REFERENCE ARCHITECTURE—APRIL 2022

Message Queue Performance Study on VMware
Tanzu Kubernetes Grid

VMware Tanzu RabbitMQ 1.3 and Confluent Kafka

DeLL

Techrologies

Table of Contents

OVEIVIBWooeiiiiiieiiitee ettt e sttt eesatteeesbaeeeaateee s asaeessabaeeesasbeeesasaeeeaabeeeeaasbaeesassaeeeaasaeeeensbaeesanseeeesnseeeeansbeeesnaseeessnsaneennns 3
[[ala e Yo [V 4[] o PSP PP RUPPTUSRN 3
Pl EQUISTEES ...ttt st e e e st s a e e e e e s e s e et e s s e e s e e senraee s 3
RI=Tod T gTe] [oXo | YA @ AV A=T VA= P 4
VMware Tanzu KUbernetes Griduuiiiiiieiiiiiiiiies e e e e e e e e 4
Tanzu RabbitMQ for KUDEINELESooeei e 4
APACNE KAIKAL. ... 4
] (1104 PPN 4
(70T 0} 110 1 =1 410 PO URPPPPPRPNS 6
F N o 11 (=Tox (1 | (PSSP 6
HArdWare RESOUICEuuuuuiiiieeeeee ittt s e e e ettt ea e e e e e e e e e e aata s e e e e aeeeaattsaaseeaeeeenenesnnaaaeeeees 7
Y0 1o LT =T oV o= P 7
APPIICAtION VAIIAALION ...ooiiiiiiiiiiiieiiiieeeeeeee ettt 9
1] (oo 11 o3 1 o o [PPSR 9
Performance Testing Scope and RESUIL.............ouuiiiiii i 9
APPIICAtioN VAIIAALION ...ccooiiiiiiiiiiiiiieieeeeee et 12
1] 1o o 11 ox 1o o 1 12
Performance Testing Scope and RESUIt ..., 12
Warm Standby Replication Validationouvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 16
[g e To 11 o3 1 o] o [PPSR 16
Testing SCOPE AN RESUIT ... 16
W0 Lo T Ao g = U =T o] U1 o = U 18
About the Author and CoNtribDULOIScoieieiice e e e e 19

vmware 2

Overview

Note: This solution provides an overview of the performance improvements in new version of Tanzu RabbitMQ and guidelines
for running Apache Kafka running on VMware Tanzu® Kubernetes Grid™. The reference architecture applies to general vSphere
and vSAN platforms.

Introduction

VMware Tanzu RabbitMQ 1.3 contains RabbitMQ 3.10 that was released on the 3™ of May 2022, with many new features and
improvements.

Apache Kafka is an open-source distributed event streaming platform for high-performance data pipelines, streaming analytics.
It’s used as a popular message queue for distributed systems and is commonly used to stream data in the loT use cases.

This paper provides the performance improvements of Tanzu RabbitMQ for Kubernetes 1.3 on VMware Tanzu Kubernetes Grid.
And it covered the general functional testing and guideline for running Apache Kafka on Tanzu Kubernetes Grid.

Prerequisites

You must first set up a reference architecture environment for Tanzu Kubernetes Grid. And then, the material takes you
through the steps to install VMware Tanzu RabbitMQ for Kubernetes.

vmware 3

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-index.html
https://docs.vmware.com/en/VMware-Tanzu-RabbitMQ-for-Kubernetes/1.2/tanzu-rmq/GUID-installation.html

Technology Overview

The technology components in this solution are:
e VMware Tanzu Kubernetes Grid Multi-Cloud (TKGm)
e Tanzu RabbitMQ for Kubernetes
e Apache Kafka
® Strimzi

VMware Tanzu Kubernetes Grid

VMware Tanzu Kubernetes Grid provides organizations with a consistent, upstream-compatible, regional Kubernetes substrate
that is ready for end-user workloads and ecosystem integrations. You can deploy Tanzu Kubernetes Grid across software-
defined datacenters (SDDC) and public cloud environments, including vSphere, Microsoft Azure, and Amazon EC2.

