Administration Guide

VMware ESX Server 2
Administration Guide

Version: 2.5.4
Revision: 20061006
Item: ESX-ENG-Q105-057

You can find the most up-to-date technical documentation on our Web site at

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.
If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

© 2006 VMware, Inc. All rights reserved. Protected by one or more of U.S. Patent Nos. 6,397,242, 6,496,847, 6,704,925, 6,711,672, 6,725,289, 6,735,601, 6,785,886, 6,789,156, 6,795,966, 6,880,022, 6,961,941, 6,961,806 and 6,944,699; patents pending.

VMware, the VMware “boxes” logo and design, Virtual SMP and VMotion are registered trademarks or trademarks of VMware, Inc. in the United States and/or other jurisdictions.
All other marks and names mentioned herein may be trademarks of their respective companies.
Contents

P Preface 19
 About This Book 20
 Intended Audience 20
 Document Feedback 20
 Conventions and Abbreviations 20
 Abbreviations Used in Graphics 20
 Technical Support and Education Resources 21
 Self-Service Support 21
 Online and Telephone Support 22
 Support Offerings 22
 VMware Education Services 22
 Reporting Problems 22

1 Introduction to VMware ESX Server 25
 VMware ESX Server System Architecture 25
 Virtualization 26
 CPU Virtualization 27
 Memory Virtualization 27
 Disk Virtualization 27
 Network Virtualization 27
 Private Virtual Ethernet Networks (VMnets) 28
 Virtualization at a Glance 28
 Software Compatibility 29
 Service Console 30
 Service Console Functions 30
 Service Console Processes and Files 30
 Using VMware ESX Server 31
 Familiarizing Yourself with ESX Server 32
 Working With ESX Server 35

2 Creating and Configuring Virtual Machines 39
 Creating a New Virtual Machine 39
Installing a Guest Operating System and VMware Tools 43
Installing a Guest Operating System in a Virtual Machine 43
Installing a Guest Operating System on a Formatted Raw Disk 44
Installing VMware Tools in the Guest Operating System 44
Starting VMware Tools Automatically 48
Using the VMware Guest Operating System Service 49
Synchronizing the Time Between the Guest and Service Consoles 50
Shutting Down and Restarting a Virtual Machine 50
Shutting Down or Restarting a Virtual Machine from the VMware Management Interface 51
Shutting Down or Restarting a Virtual Machine from the Command Line 51
Executing Commands to Halt or Reboot a Virtual Machine 51
Passing a String from the Service Console to the Guest Operating System 52
Example of Passing a String from the Service Console to the Guest 52
Using PXE with Virtual Machines 53
Configuring a Virtual Machine to Use the LSI Logic SCSI Adapter 55
Adding the Adapter to the Virtual Machine’s Configuration File 55
 Configuring the LSI Logic SCSI Adapter in a Windows Guest Operating System 57
 Configuring the LSI Logic SCSI Adapter in a Linux Guest Operating System 58
Importing, Upgrading, and Exporting Virtual Machines 60
Configuring a Virtual Machine to Use More than One Virtual Processor 60
Windows Server 2003 Guest Operating Systems 61
Windows 2000 Guest Operating Systems 61
Linux Guest Operating Systems 61
Downgrading to One Virtual Processor 62
Migrating Older ESX Server Virtual Machines 62
Upgrading Windows Server 2003 Guest Operating Systems Created by ESX Server 1.5.2 62
 Running ESX Server 1.5 Virtual Machines in Legacy Mode 63
Using the LSI Logic SCSI Adapter 63
Migrating VMware Workstation and VMware GSX Server Virtual Machines 63
Disk Geometry Failures When Importing GSX Server Virtual Machines 65
Path Name Failures When Importing GSX Server Virtual Machines 66
Importing a GSX Server or Workstation Virtual Machine 66
Exporting Virtual Machines 68
Preparing to Use the Remote Management Software 69
Registering Your Virtual Machines 69
Installing the Remote Console Software 70
Third Party Software Compatibility 71
 Configuring a Virtual Machine for Use with Citrix MetaFrame XP 71
Executing Scripts When the Virtual Machine’s Power State Changes 71
 Issues to Consider 72
Configuring Virtual Machines 73
 Recommended Configuration Options 74
 SleepWhenIdle 74
 Optimizing Disk Access Failure Modes in Windows Virtual Machines 74
Modifying the SMBIOS UUID 75
 Generating the UUID Automatically 75
 Comparing the Generated UUID to Configuration File Parameters 76
 Setting the UUID for a Virtual Machine That Is Not Being Moved 77
 Setting the UUID for a Virtual Machine That Is Being Moved 77
Enabling the Physical Hardware’s OEMID to Be Seen by the Virtual Machine 78

3 Using the VMware Management Interface 79
Running the VMware Management Interface 80
Configuring the Statistics Period for the VMware Management Interface 81
Using Internet Explorer 6.0 to Access the VMware Management Interface 82
 Launching the Remote Console from the Management Interface on an Encrypted Server 82
 Connecting to the Management Interface On a Proxy Server 83
 Connecting to the Management Interface Without a Proxy Server 84
Logging Into the VMware Management Interface 84
Using the Status Monitor 84
 Viewing Summary Information About VMware ESX Server 85
 Viewing Summary Information About Virtual Machines on VMware ESX Server 86
Connecting to a Virtual Machine with the VMware Remote Console 86
Using the Virtual Machine Menu 86
Changing the Power State of a Virtual Machine 88
Suspending and Resuming Virtual Machines 89
 Setting the Suspend Directory 89
 Enabling Repeatable Resume 90
Viewing Information About a Virtual Machine 92
Downloading Remote Management Packages 92
Creating a New Virtual Machine 93
Unregistering a Virtual Machine 93
Deleting a Virtual Machine 93
Configuring VMware ESX Server 93
Using Common Controls 93
Configuring a Virtual Machine 94
Editing a Virtual Machine’s Configuration 95
Configuring a Virtual Machine’s CPU Usage 96
Understanding Performance Values 96
Understanding Resource Values 97
Modifying CPU Values 97
Configuring a Virtual Machine’s Memory Usage 97
Understanding Performance Values 98
Understanding Resource Values 98
Modifying Memory Values 99
Configuring a Virtual Machine’s Disk Usage 99
Understanding Performance Values 100
Understanding Resources Values 100
Modifying Disk Values 100
Configuring a Virtual Machine’s Networking Settings 100
Enabling Traffic Shaping 101
Configuring a Virtual Machine’s Hardware 102
Configuring a Virtual Machine’s Floppy Drive 103
Configuring a Virtual Machine’s DVD-ROM or CD-ROM Drive 104
Configuring a Virtual Machine’s Memory and Virtual Processors 105
Configuring a Virtual Machine’s Virtual Network Adapters 107
Configuring a Virtual Machine’s SCSI Controllers 109
Configuring a Virtual Machine’s Virtual Disks 109
Configuring a Virtual Machine’s Display Settings 111
Configuring a Virtual Machine’s Generic SCSI Device 111
Adding a Virtual Disk to a Virtual Machine 112
Adding a Virtual Network Adapter to a Virtual Machine 115
Adding a Virtual DVD/CD-ROM Drive to a Virtual Machine 117
Adding a Virtual Floppy Drive to a Virtual Machine 118
Adding a Generic SCSI Device to a Virtual Machine 120
Adding a Tape Drive to a Virtual Machine 121
Removing Hardware from a Virtual Machine 122
Setting Standard Virtual Machine Configuration Options 122
Setting Startup and Shutdown Options for a Virtual Machine 123
Setting Startup and Shutdown Options 124
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)</td>
<td>126</td>
</tr>
<tr>
<td>Viewing a List of Connected Users</td>
<td>129</td>
</tr>
<tr>
<td>Viewing a Log of a Virtual Machine’s Events</td>
<td>130</td>
</tr>
<tr>
<td>Modifying Virtual Machine Peripherals</td>
<td>131</td>
</tr>
<tr>
<td>Adding More than Six SCSI Virtual Disks to a Virtual Machine</td>
<td>131</td>
</tr>
<tr>
<td>Using a Physical (Raw) Disk in a Virtual Machine</td>
<td>132</td>
</tr>
<tr>
<td>Using Parallel Ports in a Virtual Machine</td>
<td>133</td>
</tr>
<tr>
<td>Using Serial Ports in a Virtual Machine</td>
<td>134</td>
</tr>
<tr>
<td>Using Disk Modes</td>
<td>135</td>
</tr>
<tr>
<td>Deleting a Virtual Machine Using the VMware Management Interface</td>
<td>136</td>
</tr>
<tr>
<td>Managing ESX Server Resources</td>
<td>137</td>
</tr>
<tr>
<td>Configuring VMware ESX Server</td>
<td>137</td>
</tr>
<tr>
<td>Logging Out of the VMware Management Interface</td>
<td>138</td>
</tr>
<tr>
<td>Using the Apache Web Server with the Management Interface</td>
<td>138</td>
</tr>
<tr>
<td>Setting a MIME Type to Launch the VMware Remote Console</td>
<td>139</td>
</tr>
<tr>
<td>Setting the MIME Type in Netscape 7.0 and Mozilla 1.x</td>
<td>139</td>
</tr>
<tr>
<td>Editing a Virtual Machine’s Configuration File Directly</td>
<td>140</td>
</tr>
<tr>
<td>Changing Your Virtual SCSI Adapter</td>
<td>141</td>
</tr>
<tr>
<td>Using the VMware Management Interface File Manager</td>
<td>141</td>
</tr>
<tr>
<td>Setting Permissions for Owners of Virtual Machines</td>
<td>141</td>
</tr>
<tr>
<td>Creating a Flagship User</td>
<td>145</td>
</tr>
<tr>
<td>Registering and Unregistering Virtual Machines</td>
<td>145</td>
</tr>
<tr>
<td>Registering a Virtual Machine</td>
<td>146</td>
</tr>
<tr>
<td>Unregistering a Virtual Machine</td>
<td>147</td>
</tr>
<tr>
<td>Running Many Virtual Machines on ESX Server</td>
<td>148</td>
</tr>
<tr>
<td>Increasing the Reserved Memory for the Service Console</td>
<td>148</td>
</tr>
<tr>
<td>Allocating CPU Resources to the Management Interface</td>
<td>148</td>
</tr>
<tr>
<td>Changing Default Parameters in the config File</td>
<td>149</td>
</tr>
<tr>
<td>Increasing Memory to the Apache Process</td>
<td>149</td>
</tr>
<tr>
<td>Increasing the Timeout Value for the vmware-authd Process</td>
<td>150</td>
</tr>
<tr>
<td>Increasing Memory for the vmware-serverd Process</td>
<td>150</td>
</tr>
<tr>
<td>Running Many Virtual Machines with a Significant CPU Load</td>
<td>150</td>
</tr>
<tr>
<td>Avoiding Management Interface Failures when Many Virtual Machines Are Registered</td>
<td>151</td>
</tr>
<tr>
<td>Backing Up Virtual Machines</td>
<td>151</td>
</tr>
<tr>
<td>Using Tape Drives with VMware ESX Server</td>
<td>152</td>
</tr>
<tr>
<td>Backing Up from Within a Virtual Machine</td>
<td>152</td>
</tr>
<tr>
<td>Backing Up Virtual Machines from the Service Console</td>
<td>153</td>
</tr>
<tr>
<td>Providing Optimum Data Integrity In Virtual Machine Backups Without Downtime</td>
<td>153</td>
</tr>
</tbody>
</table>
4 Using the VMware Remote Console 155
 Using the Remote Console 155
 Starting the Remote Console 156
 Running a Virtual Machine Using the Remote Console 157
 Special Power Options for Virtual Machines 157
 Options for Powering Off a Virtual Machine 158
 Options for Suspending a Virtual Machine 158
 Option for Resuming a Virtual Machine 159
 Options for Resetting a Virtual Machine 159
 VMware Tools Settings 159
 Setting Options with VMware Tools 159
 Connecting Devices with VMware Tools 161
 Choosing Scripts for VMware Tools to Run During Power State Changes 162
 Shrinking Virtual Disks with VMware Tools 163
 Viewing Information About VMware Tools 164
 Installing New Software Inside the Virtual Machine 164
 Cutting, Copying, and Pasting 165
 Suspending and Resuming Virtual Machines 165
 Shutting Down a Virtual Machine 166

5 Using the VMware Service Console 167
 Characteristics of the VMware Service Console 167
 Using DHCP for the Service Console 168
 Managing the Service Console 168
 Connecting to the Service Console 168
 Commands Specific to ESX Server 169
 Identifying Network Cards 169
 Managing a VMware ESX Server File System 169
 Automatically Mounting VMFS Volumes 170
 Loading VMkernel Device Modules 170
 Common Linux Commands Used on the Service Console 170
 Manipulating Files 170
 Finding and Viewing Files 172
 Managing the Computer and Its Users 173
 Setting File Permissions and Ownership 175
Switching User Names 177
The proc File System 177
Getting Help for Service Console Commands 180

Authentication and Security Features 180
Authenticating Users 180
Using Your Own Security Certificates when Securing Your Remote Sessions 182
Default Permissions 182
TCP/IP Ports for Management Access 182
High Security 183
Medium Security 183
Low Security 183
Using Devices With ESX Server 184
Supporting Generic Tape and Media Changers 184
Editing the vmware-device.map.local File 184
Finding Disk Controllers 184
When You Change Storage Adapters 185
Enabling Users to View Virtual Machines Through the VMware Remote Console 185

6 Administering ESX Server 187
Startup Profile 188
Network Connections 188
Creating and Editing Virtual Switches 189
Creating Port Groups 190
Disabling vmkernel VLAN Tagging 190
Configuring Physical Adapters 191
Configuring Network Speed and Duplex Settings 192
Users and Groups 192
Adding Users and Groups 192
Editing and Removing Users and Groups 193
Security Settings 194
Using Custom Security Settings 195
SNMP Configuration 196
Licensing and Serial Numbers 196
Storage Management 196
Configuring Storage: Disk Partitions and File Systems 196
Creating a Disk Partition 197
Editing a Disk Partition 199
Setting the Volume’s Access Mode 200
Changing the Maximum Size of a File Allowed by VMFS 200
Spanning a VMFS volume. 200
Converting a Partition to VMFS-2 200
Removing a Disk Partition 201
Viewing Failover Paths Connections 201
 Configuring Failover Policies 202
 Configuring Failover Paths 203
 Configuring a Swap File 203
Adapter Bindings 204
Advanced Settings 205
Service Console Settings 206
 Configuring the Service Console’s Processor Usage 207
 Configuring the Service Console’s Disk Usage 208
System Logs and Availability Report 209
 Viewing VMkernel Warnings 210
 Viewing VMkernel Messages 211
 Viewing Service Console Logs 212
 Viewing the Availability Report 213
How Memory Is Utilized 214
System Summary: Physical Memory 214
Memory 214
System Summary: Reserved Memory 215
Virtual Machines: Virtual Machine Summary 215
Virtual Machines: Virtual Machine Name 216
Virtual Machines Startup and Shutdown 217
 System Configuration Settings 217
 Enabling the System’s Configuration Settings 218
 Disabling the System’s Configuration Settings 220
 Specifying the Order In Which Virtual Machines Start 220
 Editing the Startup Sequence for Virtual Machines 220
Rebooting or Shutting Down the Server 221

7 Using SNMP with ESX Server 223
 Using SNMP to Monitor the Computer Running ESX Server 223
 Information About the Physical Computer 224
 Information About the Virtual Machines 224
 SNMP Traps 225
 Overview of Setting Up ESX Server SNMP 226
 Installing the ESX Server SNMP Agents 226
Configuring the ESX Server Agent 227
 Configuring the ESX Server Agent Through the VMware Management Interface 227
 Configuring the ESX Server Agent from the Service Console 228
 Configuring the Default SNMP Daemon 228
 Starting the SNMP Agents Automatically 229
 Starting the SNMP Agents Manually 229
Configuring SNMP 230
 Configuring SNMP Trap Destinations 230
 Configuring SNMP Management Client Software 230
 Configuring SNMP Security 231
 Using SNMP with Guest Operating Systems 231
VMware ESX Server SNMP Variables 231
 vmware.vmwSystem 231
 vmware.vmwVirtMachines 232
 vmware.vmwResources 234
 vmware.vmwResources.vmwMemory 235
 vmware.vmwResources.vmwHBATable 235
 vmware.vmwResources.vmwNetTable 236
 vmware.vmwProductSpecific 237
 vmware.vmwProductSpecific.vmwESX 237
 vmware.vmwProductSpecific.vmwESX.esxVMKernel 237
 vmware.vmwTraps 237
 vmware.vmwOID 238
 vmware.vmwExperimental 238

8 Using VMkernel Device Modules 239
 Configuring Your Server to Use VMkernel Device Modules 239
 Loading VMkernel Device Modules 239
 VMkernel Module Loader 240
 Options 240
 Parameters 241
 Examples 241
 Preparing to Load Modules 242
 Loading Modules 242
 Other Information about VMkernel Modules 243
 Controlling VMkernel Module Loading During Bootup 243
 Customizing Parameters of VMkernel Device Driver Modules on Startup 243
 Customizing Loading of VMkernel Device Driver Modules on Startup 244
9 Storage and File Systems 245

File System Management on SCSI Disks and RAID 245
Viewing and Manipulating Files in the /vmfs Directory 246
VMFS Volumes 247
Labelling VMFS Volumes 247
VMFS Accessibility 248
 VMFS Accessibility on a SAN 248
Changing Storage Configuration Options 248
Using vmkfstools 249
 vmkfstools Command Syntax 249
 vmkfstools Syntax When Specifying a SCSI Device 249
 vmkfstools Syntax When Specifying a VMFS Volume or File 250
vmkfstools Options 250
Basic vmkfstools Options 250
 Create a VMFS on the specified SCSI device 251
 List the attributes of a VMFS volume or a raw disk mapping 251
 Create a file with the specified size on the file system of the specified SCSI device 252
 Export the contents of the specified file on the specified SCSI device to a virtual disk on the file system of the service console 252
 Import the contents of a VMware virtual, plain, or raw disk on the service console to the specified file on the specified SCSI device 252
 List the files on the file system on the specified device 253
 Set the name of the VMFS on the specified SCSI device 253
Advanced vmkfstools Options 253
 Commit the redo log of the specified file, making the associated changes permanent 253
 Set the VMFS on the specified SCSI device to the specified mode 254
 Extend an existing logical VMFS-2 volume by spanning multiple partitions 254
 Map a Raw Disk or Partition to a File on a VMFS-2 Volume 255
 Display Disk Geometry for a VMware Workstation or GSX Server Virtual Disk 255
 Extend the specified VMFS to the specified length 256
 Manage SCSI reservations of physical targets or LUNs 256
 Recovers a VMFS 256
 Scans the specified vmhba adapter for devices and LUNs 257
 Create or Resize a Swap File in a VMFS Volume of the specified SCSI device 257
 Activate a Swap File 258
Deactivate a Swap File 258
Migrate a VMFS from VMFS-1 to VMFS-2 258

Examples Using vmkfstools 259
Create a new file system 259
Extends the new logical volume by spanning two partitions 259
Names a VMFS volume 260
Creates a new VMFS virtual disk file 260
Imports the contents of a virtual disk to the specified file on a SCSI device 260
Migrate virtual machines to VMware GSX Server or VMware Workstation, then back to VMware ESX Server 260
Lists the files on the VMFS of the specified device 261

Accessing Raw SCSI Disks 261
Using a Physical Disk in a Virtual Machine 261

Determining SCSI Target IDs 263
Sharing the SCSI Bus 264
Setting Bus Sharing Options 265

Using Storage Area Networks with ESX Server 266
Understanding Storage Arrays 266
Installing ESX Server with Attached SANs 266
Configuring VMFS Volumes on SANs 267
Scanning for Devices and LUNs 267
Changing VMkernel Configuration Options for SANs 267
Detecting All LUNs 268
Using IBM FAS T Disk Arrays 269

Troubleshooting SAN Issues with ESX Server 269

Using Persistent Bindings 270
Determining Target IDs Through the Service Console 270
Example Output for an Emulex HBA 270
Example Output for a QLogic HBA 271

pbind.pl Script 272
Examples Using the pbind.pl Script 272

Using Multipathing in ESX Server 272
Choosing Path Management Tools 273
Viewing the Current Multipathing State 274
Setting Your Multipathing Policy for a LUN 275
Specifying Paths 276
Enabling a Path 276
Disabling a Path 276
Setting the Preferred Path 276
Saving Your Multipathing Settings 277
In Case of Failover 277
Settings for QLogic Adapters 277

