0.1.0/XGBoost4j_3.0-1.0.0-0.1.0.jar \

&& wget https://repo1.maven.org/maven2/com/nvidia/XGBoost4;-
spark_3.0/1.0.0-0.1.0/XGBoost4j-spark_3.0-1.0.0-0.1.0.jar \

&& popd

#

Sample XGBoost scala jar

Build instructions : https://github.com/NVIDIA/spark-XGBoost-
examples/blob/spark-3/getting-started-guides/building-sample-apps/scala.md
Cloned into root@sc2k8cl3:/gpu_data/mlperf-data/sparkdata/ and followed
the instructions.

With dep: Actual location: /gpu_data/mliperf-data/sparkdata/spark-
XGBoost-examples/examples/apps/scala/target/sample_XGBoost_apps-
0.2.2-jar-with-dependencies.jar

Without dep: Actual location: /gpu_data/mliperf-data/sparkdata/spark-
XGBoost-examples/examples/apps/scala/target/sample_XGBoost_apps-
0.2.2jar

copied to root@sc2k8cl3:/gpu_data/miperf-data/sparkdata/docker-
builder/jars

We are using the jar without dependencies.

COPY jars/sample_XGBoost_apps-0.2.2.jar /opt/sparkRapidsPlugin

#

Download RAPIDS Spark, cuDF Packages and a get GPU resources script
1.
RUN cd /opt/sparkRapidsPlugin &&\

wget https://repo1.maven.org/maven2/com/nvidia/rapids-${RAPIDS}-
${SPARK_RAPIDS}/${RAPIDS_VER}/rapids-${RAPIDS}-
${SPARK_RAPIDS}-${RAPIDS_VER}.jar && \

wget https://repo1.maven.org/maven2/ai/rapids/cudf/${CUDF_VER}/cudf-
${CUDF_VER}-${CUDA_RAPIDS} jar &&\

wget
https://raw.githubusercontent.com/apache/spark/master/examples/src/main/s
cripts/getGpusResources.sh

Created the following file, getSRIOVResources.sh, as given in
https://docs.mellanox.com/pages/releaseview.action?pageld=25152352
COPY jars/getSRIOVResources.sh
lopt/sparkRapidsPlugin/getSRIOVResources.sh

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/python/pyspark
lopt/spark/python/pyspark

COPY spark-${SPARK_VER}-bin-hadoop${HADOOP_VER}/python/lib
lopt/spark/python/lib

ENV SPARK_HOME /opt/spark
WORKDIR /opt/spark/work-dir
RUN chmod g+w /opt/spark/work-dir

#
Use tini
#.

ENV TINI_VERSION v0.18.0

ADD https://github.com/krallin/tini/releases/download/${TINI_VERSION}/tini
lusr/bin/tini

RUN chmod +rx /usr/bin/tini

RUN chmod -R 777 /opt/sparkRapidsPlugin

ENTRYPOINT ["/opt/entrypoint.sh" |

Specify the User that the actual main process will run as
USER ${spark_uid}
#

https://repo1.maven.org/maven2/com/nvidia/xgboost4j_3.0/1.0.0-0.1.0/xgboost4j_3.0-1.0.0-0.1.0.jar
https://repo1.maven.org/maven2/com/nvidia/xgboost4j_3.0/1.0.0-0.1.0/xgboost4j_3.0-1.0.0-0.1.0.jar
https://repo1.maven.org/maven2/com/nvidia/xgboost4j-spark_3.0/1.0.0-0.1.0/xgboost4j-spark_3.0-1.0.0-0.1.0.jar
https://repo1.maven.org/maven2/com/nvidia/xgboost4j-spark_3.0/1.0.0-0.1.0/xgboost4j-spark_3.0-1.0.0-0.1.0.jar
https://github.com/NVIDIA/spark-xgboost-examples/blob/spark-3/getting-started-guides/building-sample-apps/scala.md
https://github.com/NVIDIA/spark-xgboost-examples/blob/spark-3/getting-started-guides/building-sample-apps/scala.md
https://repo1.maven.org/maven2/com/nvidia/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D/$%7BRAPIDS_VER%7D/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D-$%7BRAPIDS_VER%7D.jar
https://repo1.maven.org/maven2/com/nvidia/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D/$%7BRAPIDS_VER%7D/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D-$%7BRAPIDS_VER%7D.jar
https://repo1.maven.org/maven2/com/nvidia/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D/$%7BRAPIDS_VER%7D/rapids-$%7BRAPIDS%7D-$%7BSPARK_RAPIDS%7D-$%7BRAPIDS_VER%7D.jar
https://repo1.maven.org/maven2/ai/rapids/cudf/$%7BCUDF_VER%7D/cudf-$%7BCUDF_VER%7D-$%7BCUDA_RAPIDS%7D.jar
https://repo1.maven.org/maven2/ai/rapids/cudf/$%7BCUDF_VER%7D/cudf-$%7BCUDF_VER%7D-$%7BCUDA_RAPIDS%7D.jar
https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scripts/getGpusResources.sh
https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scripts/getGpusResources.sh
https://docs.mellanox.com/pages/releaseview.action?pageId=25152352
https://github.com/krallin/tini/releases/download/$%7BTINI_VERSION%7D/tini%20/usr/bin/tini
https://github.com/krallin/tini/releases/download/$%7BTINI_VERSION%7D/tini%20/usr/bin/tini