Tanzu Kubernetes Grid provides the services such as networking, authentication, ingress control, and logging that a production
Kubernetes environment requires. It can simplify operations of large-scale, multi-cluster Kubernetes environments and keep
your workloads properly isolated. Also, it automates lifecycle management to reduce your risk and shift your focus to more
strategic work.

Tanzu RabbitMQ for Kubernetes

VMware Tanzu RabbitMQ for Kubernetes provides the building blocks for a cloud native messaging and streaming service that

you can deploy on any Kubernetes cluster.

RabbitMQ stream is a new feature of both the open source RabbitMQ and commercial Tanzu RabbitMQ editions. It delivers
some of the benefits of log structures, like fast data transfer and the ability to replay and reprocess messages, combined with
the best Tanzu RabbitMQ features like flexible routing and command and response, all with a high degree of data safety.

See VMware Tanzu RabbitMQ 1.3 for detailed information.

Apache Kafka

Apache Kafka is a community distributed event streaming platform capable of handling trillions of events a day. Initially
conceived as a messaging queue, Kafka is based on an abstraction of a distributed commit log. Since being created and open
sourced by LinkedIn in 2011, Kafka has quickly evolved from messaging queue to a full-fledged event streaming platform.

A cluster of Kafka brokers handles delivery of messages.

A broker uses Apache ZooKeeper for storing configuration data and for cluster coordination. Before running Apache Kafka, an
Apache ZooKeeper cluster has to be ready. Apache ZooKeeper is a core dependency for Kafka as it provides a cluster
coordination service, storing and tracking the status of brokers and consumers. ZooKeeper is also used for controller election.

Strimzi

Strimzi provides a way to run an Apache Kafka cluster on Kubernetes in various deployment configurations. For development
it’s easy to set up a cluster in a few minutes. For production you can tailor the cluster to your needs, using features such as rack
awareness to spread brokers across availability zones, and Kubernetes taints and tolerations to run Kafka on dedicated nodes.
You can expose Kafka outside Kubernetes using NodePort, Load balancer, Ingress and OpenShift Routes, depending on your
needs, and these are easily secured using TLS. The Operators provided with Strimzi are purpose-built with specialist operational

vmware 4

https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/index.html
https://docs.vmware.com/en/VMware-Tanzu-RabbitMQ-for-Kubernetes/1.3/tanzu-rmq/GUID-overview.html

knowledge to effectively manage Kafka.

vmware 5

Configuration

Architecture

In our solution, we deployed the Tanzu RabbitMQ test environment using Tanzu Kubernetes Grid on a 4-node cluster. Firstly,

we deployed the Tanzu Kubernetes Grid management cluster with Tanzu CLI by either an installer Ul or a configuration file.

Refer to Prepare to deploy Management clusters to vSphere for more details. After you deploy a management cluster to

vSphere, use the Tanzu CLI to deploy the Tanzu Kubernetes Grid workload cluster. The Tanzu Kubernetes cluster is deployed

through a configuration file with customized variables for cluster settings and scalability. Refer to Deploy Tanzu Kubernetes

Clusters to vSphere for more details. To support the Tanzu RabbitMQ and Apache Kafka deployment, we recommend
configuring a Tanzu Kubernetes Grid workload cluster with at least 3 nodes; each node is requested with a minimum value of 24

vCPU, 72GB memory, and 2TB disk space.