10 Configuration for Clustering 279
What Is Clustering? 279
Applications that Can Use Clustering 280
Clustering Software 280
Clustering Hardware 280
Clustering Virtual Machines 280
Clustering Software in Virtual Machines 281
Clustering Scenarios 281
Configuring Virtual Machine Clusters with Shared Disks 283
Important Notes 284
Two Node Cluster with Microsoft Cluster Service on a Single ESX Server Machine 284
Creating the First Node’s Base Virtual Machine 284
Installing the Guest Operating System 287
Cloning the Virtual Machine 287
Creating the Second Node Virtual Machine 288
Network Device Configuration 289
Installing Microsoft Cluster Service 290
Running Microsoft Cluster Service 292
Two Nodes with Microsoft Cluster Service on Separate ESX Server Machines 292
Creating the First Node’s Base Virtual Machine 292
Installing the Guest Operating System 293
Cloning the Virtual Machine 294
Creating the Second Node Virtual Machine 295
Clustering Using a Raw SCSI Disk 295
Installing Microsoft Cluster Service 296
Additional Notes for Clustering Across Physical Machines 296
Running Microsoft Cluster Service 299
VMFS Locking and SCSI Reservation 300
VMFS File System Locking 300
Locking at SCSI Disk Level 301
Using LUN Masking to Avoid Locking Issues 302
Network Load Balancing 302
Creating Multinode Network Load Balancing Clusters on ESX Server 302
 Creating the First Node’s Base Virtual Machine 302
 Installing the Guest Operating System 304
 Cloning the Virtual Machine 304
 Cloning the Virtual Machine, an Alternate Method 305
 Cloning the Virtual Machine to Another ESX Server Machine 306
 Creating the Second Node Virtual Machine 307
 Configuring the Network Load Balancing Cluster 308

11 Networking 311
 Setting the MAC Address Manually for a Virtual Machine 311
 How VMware ESX Server Generates MAC Addresses 312
 Setting MAC Addresses Manually 313
 Using MAC Addresses 313
 VMkernel Network Card Locator 314
 findnic Command 314
 Options 314
 Examples 315
 Forcing the Network Driver to Use a Specific Speed 315
 Enabling a Virtual Adapter to Use Promiscuous Mode 315
 Sharing Network Adapters and Virtual Networks 316
 Allowing the Service Console to Use the Virtual Machines’ Devices 317
 Starting Shared VMkernel Network Adapters and Virtual Networks when the
 Service Console Boots 318
 Sharing the Service Console’s Network Adapter with Virtual Machines 319
 Using Virtual Switches 320
 Choosing a Network Label 320
 Binding Physical Adapters 320
 Finding Bonds and Adapters in the Service Console 321
 Creating a Virtual Switch 322
 Choosing a Load Balancing Mode 322
 Configuring the Bond Failure Mode 323
 Using Beacon Monitoring 324
 Configuring External Network Switches 325
 Troubleshooting 326

12 VMware ESX Server Resource Management 327
 Virtual Machine Resource Management 328
 Service Console Resource Management 328
 Using ESX Server Resource Variables 328
Improving Performance 329
 Improving Slow Performance 329
 Improving Slow Performance on ESX Server 329
 Improving Slow Performance on Virtual Machines 330
 Optimizing Performance on the Service Console 330
CPU Resource Management 331
 Allocating CPU Resources 331
 Admission Control Policy 332
 Specifying Minimum and Maximum CPU Percentages 332
 Assigning Virtual Machines to Run on Specific Processors 333
 Using Proportional‐share Scheduling by Allocating Shares 333
 Controlling Relative CPU Rates 334
 Managing CPU Time with Percentages and Shares 334
 Using Hyper‐Threading 335
 Enabling Hyper‐Threading in ESX Server 335
 Configuring Hyper‐Threading Options for Virtual Machines 336
Managing Virtual Machine CPU Resources 336
 Managing CPU Resources from the Management Interface 336
 Managing CPU Resources from the Service Console 337
 Editing the Virtual Machine Configuration File 337
 Using procs 339
 Examples 342
 Monitoring CPU Statistics 342
Memory Resource Management 345
 Allocating Memory Resources 346
 Setting Memory Minimum, Maximum, and Shares 347
 Admission Control Policy 347
 Allocating Memory Dynamically 348
 Reclaiming Memory from Virtual Machines 349
 Swap Space and Guest Operating Systems 350
 Sharing Memory Across Virtual Machines 350
Managing Virtual Machine Memory 351
 Managing Memory Resources from the Management Interface 351
 Managing Memory Resources from the Service Console 352
 Service Console Commands 353
 Monitoring Memory Statistics 356
 Cautions 358
Using Your NUMA System 358
 NUMA Configuration Information 358
 Obtaining NUMA Statistics 359
Determining the Amount of Memory for Each NUMA Node 359
Determining the Amount of Memory for a Virtual Machine on a NUMA Node 360
Automatic NUMA Optimizations 360
Manual NUMA Optimizations 361
 Associating Virtual Machines to a Single NUMA Node 361
 Associating Future Virtual Machine Memory Allocations with a NUMA Node 362
 Binding a Virtual Machine to a Single NUMA Node on an 8-way Server 363
Sizing Memory on the Server 363
 Server Memory 364
 Service Console Memory 364
 Virtual Machine Memory Pool 364
 Virtual Machine Memory 364
 Memory Sharing 365
 Memory Overcommitment 366
 Example: Web Server Consolidation 366
Managing Network Bandwidth 367
 Using Network Filters 367
 Managing Network Bandwidth from the Management Interface 367
 Managing Network Bandwidth from the Service Console 368
 Traffic Shaping with nfshaper 369
 Service Console Commands 369
 Examples 370
Managing Disk Bandwidth 371
 Allocation Policy 371
 Managing Disk Bandwidth from the Management Interface 372
 Configuration File Options 372
 Configuration File Examples 373
 Managing Disk Bandwidth from the Service Console 374
Index 375
This preface describes the contents of the *ESX Server Administration Guide* and provides pointers to technical and educational resources.

This preface contains the following topics:

- “About This Book” on page 20
- “Intended Audience” on page 20
- “Document Feedback” on page 20
- “Conventions and Abbreviations” on page 20
- “Technical Support and Education Resources” on page 21
About This Book

This manual, *ESX Server Administration Guide*, describes how to administer and configure ESX Server 2.5 and how to access the server using the VMware Management Interface.

Intended Audience

The information presented in this manual is written for experienced Windows or Linux system administrators who are familiar with virtual machine technology and datacenter operations.

Document Feedback

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Conventions and Abbreviations

This manual uses the style conventions listed in Table P-1.

Table P-1. Type Conventions

<table>
<thead>
<tr>
<th>Style</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monospace</td>
<td>Used for commands, filenames, directories, paths.</td>
</tr>
<tr>
<td>Monospace bold</td>
<td>Apply to indicate user input.</td>
</tr>
<tr>
<td>Bold</td>
<td>Use for these terms:</td>
</tr>
<tr>
<td></td>
<td>Interface objects, keys, buttons</td>
</tr>
<tr>
<td></td>
<td>Items of highlighted interest</td>
</tr>
<tr>
<td></td>
<td>Glossary terms</td>
</tr>
<tr>
<td>Italic</td>
<td>Used for book titles.</td>
</tr>
<tr>
<td><name></td>
<td>Angle brackets indicate variable and parameter names.</td>
</tr>
</tbody>
</table>

Abbreviations Used in Graphics

The graphics in this manual use the abbreviations listed in Table P-2.

Table P-2. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC</td>
<td>VirtualCenter</td>
</tr>
<tr>
<td>VI</td>
<td>Virtual Infrastructure Client</td>
</tr>
</tbody>
</table>
Preface

The following sections describe the technical support resources available to you:

- “Self-Service Support” on page 21
- “Online and Telephone Support” on page 22
- “Support Offerings” on page 22
- “VMware Education Services” on page 22

Technical Support and Education Resources

The following sections describe the technical support resources available to you:

- “Self-Service Support” on page 21
- “Online and Telephone Support” on page 22
- “Support Offerings” on page 22
- “VMware Education Services” on page 22

Self-Service Support

Use the VMware Technology Network for self-help tools and technical information:

- Technology Information – http://www.vmware.com/vcommunity/technology
- Documentation – http://www.vmware.com/support/pubs
- Knowledge Base – http://www.vmware.com/support/kb
- Discussion Forums – http://www.vmware.com/community

For more information about the VMware Technology Network, go to http://www.vmtn.net.

Table P-2. Abbreviations (Continued)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server</td>
<td>VirtualCenter Server</td>
</tr>
<tr>
<td>database</td>
<td>VirtualCenter database</td>
</tr>
<tr>
<td>hostn</td>
<td>VirtualCenter managed hosts</td>
</tr>
<tr>
<td>VM#</td>
<td>virtual machines on a managed host</td>
</tr>
<tr>
<td>user#</td>
<td>user with access permissions</td>
</tr>
<tr>
<td>dsk#</td>
<td>storage disk for the managed host</td>
</tr>
<tr>
<td>datastore</td>
<td>storage for the managed host</td>
</tr>
<tr>
<td>SAN</td>
<td>storage area network type datastore shared between managed hosts</td>
</tr>
<tr>
<td>tmplt</td>
<td>template</td>
</tr>
</tbody>
</table>

server

VirtualCenter Server

database

VirtualCenter database

hostn

VirtualCenter managed hosts

VM#

virtual machines on a managed host

user#

user with access permissions

dsk#

storage disk for the managed host

datastore

storage for the managed host

SAN

storage area network type datastore shared between managed hosts

tmplt

template
Online and Telephone Support

Use online support to submit technical support requests, view your product and contract information, and register your products. Go to http://www.vmware.com/support.

Customers with appropriate support contracts should use telephone support for the fastest response on priority 1 issues. Go to http://www.vmware.com/support/phone_support.html.

Support Offerings

Find out how VMware’s support offerings can help you meet your business needs. Go to http://www.vmware.com/support/services.

VMware Education Services

VMware courses offer extensive hands-on labs, case study examples, and course materials designed to be used as on-the-job reference tools. For more information about VMware Education Services, go to http://mylearn1.vmware.com/mgrreg/index.cfm.

Reporting Problems

These guidelines describe the information you may be asked to provide when you report problems.

Be sure to register your serial number. If you are requesting support directly from VMware, then report your problems using the support request form on the VMware Web site at www.vmware.com/requestsupport.

When requesting support from VMware, run the /usr/bin/vm-support script on the service console and save the resulting esx-<date>-<unique-xnumber>.tgz file. This script collects and packages all relevant ESX Server system, configuration information, and ESX Server log files. This information is used to analyze the problem you are encountering.

- If a virtual machine exits abnormally or crashes, please save the log file (vmware.log in the same directory as your .vmx file) and any core files (core or vmware-core in that directory). Also, please save the virtual machine’s configuration (.vmx) file and any other information that might help reproduce the problem.

- Be sure to record a description of your physical hardware and of the software (operating system and applications) that was running in the virtual machine. This information may be required when you request support.
A problem in the VMkernel normally causes the machine to display an error screen for a period of time and then reboot. If you specified a VMware core dump partition when you configured your machine, the VMkernel also generates a core dump and error log. More serious problems in the VMkernel can freeze the machine without an error screen or core dump.

When you report problems directly to VMware, describe the steps you took in the period before this failure. Include this information in your support request, along with the contents of /var/log/messages from the service console. Also include the core dump and error log, if any. You can find these in files named vmkernel-core.<date> and vmkernel-log.<date> in the /root directory after you reboot your machine.
The VMware ESX Server Administration Guide provides information on how to use VMware ESX Server after it has been installed. For information on installing ESX Server, refer to the VMware ESX Server Installation Guide.

This chapter contains the following sections:

- “VMware ESX Server System Architecture,” next
- “Using VMware ESX Server” on page 31

VMware ESX Server System Architecture

VMware ESX Server incorporates a resource manager and a service console that provides bootstrapping, management, and other services.

The design of the ESX Server core architecture implements the abstractions that allow hardware resources to be allocated to multiple workloads in fully isolated environments.

The key elements of the system’s design are:

- **VMware virtualization layer** – Provides the idealized hardware environment and virtualization of underlying physical resources.
- **Resource manager** – Enables the partitioning and guaranteed delivery of CPU, memory, network bandwidth, and disk bandwidth to each virtual machine.
- **Hardware interface components** – Includes device drivers, which enable hardware-specific service delivery while hiding hardware differences from other parts of the system.
Virtualization

The VMware virtualization layer brings hardware virtualization to the standard Intel server platform. The virtualization layer is common among VMware desktop and server products, providing a consistent platform for development, testing, delivery, and support of application workloads from the developer desktop to the workgroup to the data center.

As with mainframe virtualization, the VMware virtual machine offers complete hardware virtualization. The guest operating system and applications (those operating inside a virtual machine) can never directly determine which specific underlying physical resources they are accessing, such as on which CPU they are running in a multiprocessor system or which physical memory is mapped to their pages. The virtualization of the CPU incorporates direct execution: non-privileged instructions are executed by the hardware CPU without overheads introduced by emulation.

The virtualization layer provides an idealized physical machine that is isolated from other virtual machines on the system. It provides the virtual devices that map to shares of specific physical devices. These devices include virtualized CPU, memory, I/O buses, network interfaces, storage adapters and devices, human interface devices, BIOS, and others.

Each virtual machine runs its own operating system and applications. They cannot talk to each other or leak data, other than through networking mechanisms similar to those used to connect separate physical machines. This isolation leads many users of VMware software to build internal firewalls or other network isolation environments, allowing some virtual machines to connect to the outside while others are connected only through virtual networks through other virtual machines.
CPU Virtualization

Each virtual machine appears to run on its own CPU, or set of CPUs, fully isolated from other virtual machines, with its own registers, translation lookaside buffer, and other control structures. Most instructions are directly executed on the physical CPU, allowing compute-intensive workloads to run at near-native speed. Privileged instructions are performed safely by the patented and patent-pending technology in the virtualization layer.

Memory Virtualization

While a contiguous memory space is visible to each virtual machine, the physical memory allocated may not be contiguous. Instead, noncontiguous physical pages are remapped efficiently and presented to each virtual machine. Some of the physical memory of a virtual machine might be mapped to shared pages or to pages that are unmapped or swapped out. This virtual memory management is performed by ESX Server without the knowledge of the guest operating system and without interfering with its memory management subsystem.

Disk Virtualization

Support of disk devices in ESX Server is an example of the product’s hardware independence. Each virtual disk is presented as a SCSI drive connected to a SCSI adapter. This device is the only disk storage controller used by the guest operating system, despite the wide variety of SCSI, RAID, and Fibre Channel adapters that might be used in the system.

This abstraction makes virtual machines more robust and more transportable. You do not need to worry about the potentially destabilizing drivers that you might have to install on guest operating systems, and the file that encapsulates a virtual disk is identical no matter which underlying controller or disk drive is used.

You can use VMware ESX Server effectively with storage area networks (SANs). ESX Server supports QLogic and Emulex host bus adapters, which allow an ESX Server computer to be connected to a SAN and to see the disk arrays on the SAN.

Network Virtualization

You may define up to four virtual network cards within each virtual machine. Each virtual network card has its own MAC address and may have its own IP address (or multiple addresses), as well. Virtual network interfaces from multiple virtual machines may be connected to a virtual switch. Each virtual switch can be configured as a purely virtual network with no connection to a physical LAN or can be bridged to a physical LAN by one or more of the physical NICs on the host machine.
Private Virtual Ethernet Networks (VMnets)

You can use VMnet connections for high-speed networking between virtual machines, allowing private, cost-effective connections. The isolation inherent in their design makes them especially useful for supporting network topologies that normally depend on the use of additional hardware to provide security and isolation.

Figure 1-2. Firewall configuration example

In Figure 1-2, an effective firewall can be constructed by configuring one virtual machine on an ESX Server system with two virtual Ethernet adapters, one bound to a VMnic (giving it a connection to a physical network) and the other bound to a VMnet. Other virtual machines would be connected only to the VMnet. By running filtering software in the dual-homed virtual machine, a user can construct an effective firewall without the need for additional hardware and with high-performance virtual networking between the virtual machines.

You can use a similar approach with multitier applications (with the Web or application servers reachable from other systems) but with the database server connected only to the other tiers.

Virtualization at a Glance

ESX Server virtualizes the resources of the physical system for use by the virtual machines.
In Figure 1-3, each virtual machine is configured with one CPU, an allocation of memory and disk, and two virtual Ethernet adapters. In reality, they share the same physical CPU and access noncontiguous pages of memory (with part of the memory of one of the virtual machines currently swapped to disk). Their virtual disks are set up as files on a common file system.

Each of the example virtual machines has two virtual NICs. Virtual NICs 1a and 2a are attached to the virtual switch that is bound to physical NICs 1a and 2a. Virtual NICs 1b and 2b are attached to a purely virtual switch.

Software Compatibility

In the VMware ESX Server architecture, guest operating systems interact only with the standard x86-compatible virtual hardware presented by the virtualization layer. This provides the capability for VMware to support any x86-compatible operating system.

In practice, VMware supports a subset of x86-compatible operating systems that are tested throughout the product development cycle. VMware documents the installation and operation of these guest operating systems and trains its technical personnel in their support.

Because applications interact only with their guest operating system, and not with the underlying virtual hardware, after operating system compatibility with the virtual hardware is established, application compatibility is not an issue.
Service Console
This section discusses the service console functions, processes, and files.

Service Console Functions
The ESX Server system management functions and interfaces are implemented in the service console. These include the HTTP, SNMP, and API interfaces described above, as well as other support functions such as authentication and low-performance device access. The service console is also installed as a first component and is used to bootstrap the ESX Server installation and configuration, as well as to boot the system and initiate execution of the virtualization layer and resource manager. In ESX Server, the service console is implemented using a modified Linux distribution.

Service Console Processes and Files
The service console provides a control API that allows the virtual machines and resource allocations to be managed. The administrator may also access these controls through pages accessed through the Web server running in the service console.

Figure 1-4. Service Console processes and files
In addition to the Web server, the following processes and services involved in the management of an ESX Server system run in the service console:

- **Server daemon (vmserverd)** – Performs actions in the service console on behalf of the VMware Remote Console and the Web-based VMware Management Interface.
- **Authentication daemon (vmauthd)** – Authenticates remote users of the management interface and remote consoles using the username/password database. Any other authentication store that can be accessed using the Pluggable Authentication Module (PAM) capabilities present in the service console can also be used. This allows the use of passwords from a Windows domain controller, LDAP or RADIUS server, or similar central authentication store to use with VMware ESX Server for remote access.

- **SNMP server (ucd-snmpd)** – Implements the SNMP data structures and traps an administrator can use to integrate an ESX Server system into an SNMP-based system management tool.

- **Service console** (in addition to VMware supplied services) – Use to run other system wide or hardware-dependent management tools. These include hardware-specific health monitors (such as IBM Director, HP Insight Manager, and others), full-system backup and disaster recovery software, and clustering and high availability products.

The server and virtual machine resources and configuration attributes that are available through the SNMP and HTTP interfaces are also visible through a file system in the service console. The files in this `/proc/vmware` name space may be examined and modified by users logged in to the service console with sufficient permissions or may be used as a point of integration for home-grown or commercial scripts and management tools.

Using VMware ESX Server

VMware ESX Server contains many features to help you manage your virtual machines’ resources. In this section, some of these features are highlighted by listing tasks that you perform on your ESX Server system.

The information contained in this table presumes that you have successfully installed and configured ESX Server on your hardware. For help, refer to the *VMware ESX Server Installation Guide*.

VMware, Inc.
Familiarizing Yourself with ESX Server

Table 1-1 includes tasks from the VMware Management Interface for an Administrator (root user), who manages and maintains ESX Server.