This is the yaml used to convert mortgage data to parquet format.

#
Copyright 2017 Google LLC
#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

hitps:/lwww.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

See the License for the specific language governing permissions and
limitations under the License.

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication

metadata:
name: spark-convert-mort
namespace: default
spec:
type: Scala
mode: cluster
image: "sc2k8cl2.vslab.local/spark3-
tpcds/spark_v3_0_1_mortgage_ubuntu_18_04"
imagePullPolicy: Always

mainClass: com.nvidia.spark.examples.mortgage.ETLMain
mainApplicationFile:

"local:///lopt/sparkRapidsPlugin/sample_XGBoost_apps-0.2.2.jar"
#

For mortgage data conversion, there are just 3 arguments:
ETLArgs(perfPath: String, acqPath: String, output: String)
#

ETL to convert 1m2000 data so that it can be used to "train" and create
the model

#arguments: ["-format=csv", "-
dataPath=perf::/sparknfs/sparkdata/mortgage-data/q1m2000/perf", "-
dataPath=acq;:/sparknfs/sparkdata/mortgage-data/q1m2000/acq", "-
dataPath=out::/sparknfs/sparkdata/mortgage-data/q1m2000/pout"]

#

ETL to convert 1m2001 data so that it can be used to "test" the model
created by m2000

arguments: ["-format=csv", "-dataPath=perf.:/sparknfs/sparkdata/mortgage-

data/q1m2001/perf", "-dataPath=acq::/sparknfs/sparkdata/mortgage-
data/q1m2001/acq", "-dataPath=out::/sparknfs/sparkdata/mortgage-
data/q1m2001/pout"]
sparkVersion: "3.0.1"
restartPolicy:
type: Never
volumes:
- name; "sparkcode"
nfs:
server: "172.16.35.40"
path: "/GPU_DB"
readOnly: false
- name: "sparkdata"
nfs:
server: "172.16.35.60"
path: "/SPARKNFS01"
readOnly: false
- name: "pvc-storage”
persistentVolumeClaim:
claimName: nfs
- name: "spark-local-dir-1"
hostPath:
path: "/tmp/spark-local-dir"
sparkConf:

Enable to store the event log
"spark.eventLog.enabled": "true"
#Location where to store event log - match the pvc
"spark.eventLog.dir": "file:/mnt"
#
Just made it -1 to make conversion job run
"spark.sql.broadcastTimeout"; "-1"
"spark.driver.extraClassPath": "/opt/sparkRapidsPlugin/*"
"spark.executor.extraClassPath":
"/opt/sparkRapidsPlugin/*:/usr/lib/:/dataljar/*"
restartPolicy:
type: Never
driver:
cores: 1
memory: "16G"
labels:
version: 3.0.0
serviceAccount: sparkoperator-ssgash-spark
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata"
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"
executor:
cores: 1
instances: 6
memory: "24G"
labels:
version: 3.0.0
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"
- name: "spark-local-dir-1"
mountPath: "/tmp/spark-local-dir"

https://www.apache.org/licenses/LICENSE-2.0
/mnt

This is the yaml used to train mortgage data (which has been converted to
parquet format).

#
Copyright 2017 Google LLC
#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

hitps://lwww.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

See the License for the specific language governing permissions and
limitations under the License.