TKG Workload -

1 r > Tanzu RMQ
Cluste Operator Cluster

=
Strimal + &

\ N
Operator IF“OD @JPOD @OD l §= oD
|

) 5 (@)
VM Control 1-3 | =" VM Worker 1 l — VM Worker N l

; : Control .;ECon!rol .;: Control

Management
Cluster IPlane VM lPlane VM | Plane VM

N/ N N NS NS
4

sRsEnRAERARY
TrEEEEEEEES

A
) VDS
b4
vSphere / vSAN
N

(o H o Hl (o) (il

Figure 1: Tanzu RabbitMQ and Apache Kafka Running on Tanzu Kubernetes Grid

Now you can deploy VMware Tanzu RabbitMQ for Kubernetes to a TKG workload cluster. You can pull all the Tanzu RabbitMQ
components of the package from the registry. Then you will install the package to install the Tanzu RabbitMQ Operator to your
cluster. After the installation is completed, you can now create a RabbitMQ cluster via the configuration file.

vmware 6

https://tanzu.vmware.com/kubernetes-grid/
https://tanzu.vmware.com/kubernetes-grid/
https://tanzu.vmware.com/kubernetes-grid/
https://tanzu.vmware.com/kubernetes-grid/
https://tanzu.vmware.com/kubernetes-grid/
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-mgmt-clusters-deploy-management-clusters.html
https://github.com/vsphere-tmm/tkg-tanzu-rabbitmq/blob/main/tkg-vsphere.yaml
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-tanzu-k8s-clusters-index.html
https://docs.vmware.com/en/VMware-Tanzu-Kubernetes-Grid/1.5/vmware-tanzu-kubernetes-grid-15/GUID-tanzu-k8s-clusters-index.html
https://docs.vmware.com/en/VMware-Tanzu-RabbitMQ-for-Kubernetes/1.2/tanzu-rmq/GUID-installation.html
https://docs.vmware.com/en/VMware-Tanzu-RabbitMQ-for-Kubernetes/1.2/tanzu-rmq/GUID-installation.html
https://github.com/vsphere-tmm/tkg-tanzu-rabbitmq/blob/main/rabbitmq_deployment.yml

We choose Strimzi operator to run an Apache Kafka cluster on TKG in customized deployment configurations. Strimzi provides a
Helm chart to deploy the Cluster Operator. Apache Kafka components are provided for deployment to Kubernetes with the
Strimzi distribution. The Cluster Operator watches for updates in the namespaces where the Kafka resources are deployed. You
can now deploy a Kafka cluster via the configuration files. Strimzi also installs a ZooKeeper cluster and adds the necessary
configuration to connect Kafka with ZooKeeper.

Hardware Resource

Table 1: Hardware Configuration

CPU

2 x Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz, 28 core each

RAM

480GB

Network adapter

2 x Intel 10Gb Ethernet Controller X550

Storage adapter

1 x Dell HBA330 Mini Adapter

Disks

Cache - 2 x 1.46TB NVMe
Capacity - 8 x 1.75TB SSD

Software Resource

Table 2: Software Resources

VMware vSphere 7.0 U3c VMware vSphere is a suite of products: vCenter Server and ESXi.

Based on the widely popular open source RabbitMQ messaging system, Tanzu
Tanzu RabbitMQ for

13 RabbitMQ for Kubernetes is designed to work seamlessly with Tanzu and also run on

Kubernetes

any certified Kubernetes distribution.

Command line interface that allows deploying CNCF conformant Kubernetes clusters
Tanzu CLI V0.11.6

to vSphere and other cloud infrastructure.

Kubernetes is an open-source system for automating deployment, scaling, and
Kubernetes V1.22.9

management of containerized applications.

vmware

https://github.com/vsphere-tmm/tkg-tanzu-rabbitmq/blob/main/kafka.yaml

Kubernetes OVA for Tanzu

Kubernetes Grid

Ubuntu 20.04 and
Kubernetes

v1.22.9+vmware.1

A base image template for the Kubernetes Operating System of Tanzu Kubernetes

Grid management and workload clusters.