Table 1-1. ESX Server Administrator Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log into the VMware Management Interface and familiarize yourself with its features.</td>
<td>As the root user, you have privileges that other users don’t have. In addition to the Status Monitor, you have access to the Options pane that allows you to configure ESX Server, including networking, security, SNMP, users and groups, storage configuration, and so on. See Chapter 3, “Using the VMware Management Interface.”</td>
</tr>
<tr>
<td>Create users and groups.</td>
<td>Create users and place them into groups for different access to ESX Server. For best practice, the root user should not own virtual machines. Users who create, access, and modify virtual machines don’t need the additional administrative privileges of the root user. You might choose to have a virtual machine owned by a “flagship user” instead of a real person. By using a “flagship user,” only one user account owns the virtual machines that are in production. An advantage of using flagship accounts is that flagship users never leave the company or go on vacation. See “Creating a Flagship User” on page 145.</td>
</tr>
<tr>
<td>Add additional disks and partitions, as needed.</td>
<td>When creating your VMFS volumes, keep the default access type public, unless you plan to use your virtual machines for clustering. If you are running clustering software, select “shared” as your VMFS volume access type. See “Configuring Storage: Disk Partitions and File Systems” on page 196 and “Configuration for Clustering” on page 279.</td>
</tr>
<tr>
<td>Decide how to organize your virtual machine configuration files.</td>
<td>The default location for these files is the home directory of the user that created the virtual machine. In production environments, most virtual machines belong to teams rather than to individuals. Setting up a central directory structure is a good practice.</td>
</tr>
<tr>
<td>Upgrade any existing virtual machines from a previous version of ESX Server or another VMware product.</td>
<td>The migration procedure is heavily dependent on the version of the VMware product used to create the original virtual machine. If you are migrating a virtual machine from a previous version of ESX Server, see “Migrating Older ESX Server Virtual Machines” on page 62. If you are migrating a virtual machine from VMware Workstation or VMware GSX Server, see “Migrating VMware Workstation and VMware GSX Server Virtual Machines” on page 63. Read these instructions before attempting to migrate your virtual machine.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Create “golden master” (template) virtual disks.</td>
<td>To manage ESX Server more efficiently, create a small number of “golden master” (template) virtual disks for easier deployment. These are virtual disks that have complete guest operating systems, installed applications, complete management-agent installs, virus detection software, complete VMware Tools installs, and so on. You can import the disks into a VMFS volume to create a new virtual machine. Be sure that the golden master has the tools necessary to reset system attributes (hostname and IP address, NetBIOS hostname, domain, and SID [Windows operating systems] for the virtual machines you clone. Also, be sure that the user that will be running the newly created virtual machine has the appropriate user and group permissions. Use the File Manager in the VMware Management Interface to import the “golden master” virtual disks. See “Using the VMware Management Interface File Manager” on page 141.</td>
</tr>
<tr>
<td>Set user and group permissions for the owner of a virtual machine.</td>
<td>1. Log into the management interface and click Manage Files. 2. Navigate to the configuration file (.vmx) of the virtual machine. 3. Select the virtual machine’s configuration file check box, and click Edit Properties. 4. Choose read, write, and execute properties for the owner of the virtual machine. 5. Choose read and execute privileges for the owner’s group, and click OK. Set read and write permissions for the owner of the virtual machine’s virtual disk (.vmdk file). Read permissions for a virtual disk file are sufficient if the virtual disk is nonpersistent. See “Setting Permissions for Owners of Virtual Machines” on page 144 and “Using Disk Modes” on page 135. The same user must own the virtual machine’s configuration and virtual disk file and must have full access privileges for both files.</td>
</tr>
<tr>
<td>Set user and group permissions to view a virtual machine on the Status Monitor.</td>
<td>For a user to see a virtual machine in the management interface, the user, or a group to which the user belongs, must have read access to that virtual machine. See “Setting Permissions for Owners of Virtual Machines” on page 144.</td>
</tr>
</tbody>
</table>
Table 1-1. ESX Server Administrator Tasks (Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set user permissions to connect to a virtual machine through the remote console.</td>
<td>For a user to connect to and power on a virtual machine in the remote console the user, or a group to which the user belongs, must have read and execute access to that virtual machine’s configuration file. Also, the user must have execute (x) permission on all parent directories. See “Setting Permissions for Owners of Virtual Machines” on page 144.</td>
</tr>
<tr>
<td>Configure your SNMP agent.</td>
<td>ESX Server ships with an SNMP agent that allows you to monitor the health of the physical machine where ESX Server is running and of virtual machines running on it. See “Configuring the ESX Server Agent Through the VMware Management Interface” on page 227.</td>
</tr>
</tbody>
</table>

Table 1-2 includes tasks from the VMware Management Interface for a virtual machine user, who creates and modifies virtual machines.

Table 1-2. VMware Management Interface Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log into the VMware Management Interface and download the remote console package.</td>
<td>Use the remote console to power on and power off your virtual machines, connect or disconnect devices (including the CD drive and network adapter), and set preferences (including mouse, keyboard, and hot key behavior in the remote console window). Install the remote console from the Status Monitor of the management interface. Launch the remote console from your desktop (Windows operating systems) or from the management interface. Click the appropriate link for the operating system on your workstation.</td>
</tr>
<tr>
<td>Learn to use the management interface.</td>
<td>After login, the starting page of the management interface provides a summary of the virtual machines on ESX Server. Depending on your permissions, you’ll be able to view and modify virtual machines. See “Using the Status Monitor” on page 84. Clicking on a virtual machine name opens the details page for that virtual machine, where you can check its CPU, memory, disk, network, hardware, options, and users and events. Familiarize yourself with the information contained in these pages. See “Configuring a Virtual Machine” on page 94</td>
</tr>
</tbody>
</table>
Table 1-2. VMware Management Interface Tasks (Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a virtual machine.</td>
<td>The Add Virtual Machine wizard lets you add a small number of devices to a virtual machine. This makes the initial creation process simpler. Add devices later by clicking Add Device in the Hardware tab for the virtual machine. If you purchased the VMware Virtual SMP for ESX Server product, you can create dual-virtual CPU SMP virtual machines. Take into account the type of applications you plan to run on this virtual machine when making your choices during its creation. See “Creating a New Virtual Machine” on page 39.</td>
</tr>
<tr>
<td>Add additional disks, drives, network adapters, and SCSI devices.</td>
<td>Click Add Device in the Hardware tab for the virtual machine. See “Configuring a Virtual Machine's Hardware” on page 102.</td>
</tr>
<tr>
<td>Install guest operating system and VMware Tools.</td>
<td>VMware Tools is a software package installed in the guest operating system that gives you device drivers specific to VMware virtual devices where necessary and includes communication channels between the virtual machine and the ESX Server virtualization layer. See “Installing a Guest Operating System in a Virtual Machine” on page 43, and see “VMware Tools Settings” on page 159.</td>
</tr>
</tbody>
</table>

Working With ESX Server

This section includes information on maintenance tasks, performance enhancements, and general troubleshooting tips.

Table 1-3 includes ESX Server maintenance tasks for an Administrator (root user).

Table 1-3. Maintenance tasks for an Administrator

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back up your virtual machines.</td>
<td>You can do backups for each virtual machine, or from the service console. Backups from the service console are best for system images, because they result in a backup bootable virtual disk and are suitable for rapid redeployment. See “Backing Up from Within a Virtual Machine” on page 152. Backups from within the virtual machine, using a backup agent, are best for application data because no system shutdown is required. See “Backing Up Virtual Machines from the Service Console” on page 153.</td>
</tr>
</tbody>
</table>
Table 1-3. Maintenance tasks for an Administrator (Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use scripts to schedule frequent tasks.</td>
<td>For more information on VMware Scripting APIs, see http://www.vmware.com/support/developer.</td>
</tr>
<tr>
<td>View system logs and reports through the management interface.</td>
<td>As needed, view the ESX Server log files for warnings, serious system alerts and messages through the management interface. See Viewing System Logs and Reports on page 229.</td>
</tr>
</tbody>
</table>

Table 1-4 includes ESX Server performance-related tasks for an Administrator (root user).

Table 1-4. Performance-related tasks for an Administrator

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhance performance on virtual machines, based on its application(s).</td>
<td>ESX Server applies a proportional share mechanism to CPU, memory allocation, and disk bandwidth. The more shares a virtual machine has, the more CPU, memory, or disk bandwidth it has. For example, virtual machines running a CPU-intensive application should have a greater minimum CPU and memory share than a virtual machine running a non-CPU intensive application. See Chapter 12, “VMware ESX Server Resource Management.”</td>
</tr>
<tr>
<td>Enhance CPU performance on virtual machines.</td>
<td>Set minimum and maximum percentages as well as memory shares for each virtual machine. Also select the processors on which the virtual machine runs. See “Configuring a Virtual Machine’s CPU Usage” on page 96 and “CPU Resource Management” on page 331.</td>
</tr>
<tr>
<td>Enhance memory utilization on virtual machines.</td>
<td>You can set memory shares for a virtual machine. If you have a NUMA machine, you can also select the NUMA affinity nodes for the virtual machine. See “Configuring a Virtual Machine’s CPU Usage” on page 96, “Memory Resource Management” on page 345, and “Using Your NUMA System” on page 358.</td>
</tr>
<tr>
<td>Enhance disk bandwidth utilization on virtual machines.</td>
<td>You can set disk bandwidth for a virtual machine. A virtual machine with more shares has more bandwidth. See “Configuring a Virtual Machine’s CPU Usage” on page 96 and “Managing Disk Bandwidth” on page 371.</td>
</tr>
<tr>
<td>Enhance networking performance on virtual machines.</td>
<td>You can manage networking performance by enabling traffic shaping and specifying network parameters. See “Configuring a Virtual Machine’s Networking Settings” on page 100 and “Managing Network Bandwidth” on page 367.</td>
</tr>
<tr>
<td>Task</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Remove unnecessary programs or services from your virtual machines.</td>
<td>Remove unnecessary programs or services, such as CPU-intensive screensavers, from your virtual machines. Run Linux virtual machines without the X Window system, if possible.</td>
</tr>
<tr>
<td>Make sure that the service console has enough CPU and RAM.</td>
<td>If you are running a lot of virtual machines on ESX server, and you notice a degradation in system performance, increase the CPU minimum for the service console. See “Managing the Service Console” on page 168</td>
</tr>
<tr>
<td>Make sure there is sufficient swap space for your guest operating system.</td>
<td>For resource management purposes, ESX Server may increase the memory utilization within a guest operating system. Ensure that the guest operating system has sufficient swap space. Add additional swap space in the guest operating system, equal to the difference between the virtual machine's maximum and minimum memory sizes. See “Admission Control Policy” on page 332.</td>
</tr>
<tr>
<td>Remove unnecessary programs or services from your service console.</td>
<td>Do not run the X Window system in your service console.</td>
</tr>
<tr>
<td>Use SNMP to watch memory, resource usage, and workloads on ESX Server and its virtual machines.</td>
<td>See Chapter 7, “Using SNMP with ESX Server.”</td>
</tr>
</tbody>
</table>
Table 1-5 includes some general troubleshooting information.

Table 1-5. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can’t start a virtual machine.</td>
<td>Check permissions on the virtual machine configuration file and on the virtual disk. See Setting Permissions for Owners of Virtual Machines on page 139.</td>
</tr>
<tr>
<td></td>
<td>Check that there is enough memory to power this virtual machine. See Sizing Memory on the Server on page 401.</td>
</tr>
<tr>
<td></td>
<td>Check that there is enough unreserved swap space. See Swap Space and Guest Operating Systems on page 388.</td>
</tr>
<tr>
<td></td>
<td>Check that the virtual disks are in a VMFS volume. If the virtual disk file is from VMware Workstation or VMware GSX Server, be sure the virtual disk has been properly imported, through the management interface, into ESX Server. See Migrating VMware Workstation and VMware GSX Server Virtual Machines on page 50.</td>
</tr>
<tr>
<td>Can’t connect to the VMware Management Interface.</td>
<td>Check whether there has been a loss in IP connectivity.</td>
</tr>
<tr>
<td></td>
<td>Check that the NIC duplex or speed matches the Ethernet switch.</td>
</tr>
<tr>
<td></td>
<td>Check that the service console is not swapping.</td>
</tr>
<tr>
<td></td>
<td>Check that the root file system has available disk space.</td>
</tr>
<tr>
<td>Can’t connect to the VMware Remote Console.</td>
<td>Check whether there has been a loss in IP connectivity.</td>
</tr>
<tr>
<td></td>
<td>Check that the NIC duplex or speed matches the Ethernet switch.</td>
</tr>
<tr>
<td></td>
<td>Check that the service console is not swapping.</td>
</tr>
<tr>
<td></td>
<td>Check that the root file system has available disk space.</td>
</tr>
</tbody>
</table>
Creating and Configuring Virtual Machines

This chapter describes how to create and configure virtual machines and install the VMware Remote Console. It contains the following sections:

- “Creating a New Virtual Machine” on page 39
- “Installing a Guest Operating System and VMware Tools” on page 43
- “Using PXE with Virtual Machines” on page 53
- “Configuring a Virtual Machine to Use the LSI Logic SCSI Adapter” on page 55
- “Importing, Upgrading, and Exporting Virtual Machines” on page 60
- “Preparing to Use the Remote Management Software” on page 69
- “Installing the Remote Console Software” on page 70
- “Third Party Software Compatibility” on page 71
- “Executing Scripts When the Virtual Machine’s Power State Changes” on page 71
- “Configuring Virtual Machines” on page 73

Creating a New Virtual Machine

You can create new virtual machines from within the VMware Management Interface. The process sets up a new configuration for each virtual machine you create this way.

NOTE

Use only ASCII characters in the entry fields when creating a virtual machine with the management interface. The virtual machine’s display name and path cannot contain non-ASCII characters. In addition, do not create filenames and directories for virtual machines with space characters.
The Add Virtual Machine wizard guides you through the basic steps to create a virtual machine on your server. Any user who has an account on the server’s service console may log in to the wizard and create a virtual machine. If you are logged in as root, you might want to log out and log in again as a user authorized to manage the new virtual machine.

NOTE Check for any VMkernel ALERT messages in the warning log files before creating a new virtual machine.

To create a new virtual machine

1. Log in to the management interface, using this URL:

 http://<hostname>

2. On the management interface login page, enter your user name and password and click Login.

 The Status Monitor appears.

3. Click Add Virtual Machine.

 The Add Virtual Machine wizard starts.

4. Choose the guest operating system for your virtual machine.

 Default entries appear for the name of the virtual machine and the name of its configuration file. You can change these settings.

 The name you enter in the **Display Name** field is listed in the VMware Management Interface.

 The **Location** field contains the name of the configuration file (this file has a .vmx extension). Be sure that the entry in the **Location** field is unique.
5 Click Next.

6 In the Processors list, choose the number of virtual CPUs in your virtual machine.

 Choose 1 or 2 virtual CPUs, but they must be less than or equal to the number of physical CPUs on your server.

 NOTE Some guest operating systems, such as Windows NT, can be configured with a single processor. If you are configuring such a virtual machine, a note indicates this and you cannot select more than one virtual CPU.

 NOTE You can create dual-virtual CPU virtual machines only if you have purchased the VMware Virtual SMP for ESX Server product. For more information on this product, contact VMware, Inc. or your authorized sales representative.

 You might need to change it to meet the demands of applications you plan to run in the virtual machine. You can change this setting later on the virtual machine’s Memory tab in the management interface. See “Managing Memory Resources from the Management Interface” on page 351.

7 In the Workloads list, select **Citrix Terminal Services** to run Citrix MetaFrame on the virtual machine.

 NOTE Do not select this option if you do not plan to run Citrix MetaFrame on the virtual machine. Virtual machines with this setting use more virtualization overhead and ESX Server will be able to run fewer virtual machines simultaneously.

8 Click Next.

9 Choose the type of virtual disk you want to add to the virtual machine.

 - Click **Blank** to create a new virtual disk. Specify the following:

 a In the **VMFS Volume** list, choose the volume on which to locate the virtual disk. The amount of free space is listed next to the volume name.

 b In the **VMware Disk Image** field, specify the disk name with a .vmdk extension.
c In the **Capacity** field, specify the size of the virtual disk in MB. The default entry indicates the lesser of either 4000MB or the amount of free space available on the volume.

d Select the appropriate SCSI ID in the **Virtual SCSI Node** list.

e Under **Disk Mode**, click **Persistent, Nonpersistent, Undoable**, or **Append**. See “Using Disk Modes” on page 135.

- Click **Existing** to add an existing virtual disk to the virtual machine. Specify the following:

 a In the **VMFS Volume** list, choose the volume on which the virtual disk is located.

 b In the **VMware Disk Image** list, select the virtual disk you want. The size of the virtual disk appears in the **Capacity** field. You cannot change this value.

 c Select the SCSI ID in the **Virtual SCSI Node** list.

 d Under **Disk Mode**, click **Persistent, Nonpersistent, Undoable**, or **Append**. See “Using Disk Modes” on page 135.

- Click **System LUN/Disk** to allow the virtual machine to access a physical disk stored on a LUN. Specify the following:

 a Select **Use Metadata** to enable access to the disks metadata file information.

 b Choose the **Metadata File Location**.

 c Enter a name in the **Metadata File Name** field.

 d Select the SCSI ID in the **Virtual SCSI Node** list.

 e Choose the Compatibility of the guest operating system:

 Physical – Gives the guest operating system direct disk access.

 Virtual – Lets you choose a disk mode for the guest operating system.

10 Click **Next**.

The **Hardware** tab for this virtual machine appears.

You can change the default settings ESX Server assigned to the virtual machine (such as the disk mode, network card, color depth and any removable devices) or configuration items you specified. To change hardware, see “Configuring a Virtual Machine’s Hardware” on page 102.
Installing a Guest Operating System and VMware Tools

This section describes the following:

- “Installing a Guest Operating System in a Virtual Machine” on page 43
- “Installing VMware Tools in the Guest Operating System” on page 44
- “Starting VMware Tools Automatically” on page 48
- “Using the VMware Guest Operating System Service” on page 49

In most cases, configure your virtual machine with a blank (unformatted) SCSI virtual disk. You can install an operating system on this virtual disk just as you would on a new physical machine, using a standard installation CD-ROM and formatting the virtual disk at the appropriate place in the installation process.

You can also install from image files—ISO image files of installation CD-ROMs and floppy image files of any floppy disks needed for the installation. Use the VMware Management Interface to connect the virtual machine’s drives to the appropriate image files before you begin the installation.

Another approach is to start with a virtual disk created with VMware Workstation 3.2 or higher or with VMware GSX Server 2.5 or higher, and configure the guest operating system to work with VMware ESX Server.

After your guest operating system is installed, follow the directions below for installing VMware Tools and the network driver.

Installing a Guest Operating System in a Virtual Machine

To install a guest operating system and other software, use the VMware Remote Console on a different system than the one on which you’ve installed ESX Server.

For details on installing the remote console, see “Installing the Remote Console Software” on page 70. Follow the directions for starting a remote console on your Windows or Linux workstation and connecting to a virtual machine.

Insert the installation CD-ROM for your guest operating system in the CD-ROM drive. Click **Power On** on the remote console toolbar to begin setting up your guest operating system. See http://www.vmware.com/support/guestnotes/doc/index.html and the ESX Server 2.5 release notes for details on installing specific guest operating systems.

To install over a network, you need ISO image files of installation CD-ROMs and floppy image files of any floppy disks needed for the installation. The installation instructions in this section assume you are installing from physical media. If you are using image files, you should connect the virtual machine's CD-ROM or floppy drives to the appropriate image files before you begin installing the guest operating system.
NOTE When you install a guest operating system on a new virtual disk, you might get a warning message that the disk is corrupted. It will ask whether you want to place a partition table on the disk. This message means that some data needs to be written to the file that holds your virtual hard disk. Respond Yes. You also need to partition and format the virtual disk as you would with a new, blank hard drive.

Installing a Guest Operating System on a Formatted Raw Disk

If you try to install a guest operating system on a raw or physical disk that was formatted with a file system, you might see a “No operating system” error when you power on the virtual machine. This occurs because the boot order specified in the virtual machine’s BIOS defaults to the floppy disk, hard disk, and then the CD-ROM drive. Instead of booting from the installation CD-ROM, the virtual machine tries to boot from the hard disk.

To work around this issue, do one of the following:

- Change the boot order in BIOS so the virtual machine boots from the CD-ROM drive before trying the hard disk. When the virtual machine boots, enter the BIOS and change the boot order on the Boot menu.

- Zero out the first 64KB of the raw disk using dd or a similar utility. For example, using dd:

 # dd if=/dev/zero of=/dev/<device> count=64 bs=1024

 In the command above, device is the device name of the physical disk.

Installing VMware Tools in the Guest Operating System

This section describes how to install VMware Tools and the network driver in the guest operating system. Note the following:

- The steps for each guest operating system assume that you are working from a remote console connected to your virtual machine.

- In each procedure, choosing Settings > VMware Tools Install prepares the CD-ROM drive in the virtual machine to use an ISO image file containing the VMware Tools packages. This image, which appears as a regular CD-ROM disk in the virtual machine, was placed on your server machine when you installed VMware ESX Server.

Select the appropriate procedure below for installing VMware Tools in your guest operating system.
To install VMware Tools in a Windows Server 2003 guest

1 Choose Settings > VMware Tools Install to connect the virtual machine’s CD-ROM drive to an ISO image file on the ESX Server machine.

 If autorun is enabled in your guest operating system, a dialog box appears asking whether you want to install VMware Tools.

2 Click Install to launch the installation wizard.

 If autorun is not enabled, the dialog box does not appear. Run VMwareTools.exe from the CD-ROM drive (choose Start > Run > D:\VMwareTools.exe) to install VMware Tools.

 Two Hardware Installation messages appear, stating that the VMware SVGA and VMware Pointing Device drivers have not passed Windows Logo testing.

3 Accept these messages and continue.

4 Reboot the guest operating system when prompted.

 When the installation completes, ESX Server disconnects the ISO image file and returns the virtual machine’s CD-ROM drive to its original configuration.

To install VMware Tools in a Windows XP guest

1 Choose Settings > VMware Tools Install to connect the virtual machine’s CD-ROM drive to an ISO image file on the ESX Server machine.

 If autorun is enabled in your guest operating system, a dialog box appears asking whether you want to install VMware Tools.

2 Click Install to launch the installation wizard.

 If autorun is not enabled, the dialog box does not appear. Run VMwareTools.exe from the CD-ROM drive (choose Start > Run > D:\VMwareTools.exe) to install VMware Tools.

 Two Hardware Installation messages appear, stating that the VMware SVGA and VMware Pointing Device drivers have not passed Windows Logo testing.

3 Accept these messages and continue.

4 Reboot the guest operating system when prompted.

 When the installation completes, ESX Server disconnects the ISO image file and returns the virtual machine’s CD-ROM drive to its original configuration.
To Install VMware Tools in a Windows 2000 guest

1. Choose Settings > VMware Tools Install to connect the virtual machine’s CD-ROM drive to an ISO image file on the ESX Server machine.

 If autorun is enabled in your guest operating system, a dialog box appears asking whether you want to install VMware Tools.

