
White Paper: April 2023

Automate Middleware
Migration to Open Source
Frameworks with Ease

White Paper | 2

Automate Middleware Migration to Open Source Frameworks with Ease

Table of contents
Introduction. . 3

Enterprise service buses vs. open source frameworks. . 3

Challenges of enterprise service buses	 3

Benefits of open source frameworks	 4

Considerations when building a migration strategy . . 4

Tooling. . 5

Spring Boot Migrator	 5

Cloud Suitability Analyzer	 10

How to automate migration. . 13

Finding ways to optimize your own migration strategy 15

Outcomes . . 16

Improved quality	 16

Reduction in developer toil	 17

Proving the ROI of automation	 18

Conclusion. . 19

Resources . . 20

White Paper | 3

Automate Middleware Migration to Open Source Frameworks with Ease

Introduction
In this highly competitive and innovative era, many organizations are desperate
to move faster and find ways to be even more efficient. Across industries,
enterprises are realizing the importance of migrating off legacy middleware to
modern, open source frameworks to access the flexibility and agility they
provide, such as significantly reducing costs and management needs.

At one point, middleware such as enterprise service buses (ESBs) played a
critical role in enabling applications to connect and communicate with one
another. Although that sounds great in theory, many organizations tend to run
into problems with ESBs over time. With the low-code nature of service buses,
it’s easy for teams to wire up their logic using drag-and-drop GUIs, causing the
logic to become extremely difficult to test and maintain. In addition, when the
enterprise service bus needs to be upgraded to a new version, it might require a
new syntax for the applications running on it. With each of these challenges, the
ESB has evolved into the new monolith, causing many organizations to want
open source frameworks.

With years of helping enterprises move to open source frameworks such as
Spring®, VMware Tanzu Labs™ has streamlined the migration process with tools
and recipes, or repeatable patterns that can be used for multiple applications
and workloads.

In this white paper, we share the best practices that we use to help our customers
successfully automate their middleware migration initiatives, and share an example
based on a recent engagement with a large financial services organization.

Enterprise service buses vs. open source frameworks
Let’s discuss the challenges of enterprise service buses and how open source
frameworks can solve them.

Challenges of enterprise service buses
ESBs are considered the new monolith because of some of the challenges they
pose, including:

•	High recurring licensing costs and vendor lock-in

•	Difficulty in testing and maintaining logic created with drag-and-drop
ESB designers

•	High cognitive load of proprietary frameworks interfering with
developer productivity

•	New version upgrades often require syntax updates for older services

With years of helping enterprises
move to open source frameworks
such as Spring, VMware Tanzu Labs
has streamlined the migration
process with tools and recipes, or
repeatable patterns that can be
used for multiple applications
and workloads.

White Paper | 4

Automate Middleware Migration to Open Source Frameworks with Ease

Benefits of open source frameworks
Migrating to open source frameworks, such as Spring, addresses the
challenges of enterprise service buses. Some of the benefits of open
source frameworks include:

•	Reduce licensing costs

•	Relieve cognitive load on developers

•	Reduce need for specialty skillsets

•	Lower the amount of development frameworks

•	Gain the ability to run services anywhere

•	Build modern applications and services

•	Attract and maintain talented developers

The benefits of migrating to open source frameworks are undeniable, but the
process of migration itself can present its own obstacles.

Considerations when building a migration strategy
Until recently, it was generally accepted that if an organization needed to change
source code to move between technology stacks, it would require significant
manual effort. Migrating legacy middleware workloads to open source
frameworks manually can be tedious and time-consuming—having to catalog
existing services, define the transformation pattern for each type of service,
and eventually code each of these changes.

VMware Tanzu Labs helps our customers automate their migration process and
realize outcomes even faster using modern techniques and sophisticated tooling.

However, before making the immediate decision to automate the migration
process, we believe there are a few key considerations to keep in mind:

•	How can you be sure that developers will use the automated tools that
are created?

•	How can you be sure that developers will accept and be able to understand the
code generated?

•	How can you be sure that the output quality of the tools meets your company’s
quality of standards?

In addition to these considerations, we believe that large-scale migration
exercises such as these should be approached as a community effort between
relevant teams. By establishing a community of practice and building a shared
set of resources, organizations can realize huge efficiency gains and increase the
chances of success.

If you’re able to successfully validate each of these considerations and can build
a community effort around the initiative, then automating your migration effort
can be a great option.