A throughput testing tool that is based on the Java client and can be configured to

RabbitMQ PerfTest Vv2.18.0
simulate basic workloads and more advanced workloads as well.
A Java library to communicate with the RabbitMQ Stream Plugin. It contains a
RabbitMQ Stream Java Client | V0.7.0 performance tool to allow creating and deleting streams as well as publishing to and
consuming from these streams to test the performance.
A way to run an Apache Kafka cluster on Kubernetes in various deployment
Strimzi V0.31.0
configurations.
An open-source event streaming platform, it aims to provide the user with a unified,
Apache Kafka V3.2.1
high latency, high throughput platform for handling real-time data.
Table 3. VM Configuration
Tanzu Kubernetes Grid
Management cluster — Control 2 4 20 1
Plane VM
Tanzu Kubernetes Grid
Management cluster — Worker 2 4 20 1
node VM
Tanzu Kubernetes Grid Workload
cluster — Control Plane VM 4 32 120 3
Tanzu Kubernetes Grid Workload
cluster — Worker node VM 24 72 2000 3

vmware

Application Validation

Introduction

This solution testing showcases Tanzu RabbitMQ running on Tanzu Kubernetes Grid for performance improvement and Apache
Kafka running Tanzu Kubernetes Grid for performance validation.

Performance Testing Scope and Result

Tanzu RabbitMQ for Kubernetes 1.3 includes RabbitMQ 3.10 with many new features and improvements on Quorum Queue.
We used RabbitMQ PerfTest Tool to generate loads for the RabbitMQ cluster to compare quorum queues with the previous
version. In the performance testing, we provisioned a cluster of three Tanzu RabbitMQ pods, each with 8 vCPUs, 16GB of RAM,
and 2000GB storage.

See RabbitMQ PerfTest for more information about the performance tool,

Scenario 1: We used just 1 quorum queue with a fast publisher and consumer. Compared with the previous version, Tanzu
RabbitMQ 1.3 improved 30% throughput. And we tested with message sizes of 10, 100, 1000 and 5000 bytes.

Figure 1. Messages published/s of 10, 100, 1000 and 5000 bytes

We ran the test with different message sizes:

e Each quorum queue published rate average at 55,634 message/s, consumed average at 55,628 message/s at small
message size

e Each quorum queue published rate average at 15,334 message/s, consumed average at 15,207 message/s at large
message size

vmware o

https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/#introduction

Scenario 2: We published large million messages and then consumed all of them. It took ~130s to publish 10 million messages
and ~170s to consume the messages.

Figure 2. 10 million message published and consumed

Figure 3. Memory available before publishers blocked

During the process of publishing and consuming, Quorum queue used ~3GB memory. But when we published 50 million
messages, the cluster hit a memory alarm and stopped due to wait for publisher confirms for too long.

Scenario 3: we tested Tanzu RabbitMQ streams with different number of streams. It didn’t improve much than the previous
version. The detailed published, consumer results are shown below:

e Single RabbitMQ streams published 976589 message/s, consumed 973953 msg/s

® Three (3) streams published 2475177 msg/s, consumed 2473692 msg/s

vmware n

Application Validation

Introduction

This solution testing showcases Apache Kafka running on Tanzu Kubernetes Grid for performance validation.

Performance Testing Scope and Result

Apache Kafka is a community distributed event streaming platform capable of handling trillions of events a day. Initially
conceived as a messaging queue, Kafka is based on an abstraction of a distributed commit log. Strimzi provides a way to run an
Apache Kafka cluster on Kubernetes in various deployment configurations.

Strimzi provides a Helm chart to deploy the Cluster Operator. The Cluster Operator watches for updates in the namespaces
where the Kafka resources are deployed. You can now deploy a Kafka cluster via the configuration files. Strimzi also installs a
ZooKeeper cluster and adds the necessary configuration to connect Kafka with ZooKeeper. In configuration file, it can export
the metrics that we can get the performance through Prometheus and Grafana.

| allocated 3 broker pods with 8 vCPU and 32 GB RAM in container resource spec. | created the topic with 12 partitions and a
replication factor of 1 or 3.