2. Click Install to launch the installation wizard.

 If autorun is not enabled, the dialog box does not appear. Run VMwareTools.exe from the CD-ROM drive (Start > Run > D:\VMwareTools.exe, where D: is the first CD-ROM drive in your virtual machine) to install VMware Tools.

3. When installation is complete, choose Settings > Cancel Tools Install to disconnect the ISO image file and return the virtual machine’s CD-ROM drive to its original configuration.

To install VMware Tools and the Network Driver in a Windows NT 4.0 guest

1. Choose Settings > VMware Tools Install to connect the virtual machine’s CD-ROM drive to an ISO image file on the ESX Server machine.

 If autorun is enabled in your guest operating system, a dialog box appears asking whether you want to install VMware Tools.

2. Click Install to launch the installation wizard.

 If autorun is not enabled, the dialog box does not appear. Run setup.exe from the CD-ROM drive (choose Start > Run > D: \setup.exe) to install VMware Tools.

3. Do one of the following:
 - If you configured this virtual machine to use thevlance network driver, go to Step 5.
 - If you configured this virtual machine to use thevmxnet network driver, choose Start > Control Panel > Network > Adapters and click Add.

4. Click Have Disk and type D:\Program files\VMware\VMware Tools\Drivers\vmxnet\winnt in the Insert Disk dialog box.

5. Click OK when VMware Virtual Ethernet Adapter appears in the Select OEM Option dialog box.

 The VMware network driver is installed.

6. Click Close in the Adapters dialog box to complete the installation.

 Windows lets you configure the Internet address for the card.
If you are installing on a virtual machine that was created with VMware Workstation and used networking, use an address different from the one the original network configuration used (that address is assigned to the now nonexistent virtual AMD card). Or change the address assigned to the AMD card.

NOTE The VMware Virtual Ethernet Adapter driver runs correctly only if you have Service Pack 3 or later installed. If you do not have the correct service pack installed, you might get an error message such as:

```
System Process Driver Entry Point Not Found; The \SystemRoot\System32\drivers\vmxnet.sys device driver could not locate the entry point NdisGetFirstBufferFromPacket in driver NDIS.SYS.
```

7 When installation is complete, and before you reboot, choose **Settings > Cancel Tools Install** to disconnect the ISO image file and return the virtual machine's CD-ROM drive to its original configuration.

8 Reboot the virtual machine.

To Install VMware Tools in a Linux Guest

1 Choose **Settings > VMware Tools Install** and click **Install**.

 This step connects the virtual machine's CD-ROM drive to an ISO image file on the ESX Server machine.

2 In your Linux guest, become root, mount the VMware Tools virtual CD-ROM, copy the installer file from the virtual CD-ROM to /tmp, and unmount the CD-ROM.

   ```
   su
   mount -t iso9660 /dev/cdrom /mnt
   cp /mnt/vmware-linux-tools.tar.gz /tmp
   umount /dev/cdrom
   ```

3 Untar the VMware Tools tar file in /tmp and install it.

   ```
   cd /tmp
   tar xzf vmware-linux-tools.tar.gz
   cd vmware-tools-distrib
   ./vmware-install.pl
   ```

4 Choose directories for the files.

5 Enter a display size for the virtual machine and press Enter.

6 Start X and your graphical environment and launch the VMware Tools background application.

   ```
   vmware-toolbox &
   ```
To install VMware Tools in a NetWare 6.0 SP3, 6.5, or 5.1 SP6 guest

1. Power on the virtual machine.
2. Choose File > Install VMware Tools.

 The remaining steps take place inside the virtual machine.

3. To load the CD-ROM drivers that the CD-ROM device mounts the ISO image as a volume, do one of the following:
 - In the system console for a NetWare 6.5 virtual machine, type:
 LOAD CDDVD
 - In the system console for a NetWare 5.1 virtual machine, type:
 LOAD CD9660.NSS

 When the driver finishes loading, begin installing VMware Tools.

4. In the system console, type:
 vmmtools:\setup.ncf

 When the installation finishes, the message VMware Tools for NetWare are now running appears in the Logger Screen (NetWare 6.5 guests) or the Console Screen (NetWare 5.1 guests).

5. In the system console, type:
 restart server

 Make sure the VMware Tools virtual CD-ROM image (netware.iso) is not attached to the virtual machine. If it is, right-click the CD-ROM icon in the status bar of the console window and select Disconnect.

Starting VMware Tools Automatically

You may find it helpful to configure your guest operating system so that VMware Tools starts when you start X. The steps vary depending on your Linux distribution and the desktop environment you are running. Check your operating system documentation for the steps to take.
To start VMware Tools in a Red Hat Linux 7.1 guest using GNOME, for example

1. Open the Startup Programs panel in the GNOME Control Center.
 - Main Menu (the foot in the lower left corner of the screen) > Programs > Settings
 > Session > Startup Programs
2. Click Add.
3. In the Startup Command field, enter vmware-toolbox.
4. Click OK, click OK again, and close the GNOME Control Center.

The next time you start X, VMware Tools start automatically.

Using the VMware Guest Operating System Service

When you install VMware Tools in a virtual machine, the VMware guest operating system service is one of the primary components installed. The guest service can do the following:

- Synchronize the time of the guest operating system with the time on the physical computer. See “Synchronizing the Time Between the Guest and Service Consoles” on page 50.
- Gracefully power off and reset a virtual machine. See “Shutting Down and Restarting a Virtual Machine” on page 50.
- Execute commands in the virtual machine when it is requested to halt or reboot the guest operating system. See “Executing Commands to Halt or Reboot a Virtual Machine” on page 51.
- Pass a string from the service console to the guest operating system. See “Passing a String from the Service Console to the Guest Operating System” on page 52.
- Send a heartbeat to VMware ESX Server so that it knows the guest operating system is running.

The guest service starts when you start the guest operating system.

In a Linux guest, the guest service is called vmware-guestd. To display help about the guest service, including a list of all options, use the following command:

/etc/vmware/vmware-guestd --help

In a Windows guest, the guest service program file is called VMwareService.exe. To display help, right-click the VMware Tools icon in the system tray and choose Help.
Synchronizing the Time Between the Guest and Service Consoles

The guest service can synchronize the date and time in the guest operating system with the time in the service console once every second. In the VMware Tools control panel, on the Other tab (Options in a Linux guest), select Time synchronization between the virtual machine and the host operating system.

![VMware Tools Properties](image)

Figure 2-1. Options (Other) Tab

In addition, the guest service can synchronize the date and time in the guest with the service console in response to various system events, for example, when you resume from disk. Disable this option in the configuration file by setting:

time.synchronize.resume.disk = FALSE

Shutting Down and Restarting a Virtual Machine

ESX Server can signal the guest service to shut down or restart a virtual machine. After the guest service receives a request to shut down or restart, it sends an acknowledgment back to ESX Server.

You can send these requests from the VMware Management Interface or the service console’s command line.

Whether it is possible to shut down or restart a virtual machine depends on the state of the virtual machine.
Shutting Down or Restarting a Virtual Machine from the VMware Management Interface

You can click to shut down or to restart a virtual machine from the VMware Management Interface. After you select one of these operations, click to the Users and Events page for this virtual machine to respond to any messages that require a response.

Shutting down is the equivalent of using the guest operating system’s shut down command, and turning off power to the virtual machine. Restarting is the equivalent of using the guest operating system’s restart command.

If you receive an event log message stating, “You will need to power off or reset the virtual machine at this point,” connect to the virtual machine with a remote console and click Power Off or Reset to complete the operation.

NOTE
Power Off and Reset are not available while these operations are in progress.

You can also force power off or force reset from the menu. These commands bypass the guest service and perform the virtual equivalent of shutting off the power to a physical machine or pressing a physical reset button.

For more information, see “Changing the Power State of a Virtual Machine” on page 88.

Shutting Down or Restarting a Virtual Machine from the Command Line

You can shut down and restart a virtual machine from the service console command line using the vmware-cmd utility.

The following commands return you to the command prompt, before they finish executing, although the shut down or restart process can take some time to complete:

```
vmware-cmd <vm-cfg-path> stop <powerop_mode>
vmware-cmd <vm-cfg-path> reset <powerop_mode>
```

where hard, soft, or trysoft specifies the behavior of the power operation <powerop_mode>. If <powerop_mode> is not specified, the default behavior is soft. For more information, see the VMware Scripting API User’s Manual, available at http://www.vmware.com/support/developer.

Executing Commands to Halt or Reboot a Virtual Machine

In a Linux guest, you can have the guest service execute specific commands when ESX Server asks it to halt or reboot the virtual machine’s guest operating system. If you use nonstandard utilities or want to do additional actions before shutting down or rebooting the guest operating system, override the default commands the guest service
executes by modifying the `/etc/vmware/dualconf.vm` startup script in the guest to start the guest service with the following command line options:

```
/etc/vmware/vmware-guestd --halt-command <command>
```

where `<command>` is the command to execute when ESX Server asks the guest service to halt the guest operating system.

```
/etc/vmware/vmware-guestd --reboot-command <command>
```

where `<command>` is the command to execute when ESX Server asks the guest service to reboot the guest operating system.

Passing a String from the Service Console to the Guest Operating System

With ESX Server and knowledge of a scripting language like Perl or NetShell, you can pass a string (machine.id) from your virtual machine’s configuration file to the guest operating system when you use the configuration file to launch a virtual machine. Determine the content of the string you pass to the guest operating system.

For additional details and sample scripts, including information on passing messages both ways between the service console and a guest, see the VMware Scripting API documentation at http://www.vmware.com/support/developer/.

Use this feature only if you have a good understanding of a scripting language and know how to modify system startup scripts.

Example of Passing a String from the Service Console to the Guest

If you use multiple configuration files that point to the same virtual disk, each configuration file can contain its own unique `machine.id` line.

```
<config_file_1>.vmx contains:
    scsi0:1.present = TRUE
    scsi0:1.name = "my_common_virtual_hard_drive.vmdk"
    scsi0:1.mode = "persistent"
    machine.id = "the_id_for_my_first_vm"

<config_file_2>.vmx contains:
    scsi0:1.present = TRUE
    scsi0:1.name = "my_common_virtual_hard_drive.vmdk"
    scsi0:1.mode = "persistent"
    machine.id = "the_id_for_my_second_vm"
```

Using `machine.id`, you may pass such strings as the Windows system ID (SID), a machine name, or an IP address. In the guest operating system startup script, you can
have the guest service retrieve this string, which can be used by your script to set your virtual machine’s system ID, machine name, or IP address.

In the following example, a Linux guest illustrates how you can use the guest service to retrieve a string containing what becomes the virtual machine’s machine name and IP address. Use RedHat62VM as the machine name and 148.30.16.24 as the IP address.

To retrieve the machine name and IP address of a Linux guest

1. Define the following option in your virtual machine’s configuration file:

   ```
   machine.id = "RedHat62VM 148.30.16.24"
   ```

 See “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

2. Launch a virtual machine using this configuration file.

3. Retrieve the **machine.id** string in the virtual machine.

 In your system startup script, before the network startup section, add the following command:

   ```
   /etc/vmware/vmware-guestd --cmd 'machine.id.get'
   ```

 In a Windows guest, the command to retrieve the string is:

   ```
   VMwareService --cmd machine.id.get
   ```

 Customize this startup script so it uses the string the guest service retrieved during startup to set the virtual machine’s network name to RedHat62VM and its IP address to 148.30.16.24. This should be located in the script before the network services are started.

 From the service console, you can prevent the service console from passing a string to the guest operating system through the guest service. Set the following line in your virtual machine’s configuration file:

   ```
   isolation.tools.machine.id.get.disable = TRUE
   ```

Using PXE with Virtual Machines

You can use a preboot execution environment (known as PXE) to boot a virtual machine over a network.

When you use PXE with a virtual machine, you can:

- Remotely install a guest operating system over a network without the need for the operating system installation media.
- Deploy an image of a virtual disk to the virtual machine.
- Boot a Linux virtual machine over the network and run it diskless.

Use PXE with your virtual machine in conjunction with remote installation tools such as Windows 2000 Remote Installation Services or the Red Hat Linux 9.0 installer’s PXE package. You can use Ghost or Altiris to stream an image of an already configured virtual disk to a new virtual machine.

Make sure the virtual machine has a virtual network adapter; one is installed by default. ESX Server supports PXE when the virtual machine is configured to use either the vmxnet or vlance virtual network adapter.

The virtual machine must have a virtual disk without a guest operating system installed.

When a virtual machine boots and no guest operating system is installed, it boots from devices (hard disk, CD-ROM drive, floppy drive, network adapter) in the order in which they occur in the boot sequence specified in the virtual machine’s BIOS. To use PXE with a virtual machine, put the network adapter at the top of the boot order. When the virtual machine first boots, press F2 to enter the virtual machine’s BIOS and change the boot order.

As the virtual machine boots from the network adapter, it tries to connect to a DHCP server. The DHCP server provides the virtual machine with an IP address and a list of any PXE servers available on the network. After the virtual machine connects to a PXE server, it can connect to a bootable disk image (such as an operating system image or a Ghost or Altiris disk image) and start installing a guest operating system.

VMware has tested and supports the following PXE configurations with ESX Server:

- Remote installation of a Windows Server 2003 guest operating system from a server running Windows Server 2003 Automated Deployment Services
- Remote installation of a Windows 2000 guest operating system from a server running Windows 2000 Server/Advanced Server Remote Installation Services
- Remote installation of a Linux guest operating system from a Red Hat Enterprise Linux 3.0 AS PXE boot server
- Remote installation of a supported guest operating system from a Ghost image using Windows 2000 and Ghost RIS Boot package
- Remote installation of a supported guest operating system from an Altiris image using a Windows 2000 Altiris server
- Network booting a Linux virtual machine by connecting with the Linux Diskless option to a Red Hat Enterprise Linux 3.0 AS server
ESX Server virtual machines can use virtual BusLogic and virtual LSI Logic SCSI adapters. By default, virtual machines use the BusLogic adapter. However, Windows Server 2003 virtual machines are configured to use the LSI Logic adapter by default.

You can add the LSI Logic SCSI adapter to any virtual machine by modifying its configuration file. For an existing virtual machine or for a new Windows XP or Windows 2000 virtual machine, further steps are needed in the guest operating system.

Windows XP and Windows 2000 do not include a driver for the LSI Logic SCSI adapter, so these guests use the BusLogic adapter by default. To use the LSI Logic SCSI adapter with a Windows XP or Windows 2000 virtual machine, download the driver from the Download Center at the LSI Logic Web site. Go to http://www.lsilogic.com/ and look for the LSI20320 SCSI adapter driver for your guest operating system. The files are in a WinZip archive.

Linux distributions with kernels in the 2.4.18 series or later include a driver that supports the LSI Logic adapter. If your guest has an older kernel and you want to use the LSI adapter instead of the BusLogic adapter, VMware recommends that you upgrade the kernel packages to the latest version available for the distribution. You do not need to download the driver from LSI Logic.

For both Windows and Linux virtual machines, modify the virtual machine’s configuration file to use the LSI Logic SCSI adapter. For a new virtual machine, complete the following steps before you install the guest operating system.

For an existing virtual machine with which you want to use the LSI Logic adapter, shut down the guest operating system and power off the virtual machine before following these steps.

Even though SuSE Linux 8.1 includes the correct driver for LSI Logic, because of an error in a SuSE Linux process, the guest operating system must first be installed with the BusLogic driver. After the SuSE Linux 8.1 guest operating system has been installed and boots, shut down the virtual machine and complete the steps below.
To add the LSI Logic SCSI Adapter to the configuration file

1. Connect to the service console and, using a text editor, open the virtual machine’s configuration file (.vmx).

2. Do one of the following:

 - If you are adding the LSI Logic adapter to a new virtual machine that is configured for a BusLogic adapter, switch the original BusLogic adapter to the LSI Logic adapter by changing this line:

     ```
     scsi<n>.virtualDev = “vmxbuslogic”
     ```
 to

     ```
     scsi<n>.virtualDev = “vmxlsilogic”
     ```

 - If you are adding the LSI Logic adapter to an existing virtual machine that is configured for a BusLogic adapter, add the LSI Logic adapter with no devices after the BusLogic device. For example, if you have one SCSI adapter in the virtual machine, the configuration file looks something like this:

     ```
     ###
     ### SCSI devices
     ###

     # SCSI controller scsi0

     scsi0.present = “TRUE”
     scsi0.virtualDev = “vmxbuslogic”

     scsi0:1.present = “TRUE”
     scsi0:1.name = “vmhba0:6:0:1:win2k.vmdk”
     scsi0:1.mode = “persistent”
     ```

 To add the LSI Logic adapter, type the following lines after the BusLogic device information:

     ```
     scsi1.present = “TRUE”
     scsi1.virtualDev = “vmxlsilogic”
     ```

3. Save your changes, and close the configuration file.

Now that the LSI Logic SCSI adapter has been added to the virtual machine’s configuration, it will be recognized by the guest operating system. Follow the appropriate steps for either the Windows or Linux guest operating systems:

 - For new Linux virtual machines (using the appropriate kernel), install the guest operating system, which will be configured for using the LSI Logic adapter. No other steps are necessary. For an existing Linux virtual machine, complete the steps
in “Configuring the LSI Logic SCSI Adapter in a Linux Guest Operating System” on page 58.

- For new Windows virtual machines, complete the steps in “Configuring the LSI Logic SCSI Adapter in a Windows Guest Operating System,” next.

Configuring the LSI Logic SCSI Adapter in a Windows Guest Operating System

Before you begin configuring your Windows guest, download the LSI Logic driver from the LSI Logic Web site, as discussed above.

- For a new virtual machine, unzip the driver files to a floppy disk. This floppy disk is needed while installing the guest operating system.

- For an existing virtual machine, unzip the driver files into a directory in the guest operating system, then shut down the guest and power off the virtual machine.

To configure the LSI Logic SCSI Adapter in a Windows guest operating system

1. Power on the virtual machine.
 2. Do one of the following:
 - If you are installing a new guest operating system, press F6 at the beginning of the installation to have Windows prompt for a driver disk. When asked to load additional drivers, insert the floppy disk containing the driver files and let Windows copy the driver files and continue the installation. Do not remove the floppy disk from the floppy drive until the installer reboots the guest.
 - If you are changing from the BusLogic to the LSI Logic adapter in an existing virtual machine, the guest operating system recognizes the presence of the LSI Logic adapter and the Add New Hardware wizard starts after you log in. Browse to the directory where you unzipped the driver files and let Windows copy them to the correct place.

3. After you install the LSI Logic driver, make sure the virtual machine boots completely.

4. Check the guest operating system’s Device Manager to ensure the LSI Logic adapter appears and is working.
 - If you are installing the LSI adapter in a new guest operating system, you are finished.
 - If you are switching from a BusLogic adapter in an existing virtual machine, continue with the remaining steps.
Shut down and power off the virtual machine, then edit the configuration file. Switch the original BusLogic adapter to the LSI Logic adapter by changing this line:

```
scsi0.virtualDev = "vmxbuslogic"
```

to:

```
scsi0.virtualDev = "vmxlsilogic"
```

5. Remove the LSI Logic adapter you added by removing these lines:

```
scsi1.present = "TRUE"
scsi1.virtualDev = "vmxlsilogic"
```

6. Save your changes to the configuration file and boot the virtual machine.

After the virtual machine boots, verify in the Device Manager that the guest is using the LSI Logic driver only.

NOTE The guest should find the driver automatically. Sometimes moving the virtual devices around causes the PCI slots to change, so the guest might detect some devices (like the vmxnet network driver) again. Let the operating system detect the devices and continue.

Configuring the LSI Logic SCSI Adapter in a Linux Guest Operating System

The following steps apply to existing virtual machines running Red Hat Linux 7.3 and to SuSE Linux 8.0 guest operating systems and later. The kernels that come with these and later distributions include a driver that supports the LSI Logic SCSI adapter. The driver is called `mptscsih` and depends on another module called `mptbase`. Earlier kernels might have the `mptscsih` driver, but they do not support this adapter.

NOTE For a new Linux virtual machine in which you intend to install a Red Hat Linux 7.3 or SuSE Linux 8.0 guest operating system or later, install the guest operating system. The guest is configured to use the LSI Logic adapter during installation.

To use the LSI Logic adapter in an older distribution, upgrade the virtual machine’s kernel or patch the kernel with the source from the LSI Logic Web site and re-compile the kernel. Verify that the LSI Logic adapter is detected. At a command prompt in the guest, type:

```
modprobe mptscsih
```

If no errors appear, verify with `lsmod` that both `mptscsih` and `mptbase` are installed, and continue. Otherwise, you must determine why the driver did not load.
For an existing Linux virtual machine with the modified configuration, the guest needs to boot with the LSI Logic SCSI adapter, so it tries to load that driver from the initial RAM disk (initrd) before the root partition is mounted.

To configure the LSI Logic SCSI Adapter in a Linux guest operating system

1. Edit `/etc/modules.conf` and set `scsi_hostadapter` to `mptscsih`.

2. Create a new initial RAM disk for the running kernel.

   ```
   mkinitrd --preload mptbase
   /boot/initrd-<kernelname>-lsi.img <kernelname>
   ```

 Where `<kernelname>` is the version of the guest’s kernel; such as 2.4.18-3.