White Paper | 5

Automate Middleware Migration to Open Source Frameworks with Ease

Tooling
We believe that tooling and building an iterative strategy play a huge role in
streamlining the automation process. In our engagement with a large financial
services organization, we leveraged tools such as Spring Boot® Migrator and
Cloud Suitability Analyzer to automate the middleware migration process.
Spring Boot Migrator helps us analyze the source code of existing applications
and create new source code by applying automated recipes to the results. So it’s
much easier to move between technologies—even when the technology is
referenced in source code. On the other hand, Cloud Suitability Analyzer allows
us to analyze a customer’s application estate using custom rules by looking for
patterns in the source code.

Spring Boot Migrator
Spring Boot Migrator uses abstract syntax trees (ASTs) to find underlying
patterns within code and map these to automated recipes that can perform
tasks, such as migrating from a legacy framework to Spring or upgrading from
one version to another.

Figure 1: A visual of how Spring Boot Migrator works.

Spring Boot Migrator has an interactive shell but can also be run in a non-
interactive manner if users need to make bulk changes to a range of applications
or integrate the tool inside a pipeline.

We believe that tooling and
building an iterative strategy play
a huge role in streamlining the
automation process.

White Paper | 6

Automate Middleware Migration to Open Source Frameworks with Ease

Figure 2: Users can choose which recipes to apply to suit their needs via an interactive shell.

When a user selects a particular recipe, Spring Boot Migrator runs a sequence of
actions against the application source code to achieve the desired result.

In the example shown in Figure 3, Spring Boot Migrator detects the need to
change the syntax of a POST rest endpoint through annotations and import the
relevant functions into the code. This action was triggered by the Spring Boot
Migrator recipe detecting a legacy method of declaring endpoints.

White Paper | 7

Automate Middleware Migration to Open Source Frameworks with Ease

Figure 3: A before and after of a simple transformation performed by Spring Boot Migrator.

Figure 4: A demonstration of how Spring Boot Migrator generates an AST.

When Spring Boot Migrator is first run, it scans the application that the user
specifies and leverages open rewrite technology to generate an AST of the
application. The AST creates the structure of the code, allowing Spring Boot
Migrator to analyze it quickly. Using the AST of the application, Spring Boot
Migrator matches recipes that can be applied to the application, and users can
select which recipes they want to apply.

Once the user applies the recipe, Spring Boot Migrator uses the AST to modify
the source code by performing one or more actions defined in the recipe. By
default, each change made by Spring Boot Migrator is stored in the Git commit
history, so developers can see the step-by-step changes the tool makes. Recipes
can be defined in either YAML format or as a Spring bean.

White Paper | 8

Automate Middleware Migration to Open Source Frameworks with Ease

Figure 5: Git history can help developers understand the translation steps.

Figure 6: Using Git diff to understand the migration steps.

White Paper | 9

Automate Middleware Migration to Open Source Frameworks with Ease

Figure 7: A simple template for a recipe, featuring the condition and action part of the recipe.

Ideally, recipes create new compilable application code. Through user research,
we have found that developers find it frustrating to use code that has been
translated and doesn’t compile. When creating your own recipes, we recommend
that one of the acceptance tests for the recipe logic be that it always results in
compilable code.

Often, a recipe will not be able to fully translate an application and all of its logic.
Therefore, it’s useful to include logic that inserts the remaining untranslated code
into the new application code as //todo: or //fixme comments within the code.
This way, developers have a clear understanding of what remains to translate
within the application.

We have found that it typically takes about one-third of the time to create a
recipe as it does to translate the source code manually. As a best practice, we
recommend that developers perform the manual translation of an application
first, then retrospectively create Spring Boot Migrator recipes for the second
translation automatically. This process helps ensure the quality of the code and

White Paper | 10

Automate Middleware Migration to Open Source Frameworks with Ease

provides an opportunity for a code review by other developers. Also, having a
clear idea of the before and after states helps create automated tests for the
recipe creation.

Cloud Suitability Analyzer
Cloud Suitability Analyzer works by looking for certain patterns within application
source code. It contains a list of rules used to rate how cloud native an
application is. Individual applications, or even entire portfolios of applications,
are scanned using these rules to get a rating of the difficulty to move applications
to the cloud.

Figure 8: An example application scan of an application portfolio.

As demonstrated in Figure 8, the technical score in the final column shows how
cloud native an application is likely to be on a scale of 1–10. A score of 10
indicates the application is probably very cloud native. A lower score indicates
the application might need some rework before moving to a runtime
environment, such as Kubernetes.

Cloud Suitability Analyzer is designed to provide insights on how modern an
application portfolio is and supplement additional manual reviews of applications.