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication

metadata:
name: spark-train-mort-gpu
namespace: default
spec:
dynamicAllocation:
enabled: true
initialExecutors: 1
minExecutors: 1
maxExecutors: 10
type: Scala
mode: cluster
image: "sc2k8cl2.vslab.local/spark3-
tpcds/spark_v3_0_1_mortgage_ubuntu_18_04"
imagePullPolicy: Always

mainClass: com.nvidia.spark.examples.mortgage.GPUMain
mainApplicationFile:
"local:///lopt/sparkRapidsPlugin/sample_XGBoost_apps-0.2.2.jar"
#
#
Training with Q1-Year2000 mortgage data - which has been ETL'ed
arguments: ["-format=parquet", "-
dataPath=train::/sparknfs/sparkdata/mortgage-data/q1m2000/pout/data”,
mode=train", "-modelPath=/sparknfs/sparkdata/mortgage-
data/q1m2000/model", "-treeMethod=hist"]
#
Testing the model with Q1-Year2001 mortgage data - which has been
ETL'ed
arguments: ["-format=parquet", "-
dataPath=trans::/sparknfs/sparkdata/mortgage-data/q1m2000/pout/data",
mode=transform", "-modelPath=/sparknfs/sparkdata/mortgage-
data/m2000/model", "-treeMethod=gpu_hist", "-verbosity=3"]
#
sparkVersion: "3.0.1"
restartPolicy:
type: Never
volumes:
- name; "sparkcode"
nfs:
server: "172.16.35.40"
path: "/GPU_DB"
readOnly: false
- name: "sparkdata"
nfs:
server: "172.16.35.60"
path: "/SPARKNFS01"
readOnly: false
- name: "pvc-storage”
persistentVolumeClaim:
claimName: nfs

- name: "spark-local-dir-1"
persistentVolumeClaim:
claimName: pv-claim-demo
sparkConf:
Enable to store the event log
"spark.eventLog.enabled": "true"
#Location where to store event log - match the pvc
"spark.eventLog.dir"; "file:/mnt"

Just made it -1 to make conversion job run

"spark.sql.broadcastTimeout": "-1"

#

"spark.driver.extraClassPath": "/opt/sparkRapidsPlugin/*"

"spark.executor.extraClassPath":
"lopt/sparkRapidsPlugin/*:/usr/lib/:/datafjar/*"

#

GPU related config
"spark.plugins": "com.nvidia.spark.SQLPIugin"
"spark.task.resource.gpu.amount": "0.25"
"spark.rapids.sql.concurrentGpuTasks": "1"
"spark.executor.resource.gpu.amount": "1"
"spark.executor.resource.gpu.discoveryScript":
"lopt/sparkRapidsPlugin/getGpusResources.sh"
"spark.executor.resource.gpu.vendor": "nvidia.com"
"spark.rapids.memory.gpu.pooling.enabled": "false"

"spark.executorEnv.LD_LIBRARY_PATH"; "/usr/local/cuda/lib64"
"spark.executorEnv.CUDA_HOME": "/usr/local/cuda"
#
restartPolicy:
type: Never
driver:
cores: 1
memory: "16G"
labels:
version: 3.0.0
serviceAccount: sparkoperator-ssgash-spark
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"
executor:
cores: 1
instances: 1
memory: "24G"
labels:
version: 3.0.0
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"
- name: "spark-local-dir-1"
mountPath: "/tmp/spark-local-dir"

https://www.apache.org/licenses/LICENSE-2.0
/mnt

This is the yaml used to test mortgage data model (using test data which has

been converted to parquet format).

#
Copyright 2017 Google LLC
#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

hitps:/lwww.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

See the License for the specific language governing permissions and
limitations under the License.

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication

metadata:
name: spark-test-mort-gpu
namespace: default
spec:
dynamicAllocation:
enabled: true
initialExecutors: 1
minExecutors: 1
maxExecutors: 10
type: Scala
mode: cluster
image: "sc2k8cl2.vslab.local/spark3-
tpcds/spark_v3_0_1_mortgage_ubuntu_18_04"
imagePullPolicy: Always