 The `modules.conf` modification you made allows `mkinitrd` to provide the LSI Logic SCSI driver to the kernel when booting.

3. Edit `/etc/lilo.conf` or `/boot/grub/grub.conf` (depending on which is in use in the guest).

 Create a new entry that uses the existing kernel, but the new RAM disk file. Keep the original boot entry, in case you have a problem and need to boot with the BusLogic adapter. Install the boot loader (`lilo` or `grub–install /dev/sda`) again.

4. Shut down and power off the virtual machine, and edit the configuration file in the management interface.

 Switch the BusLogic adapter to the LSI Logic adapter by changing this line:

   ```
   scsi0.virtualDev = "vmxbuslogic"
   ```

 to

   ```
   scsi0.virtualDev = "vmxlsilogic"
   ```

5. Remove the LSI Logic adapter you added by removing these lines:

   ```
   scsi1.present = "TRUE"
   scsi1.virtualDev = "vmxlsilogic"
   ```

6. Save your changes to the configuration file and boot the virtual machine again.

 If the virtual machine does not boot, switch the configuration back to BusLogic and boot with the original configuration, and troubleshoot the following issues:

 - **RAM disk** might not have been created correctly. It must preload `mptbase` and load `mptscsih` as the main SCSI driver, which you specified in Step 1. Verify that both of these activities occurred.
Boot loader might not have been installed or was not installed correctly, which results in the loader loading the old ram disk image. Check the boot loader configuration and install the boot loader again.

Kernel does not support the LSI Logic adapter. Check that you can manually `modprobe mptscsi` without errors and that it appears in the output of `lsmod`. If not, upgrade the kernel and start over.

NOTE You might see different results on different distributions.

Importing, Upgrading, and Exporting Virtual Machines

Importing, upgrading, and exporting virtual machines involves the following tasks:

- “Configuring a Virtual Machine to Use More than One Virtual Processor,” next
- “Migrating Older ESX Server Virtual Machines” on page 62
- “Migrating VMware Workstation and VMware GSX Server Virtual Machines” on page 63
- “Importing a GSX Server or Workstation Virtual Machine” on page 66
- “Exporting Virtual Machines” on page 68

Configuring a Virtual Machine to Use More than One Virtual Processor

When you create a virtual machine with ESX Server 2.5, you can create it with one or two virtual processors. To configure a virtual machine with more than one virtual processor, you must meet the following conditions:

- The virtual machine must be created under ESX Server 2.5. VMware does not support upgrading a virtual machine created under ESX Server 1.5.2 to ESX Server 2.5 and configuring it as a multiprocessor or ACPI virtual machine. Creating a virtual machine under VMware GSX Server 2.5.1 or VMware Workstation 4.0, and importing it to ESX Server 2.5 while upgrading the number of virtual processors is also not supported.

- You must have purchased the VMware Virtual SMP for ESX Server product and created the virtual machine under ESX Server 2.5. For more information on the VMware Virtual SMP for ESX Server product, contact VMware or your authorized sales representative. After you have the license, install the product by entering the serial number when you configure the ESX Server system. See the *VMware ESX Server Installation Guide*.
The guest operating system must support multiprocessor systems. Examples include Windows Server 2003, Windows 2000, and Red Hat Enterprise Linux AS 2.1. Review the list of supported guest operating systems in the VMware ESX Server Installation Guide to see which guests are multiprocessor- or SMP-capable.

The virtual machine cannot have more virtual processors than the ESX Server system has physical processors. To create a virtual machine with two virtual processors, the ESX Server system must have at least two physical processors.

First, configure the virtual machine to use more than one virtual processor using the management interface. See “Configuring a Virtual Machine's Memory and Virtual Processors” on page 105. Follow the steps appropriate to the guest operating system below.

Windows Server 2003 Guest Operating Systems

Windows Server 2003 upgrades the HAL automatically. Use the management interface to configure the virtual machine to use more than one virtual processor. When you power on the virtual machine, the guest operating system detects the new processor and updates the HAL accordingly.

Windows 2000 Guest Operating Systems

For Windows 2000 guest operating systems, to use more than one virtual processor, configure the virtual machine to use more than one virtual processor. Upgrade the guest operating system’s HAL. Virtual machines created with one processor in ESX Server 2.5 use the ACPI Uniprocessor HAL. To use two virtual processors, use the ACPI Multiprocessor HAL. To change the HAL, follow the instructions in the Microsoft Knowledge Base. Go to support.microsoft.com/default.aspx?scid=kb;EN-US;237556.

Linux Guest Operating Systems

To create a virtual machine with more than one virtual processor, create a new virtual machine with two virtual processors and install the guest operating system in this new virtual machine.

The Linux distribution must support SMP. Supported Linux guest operating systems that can be configured with more than one virtual processor include Red Hat Enterprise Linux 2.1 and 3.0, Red Hat Linux 9.0, SuSE Linux 8.2, and SuSE Linux Enterprise Server (SLES) 8 and 9.0.

For the list of supported Linux guest operating systems, refer to the ESX Server Installation Guide at http://www.vmware.com/support/pubs/esx_pubs.html.
Downgrading to One Virtual Processor

VMware ESX Server does not support downgrading a multiprocessor virtual machine to a uniprocessor virtual machine.

Migrating Older ESX Server Virtual Machines

You can use virtual machines created with versions of ESX Server older than 2.5. Virtual machines created in ESX Server 1.5 can work as is. To take advantage of the new features of the current release, upgrade your virtual machines.

If you created the virtual machine under ESX Server 1.5 and do not want to upgrade the virtual machine, run it in legacy mode. See “Running ESX Server 1.5 Virtual Machines in Legacy Mode” on page 63.

NOTE You must upgrade virtual machines created under ESX Server 1.0 or ESX Server 1.1 to ESX Server 1.5 before they can be migrated to ESX Server 2.5. After these virtual machines run under ESX Server 1.5, migrate them to ESX Server 2.5. See the upgrade instructions in the ESX Server Installation Guide at http://www.vmware.com/support/pubs/esx_pubs.html.

Upgrade the virtual machine’s hardware for any virtual machine created under ESX Server 1.0, 1.1 or 1.5. Make sure the virtual machine is powered off. On the Status Monitor in the management interface, click the arrow next to the terminal icon () and choose Configure Hardware. On the Hardware tab, click Upgrade Virtual Hardware, and click OK to upgrade the hardware.

Assign disk bandwidth shares to the virtual machine. See “Managing Disk Bandwidth from the Management Interface” on page 372.

Upgrading Windows Server 2003 Guest Operating Systems Created by ESX Server 1.5.2

If you used ESX Server 1.5.2 to create a virtual machine with a Windows Server 2003 guest operating system, update the guestOS configuration parameter in the virtual machine’s configuration file. Otherwise, this virtual machine will not run properly with ESX Server 2.5.

To update the guestOS configuration parameter

1 Log into the VMware Management Interface as the owner of the virtual machine or as the root user.

2 Click the arrow to the right of the terminal icon for the Windows Server 2003 virtual machine and choose Configure Options.
3 Click the **Options** tab and, under **Verbose Options**, click the link.

4 Change the value of the guestOS configuration parameter to one of the following:

5 Click **OK** to save your changes.

Running ESX Server 1.5 Virtual Machines in Legacy Mode

You can choose to not upgrade an ESX Server 1.5 virtual machine and run it in legacy mode. This lets you use the virtual disk as is. Changes can be written to the virtual disk file. You can add any virtual hardware to a legacy virtual machine, including upgrading VMware Tools.

Any virtual machines created before ESX Server 2.5 can have only a single virtual processor. Multiprocessor virtual machines must be created under ESX Server 2.0.

Using the LSILogic SCSI Adapter

Prior to ESX Server 2.5, virtual machines only used BusLogic SCSI adapters. Now you can choose to use either the BusLogic SCSI adapter or the LSI Logic SCSI adapter for your virtual machines.

If you are upgrading an older ESX Server virtual machine, upgrade the virtual machine hardware before proceeding. Install the latest version of VMware Tools. If necessary, power off the virtual machine and upgrade the virtual hardware. Make sure the guest operating system boots completely. Power off the virtual machine and back it up. You are ready to add the LSI Logic adapter.

To add the LSI Logic SCSI adapter to the virtual machine, see “**Configuring a Virtual Machine to Use the LSI Logic SCSI Adapter**” on page 55.

Migrating VMware Workstation and VMware GSX Server Virtual Machines

You can migrate virtual machines created with VMware Workstation 4 or earlier or VMware GSX Server 2.5.1 or earlier to your VMware ESX Server system.

The virtual machine you want to migrate must have been configured with a virtual SCSI disk and have a supported guest operating system installed. For the list of supported guest operating systems, see the **VMware ESX Server Installation Guide**.
NOTE Virtual machines created under versions earlier than GSX Server 2.0 or Workstation 3.2 must be upgraded to ESX Server 1.5 before they can be migrated to ESX Server 2.5. After these virtual machines run under ESX Server 1.5, migrate them to ESX Server 2.5. See the upgrade instructions in the ESX Server Installation Guide at http://www.vmware.com/support/pubs/esx_pubs.html.

Import the virtual disks and any redo logs to the server and create a new virtual machine configuration. See “Importing a GSX Server or Workstation Virtual Machine” on page 66.

On the VMFS partition where you store your virtual machines, have enough space to hold the full capacity of the source virtual disk. A virtual disk created in ESX Server has its full capacity allocated at the time the virtual disk file is created. For a 2GB virtual disk, the virtual disk file is 2GB at the time the disk is created.

In VMware Workstation and GSX Server, the virtual disk file usually starts smaller and grows to the maximum capacity as data is added. You can create a 2GB virtual disk, install the guest operating system and the virtual disk may be contained in a 500MB file. However, when you migrate the virtual disk to ESX Server, the import process converts the disk for ESX Server and the disk occupies 2GB of space on the partition.

CAUTION If you created a virtual disk that is contained in a single .vmdk file larger than 2GB and want to migrate the virtual disk to ESX Server, FTP or copy the disk from the Workstation host to the ESX Server machine. After the file has been copied to the service console, use vmkfstools to import the disk into ESX Server. For the syntax on how to import the disk, see “Examples Using vmkfstools” on page 259.

NOTE ESX Server version 2.5 uses a default file name extension of .vmdk for virtual disks. Virtual machines created under ESX Server 2.1 and earlier create disk files with a .dsk extension.

If the virtual disk has a redo log (GSX Server 2.5 or Workstation 3.2 or earlier virtual machines) or a snapshot (Workstation 4 virtual machines) associated with it, you can do either of the following:

- For the most current representation of the virtual disk before you import it, commit the changes in the redo log or take a snapshot just before importing.
- To use the base disk, discard the changes in the redo log or migrate the virtual machine without the snapshot (.vmss) file.
When you install VMware Tools in the VMware ESX Server virtual machine, you can set up a new network driver.

Virtual machines migrated from Workstation and GSX Server cannot be configured to use more than one virtual processor.

Disk Geometry Failures When Importing GSX Server Virtual Machines

If you used `vmkfstools` to import a virtual machine created under GSX Server to ESX Server, after you import the virtual machine, you might see the following message:

"Disk geometry mismatch. To power on the virtual machine you should specify `scsi<adapter-id>:<target-id>.biosGeometry="<cylinders>/<heads>/<sectors>" in the configuration file."

A similar problem can occur if you used the management interface file manager to import the virtual machine, although no message appears. If you have problems powering on a virtual machine with the imported disk, you might have a mismatch with the virtual disk's geometry.

Virtual disks created under GSX Server use a different disk geometry than virtual disks created under ESX Server. To determine the correct disk geometry, run the following `vmkfstools` command on the source virtual disk (the copy of the virtual disk on the GSX Server host, not the disk in a VMFS partition):

`vmkfstools -g //path/to/<sourceVirtualDisk>.vmdk`

After you determine the disk geometry, you can add the correct geometry information to the configuration file. See "Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)" on page 126.

Create an option called `scsi<adapter-id>:<target-id>.biosGeometry` and set the value of the option to "<cylinders>/<heads>/<sectors>", where `<adapter-id>:<target-id>` is the SCSI ID of the virtual disk on the ESX Server system and `<cylinders>/<heads>/<sectors>` is the number of cylinders, heads, and sectors on the virtual disk returned by the `vmkfstools` command.

For example, if the virtual disk is located on the SCSI 0:0 node in the virtual machine on the ESX Server system, and you determine that the disk geometry of the original virtual disk (the one on the GSX Server host) contains 261 cylinders, 255 heads, and 63 sectors, add the following option to the configuration file:

`scsi0:0.biosGeometry=261/255/63`

Assign the following value to the new option:

261/255/63
Otherwise, if you do not add the new geometry information to the configuration file, when you power on the virtual machine, a message appears stating Error loading operating system. To power on the virtual machine, add the new option to the configuration file, as discussed above.

Path Name Failures When Importing GSX Server Virtual Machines

Plain disks used with virtual machines created in GSX Server might contain disk file names that ESX Server cannot translate. Versions 2.5 and earlier of GSX Server used absolute path names to identify disk files when creating plain disks. Not all plain disks created with earlier versions of GSX Server contain path names preventing ESX Server from importing them. If you try to import a plain disk with vmkfstools and ESX Server appears, check the path name in the plain disk:

```
DiskLib_Open() failed. No such file or directory (131591)
```

| NOTE | This problem applies only to plain disks. Virtual and raw disks created in GSX Server should import correctly using vmkfstools. |

Open the plain disk descriptor (.pln) file and locate the path name to the disk file. If the path name refers outside the directory containing the descriptor file, you must change it.

For example, if the path name is:

```
C:\user\vmware\VMs\W2KServSP3\Win2KSv1.dat
```

ESX Server cannot translate the GSX Server path name to locate the plain disk data (.dat) file.

Repair the plain disk by locating the data file in the same directory as the descriptor file and changing the path name to refer to the data file directly. In this example, edit the descriptor file to remove the absolute path from the file name and save the file:

```
Win2KSv1.dat
```

If you import the plain file:

```
$ vmkfstools -i Win2KSv1.pln vmhba0:0:2:Win2KSv1.vmdk
```

the command locates Win2KSv1.dat in the same directory and imports it into the specified ESX Server virtual disk file.

Importing a GSX Server or Workstation Virtual Machine

This section describes how to import virtual machines that have been created in GSX Server or Workstation into ESX server.
To import a virtual machine into VMware ESX Server

1 Make sure you have access to the files in the directory that holds the source virtual machine.

 You might be able to mount the source location, or you can FTP or copy the files to a temporary folder on the service console.

 If you are not sure where the source files are, open the virtual machine in the VMware product you used to create it, open the Configuration Editor (Settings > Configuration Editor). On a Windows host, click the name of the drive you want to migrate. In the Disk file section, click Choose to see the location information. On a Linux host, expand the SCSI Drives tree and click the name of the drive you want to migrate. Click Choose to see the location information.

2 Using a Web browser, log in to the ESX Server machine as root and click Manage Files.

 Use the file manager in the VMware Management Interface to perform all the file copy steps described below. For more information, see “Using the VMware Management Interface File Manager” on page 141.

3 In the file manager, navigate to the location of the source disk files.

4 Select the main disk (.vmdk or .dsk) file for the virtual disk you are migrating and click Copy.

 NOTE To ensure that you have a backup copy of the virtual disk, do not cut the virtual disk file.

5 Navigate to the vmfs folder and open the folder for the VMFS partition where you want to store the virtual disk file and click Paste.

 A dialog box appears with the message “You are transferring one or more console virtual disks to a VMFS partition. For virtual machines to access these disks, they must be converted to the VMFS format. Although you can convert console disks at any time, it is recommended that you do so now.”

 The VMFS partition recognizes the files as a virtual disk and converts the disk to the VMFS-2 format during the import. This allows the disk to be accessed by virtual machines running under ESX Server 2.5.

 The file you are pasting is selected.

6 Click OK.

 The virtual disk is imported to the VMFS partition and converted to the new format.
7 Select the newly imported disk file (.dsk or .vmdk), and click Edit Properties.

8 Change the user and group names in the right column so the file’s owner and group match those of the user who will run the virtual machine and click OK.

9 Log out, and log back in as the user who will run the new virtual machine.

10 Create a new virtual machine as described in “Creating a New Virtual Machine” on page 39.
 When you set the file name for the new virtual machine’s disk, use the virtual disk file you copied to the VMFS partition.

11 If you imported the virtual machine from ESX Server 1.5.2, GSX Server 2.5.1 or Workstation 3.2 or earlier, upgrade the virtual hardware.
 a Make sure the virtual machine is powered off.
 b On the Status Monitor, click the arrow to the right of the terminal icon (跑了) and choose Configure Hardware.
 c On the Hardware tab, click Upgrade Virtual Hardware and click OK to upgrade the hardware.

12 In the configuration file, look for the option scsi0.virtualDev and change the value from vmxlsilogic to vmxbuslogic.
 To modify the configuration file, see “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

13 Boot your virtual machine in a remote console and install VMware Tools and the network driver in the virtual machine.
 Some guest operating systems display messages about detecting hardware changes and require you to reboot the virtual machine. This occurs because VMware ESX Server uses an emulation for chipsets and BIOS that is slightly different from those used by other VMware products.

Exporting Virtual Machines

You can export a virtual machine to Workstation 4, provided it is a uniprocessor virtual machine. Multiprocessor (SMP) virtual machines cannot be exported to Workstation 4. If the virtual disks are in undoable mode, you must commit the changes in the redo log before exporting the virtual machine for your changes to carry over.

NOTE If you do not see the message about transferring disks, a problem exists with the import. Make sure you are pasting to the correct vmfs folder.
Chapter 2 Creating and Configuring Virtual Machines

VMware, Inc.

Workstation 4 does not support the LSILogic SCSI adapter. To use the SCSI adapter in the virtual machine, switch to the BusLogic adapter.

ESX Server 2.5 does not support exporting virtual machines to ESX Server 1.5 or earlier, VMware Workstation 3.2 or earlier, or VMware GSX Server 2.5 or earlier.

Uninstall VMware Tools from a virtual machine before exporting it for use in Workstation or GSX Server.

Use the vmktools command in the Service Console to export virtual disks associated with a virtual machine. See the section on using the –exportfile option of vmkfstools in “Basic vmkfstools Options” on page 250. You can find an example of how to use the –exportfile option in “Examples Using vmkfstools” on page 259.

Preparing to Use the Remote Management Software

You can manage VMware ESX Server from a remote workstation using the VMware Remote Console and the VMware Management Interface.

Remote console software is available for Windows and Linux workstations. The remote console lets you attach directly to a virtual machine. You can start and stop programs, change the configuration of the guest operating system and do other tasks as if you were working at a physical computer.

NOTE If you need secure communications between your management workstations and the server, choose the appropriate security level when you configure ESX Server. See “Security Settings” on page 194.

Registering Your Virtual Machines

If you create your virtual machines using the Virtual Machine Configuration Wizard, they are automatically registered in the file /etc/vmware/vm-list on the server’s service console. The remote management software checks this file for pointers to the virtual machines you want to manage.

To manage virtual machines that you set up without using the wizard, you must first register them.

Be sure the virtual machine is powered off. On the Status Monitor of the management interface, point to the terminal icon for the virtual machine you want to register and click Edit Configuration. Select Registered at the top of the Edit Configuration pane.

NOTE Registered virtual machines appear in the list only if their configuration files are stored locally on the ESX Server computer. If the configuration files are stored on an NFS-mounted drive, the virtual machines are not listed.
To register the virtual machines from the service console, use this command:

```
vmware-cmd -s register /<configpath>/<configfile>.vmx
```

To remove a virtual machine from the list, use this command:

```
vmware-cmd -s unregister /<configpath>/<configfile>.vmx
```

Installing the Remote Console Software

Use the package that corresponds to the operating system running on your management workstation and follow the installation steps below.

Installer files are available on the distribution CD-ROM. You can also download the appropriate installer from the **Status Monitor** of the management interface.

To install the remote console software on Windows Clients

1. Find the installer file—`VMware-console-2.v.v-xxxx.exe`—on the distribution CD or in the directory where you downloaded it.
2. Double-click `VMware-console-2.v.v-xxxx.exe` to start the installation.
3. Follow the on-screen instructions.

To install the remote console software on Linux using the RPM Installer

1. Locate the installer file—`VMware-console-2.v.v-xxxx.i386.rpm`—on the distribution CD or in the directory where you downloaded it and change to that directory.
2. Gain root privileges by typing:
   ```
   su -
   ```
3. Run the RPM installer.
   ```
   rpm -Uhv VMware-console-2.v.v-xxxx.i386.rpm
   ```

To install the remote console software on Linux using the Tar Installer

1. Locate the installer file—`VMware-console-2.v.v-xxxx.tar.gz`—on the distribution CD or in the directory where you downloaded it and copy it to the `/tmp` directory or to another directory.
2. Gain root privileges by typing:
   ```
   su -
   ```
3. Unpack the tar archive.
   ```
   tar zxf VMware-console-2.v.v-xxxx.tar.gz
   ```
4 Change to the directory where the archive was unpacked.
 cd vmware-console-distrib

5 Run the installer.
 ./vmware-install.pl

For more information, see “Running a Virtual Machine Using the Remote Console” on page 157.

Third Party Software Compatibility

This section includes instructions for using a virtual machine with third-party middleware and management software.