White Paper | 11

Automate Middleware Migration to Open Source Frameworks with Ease

Figure 9: An example Cloud Suitability Analyzer report of potential issues with porting
applications to Kubernetes.

Cloud Suitability Analyzer provides line-by-line recommendations based on a
ruleset developed through years of running modernization practices for
customers. It’s possible to insert specific advice depending on each rule, which
allows companies to share solutions to particular problems within their user
base. At Tanzu Labs, we use this feature extensively to share the knowledge
we’ve gained through hundreds of modernization engagements.

Figure 10: An example of Cloud Suitability Analyzer recommendations.

In the example shown in Figure 10, the application has been detected as using a
logging library, which can cause problems when running on a cloud Kubernetes
runtime. Notice the link to the recipe points to the Tanzu Labs extensive
knowledge base of modernization recipes. In this case, a manual recipe provides
the developer with advice on removing the offending library.

White Paper | 12

Automate Middleware Migration to Open Source Frameworks with Ease

Figure 11: View the linked recipe where the VMware Tanzu® team has written instructions
and advice on what to look for when changing logging mechanisms.

Cloud Suitability Analyzer comes with rules detecting anti-patterns for cloud
native applications, such as applications that store state to local storage.
It also uses pattern matching to detect legacy frameworks not suitable for
moving to cloud native platforms, such as Kubernetes.

Cloud Suitability Analyzer can be modified by adding/modifying and removing
rules into its ruleset. For example, if a company uses a custom non-cloud library
for a particular piece of logic, a rule can be easily added to include to match for
that particular library.

Figure 12: An example rule from Cloud Suitability Analyzer.

Rules can be captured in a range of ways. The example in Figure 12 looks for
RegEx matches within files called “config” to detect the usage of Windows
authentication. Cloud Suitability Analyzer has rules that detect common
middleware technology, but for the financial services engagement, we wanted
to get to a more granular level of detail. This project required capturing the
usage of every middleware functionality to understand the usage across the
application estate.

To achieve this, we needed to create a matching rule for every function the
middleware used. The middleware we wanted to migrate used XML to describe
its functions. XML definitions are described in the XSLT documentation, which
provides information on how XML should be structured.

White Paper | 13

Automate Middleware Migration to Open Source Frameworks with Ease

Using the XSLT file, we created a script that created a rule for every possible
middleware feature usage. This equated to approximately 500 rules that were
created for Cloud Suitability Analyzer. When performing a typical Cloud
Suitability Analyzer portfolio scan; this level of granularity would be too high. In
fact, it would just add noise to the rest of the results because, when analyzing
cloud readiness, you typically don’t need to know the exact usage of frameworks
or middleware. For this reason, we decided not to add the new rules into the
main Cloud Suitability Analyzer repository.

Figure 13: Using the XSLT file to create a script for middleware feature usage and generate
rules for Cloud Suitability Analyzer.

To discover the usage amounts within the application estate, we used data
from the rules page. This provided a count of all the matches across the
application estate.

Cloud Suitability Analyzer stores all of its results into a directly connected
database, so we used this functionality to analyze the results within a Jupyter
Notebook for data analysis. This allowed us to experiment with different views
of the data and choose the most suitable application for initial modernization.

How to automate migration
Now that we’ve established the kind of tooling needed to start a successful
middleware transformation initiative, let’s establish the how of executing.

In our engagements with customers, we built a multiphase working practice
based on tooling and iteration to achieve results quickly. This section explores a
sample of the strategy we built for the financial services organization to quickly
migrate to open source frameworks.

White Paper | 14

Automate Middleware Migration to Open Source Frameworks with Ease

Figure 14: Our working practice.

1. Perform an initial review of new technology
In the beginning stage, also known as the bootstrap phase, we modified our
tooling to better capture the patterns within the enterprise service bus. The ESB
stored all its logic in a proprietary XML format, and we wanted to use our
existing tooling (i.e., Cloud Suitability Analyzer) to analyze the estate. Cloud
Suitability Analyzer is primarily used to provide guidance on how cloud native
applications are, but we needed to use it to provide a count of all the functions
that our customer’s applications used (through XML components). It’s easy to
add custom rules into Cloud Suitability Analyzer. We used the XSLT documents
(which describe how the XML files were formed) to create new rules to suit our
needs. So, in the first two days, we built a simple website to create custom Cloud
Suitability Analyzer rules for every possible XML component, and generated
more than 200 custom rules to get the necessary level of granularity for the project.