Scenario 1: We created a job with the configuration to achieve the maximum throughput. For single Producer throughput with
no replication and 3 replicas, each broker runs the following producer-perf test command below:

./kafka-producer-perf-test.sh --topic test_p12_r1 --producer-props bootstrap.servers=bootstrap.kafka.svc:9092
buffer.memory=67108864 batch.size=64000 acks=1 --record-size 100 --throughput -1 --num-records 50000000

| got an average of 492K records/s with 100 bytes per record, 46.9MB/s throughput and 1.13ms latency. For 3 producers, | can
get the total peak throughput at 149MB/s.

vmware 12

https://github.com/vsphere-tmm/tkg-tanzu-rabbitmq/blob/main/kafka.yaml

Then we created a topic with 3x replication and get the replica async. It can get the total peak throughput at 118MB/s.

Next, we created a topic with 3x replication and get the replica sync. It means all the replicas have been persisted before ACK
the producer. We can see a little bit more than 3x performance reduction. That is related to the overhead of sending and
receiving ACKs by the brokers.

vmware 13

We run the commands to consume all the messages,
./kafka-consumer-perf-test.sh --bootstrap-server localhost:9092 --messages
50000000 --topic test pl2 r3 --threads 1

We can see the throughput is bigger than the producer with no replica.

vmware 14

1121048 1T ATES

.) on
Mafiadafee b 1AM 08
. 1%

Apache Kafka is a stream processing and event-driven architectures, end to end latency for a message to traverse the pipeline
from the producer through the system to the consumer. To test end-to-end latency, | run the below command:

sh kafka-run-class.sh kafka.tools.EndToEndLatency localhost:9092 test pl2 r3
10000 all 1000

175088 6.354546999999999
176088 1.458957
177600 1.42034618006600002
176680 1.42405
179600 1.115937
1800060 1.518577
181000 1.514256
182000 1.540252
183000 1.47108

184000 1.920327
185009 1.549208
186000 1.459633
187960 1,9301

1668060 1.088621
iB%660 1.572921
190000 1.260347
191000 1.444928
192000 1.562483
193000 1.394028
194000 1.452881
196088 1.471385
196000 1.594581
197680 1.181534
176000 1.463369
199080 1.527193

Avg latency: 2.7681 ms

Percentiles: 58th = 1, 99th = 14, %9.9th = 209

The topic test_p12_r3 was created with 12 partitions and RF=3, producer acks was set to all, the highest durability. | get an
average of 3ms latency at 1KB message size.

vmware 15

Warm Standby Replication Validation

Introduction

This testing is a showcase of the warm standby replication scenario.

Testing Scope and Result

VMware Tanzu RabbitMQ supports continuous schema definition and message replication to a remote cluster, which makes it
easy to run a standby cluster for disaster recovery. This feature is not available in the open source RabbitMQ distribution.

To achieve Tanzu RabbitMQ ‘s warm standby replication capability, perform the following steps:

1. Setupan upstream and downstream RabbitMQ cluster with required plugins and configurations by following the
manifest files.

2. Configure the upstream and downstream standby replication via standby offsite replication operator. The
configuration files let the plugin know it should collect messages for all quorum queues in default vhost and connect
RabbitMQ cluster downstream to RabbitMQ cluster at the endpoint — {EndPoint IP}:5552.

3. Wecreated 3 queues used by the replication and ran the rabbitmqg-diagnostics inspect_standby_upstream_metrics on
three nodes of RabbitMQ cluster to verify how the replication is working on the upstream side. The figure shows the
replication is spread across the three nodes of upstream cluster:

yimengl@yinengl-s02 clusterconfigs N kubectl exec upstream-server-2 -n rabbitmg-system —- ubbitm-diwm-tics[inspect_standby _upstress metrics]
Defavlited contalner “rabbiteg® out of: rabditmg, setup-comtainer (init)

Inspecting standby upstresm metrics related to recovery...

queus timestamp vhost

aq 1647843692692 /

yimengl@yinengl-a02 clusterconfigs % kubectl exec upstream-server-1 -n rabbitng-system -- rabbitmg-diagnostics inspect_standby upstreas_metrics
Defavlted container “rabbiteg® out of: rabbitmg, setup-container [init)