mainClass: com.nvidia.spark.examples.mortgage. GPUMain
mainApplicationFile:
"local:///lopt/sparkRapidsPlugin/sample_XGBoost_apps-0.2.2.jar"
#
Testing the model with Q1-Year2001 mortgage data - which has been
ETL'ed
arguments: ["-format=parquet", "-
dataPath=trans::/sparknfs/sparkdata/mortgage-data/q1m2000/pout/data",
mode=transform", "-modelPath=/sparknfs/sparkdata/mortgage-
data/m2000/model", "-treeMethod=gpu_hist", "-verbosity=3"]
#
sparkVersion: "3.0.1"
restartPolicy:
type: Never
volumes:
- name; "sparkcode"
nfs:
server: "172.16.35.40"
path: "/GPU_DB"
readOnly: false
- name: "sparkdata"
nfs:
server: "172.16.35.60"
path: "/SPARKNFS01"
readOnly: false
- name: "pvc-storage”
persistentVolumeClaim:
claimName: nfs
- name: "spark-local-dir-1"
persistentVolumeClaim:
claimName: pv-claim-demo
sparkConf:
Enable to store the event log
"spark.eventLog.enabled": "true"
#Location where to store event log - match the pvc

"spark.eventLog.dir"; "file:/mnt"

Just made it -1 to make conversion job run

"spark.sql.broadcastTimeout": "-1"

#

"spark.driver.extraClassPath": "/opt/sparkRapidsPlugin/*"

"spark.executor.extraClassPath":
"lopt/sparkRapidsPlugin/*:/usr/lib/:/dataljar/*"

#

GPU related config
"spark.plugins": "com.nvidia.spark.SQLPIugin"
"spark.task.resource.gpu.amount": "0.25"
"spark.rapids.sql.concurrentGpuTasks": "1"
"spark.executor.resource.gpu.amount”: "1"
"spark.executor.resource.gpu.discoveryScript":
"lopt/sparkRapidsPlugin/getGpusResources.sh"
"spark.executor.resource.gpu.vendor": "nvidia.com"
"spark.rapids.memory.gpu.pooling.enabled"; "false"

"spark.executorEnv.LD_LIBRARY_PATH"; "/usr/local/cuda/lib64"
"spark.executorEnv.CUDA_HOME": "/usr/local/cuda"
#
restartPolicy:
type: Never
driver:
cores: 1
memory: "16G"
labels:
version: 3.0.0
serviceAccount: sparkoperator-ssgash-spark
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"
executor:
cores: 1
instances: 1
memory: "24G"
labels:
version: 3.0.0
volumeMounts:
name(s) must match the volume name(s) above
- name: "sparkcode"
mountPath: "/gpu_data"
- name: "sparkdata”
mountPath: "/sparknfs"
- name: "pvc-storage”
mountPath: "/mnt"
- name: "spark-local-dir-1"
mountPath: "/tmp/spark-local-dir"

https://www.apache.org/licenses/LICENSE-2.0
/mnt

	Accelerated Apache Spark 3 leveraging GPUs on VMware Cloud
	1 Introduction
	2 Apache Spark
	2.1 Spark 3 adds GPU Awareness
	2.2 Spark 3 provides enhanced support for Deep Learning
	2.3 Better Kubernetes Integration
	2.4 Spark 3.0 with Kubernetes operator:
	2.5 Accelerated Analytics and AI on Spark
	2.6 NVIDIA RAPIDS:
	2.7 New RAPIDS Accelerator for Spark 3.0
	2.8 XGBOOST:

	3 Other Components of the Solution:
	3.1 Spark History server:
	3.2 Harbor Container Registry:
	3.3 VMware Cloud Foundation with Tanzu
	3.4 Solution Components:
	3.5 Building Blocks of the solution:

	4 Use Case 1: TPC-DS with NVIDIA RAPIDS
	Deployment steps:
	4.1 Installation of Spark operator for Kubernetes
	4.2 Install spark history server
	4.3 Creation of docker image to run tpcds application related tasks
	4.4 Build TPC-DS scala distribution package
	4.5 Install and configure Harbor
	4.6 TPC-DS Data generation
	4.7 Configure Kubernetes worker nodes for running GPU applications
	4.8 TPC-DS validation testing
	4.9 TPC-DS Results

	5 Use Case 2: Model mortgage data using Spark XGBoost running on Kubernetes with Spark Operator
	5.1 Use Case Prerequisites
	5.2 Create docker image to run Spark XGBoost application related tasks
	5.3 Data leveraged in use case
	5.4 Build Scala distribution jars for Mortgage ML
	5.5 ETL conversion of Mortgage data
	5.6 Mortgage ML training
	5.7 Mortgage ML test

	6 Conclusion
	7 Appendix A.
	8 Appendix B.
	9 Appendix C.
	10 Appendix D.
	11 Appendix E.
	12 Appendix F.
	13 Appendix G.
	14 Appendix H.