2. Use automated tooling to scan the customer estate
With the new rules we built, we scanned our customer’s entire portfolio to get an
in-depth profile of which ESB features were most frequently used and categorize
them with XML tags. We wanted to see the usage of these components as well
as the patterns between components within the application estate (also known
as cluster archetypes).

3. Find the best application to migrate
From there, we were able to select the application we wanted to migrate first.
This application would ideally fit the following criteria:

•	Have relatively low complexity

•	Use the most frequently used components

•	Have a developer who can validate the migration

White Paper | 15

Automate Middleware Migration to Open Source Frameworks with Ease

A key principle of the Tanzu Labs modernization approach is to get started
quickly to learn by doing, so we wanted the application to be relatively small, but
we also wanted a popular archetype to create recipes for multiple components
from a single application.

But most importantly, we wanted to ensure that we would be able to validate the
quality of the source code being generated by Spring Boot Migrator. It was
critical that our customer’s developers peer review any output from the tool,
so we made sure to select an application where the development owner was
available to review the resulting code.

4. Migrate application and create recipes
Once we had selected the application that fit our criteria, we quickly kick-started
the modernization effort and manually migrated our first application. We knew it
was important to migrate the application before creating the recipes to validate
with the developer representative that the new application worked as expected.
Once we received the go-ahead from the developer representative, we then
created recipes for the selected components for automation. The new application
became our test criteria. The hope was that if we ran the old application code
through Spring Boot Migrator, then the resulting code would be as close as
possible to the new application.

5. Introduce learning and capture
We then captured our learnings, improved our tooling, and started the process
again. The improvements in the tooling were made by adding extra rules within
Cloud Suitability Analyzer to capture more detail within applications and pointing
to the newly created automated recipes.

We updated Cloud Suitability Analyzer with details of the Spring Boot Migrator
automation and shared it to the wider team. Teams from across the company
could scan their code with Cloud Suitability Analyzer and check how much
coverage Spring Boot Migrator currently had for their particular application.

During the six-week engagement, we were able to iterate over several applications
and develop recipes covering approximately half of the application estate.

Finding ways to optimize your own migration strategy
We believe that leveraging source code repositories and staying aligned as a
broader team plays a critical role in optimizing a middleware migration strategy.
By using source code repositories as the source of truth for an application’s
migration status, it’s possible to track the progress of an application migration
effort—even before it’s moved to the target infrastructure. A few characteristics
of an optimized migration strategy include:

•	Sharing learnings across teams and building a centralized set of tooling (Spring
Boot Migrator and recipes)

•	Making strategic choices on what applications to tackle next

•	Gaining visibility of total progress of the migration effort

White Paper | 16

Automate Middleware Migration to Open Source Frameworks with Ease

Figure 15: Ensuring alignment with status reporting and shared learnings.

Outcomes
By building an iterative migration strategy and leveraging sophisticated tooling
for our financial services customer, we were able to produce high-quality source
code, reduce developer toil, and demonstrate significant ROI.

Improved quality
One of the biggest outcomes from our financial services engagement was
developing high-quality, reliable source code. To get universal buy-in for a new
tool, we’ve found the tool must be trusted, and we wanted to ensure that each
recipe and the output was validated by developer peers at every step of the way.

During the engagement, we discovered a few positive side effects of using
automated source code generation. These were:

•	We can embed best practices into the recipes we created to generate code for
the new application and create unit testing boilerplate code

•	The generated code helped developers who were unfamiliar with the newer
frameworks learn about their workings

•	Standardization between applications helped with developer onboarding

Having a familiar way of developing code meant developers can more easily
understand other applications that have been modernized. Developers knew the
general shape and structure of applications because the same format was used
across the estate.

White Paper | 17

Automate Middleware Migration to Open Source Frameworks with Ease

Early on within the project, we got feedback from some developers on our
choice of technology. We decided to use Spring Integration as the framework
due to it following the enterprise integration pattern model, which was the same
model that our ESB followed. Many of the developers hadn’t used Spring
Integration before and were cautious about adopting and having to learn it. A
nice side effect of having code generated automatically is that developers can
use the generated code to reduce the learning curve of the new framework.

The recipes are open source and can be modified to individual needs if required.
If a developer wanted to take a different approach, they can by simply reviewing
the recipes and making the relevant changes themselves.

Reduction in developer toil
Another major win during the engagement was that we significantly reduced
developer toil. To test whether Spring Boot Migrator actually succeeded at
reducing developer toil, we asked the customer to choose a reference
application of their own to demonstrate the results. They selected an application
they described as being a relatively complex, non-trivial example. Spring Boot
Migrator was able to fully generate 75 percent of the source code, and partially
migrate about 10 percent.