Configuring a Virtual Machine for Use with Citrix MetaFrame XP

If you are using a Windows 2000 virtual machine as a MetaFrame XP server, be sure you are using FR1 or FR2, and complete the following steps to configure the virtual machine. If you are running MetaFrame XP in a Windows NT virtual machine, no special steps are needed.

To configure a Windows 2000 virtual machine as a MetaFrame XP server

1 Apply Citrix hotfix XE102W014.
 For a download link and instructions, go to the Citrix Web site (www.citrix.com), navigate to the support section and search for XE102W014.

2 Click **Save Changes** to save the configuration file.

 For additional information on performance tuning, see article 869 in the VMware Knowledge Base.

Executing Scripts When the Virtual Machine’s Power State Changes

You can run scripts in the guest operating system when you change the power state of a virtual machine; that is, when you power on, power off, suspend or resume the virtual machine.

Scripts can help automate guest operating system operations when you change the virtual machine’s power state.

NOTE There are no scripts for FreeBSD guest operating systems.
You perform these power operations from the toolbar buttons and menus in the consoles. For more information on changing the power state of a virtual machine in a console, see “Special Power Options for Virtual Machines” on page 157.

Scripts can run when using the power buttons in the VMware Management Interface. See “Running the VMware Management Interface” on page 80.

Scripts can be executed only when the VMware guest operating system service is running. The guest service starts by default when you start the guest operating system. See “Using the VMware Guest Operating System Service” on page 49.

Default scripts are included in VMware Tools. The default script executed when suspending a virtual machine stops networking for the virtual machine while the default script executed when resuming a virtual machine starts networking for the virtual machine.

In addition, you can create your own scripts. The scripts you run must be batch files for Windows hosts but can be any executable format (such as shell or Perl scripts) for Linux hosts. You should be completely familiar with these types of scripts before you modify the default scripts or create your own.

If you create your own scripts, associate each script with its particular power operation. See “Choosing Scripts for VMware Tools to Run During Power State Changes” on page 162.

For scripts and their associated power operations to work, the following conditions must be met:

- The VMware guest operating system service must be running in the virtual machine.
- The version of VMware Tools must be updated to the current version. If you are using a virtual machine created with an older version of VMware ESX Server or another older VMware product, update VMware Tools to the version included in this release.
- Depending upon the operation the script performs, the virtual machine must have a virtual network adapter connected, otherwise the power operation fails.

Issues to Consider

When you reinstall VMware Tools after you upgrade the VMware ESX Server software, any changes you made to the default scripts are overwritten. Any scripts you created on your own remain untouched, but do not benefit from any underlying changes that enhance the default scripts.
Configuring Virtual Machines

Key configuration settings for an existing virtual machine can be changed from the VMware Management Interface. The virtual machine must be powered off when you change the configuration.

To configure the virtual machine

1. Log in to the server from the management interface (http://<hostname>) as a user who has rights to change the configuration file.

2. Click the name of the virtual machine you want to reconfigure.

3. On the Status Monitor for that virtual machine, click Hardware or Options in the Configuration section.

4. Select a device or option to configure, and click Edit.

5. Make any changes to the configuration, and click OK.

Details about changing these configuration settings are discussed in “Configuring Virtual Machines” on page 73.

CAUTION Only one user at a time should modify the configuration for a particular virtual machine.

You can modify other settings in the configuration. These settings include:

- “Recommended Configuration Options” on page 74
- “Modifying the SMBIOS UUID” on page 75
- “Enabling the Physical Hardware’s OEMID to Be Seen by the Virtual Machine” on page 78

To modify these settings in the configuration, manually edit the configuration file by doing one of the following:

- Use the configuration file editor in the VMware Management Interface. Point to the terminal icon for the virtual machine, click the arrow to the right of the terminal icon, and select Configure Options. Under Verbose Options, click the link. See “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

- Log into the service console and use a text editor.

For purposes of illustration, we assume that you are working with the file newvm.vmx in a directory named /virtual machines/vm1.
Recommended Configuration Options

This section details options that can influence the performance of your virtual machines. These settings are not required to run VMware ESX Server correctly.

SleepWhenIdle

The configuration file option `monitor.SleepWhenIdle` determines whether the VMkernel deschedules an idle virtual machine. By default, this option is enabled, a setting that ensures much better performance when running multiple virtual machines.

When you are running only a single virtual machine (such as for benchmarking VMware ESX Server), add the `monitor.SleepWhenIdle` option to the virtual machine's configuration file if you want to achieve the best possible performance in the virtual machine (at the expense of responsiveness in the service console).

Create an option called `monitor.SleepWhenIdle` and set the value of this option to 0, as described in “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

Optimizing Disk Access Failure Modes in Windows Virtual Machines

ESX Server includes configuration options that allow you to optimize how virtual machines handle disk access failures. For Windows virtual machines, use the `scsi<n>.returnBusyOnNoConnectStatus` option to determine how ESX Server reports a failure to connect with a virtual SCSI adapter or failure to access it after initiating a connection. By setting the option to TRUE or FALSE, you can determine how the failure to access to a physical disk is represented to your Windows virtual machine.

The values are described below:

- If the option is set to TRUE, ESX Server returns the error message `SCSI BUSY`.
- If the option is set to FALSE, the value ESX Server returns depends on the type of SCSI controller you chose for that virtual device:
 - If you chose the BusLogic adapter (that is, if `Virtual Device` is set to `vmxbuslogic`), your virtual machine receives the error message `DEVICE_NOT_THERE`.
 - If you chose the LSI Logic adapter (that is, if `Virtual Device` is set to `vmxlsilogic`), your virtual machine receives the error message `BTSTAT_SELTIME0`.

You might need to set `returnBusyOnNoConnectStatus` to FALSE when disk management software operating in a Windows virtual machine needs to detect access failures. For example, some types of disk mirroring software will not select a duplicate disk unless they detect a discrete failure to access a primary disk. Reporting that a
targeted disk is busy, rather than unavailable, may cause mirroring programs to repeat the connection attempt instead of selecting a duplicate disk.

ESX Server does not include an explicit `returnBusyOnNoConnectStatus` option definition for each SCSI disk in a virtual machine automatically. If the option is not defined for a disk in the virtual machine configuration file, ESX Server defaults to TRUE. You need to both create an option definition for each disk and set it to FALSE to override the default value of TRUE. See “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

NOTE Using `returnBusyOnNoConnectStatus` is supported only in virtual machines using a Windows guest operating system.

Modifying the SMBIOS UUID

Each ESX Server virtual machine is automatically assigned a universally unique identifier (UUID), which is stored in the SMBIOS system information descriptor. It can be accessed by standard SMBIOS scanning software and used for systems management in the same ways you use the UUID of a physical computer.

The UUID is a 128-bit integer. The 16 bytes of this value are separated by spaces except for a dash between the eighth and ninth hexadecimal pairs. A sample UUID might look like this:

00 11 22 33 44 55 66 77-88 99 aa bb cc dd ee ff

Generating the UUID Automatically

The automatically generated UUID is based on the physical computer’s identifier and the path to the virtual machine’s configuration file. This UUID is generated when you power on or reset the virtual machine. The UUID that is generated remains the same as long as the virtual machine is not moved or copied.

The automatically generated UUID is written to the virtual machine’s configuration file as the value of `uuid.location`.

If you move or copy the virtual machine, you can create a new UUID the first time you power on the virtual machine. The new UUID is based on the physical computer’s identifier and path to the virtual machine’s configuration file in its new location.

When you power on a virtual machine that was moved or copied to a new location, a message appears. See Figure 2-2.
This dialog box has four options:

- If you moved this virtual machine, you can keep the UUID. Select Keep and click OK to continue powering on the virtual machine.

- If you copied this virtual machine to a new location, create a new UUID, because the copy of the virtual machine is using the same UUID as the original virtual machine. Select Create and click OK to continue powering on the virtual machine.

- If the original virtual machine is being used as a template for more virtual machines, you can create a new UUID the first time you power on each copy. After you configure the virtual machine, move it to a new location and power it on. When the message appears, select Always Create and click OK to continue powering on the virtual machine. The virtual machine is set up to create a new UUID every time it is moved. Power off the virtual machine and begin using it as a template by copying the virtual machine files to other locations.

- To move the virtual machine numerous times, and keep the same UUID each time the virtual machine moves, select Always Keep and click OK to continue powering on the virtual machine.

Suspending and resuming a virtual machine does not trigger the process that generates a UUID. The UUID in use at the time the virtual machine was suspended remains in use when the virtual machine is resumed, even if it has been copied or moved. However, the next time the virtual machine is rebooted, the UUID is generated again. If the virtual machine has been copied or moved, the UUID is changed.

Comparing the Generated UUID to Configuration File Parameters

When a virtual machine is powered on, ESX Server generates a UUID as described above and compares it to the values for uuid.location and (if it exists) uuid.bios in the configuration file.

If the automatically generated UUID matches the value of uuid.location, ESX Server checks for uuid.bios. If uuid.bios exists, its value is used as the virtual machine’s UUID. If uuid.bios does not exist, the automatically generated value is used.
If the UUID does not match the value of `uuid.location`, the newly generated value is used as the virtual machine’s UUID and is saved to the configuration file, replacing the previous value of `uuid.location` and (if it exists) `uuid.bios`.

NOTE Any changes to the UUID take effect only after the virtual machine is rebooted.

Setting the UUID for a Virtual Machine That Is Not Being Moved

To assign a specific UUID to a virtual machine that is not being moved, add one line to the configuration file. Use the configuration file editor in the VMware Management Interface by completing one of the following:

- In the management interface, click the arrow to the right of the terminal icon for that virtual machine and select **Configure Options** in the virtual machine menu (see “Using the Virtual Machine Menu” on page 86). Click the link under **Verbose Options**. Create an option called `uuid.bios` and set the value as described below.

- Log in to the service console and, using a text editor, open the virtual machine’s configuration file (.vmx). Add the following line:

  ```
  uuid.bios = <uuidvalue>
  ```

 The UUID value (`<uuidvalue>`) must be surrounded by quotation marks. A sample configuration option might look like this:

  ```
  uuid.bios = "00 11 22 33 44 55 66 77-88 99 aa bb cc dd ee ff"
  ```

 After adding this option to the configuration file, restart the virtual machine. The new UUID is used when the virtual machine restarts.

Setting the UUID for a Virtual Machine That Is Being Moved

To move a virtual machine and have it use the same UUID it had before the move, note the UUID being used before the move and add that UUID to the configuration file after the move.

To set the UUID before moving a virtual machine

1. Before moving the virtual machine, examine its configuration file.

 Complete one of the following:

 - In the management interface, click the arrow to the right of the terminal icon for that virtual machine and select **Configure Options** in the virtual machine menu (see “Using the Virtual Machine Menu” on page 86). Click the link under **Verbose Options**.

 - Log in to the service console and, using a text editor, open the virtual machine’s configuration file (.vmx).
If the virtual machine’s UUID has been set to a specific value, the configuration file has a line that begins with `uuid.bios`. The 128-bit hexadecimal value that follows is the value you should use in the new location.

If no line begins with `uuid.bios`, look for the line that begins with `uuid.location` and note the 128-bit hexadecimal value that follows it.

1. Move the virtual machine’s disk (.dsk or .vmdk) file to the new location.
2. Use the management interface to create a new virtual machine configuration and set it to use the virtual disk file you moved in the previous step.
3. Edit the virtual machine’s configuration file to add a `uuid.bios` line, as described in “Setting the UUID for a Virtual Machine That Is Not Being Moved” on page 77.
4. Set the value of `uuid.bios` to the value you recorded in Step 1, and remove the `uuid.location` line in the virtual machine’s configuration file.
5. Start the virtual machine.

It should have the same UUID as it did before the move.

Enabling the Physical Hardware’s OEMID to Be Seen by the Virtual Machine

Each virtual machine is assigned an Original Equipment Manufacturer ID (OEMID), comprising the Manufacturer and Product Name, which is stored in the SMBIOS system information descriptor. It can be accessed by standard SMBIOS scanning software and used for systems management in the same way you use the OEMID of a physical computer.

By default, the Manufacturer string is “VMware, Inc.” and the Product Name string is “VMware Virtual Platform”.

If the virtual machine’s configuration file has the option:

```
SMBIOS.reflectHost = TRUE
```

the Manufacturer and Product Name strings in the virtual machine are the same as the Manufacturer and Product Name of the host system.

These strings are updated (copied from the host BIOS to the virtual machine BIOS) on every virtual machine BIOS POST (Power On Self Test).
Using the VMware Management Interface

You can manage and configure virtual machines using either the Service Console or the VMware Management Interface. The VMware Management Interface provides an easy-to-use, graphical interface for working with your virtual machines.

This chapter describes how to use the VMware Management Interface to configure and run virtual machines and includes the following sections:

- “Running the VMware Management Interface” on page 80
- “Configuring the Statistics Period for the VMware Management Interface” on page 81
- “Using Internet Explorer 6.0 to Access the VMware Management Interface” on page 82
- “Logging Into the VMware Management Interface” on page 84
- “Using the Status Monitor” on page 84
- “Configuring a Virtual Machine” on page 94
- “Modifying Virtual Machine Peripherals” on page 131
- “Deleting a Virtual Machine Using the VMware Management Interface” on page 136
- “Managing ESX Server Resources” on page 137
- “Configuring VMware ESX Server” on page 137
- “Logging Out of the VMware Management Interface” on page 138
- “Using the Apache Web Server with the Management Interface” on page 138
Running the VMware Management Interface

VMware ESX Server provides the VMware Management Interface, a Web-based management tool that allows you to:

- Monitor the state of virtual machines and the VMware ESX Server machine on which they are running.
- Control (power on, suspend, resume, reset and power off) the virtual machines on the server.
- Connect the VMware Remote Console to a given virtual machine, for hands-on management of the guest operating system.
- Modify virtual machine configurations.
- Manage users and groups.
- Configure SANs.
- Create and delete virtual machines.
- Answer questions and acknowledge messages posed by the virtual machine.
- Configure ESX Server (root users only).

Use the VMware Management Interface from a management workstation, not from the server machine where ESX Server is installed. VMware does not recommend running the X Windows System on your server’s service console.

To use the management interface, when you register each virtual machine, make sure you set read permissions for all users for each of the virtual machines you want to manage from a browser.

NOTE If you are connecting to the management interface with Internet Explorer 6.0, you must configure the browser. See “Using Internet Explorer 6.0 to Access the VMware Management Interface” on page 82.
After your user name and password are authorized by the management interface, the Status Monitor appears, which contains high-level details about all the virtual machines on the server to which you are connected. The Status Monitor links to a detailed set of tabs specific to each virtual machine, where you find information about virtual devices, configuration options, and a summary of recent events. In addition, you can create and delete virtual machines from your browser.

These tabs refresh or reload automatically, refreshing every 90 seconds. You can refresh or reload them manually before you perform an operation like suspending, resuming, or powering on or off a virtual machine from the management interface—or after you perform a power operation in a remote console—in case another user has performed the same or a conflicting operation before you. To refresh the Status Monitor, click Refresh at the top of a page.

To refresh the Status Monitor, click Refresh at the top of a page.

This setting is represented by the variable vmware_SESSION_LENGTH, stored in /usr/lib/vmware-mui/apache/conf/access.conf. You can block access to the management interface for all users by setting vmware_SESSION_LENGTH to 0 minutes. You can also allow for persistent sessions that never time out by setting vmware_SESSION_LENGTH to -1.

Configuring the Statistics Period for the VMware Management Interface

By default, the VMware Management Interface provides statistics about the server and virtual machines that reflect the past 5 minutes of activity. The statistics are updated every 20 seconds.

You can configure this setting for a period of 1 minute to see more usage details or you can configure it for a period of 15 minutes to smooth out short-term spikes. Increasing the statistics period changes the update frequency to every minute instead of every 20 seconds. It also reduces the amount of load on the service console, improving the performance of a server running a large number of virtual machines.

To configure the statistics period for the management interface

1. Connect to the service console with a terminal.
2. Edit the file /usr/lib/vmware-mui/apache/conf/access.conf.
3 Under the line `PerlSetEnv vmware_SESSION_LENGTH 60`, do one of the following.

- To set the period to 1 minute, add this line:
  ```
  PerlSetEnv vmware STATS_PERIOD 1
  ```
- To set the period to 15 minutes, add this line:
  ```
  PerlSetEnv vmware STATS_PERIOD 15
  ```

4 Save and close the file.

5 Restart Apache for the change to take effect.

```
/etc/init.d/httpd.vmware restart
```

Using Internet Explorer 6.0 to Access the VMware Management Interface

To run the VMware Management Interface in Internet Explorer 6.0 on a Windows management workstation, you must take steps to configure Internet Explorer.

The configuration steps allow you to perform the following activities:

- “Launching the Remote Console from the Management Interface on an Encrypted Server,” next.
- “Connecting to the Management Interface On a Proxy Server” on page 83

Launching the Remote Console from the Management Interface on an Encrypted Server

You can launch the VMware Remote Console from the VMware Management Interface automatically. To do this in an Internet Explorer 6.0 browser on a Windows system where SSL is encrypting your ESX Server remote connections, ensure that the Do not save encrypted pages to disk option is disabled.

For information on encrypting remote connections, see “Security Settings” on page 194.

When this option is enabled, Internet Explorer does not save any files to disk, including the files it needs to hand off to helper applications. This prevents the remote console from launching automatically.

CAUTION This option might be enabled to prevent saving sensitive files to disk. Disabling it might permit other sensitive information to be saved to disk.
To disable the option to launch the remote console automatically

1. In the Internet Explorer 6.0 window, choose Tools > Internet Options to open the Internet Options control panel.
2. Click the Advanced tab.
3. Scroll down to the Security section and uncheck Do not save encrypted pages to disk.
4. Click OK.

Connecting to the Management Interface On a Proxy Server

If your network is protected behind a proxy server, you must use the management interface in Internet Explorer 6.0 on a Windows system. Follow the steps for the appropriate Windows operating system.

To configure a proxy server on Windows Server 2003 Systems

1. Launch Internet Explorer 6.0.
2. Choose Tools > Internet Options, and click the Security tab.
3. Select Trusted sites and click Sites.
4. In the Add this Web site to the zone entry field, type: https://*.domain.com
5. Click Add.
6. Click OK until you return to the browser window.

NOTE When you use Internet Explorer 6.0 to connect to the management interface, use a fully qualified domain name.

To configure a proxy server on Windows Systems Other than Windows Server 2003 (Windows 2000, Windows XP, and Windows NT operating systems)

1. Launch Internet Explorer 6.0.
2. Choose Tools > Internet Options.
3. Click the Connections tab, and click LAN Settings.
4. Make sure that Bypass proxy server for local addresses is selected.
5. Click OK until you return to the browser window.
When you use Internet Explorer 6.0 to connect to the management interface, do not use a fully qualified domain name.

Connecting to the Management Interface Without a Proxy Server

If you are on a Windows system and your network does not use a proxy server, you must use fully-qualified domain names when connecting to the management interface with Internet Explorer 6.0.

Logging Into the VMware Management Interface

To use the VMware Management Interface, you should be running:

- Internet Explorer 5.5 (Internet Explorer 6.0 or higher is recommended)
- Netscape Navigator 7.0 or higher
- Mozilla 1.x. or higher

You must know the server name or IP address of the server you want to manage. You must have a valid user name and password on that server.

You can connect to the server with up to eight management interface sessions at a time.

The URL to connect to the server is http://<hostname>.

If you are using Netscape Navigator or Mozilla, check the advanced preferences (Edit > Preferences > Advanced) to make sure that both JavaScript and style sheets are enabled. You need the host name or IP address of the server you want to monitor. You should also ensure that style sheets are enabled in your browser, regardless of which browser and version you are using.

On the Login page, enter your user name and password for the host machine, and click Login. The Status Monitor pane appears. See “Using the Status Monitor” on page 84.

Using the Status Monitor

The Status Monitor contains a high-level view of VMware ESX Server including a server system summary and list of all registered virtual machines. See
Figure 3-1. Status Monitor

Viewing Summary Information About VMware ESX Server

In the System Summary pane, you can view:

- **Number of processors on ESX Server**, including the average percentage of CPU usage used by virtual machines and the service console and the total being used by the whole system for the previous five minutes.

- **Amount of memory on ESX Server**, including the average amount of memory used by virtual machines, other processes on the server and the total being used by the whole system for the previous five minutes.

NOTE You can modify the period of time these statistics cover. See “Configuring the Statistics Period for the VMware Management Interface” on page 81.
Viewing Summary Information About Virtual Machines on VMware ESX Server

Under Virtual Machines, you can view a list of all registered virtual machines on the host. When a virtual machine is running, the Status Monitor displays its ID number after the power status of the virtual machine.

NOTE Virtual machines may not appear in the list, if their configuration files are stored on an NFS-mounted drive. When a virtual machine’s configuration file is on an NFS-mounted drive, the root user is often unable to access the file because root privileges are not allowed. Also, you cannot see the virtual machines if the NFS directory is not mounted.

Activities you can perform from this view include connecting to virtual machines, managing virtual machine status, and configuring the virtual machines.