Inspecting standby upstream metrics relsted to recovery...

gueue timestamp vhost

aq-1 1647843706794 /

yimengl@yinengl-a02 clusterconfigs % kuboctl exeo upstream-server-@ -n rabbitmg-system —— rabbitmg-diagnostics inspect_standby upstream_metrics
Defaulted container “rsbbiteq* out of: rabbitmg, setup-container (init)

Inspecting stancby upstress metrics relsted to recovery...

queve timestamp vhost

aq-2 1647843717700 /

4. Verify the downstream replication is also working. The figure shows that the default vhost is responsible for
replication on the downstream side.

yimenglByisengl-402 clusterconfigs % kubectl wxec downstress-server-1 - rabbitmg-diagnostics linspect_standby _domnstyess setrics |
Defaulted container *rabbitmg* out of: rebbitmg, setup-container (init)
Inspecting standdy downstream metrics rvelated to recovery...
quesue timestomp vhost
qa-2 1047048121628 /
qa-1 1647848126085 /
Qq 1647844823057 /
yinengldyimengl-ad2 clusterconfigs N kubectl exec downstream-server-1 -- rabbiteqetljdisplay_disk_space_used_by_standby replication_data |
Defaulted container “rabbitmgq” out of: rabbitmq, setup-container (init)
Listing disk space {in gb) used by multi-DC replication
nede size unit vhost
= - = = 7
yimengifyisengl-202 clusterconfigs N kubectl exec downstream-server-1 - rabbitmgetl list_vhosts_available for_standby replication_recovery
Defaulted container *rabbitmq® out of: rabbitmg, setup-container (init)
Listing virtual hosts availadle for multi-OC replication recovery an node rabbit@downstreas-server-1.downstream-nodes.default

Now we used PerfTool to publish 30,000 messages to a queue from upstream cluster and then replicated them to the
downstream side. We could check the disk space used by the standby replication data. At this point, we supposed the
upstream site went down and we initiated a recovery procedure to promote the downstream cluster to upstream. The
figure shows that we promoted 30,000 messages on the downstream site.

vmware 16

https://github.com/vsphere-tmm/tkg-tanzu-rabbitmq/tree/main
https://github.com/vsphere-tmm/tkg-tanzu-rabbitmq/tree/main
https://rabbitmq.github.io/rabbitmq-perf-test/stable/htmlsingle/#introduction

yinengl@yinengl-a82 Rin & /turjave o ratRitag. perf . PerfText —prodecars | ——consueers § ——QuaTus-guese —gueis Bi-4 ~—~Tlag pervintant g ”.l-ﬂ llml—-an e/ /detault

LUREE_UaSAJenSY g LVwpuad Ve cdS 2SR IMIMLAGL 0L TUSSSh F IgRRID. 158 . 164 T 2672
501 Tadt-1AL RS0, ting censmey =

300 test-laLTIR-058, ting consumer M, shasml

38: teet-LA4722-958, atsrting grocuser M

Id: Leal-104722-950, starting aroduce: 0, chasrel 00

I Vet - 10ATE 058, timwm: A P¥a, aent] 8.28 meag/a, tecaived) 8 wmag/

wln/madhan/ TSIh/PSER PPN cotaumer Lotarey: O/0/0/0 o0

SLr/med e/ TSI/ PRTR/OPEN commumar Latanay 10T1AA/ABAYE)/ TITHAL /MNASE/ BI9L0% us
IG/%, mIN/Aesian/ 75t 0t 901 consumar lateacy: ASOATE/RIAIV/I0NATET/IIMAAN0/ 128708 e

id: teat-184732-958 + min/eedian! TSth/VSth/Poth comsumar Latercy: 1MIT12/1586951/1080767/2070195/ 2307385 us

id: teat-184732-050, . aent: & magle, tecelived: 2068 wap/e. min/median/TOth/ISEA/VOth comsuser Latency! T1A9900/2432210/2732439/ 2091318/ 3974404 us