During the partial migration, Spring Boot Migrator places suggestions for code
conversion in place, and the developer has a choice of which approach to take
depending on certain contexts (e.g., the type of database they would like to
connect to).

The remaining application code had to be generated manually, but as the
unconverted code was inserted in place as application TODO comments, it was
agreed that the final effort was significantly easier. As a result, the customer’s
reference application was fully converted to Spring in just a couple of hours,
which had previously taken development teams days.

 Figure 16: The reference application code conversion.

White Paper | 18

Automate Middleware Migration to Open Source Frameworks with Ease

Proving the ROI of automation
Another outcome of the engagement was that we were able to demonstrate
clear ROI of automation. Using Spring Boot Migrator can make developers’ lives
easier, but we were also able to prove that the effort involved in creating the
automation recipes outweighed the benefits of writing the applications the old-
fashioned way.

We found that creating a recipe for converting each component typically took
about one-third of extra time. This extra effort varied a bit as some components
didn’t map as easily to Spring functionality, but it tended to hover around one-
third. Given the massive decrease in code that developers needed to write on
the converted applications, the cost-benefit trade-off was extremely high.

Figure 17: A visual of the process and takeaways from automating middleware migration
using Spring Boot Migrator.

The key takeaways from the process shown in Figure 17 are:

•	Generated code helps developers understand the app structure and provides
manual guidance.

•	Recipes are a fully open source, code-to-code solution, free to adapt to
your preferences.

•	Created reusable recipes add about one-third of extra time (for one time only).

•	For the reference application, 75 percent of the final code was automatically
generated by Spring Boot Migrator.

•	Spring Boot Migrator includes update and migration recipes.

But to fully ensure the ROI of generating recipes, it’s important to understand
the big picture of the application estate. Our customer used certain components
far more than others. So by choosing the most frequently used components, we
were able to demonstrate that the effort of creating automated recipes far
outweighed the benefits of the source code that was generated.

White Paper | 19

Automate Middleware Migration to Open Source Frameworks with Ease

 Figure 18: Most applications fit into a few common archetypes.

We also recognized that there would eventually come a time where it would no
longer make sense to automate the remaining components because the
coverage that we could provide would diminish as we moved to less-used
components within the application estate, or components that didn’t map
directly to Spring functionality.

But overall, automated source code creation has proven to be a clear winner in
the next generation of migration tools, with the potential to completely change
the way companies modernize their applications. The benefits of reducing the
mundane, repetitive tasks associated with application modernization for
developers and freeing them up to work on high-value work are huge.

Conclusion
As the competitive landscape continues to evolve, we know that leveraging
cloud native frameworks has become more critical than ever. Although
automating the migration process from legacy middleware to open source
frameworks such as Spring can feel like a huge undertaking, we believe that with
the right tooling and strategy, it can be done efficiently and prove immediate
ROI. In our years of work helping enterprises move to open source frameworks,
we’ve seen how effectively leveraging recipes for automation helps organizations
migrate much more efficiently. For support in building out your own middleware
migration strategy, contact your VMware account team.

White Paper | 20

Automate Middleware Migration to Open Source Frameworks with Ease

Resources
Tooling
Spring Boot Migrator

Cloud Suitability Analyzer

•	Blog post: Cloud Suitability Analyzer: Scan and Score Your Apps’ Cloud
Readiness for Faster Migration

•	Video: How Cloud Suitability Analyzer Can Help Speed Up App Modernization

•	GitHub: Cloud Suitability Analyzer

Learn more
To get started, reach out to your VMware
Tanzu sales representative to schedule
a meeting.

For more information or to
purchase VMware products
Call 877-4-VMWARE (outside North
America, +1-650-427-5000), visit
vmware.com/products, or search online
for an authorized reseller.

https://tanzu.vmware.com/content/blog/cloud-suitability-analyzer-scan-score-apps-cloud-readiness
https://tanzu.vmware.com/content/blog/cloud-suitability-analyzer-scan-score-apps-cloud-readiness
https://www.youtube.com/watch?v=mWqUwnmdOT4
https://github.com/vmware-tanzu/cloud-suitability-analyzer

Copyright © 2023 VMware, Inc. All rights reserved. VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001
VMware and the VMware logo are registered trademarks or trademarks of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other marks and names
mentioned herein may be trademarks of their respective companies. VMware products are covered by one or more patents listed at vmware.com/go/patents.
Item No: Automate Middleware Migration to Open Source_VWright 4/23