Connecting to a Virtual Machine with the VMware Remote Console

To view a virtual machine’s desktop, attach the VMware Remote Console and connect to the virtual machine. Click the terminal icon () to launch the remote console. See “Using the Remote Console” on page 155.

Netscape and Mozilla users must define a MIME type for the console first. Internet Explorer is configured when the remote console is installed. See “Setting a MIME Type to Launch the VMware Remote Console” on page 139.

The terminal icon appears slightly different, depending upon the guest operating system installed. This visual cue helps to identify the virtual machine, for example, when the display name does not indicate the guest operating system. Below are the ways the terminal icon can appear:

- Indicates a Windows guest operating system.
- Indicates a Linux guest operating system.
- Indicates a NetWare guest operating system.
- Indicates a BSD guest operating system.
- Indicates other guest operating systems.

Using the Virtual Machine Menu

Click the arrow to the right of the terminal icon () to display a menu of options for the virtual machine. The menu includes the following commands, most of which can be performed using buttons and other visual elements of the management interface.
Depending on your permissions and the state of the virtual machine, some options may not be available.

- **Attach Remote Console** – Launches the VMware Remote Console, which connects to this virtual machine. This is the same as clicking ☰. You need to log in to the host. See “Using the Remote Console” on page 155.

NOTE Netscape and Mozilla users must define a MIME type for the console first. Internet Explorer is configured when the remote console is installed. See “Setting a MIME Type to Launch the VMware Remote Console” on page 139.

- **Properties** – Opens the Status Monitor for this virtual machine in a new browser window. This is the same as clicking the display name link in the Display Name column.

- **Configure Hardware** – Opens the Hardware tab, where you can edit a virtual machine’s hardware configuration. You can edit most configuration options only when the virtual machine is powered off. When the virtual machine is powered on, you can edit removable devices and the virtual network adapter.

 See “Configuring a Virtual Machine’s Hardware” on page 102.

- **Configure Options** – Opens the Options tab, where you can edit a virtual machine’s standard information, such as guest operating system, display name, and location of the suspended state file. With the exception of the display name, you can edit these options only when the virtual machine is powered off.

 See “Setting Standard Virtual Machine Configuration Options” on page 122.

- **Shut Down Guest** – Shuts down the guest operating system, powers off the virtual machine, and runs the script associated with this power state change. You can also click ✅ in the power state popup menu.

- **Suspend after Running Script** – Runs the associated script and suspends a running virtual machine. You can also click ⏸️ in the power state popup menu.

- **Power On/Resume and Run Script** – Powers on a stopped virtual machine or resumes a suspended virtual machine, and runs the script associated with this power state change. You can also click ⏸️ in the power state popup menu.

- **Restart Guest** – Restarts the guest operating system and the virtual machine. You can also click ⏸️ in the power state popup menu.

- **Power Off** – Powers off the virtual machine immediately without running a script. You can also turn off the power to a physical computer.

- **Suspend** – Suspends a powered-on virtual machine without running a script.
- **Power On/Resume** – Powers on a stopped virtual machine or resumes a suspended virtual machine without running a script.

- **Reset** – Resets the virtual machine immediately without running a script. You can also press the reset button.

- **Unregister Virtual Machine** – Unregisters the virtual machine. The virtual machine no longer appears on the **Status Monitor** so it cannot be managed or accessed. See “Registering and Unregistering Virtual Machines” on page 145.

- **Delete Virtual Machine** – Lets you delete a virtual machine or its configuration, provided the virtual machine is powered off. See “Deleting a Virtual Machine Using the VMware Management Interface” on page 136.

Changing the Power State of a Virtual Machine

Depending upon your permissions, you can change the power state of the virtual machine in the management interface. Your permissions are listed in the **Users and Events** tab for the virtual machine. See “Viewing a List of Connected Users” on page 129.

To change the virtual machine’s power state, click the button that indicates the virtual machine’s current power state. A popup menu displays the buttons described in **Table 3-1**.

Table 3-1. Virtual Machine Power State Buttons

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shuts down the guest operating system and powers off the virtual machine. VMware ESX Server closes open applications and shuts down the guest operating system before powering off the virtual machine. VMware Tools executes the script associated with this power state change, if any. When this icon is red, the virtual machine is powered off.</td>
</tr>
<tr>
<td></td>
<td>Suspends a running virtual machine or resumes a suspended virtual machine. VMware Tools executes the script associated with this power state change, if any. When this icon is amber, the virtual machine is suspended.</td>
</tr>
<tr>
<td></td>
<td>Powers on a stopped virtual machine or resumes a suspended virtual machine. VMware Tools executes the script associated with this power state change, if any. When this icon is green, the virtual machine is running.</td>
</tr>
<tr>
<td></td>
<td>Restarts a guest operating system. VMware ESX Server closes any open applications and shuts down the guest operating system before restarting the guest operating system.</td>
</tr>
</tbody>
</table>
Changing the power state executes any script associated with the power state change. For information about running scripts, see “Choosing Scripts for VMware Tools to Run During Power State Changes” on page 162.

Suspending and Resuming Virtual Machines

Suspending a virtual machine, and later resuming its operation, can speed provisioning tasks—for example, deployment of standby servers. VMware ESX Server supports two configurations for resuming a suspended virtual machine:

- You can suspend a running virtual machine at any time, resume operation, suspend at a later time, and resume with the machine in the second state, and so on.
- You can suspend a virtual machine at any point in its operation, and lock in the suspended state at that point. Any time you restart the virtual machine, it resumes in the same state—the state it was in when you first suspended it.

NOTE

Do not change a configuration file after you suspend a virtual machine, because the virtual machine does not resume properly if the configuration file is inconsistent with the suspended virtual machine.

Also, do not move any physical disks or change the name of any VMFS file systems that the virtual machine uses. If you do, the virtual machine will not be able to access its virtual disks when it resumes.

You can also set the configuration of each virtual machine so the file that stores information on the suspended state is saved in a location of your choice.

Setting the Suspend Directory

When a virtual machine is suspended, its state is written to a file with a .vmss extension. By default, the .vmss file is written to a VMFS volume. When a virtual machine is resumed, ESX Server looks for the .vmss file in the same VMFS volume.

The virtual machine must be powered off to change the directory where the suspended state file for a virtual machine is stored.

To set the suspend directory

1. Log into the VMware Management Interface, and click the arrow to the right of the terminal icon (erator) for the virtual machine you want to change.
2. Choose **Configure Options**.

 The **Options** tab for this virtual machine appears in a new browser window.
3 Click **Edit**.

The Edit Options dialog box appears.

For fastest suspend and restore operations, select the appropriate VMFS volume from the **Suspend File Location** list. ESX Server adds a suffix to the name of the suspended state file to ensure that one virtual machine does not overwrite the suspended state file of another.

4 Click **OK** to save your changes.

Enabling Repeatable Resume

When you click the **Suspend** button to suspend a virtual machine, ESX Server writes a file with a `.vmss` extension that contains the entire state of the virtual machine. When the virtual machine is resumed, its state is restored from the `.vmss` file. The `.vmss` file is modified while the virtual machine is running. In normal operation, the `.vmss` file cannot be used to resume a virtual machine from the original suspended state.

You can use repeatable resume to resume a virtual machine in the same state repeatedly. For example, you can have a hot-standby virtual machine in a particular state so that it is ready to take over for a failed server.

To prepare a hot-standby virtual machine

1 Shut down and power off the virtual machine.

2 In the management interface, open the virtual machine menu.

3 Click the arrow next to the terminal icon (_win) and select **Configure Hardware** to display the **Hardware** tab.
4 Next to Virtual Disk, click Edit.

5 Click Nonpersistent, and click OK to save your change.

6 Click the Options tab and click the link under Verbose Options.

 The configuration file opens in an editor.

7 Click Add.

8 Create an option called resume.repeatable and set its value to TRUE.

9 Click OK to save and close the configuration file.

10 Power on the virtual machine.

11 Using the remote console, place the virtual machine in the state you want the machine to be in when initiating repeatable resume.

12 Click Suspend to activate repeatable resume.

 The virtual machine will resume from the suspend point you set.
When you click **Power Off**, the virtual machine will power off, ready to resume at the suspend point you set.

If you do not want to resume the virtual machine using the repeatable resume point, shut down the virtual machine and manually remove the suspended state (.std) file from the virtual machine directory. After it is deleted, suspend the virtual machine in a new state to create a new repeatable resume point. Otherwise, set the `resume.repeatable` flag to `FALSE` in the configuration file.

Viewing Information About a Virtual Machine

Important virtual machine information is available on the **Status Monitor**.

- **Display Name** column link – Display name for the virtual machine. If one is not specified, the path to the configuration file for the virtual machine appears. This column also contains the virtual machine’s power state and its process ID and virtual machine ID (if it is running). It also notes whether VMware Tools is installed.

 If the virtual machine is waiting for a response to a system message, a **Waiting for input** link appears. Click the link to view the message and respond to it.

 Click the virtual machine name link for more details about the virtual machine. The virtual machine’s **Status Monitor** appears in a new browser window. See “Configuring Virtual Machines” on page 73.

- **Up** column value – Length of time the virtual machine has been running.

- **No.** column value – Number of virtual processors in the virtual machine.

- **% CPU** column value – Average percentage of host operating system processor capacity the virtual machine used during the final minute before the page was last updated. More detailed processor information is available on the **Status Monitor**.

- **RAM** column value – Amount of memory allocated to the virtual machine. See “Configuring a Virtual Machine’s Memory Usage” on page 97. For general information on memory, see “Virtual Machine Memory” on page 364.

Downloading Remote Management Packages

You can download a remote management package from the VMware Management Interface **Status Monitor**.

To download a remote console package from the **Status Monitor**, click the link at the bottom of the page for the appropriate installation file. This allows you to quickly download the console without logging out of the management interface.
Creating a New Virtual Machine

Unregistering a Virtual Machine

You can unregister a virtual machine so that it no longer appears on the Status Monitor and cannot be managed or accessed. See “Registering and Unregistering Virtual Machines” on page 145.

Deleting a Virtual Machine

To delete a virtual machine from the management interface, click the arrow to the right of the terminal icon () and choose Delete Virtual Machine. The Confirm: Deleting <Virtual Machine> pane appears in a new window. See “Deleting a Virtual Machine Using the VMware Management Interface” on page 136.

Configuring VMware ESX Server

The Options tab lets you make changes to your VMware ESX Server configuration. See “Administering ESX Server” on page 187.

NOTE Only a user with root privileges can access the Options tab.

Using Common Controls

The following links appear on most or all of the pages in the management interface:

- **Refresh** – Refreshes or reloads the current page. To avoid conflicts with other users, click this button before you perform an operation in the management interface—or after you perform such an operation in a remote console.

- **Manage Files** – Opens the management interface’s file manager. The file manager lets you can manage the file system of your VMware ESX Server machine remotely. See “Using the VMware Management Interface File Manager” on page 141.

- **Help** – Connects you to the VMware ESX Server online documentation for the current page in the management interface.

- **Logout** – Lets you log out of the management interface. You can log out only from the Status Monitor and Options pane. Click Logout to return to the Login page. See “Logging Out of the VMware Management Interface” on page 138.
Close – Closes the current management interface window. You can close only windows that were opened while using the management interface.

Configuring a Virtual Machine

To see information about a virtual machine and to modify its configuration, click the link to the virtual machine in the Display Name column on the Status Monitor. The Status Monitor specific to the virtual machine you selected appears in a new browser window.

![Status Monitor Tab](image)

Figure 3-2. Status Monitor Tab

The Status Monitor contains the following information:

- Current power state of the virtual machine—whether it is powered on, powered off, or suspended.
- Process ID of the virtual machine.
- VMID of the virtual machine, which is the vmkernel version of the PID for a running virtual machine.
- Minimum, maximum, and average percentage of server processor capacity that the virtual machine used in the previous five minutes. You can modify the period of
time these statistics cover. See “Configuring the Statistics Period for the VMware Management Interface” on page 81.

- Minimum, maximum, and average amount of server memory that the virtual machine used in the previous five minutes. You can modify the period of time these statistics cover. See “Configuring the Statistics Period for the VMware Management Interface” on page 81.

- The length of time the virtual machine has been running.

- VMware Tools status; whether VMware Tools is installed and running.

- Average percentage of heartbeats received by a virtual machine during the previous minute. The heartbeats are sent by the VMware guest operating system service to the virtual machine from its guest operating system. The percentage is relative to the number of heartbeats the virtual machine expects to receive for the minute before the page was last updated. Heavily loaded guest operating systems may not send 100% of the expected heartbeats, even though the system is otherwise operating normally.

NOTE If VMware Tools is not installed or is not running, the guest operating system does not send any heartbeats to its virtual machine and *Not Available* appears here.

- IP address of the virtual machine.

- Links to edit the virtual machine’s hardware and standard configuration options. Click **Hardware** to edit the virtual machine’s hardware on the **Hardware** tab. Click **Options** to edit the virtual machine’s standard configuration options. The **Options** pane appears. Make changes to the virtual machine’s configuration. To change most options, the virtual machine must be powered off.

- Guest operating system installed in the virtual machine.

- Number of virtual processors in the virtual machine.

- Amount of memory allocated to the virtual machine.

- Path to the virtual machine’s configuration file on the ESX Server system.

Editing a Virtual Machine’s Configuration

You can edit a virtual machine’s configuration from the management interface by doing one of the following:

- On the **Status Monitor**, click **Hardware** or **Options**. The virtual machine must be powered off before you can edit most configuration options.
On the Status Monitor or a details pane for that virtual machine, click the arrow to the right of the terminal icon () and select Configure Hardware or Configure Options in the Virtual Machine menu. See “Using the Virtual Machine Menu” on page 86.

A new browser window appears, allowing you to make changes to the virtual machine’s configuration.

Configuring a Virtual Machine’s CPU Usage

To review and configure the virtual machine’s processor usage, click the CPU tab.

Figure 3-3. CPU Tab

The CPU tab shows how much of the server processor or processors each virtual processor is utilizing, how CPU resources are allocated to the virtual machine, whether Hyper-Threading is enabled, and whether there is any scheduling affinity to any specified processors on the server.

Understanding Performance Values

The values under Performance are based on the past five minutes. The period of time these statistics cover can be modified. See “Configuring the Statistics Period for the VMware Management Interface” on page 81.

Performance information displayed includes CPU Utilization, which is the amount of the server processor or processors each virtual processor is utilizing.
Understanding Resource Values

The values under Resources indicate a range of percentages of a processor to which the virtual machine is entitled. Resource information displayed includes:

- **Minimum** – Minimum amount of processor capacity that must be available to power on the virtual machine.

- **Maximum** – Highest amount of processor capacity the virtual machine can ever consume, even if the processor is idle. The maximum value can be larger than 100% if the virtual machine has more than one virtual CPU.

- **Shares** – A relative metric for allocating processor capacity. The values low, normal, and high are compared to the sum of all shares of all virtual machines on the server and the service console. Share allocation symbolic values can be used to configure their conversion into numeric values.

For more information on share values, refer to the resource management man pages: cpu(8), diskbw(8), and mem(8).

- **Isolated from Hyper-Threading** – CPU operation state of the virtual machine. Enabling this option prevents a virtual machine from sharing a physical CPU with other virtual machines when Hyper-Threading is enabled.

NOTE

Enabling this option prevents other virtual machines from using the second logical processor as long as this virtual machine is using the first logical processor.

For information on Hyper-Threading, see the hyperthreading(8) man page.

- **Scheduling Affinity** – Represents which ESX Server processors the virtual machine can run on, when the ESX Server system is a multiprocessor system.

NOTE

For a virtual machine with explicit affinity settings, ESX Server might not always fulfill the specified CPU minimum. Minimums will always be fulfilled for virtual machines without explicit affinity settings, even if other virtual machines use explicit affinity settings.

Modifying CPU Values

These values can be modified. Click Edit. For information on changing CPU settings, see “Allocating CPU Resources” on page 331.

Configuring a Virtual Machine’s Memory Usage

To review and configure the virtual machine’s memory usage, click the Memory tab.
The Memory tab shows how much memory is being used by the virtual machine and how memory resources are allocated to the virtual machine.

Understanding Performance Values

The values under Performance are based on the past five minutes. The period of time these statistics cover can be modified. See “Configuring the Statistics Period for the VMware Management Interface” on page 81. Performance information values include:

- **Used Memory** – Amount of memory allocated to the virtual machine when it was configured, how much memory has been used recently by the virtual machine, and how much memory has been shared between all running virtual machines on the server and within the virtual machine itself.

- **Reclaimed Memory** – Amount of memory reclaimed by ESX Server under heavy loads or when you are overcommitting memory.

- **Virtualization Overhead** – Amount of extra memory the virtual machine process is using, in addition to the amount of memory allocated to it.

Understanding Resource Values

The values under Resources indicate a range of system memory to which the virtual machine is entitled.
Resource information displayed includes:

- **Minimum** – Minimum amount of memory that must be available to power on the virtual machine.

- **Maximum** – Amount of memory allocated to the virtual machine when it was configured.

- **Shares** – A relative metric for allocating memory to all virtual machines. Symbolic values **low**, **normal**, and **high** are compared to the sum of all shares of all virtual machines on the server and the service console. Share allocation symbolic values can be used to configure their conversion into numeric values.

For more information on share values, refer to the resource management man pages: `cpu`, `diskbw`, and `mem`.

- **Memory Affinity** – If displayed, the NUMA nodes on the ESX Server system to which the virtual machine can be bound, when the ESX Server system a NUMA system. See “Using Your NUMA System” on page 358.

Modifying Memory Values

To modify memory values, click **Edit**. See “Managing Memory Resources from the Management Interface” on page 351.

Configuring a Virtual Machine’s Disk Usage

To review and configure the virtual machine’s disk settings, click the **Disk** tab.

![Disk Tab](image)

Figure 3-5. Disk Tab

The **Disk** tab shows virtual disk performance information and resources allocated to the virtual disk. Disk bandwidth represents the amount of data that is written to or read from the server’s physical disks.
Understanding Performance Values

The values under Performance are based on the past five minutes. The period of time these statistics cover can be modified. See “Configuring the Statistics Period for the VMware Management Interface” on page 81. Performance information displayed includes:

- **Read Bandwidth** – Amount of bandwidth being used when the virtual machine is reading from the physical disk on the server.
- **Write Bandwidth** – Amount of bandwidth being used when the virtual machine is writing to the physical disk on the server.

Understanding Resources Values

The values under Resources indicate a range of system memory to which the virtual machine is entitled.

- **Shares** – Relative metric for controlling disk bandwidth to all virtual machines. The values **low**, **normal**, and **high** are compared to the sum of all shares of all virtual machines on the server and the service console. Share allocation symbolic values can be used to configure their conversion into numeric values.

 For more information on share values, refer to the resource management man pages: cpu, diskbw, and mem.

- **Memory Affinity** – If displayed, the NUMA nodes on the ESX Server system to which the virtual machine can be bound, when the ESX Server system a NUMA system. See “Using Your NUMA System” on page 358.

Modifying Disk Values

To modify disk values, click **Edit**. For information on changing disk settings, see “Managing Disk Bandwidth” on page 371.

Configuring a Virtual Machine’s Networking Settings

To review and configure the virtual machine’s networking settings, click the **Network** tab.
Figure 3-6. Network tab

The **Network** tab shows network performance information and resources allocated to the virtual machine's virtual network card. The receive and transmit bandwidths indicate how fast data is transferred to and from the virtual machine.

The values under **Performance** are based on the past five minutes. The period of time these statistics cover can be modified. See “Configuring the Statistics Period for the VMware Management Interface” on page 81.

The **Network** tab also indicates whether traffic shaping is enabled. This setting can be changed.

Enabling Traffic Shaping

When network traffic shaping is enabled, outbound network bandwidth is limited according to the values specified here. Because network traffic is bursty, separate parameters are provided to control both the long-term sustainable Average transmit rate and the short-term Peak transmit rate. The Burst parameter controls the amount of data that may be sent in one burst while exceeding the Average rate. The Peak rate limits the maximum bandwidth during such bursts.
To enable network traffic shaping

1. In the Network tab, click Edit.

The Network Resource Settings dialog box appears.

2. To enable traffic shaping, select Enable Traffic Shaping and define network traffic parameters.

3. In the Average Bandwidth field, specify the average value for network bandwidth, and specify whether that amount is in Megabits per second (Mbps), Kilobits per second (Kbps), or bits per second (bps).

4. In the Peak Bandwidth field, specify the peak value for network bandwidth, and specify whether that amount is in Megabits per second (Mbps), Kilobits per second (Kbps) or bits per second (bps).

5. In the Burst Size field, specify how large a burst can be, and specify whether that amount is in Megabytes (M), Kilobytes (K), or bytes (B).

6. Click OK to save your changes and close the window.

For information about managing network resources, see “Managing Network Bandwidth from the Management Interface” on page 367.

Configuring a Virtual Machine’s Hardware

To review and configure the virtual hardware inside a virtual machine, click the Hardware tab.
Figure 3-7. Hardware tab

The **Hardware** tab lists the virtual hardware in the virtual machine—configured devices like the virtual disk, removable devices like floppy, CD-ROM or DVD-ROM drives, virtual network adapter, memory allocated to the virtual machine, and the display settings. More information about each device is listed, and you can configure each virtual hardware component.