LONT topped (Prodwoer resched sessaps llsit)

100 Tat-LALTRR-O50, sending Tate avp! ISTT megls

S teat-LAATIZ-008, Teckiviag rate svg: 114F mag/s

yinenglPyloengl-a82 in ¥ !

soe 10 dustorcontips — -2uh — 10128

Fimenglfyisengl-a8 clustercenfigs N kubectl wxes dosastrsam-serser-l <« rstiitecct]l fispley_sisk_spsce_used by stemsby replicetion _deis
Defeulted sontainer "rabbitsg® sut af: cebbiteq, setwp-cartainer (init)

Listisg dish space 10n gb) used by melti-2C raplivation

o wit host

rasbitidomnstrase-sarver-i damstrean-acdes. Sefault .0472 gk ¢

yisengldyisengl <082 clusteccentig Rubectl wies dewnatrpascanrvercl oo pabhiitsgesisgnaatics lasgect_stanclyy doasstress setrics
Defaulind sontaloer “ratbitse® sut of | rebblieq, setuo-vonteiner (init)

INApecting StandDy Gaenstress satriss related 1o resovery. .

Susue tisestasp yhost

-4 184795233108/

@« 1s4rasariene)

w1 16ATHSIALETY /

L 7R/

yloenglfylsengl-a8) clustercenfigs N kubectl wrsc downsirses-asrrer-l -« yatbiteoctl £isplay_standdy premsticn susmiry

Sefaulted comtaimer “rabhites® st afi radbitsg, setuoscontainer (init)

will #isolay # summary of The sulti-SC Soensiresn oretamation s TabhiURMwns trasm-servet-1, donsstrnan-smdes e faclt

virtual aest
A5124 /

JO) Test-lAATIN-050
10T teat-144732-900

tig-eattelner (init)

Pefsulied contolmr *
11 prasate ¢l

wirtual_most
13l I

vmware

17

Additional Resources

For more information about Tanzu RabbitMQ, you can explore the following resources:

VMware vSphere

VMware vSAN

VMware Tanzu Kubernetes Grid

VMware Tanzu RabbitMQ

Running VMware Tanzu RabbitMQ on VMware Tanzu Kubernetes Grid

RabbitMQ Stream Java Client

Installing VMware Tanzu RabbitMQ for Kubernetes

Solution Deployment and Configuration Files

vmware

18

https://www.vmware.com/products/vsphere.html
https://www.vmware.com/products/vsan.html
https://tanzu.vmware.com/kubernetes-grid
https://tanzu.vmware.com/rabbitmq
https://core.vmware.com/resource/running-vmware-tanzu-rabbitmq-vmware-tanzu-kubernetes-grid
https://rabbitmq.github.io/rabbitmq-stream-java-client/stable/htmlsingle/
https://docs.vmware.com/en/VMware-Tanzu-RabbitMQ-for-Kubernetes/1.2/tanzu-rmq/GUID-installation.html
https://github.com/vsphere-tmm/tkg-tanzu-rabbitmq/tree/main

About the Author and Contributors

Yimeng Liu, Senior Solutions Manager in the Workload Technical Marketing Team of the Cloud Infrastructure Big Group, wrote

the original version of this paper. The following reviewers also contributed to the paper contents:

® Ka Kit Wong, Staff Solutions Architect in VMware

® Myles Gray, Staff Solutions Architect in VMware

® Mark Xu, Senior Solutions Manager in VMware

® Michal Kuratczyk, Staff Engineer in VMware

® Catherine Xu, Workload Technical Marketing Manager in VMware

® Vic Dery, Senior Principal Engineer of VxRail Technical Marketing in Dell Technologies

vmware 19

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com.
Copyright © 2022 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at

http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names mentioned herein may be
trademarks of their re i ies. Item No: e

vmware

p-temp-word 2/19