You can configure most hardware only when the virtual machine is powered off.

Configuring a Virtual Machine’s Floppy Drive

Each virtual machine can access a physical floppy drive on the server or a floppy image file.
To configure the virtual machine's floppy drive

1. In the **Hardware** tab, under **Floppy Drive**, click **Edit**.

 The Floppy Drive dialog box appears.

2. To connect this virtual machine to the floppy drive, check **Connected**.

 NOTE: Only one virtual machine can connect to the floppy drive on the server at a time.

3. To connect this virtual machine to the floppy drive when the virtual machine is powered on, select **Connect at Power On**.

4. In the **Device** list, select **System Floppy Drive** or **Floppy Image**.

5. Enter the location of the drive or floppy image in the **Location** field.

 For example, the server’s floppy drive could be `/dev/fd0`.

6. Click **OK** to save your changes and close the window.

Configuring a Virtual Machine's DVD-ROM or CD-ROM Drive

Each virtual machine can access a physical DVD-ROM or CD-ROM drive on the server or an ISO image file.
To configure the virtual machine's DVD/CD-ROM drive

1. In the **Hardware** tab, under **DVD/CD-ROM Drive**, click **Edit**.

 The DVD/CD-ROM Drive dialog box appears.

2. To connect this virtual machine to the server’s DVD/CD-ROM drive, select **Connected**.

 NOTE Only one virtual machine can connect to the DVD/CD-ROM drive on the server at a time.

3. To connect this virtual machine to the server’s DVD/CD-ROM drive when the virtual machine is powered on, select **Connect at Power On**.

4. In the **Device** list, select **System DVD/CD-ROM Drive** or **ISO Image**.

5. Enter the location of the drive or ISO image in the **Location** field.

 For example, the server’s CD-ROM drive could be `/dev/cdrom`.

6. Click **OK** to save your changes and close the window.

Configuring a Virtual Machine’s Memory and Virtual Processors

You can change how much memory to allocate to a virtual machine. You can review the amount of memory recommended by ESX Server, the maximum amount of memory that can be allocated to the virtual machine, and the maximum amount of memory for smooth running of the virtual machine, given the number of virtual processors.

Depending on the guest operating system in the virtual machine and the number of processors on the server, you can change the number of virtual processors it uses.
Keep in mind the following:

- Virtual machines running certain guest operating systems, such as Windows NT, can be configured with a single processor only. Review the list of supported guest operating systems in the *VMware ESX Server Installation Guide* to see which guests are multiprocessor- or SMP-capable.

- Virtual machines can be configured with multiple processors only if the server has more than one processor. A virtual machine cannot have more virtual processors than the server has physical processors.

- Multiprocessor-capable guest operating systems configured with a single processor might require additional tuning if you increase the number of virtual processors. At most, a virtual machine can have two virtual processors. See “Configuring a Virtual Machine to Use More than One Virtual Processor” on page 60.

- Multiprocessor-capable guest operating systems configured and tuned with more than one virtual processor may not boot and will probably degrade the performance of other virtual machines if you change the configuration to a single processor.

 VMware recommends that you do not downgrade a multiprocessor virtual machine to uniprocessor.

NOTE You can configure dual-virtual processor virtual machines only if you purchased the VMware Virtual SMP for ESX Server product. For more information on this product, contact VMware, Inc. or your authorized sales representative.
To configure the virtual machine's virtual processors and memory

1. In the Hardware tab, under Processors and Memory, click Edit.

The Processors and Memory dialog box appears.

![Processors and Memory dialog box](image)

Depending on the guest operating system and the number of processors with which it is configured, a message appears under Edit Processor Configuration.

2. Provided the guest operating system is multi-processor capable, and to change the number of processors, click the click here link.

3. Choose the number of virtual processors in the Processors list.

4. In the Memory field, enter the amount of memory to allocate to the virtual machine.

 The amount must be a multiple of 4.

5. Click OK to save your change and close the window.

Configuring a Virtual Machine’s Virtual Network Adapters

You can configure the settings for the virtual machine’s virtual network adapter. These settings include the virtual network device to which the virtual machine is bound and the network driver it uses.

To choose the virtual network device, select either:

- vmnic adapter – Connects the virtual machine to the physical network adapter, allowing the virtual machine to look and act as another computer on the network.
vmnet adapter – Connects the virtual machine to an internal network of other virtual machines. All the virtual machines on this computer connected to a particular vmnet are on the same network.

For this network connection, choose between the vLance driver, which installs automatically, and the vmxnet driver, which provides better network performance. The difference in network performance is most noticeable if the virtual machine is connected to a Gigabit Ethernet card.

NOTE If you use vmxnet in a Windows or Linux virtual machine, the virtual network device is not visible to the guest operating system until you install VMware Tools. See “To Install VMware Tools in a Linux Guest” on page 47.

After the virtual machine is created, use this tab to assign additional network adapters to the virtual machine.

To determine which network adapter is associated with a device name, use the service console’s findnic command. See “VMkernel Network Card Locator” on page 314.

To configure the virtual machine’s virtual network adapter

1. In the Hardware tab, under Network Adapter, click Edit.

 The Network Adapter dialog box appears.

2. In the Network Connection list, select the virtual network device that you want the virtual machine to use.

3. In the Virtual Device list, select either the vLance or vmxnet driver.

4. Click OK to save your changes and close the window.
Configuring a Virtual Machine’s SCSI Controllers

You can configure the settings for the virtual machine’s virtual SCSI controller. These settings include the virtual SCSI controller driver and whether the SCSI bus is shared with virtual or physical devices.

To configure the virtual machine’s virtual SCSI controller

1. In the **Hardware** tab, under **SCSI Controller**, click **Edit**.

 The SCSI Controller dialog box appears.

![SCSI Controller dialog box](image)

2. In the **Virtual Device** list, select the SCSI controller driver that you want the virtual machine to use, either `vmxbuslogic` or `vmxlsilogic`.

 Before you select a driver, make sure you installed the driver in the guest operating system. Otherwise, the guest cannot boot. To switch to the `vmxlsilogic` driver, see “Configuring a Virtual Machine to Use the LSI Logic SCSI Adapter” on page 55.

3. In the **Bus Sharing** list, select how you want the virtual machine to share its bus:
 - **Physical** – Share disks with virtual machines on any server.
 - **Virtual** – Share disks with virtual machines on the same server.
 - **None** – Prevent sharing disks with other virtual machines.

4. Click **OK** to save your changes and close the window.

Configuring a Virtual Machine’s Virtual Disks

When you configure an existing virtual disk, you can change its disk mode. You can also change the virtual disk a virtual machine uses or create a new virtual disk for the virtual machine.
ESX Server can use disks in four modes:

- **Persistent** – Disks in persistent mode behave exactly like conventional disk drives on a computer. All writes to a disk in persistent mode are written out permanently to the disk as soon as the guest operating system writes the data.

- **Nonpersistent** – All changes to a disk in nonpersistent mode are discarded when a virtual machine session is powered off.

- **Undoable** – Keep or discard changes you made during a working session when you power off the virtual machine. Until you decide, the changes are saved in a redo-log file.

- **Append** – Stores changes in a redo log. It continually adds changes to the redo log until you remove the redo-log file or commit the changes using the commit command in vmkfstools. See “Using vmkfstools” on page 249.

To configure the virtual machine’s virtual disk

1. In the **Hardware** tab, under **Virtual Disk**, click **Edit**.

 The Virtual Disk dialog box appears.

 ![Virtual Disk Configuration Dialog]

2. Under **Disk Mode**, click **Persistent**, **Nonpersistent**, **Undoable**, or **Append**.

 ![Disk Mode Options]
You can change the disk mode for an existing virtual disk that is not a physical disk on a LUN.

3 Click OK to save your changes and close the window.

Configuring a Virtual Machine’s Display Settings

You can configure the display depth or number of colors in a virtual machine. A higher color depth setting slows down screen redraws and increases network load when you use a remote console to view a virtual machine across a network connection. However, with greater color depth, you get better color resolution and fidelity, which may be an issue, depending on the applications you intend to run on the virtual machine.

To configure the virtual machine’s display settings

1 In the **Hardware** tab, under **Display**, click **Edit**.

 The Display dialog box appears.

2 In the **Colors** list, select the display depth or the number of colors you want available to the virtual machine.

 Select 256 Colors (8 bit), Thousands of Colors (15 bit), Thousands of Colors (16 bit), or Millions of Colors (24 bit).

3 Click OK to save your change and close the window.

Configuring a Virtual Machine’s Generic SCSI Device

You can configure any generic SCSI devices in a virtual machine. Make sure the virtual machine is powered off and complete the following steps.
To configure a virtual machine’s generic SCSI device

1. To configure an existing generic SCSI device, on the **Hardware** tab, under **Generic SCSI Device**, click **Edit**.

 The Generic Device (SCSI <ID>) dialog box appears.

 ![Generic Device (SCSI 0:1) dialog box](image)

2. To connect this virtual machine to the server’s SCSI device when the virtual machine is powered on, check **Connect at Power On**.

3. In the **Device** drop-down list, choose the appropriate device.

4. Select the appropriate SCSI ID in the **Virtual SCSI Node** list.

 NOTE If the virtual device is on SCSI controller 0:0, a warning appears, stating that changing the SCSI node may cause the virtual machine to boot improperly.

5. Click **OK** to save your change and close the window.

Adding a Virtual Disk to a Virtual Machine

Make sure the virtual machine is powered off, and complete the following steps.
To add a new virtual disk to a virtual machine

1. On the **Hardware** tab, click **Add Device**.

 The Add Device wizard starts.

 ![Add Device wizard](image1)

2. Click **Hard Disk**.

 The Virtual Disk Type page appears.

 ![Virtual Disk Type page](image2)
3 Create one of the following virtual disks:

- Click **Blank** to create a new virtual disk.

Specify the following:

- **Image File Location** – Choose the volume from the list on which to locate the virtual disk. The amount of free space is listed next to the volume name, so you know how large you can make the virtual disk.

- **Image File Name** – Enter a disk name, making sure the file has a `.vmdk` extension.

- **Capacity** – Specify the size of the virtual disk in MB. The default entry indicates the amount of free space available on the volume.

- **Virtual SCSI Node** – Select the appropriate SCSI ID from the list.

- **Disk Mode** – Click **Persistent**, **Nonpersistent**, **Undoable**, or **Append**.
Click **Existing** to add an existing virtual disk to the virtual machine.

Specify the following:

- **Image File Location** – Choose the volume from the list on which the virtual disk is located.

- **Image File Name** – Select the virtual disk you want from the list. The size of the virtual disk appears in the **Capacity** field.

- **Virtual SCSI Node** – Select the appropriate SCSI ID from the list.

- **Disk Mode** – Click **Persistent**, **Nonpersistent**, **Undoable**, or **Append**.

4 Click **OK** to add the disk.

Adding a Virtual Network Adapter to a Virtual Machine

Before adding a virtual network adapter, make sure the virtual machine is powered off.
To add a new virtual network adapter to a virtual machine

1. On the **Hardware** tab, click **Add Device**.

 The Add Device wizard starts.

2. Click **Network Adapter**.

 The Network Adapter page appears.

3. To connect this virtual machine to the network when the virtual machine is powered on, select **Connect at Power On**.

4. In the **Network Connection** list, select the virtual network device that you want the virtual machine to use.

5. In the **Virtual Device** list, select the network driver (either the **vlance** or **vmxnet** driver) you want the virtual machine to use.
6 Click **OK** to add the network adapter.

Adding a Virtual DVD/CD-ROM Drive to a Virtual Machine

If your server contains a DVD/CD-ROM drive, you can add a DVD/CD-ROM drive to the virtual machine. You can point the CD-ROM drive to an ISO disk image file.

You can connect a device to only one virtual machine on a server at a time.

Before adding a virtual DVD/CD-ROM drive, make sure the virtual machine is powered off.

To add a new virtual DVD/CD-ROM drive to a virtual machine

1 On the **Hardware** tab, click **Add Device**.

 The Add Device wizard starts.

 ![Add Device wizard](image)

 Device Type
 - **Hard Disk**: Create a new virtual disk, use an existing virtual disk or access a VMDK volume directly.
 - **Network Adapter**: Attach a new network adapter to a virtual network of your choosing.
 - **DVD/CD-ROM Drive**: Create a new virtual DVD or CD-ROM drive to access a system drive or an ISO image.
 - **Floppy Drive**: Create a new virtual floppy drive to access a system drive or a floppy image file.
 - **Generic SCSI Device**: Create a new virtual device that directly accesses a system SCSI device.

2 Click **DVD/CD-ROM**.
The cdrom page appears.

3 To connect this virtual machine to the server’s DVD/CD-ROM drive when the virtual machine is powered on, select **Connect at Power On**.

4 In the **Device** list, select **System DVD/CD-ROM Drive** or **ISO Image**.

5 Enter the location of the drive or ISO image in the **Location** field.

 For example, the server’s CD-ROM drive could be `/dev/cdrom`.

6 Click **OK** to add the drive.

Adding a Virtual Floppy Drive to a Virtual Machine

If your server contains a floppy drive, you can add a virtual floppy drive to the virtual machine. You can point the floppy drive to a floppy disk image file.

You can connect a device to only one virtual machine on a server at a time.

Before adding a virtual floppy drive, make sure the virtual machine is powered off.
To add a new virtual floppy drive to a virtual machine

1. On the Hardware tab, click Add Device.

The Add Device wizard starts.

 ![Add Device Wizard](image)

2. Click Floppy Drive.

The Floppy Drive page appears.

 ![Floppy Drive Configuration](image)

3. To have the floppy drive be connected to the virtual machine when you power it on, select Connect at Power On.

4. In the Device list, select System Floppy Drive or Floppy Image.

5. Enter the location of the drive or floppy image in the Location field.

 For example, the server’s floppy drive could be /dev/fd0.

6. Click OK to add the drive.
Adding a Generic SCSI Device to a Virtual Machine

Before adding a generic SCSI device, make sure the virtual machine is powered off.

To add a new generic SCSI device to a virtual machine,

1. On the Hardware tab, click Add Device.

 The Add Device wizard starts.

2. Click Generic SCSI Device.

 The SCSI Device page appears.

3. To connect this virtual machine to the server’s SCSI device when the virtual machine is powered on, select Connect at Power On.

4. In the Device drop-down list, choose the appropriate device (such as /dev/sga.)
5 Select the appropriate SCSI ID in the **Virtual SCSI Node** list.
6 Click **OK** to add the device.

Adding a Tape Drive to a Virtual Machine

Before adding a tape drive, make sure the virtual machine is powered off.

To add a new tape drive to a virtual machine

1 On the **Hardware** tab, click **Add Device**.

 The Add Device wizard starts.

 2 Click **Generic SCSI Device**.

 The SCSI Device page appears.
3 To connect this virtual machine to the server’s SCSI device when the virtual machine is powered on, select **Connect at Power On**.

4 In the **Device** entry field, type:

 \texttt{vmhba<x>:<y>:<z>:0}

5 Select the appropriate SCSI ID in the **Virtual SCSI Node** list.

6 Click **OK** to add the device.

Removing Hardware from a Virtual Machine

To remove hardware from a virtual machine, access the **Hardware** page. Next to the item you want to remove, click **Remove**. You are asked for confirmation before the device is removed.

NOTE You cannot remove some items from a virtual machine, such as the processor, SCSI controller, or the virtual display.

Setting Standard Virtual Machine Configuration Options

To review and modify basic information about a virtual machine, or to access the configuration file directly, click the **Options** tab.

Figure 3-8. Options tab
The **Options** tab shows standard virtual machine information:

- **Display Name** – Identifies the virtual machine in a more descriptive way.
- **Guest Operating System** – Guest operating system installed on the virtual disk.
- **Suspend File Location** – Location of the suspended state file (a VMFS volume). This file is created when you suspend a virtual machine. It contains information about the virtual machine’s state at the time at which it was suspended. ESX Server adds a suffix to the name of the suspended state file to ensure that one virtual machine does not overwrite the suspended state file of another.

NOTE Unlike earlier versions of ESX Server, the suspended state file can reside only on a VMFS volume. It cannot be located in the directory with the virtual machine’s configuration file in the service console.

- **Enable Logging** – Whether logging is enabled.
- **Run with Debugging Information** – Whether the virtual machine is running with debugging information. When you are experiencing problems with this virtual machine, you can provide the information to VMware support to help troubleshoot problems.
- **System Startup Options** – Startup options for this virtual machine when the server starts.
- **System Shutdown Options** – Shutdown options for this virtual machine when the server shuts down.

To change other options, see “Setting Standard Virtual Machine Configuration Options” on page 122.

Under Verbose Options, you can enter and modify configuration file entries by hand. See “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

Setting Startup and Shutdown Options for a Virtual Machine

You can configure what a virtual machine does when the system starts and how it shuts down when the system shuts down. You can enable these settings only if the startup and shutdown options are enabled for the server overall. See “Setting Startup and Shutdown Options” on page 124.
The virtual machine startup options include:

- **At System Startup** – Whether this virtual machine should start when the server starts. By default, virtual machines do not start automatically when the system starts up.

- **Continue Starting Other Virtual Machines After** – Amount of time to wait after starting the virtual machine before starting another virtual machine. Settings for starting virtual machines include: the system default, do not wait to start, wait for a certain number of minutes to start, or start when VMware Tools starts.

The virtual machine startup options include:

- **At System Shutdown, Attempt to** – Sets the shutdown action for the virtual machine when the server is shut down. Settings include: power off the virtual machine, shut down the guest operating system, or suspend the virtual machine. By default, all virtual machines are powered off when the system shuts down.

- **Continue Stopping Other Virtual Machines After** – Amount of time to wait after stopping the virtual machine before stopping another virtual machine. Settings include: the system default, no wait, or wait for a certain number of minutes.

You can set these options individually or by modifying the configuration file directly. Modifying the configuration file is recommended only for advanced users. Select the section below for the method appropriate for your comfort level.

Setting Startup and Shutdown Options

You can configure how each virtual machine behaves during startup and shutdown by configuring the options for those events.

To configure a Virtual Machine’s Startup and Shutdown Options

1. Power off the virtual machine and click **Edit** under **System Startup Options** or **System Shutdown Options**.

 The Options dialog box appears.

2. To allow the virtual machine to start up when the system starts up, select the **Start Virtual Machine** check box.

3. In the **Continue Starting Virtual Machines After** list, choose the number of minutes or whether ESX Server should not wait before starting the next virtual machine.

 If you select **Other**, specify the number of minutes to wait in the prompt that appears.
4 To specify that VMware Tools should start in a virtual machine before the next virtual machine starts, select the **when VMware Tools starts** check box.

If VMware Tools does not start in the virtual machine before the time specified elapses, ESX Server starts the next virtual machine.

5 In **At System Shutdown, Attempt to list**, select whether you want to power off the virtual machine, shut down the guest operating system, or suspend the virtual machine.

6 In the **Continue Stopping Other Virtual Machines After list**, choose a number of minutes or whether ESX Server should not wait before starting the next virtual machine.

To choose a number of minutes other than what appears, select **Other** and enter the number of minutes at the prompt.

7 Click **OK** to save your settings.

8 Click **Close Window** to return to the virtual machine’s **Options** tab.

To change any of these options

1 Power off the virtual machine and click **Edit**.

The Options Configuration dialog box appears.

![Options Configuration dialog box](image)

NOTE You can change the display name when the virtual machine is powered on.

2 Make your changes and click **OK** to save them.

3 Close the window.
Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)

To add or change a configuration option for a virtual machine that cannot be accessed from elsewhere in the management interface, edit the virtual machine’s configuration file (the file with the .vmx extension) from the Options dialog box.

For example, to enable repeatable resume in the virtual machine, see “To add an option to the configuration file (.vmx)” on page 127.

CAUTION Do not add or change any options in your configuration file unless you have been given a specific option to add to the file in another part of the user documentation or if you are working with VMware support to solve an issue with your virtual machine.

Before modifying the configuration file, make sure you are logged into the management interface as the virtual machine user or a user with the proper permissions to modify this virtual machine (such as the root user).
To add an option to the configuration file (.vmx)

1. Under **Verbose Options**, click the link.

 The Options dialog box appears.

 ![Options dialog box](image)

 - **Verbose Options**
 - **Virtual Machine Configuration**
 - **checkpoint.configName**: min2000Server
 - **config.version**: 6
 - **displayName**: Windows 2000 Server
 - **draw**: gdi
 - **Ethernet0.addressType**: vpx
 - **Ethernet0.connectionType**: monitor_dev
 - **Ethernet0.devName**: vmnet0
 - **Ethernet0.generatedAddress**: 00:50:56:92:82:74
 - **Ethernet0.maxFrameSize**: 1500
 - **Ethernet0.netmask**: 255.255.255.0
 - **Ethernet0.present**: true
 - **flapryFileName**: /dev/fd0
 - **flapry0.startConnected**: false
 - **guestOS**: min2000Serv
 - **id0.deviceType**: vmsys
 - **id0.fileName**: /dev/kdrom
 - **id0.present**: true
 - **memSize**: 384
 - **priority.grabbed**: normal
 - **priority.ungrabbed**: normal
 - **RemoteDisplay-depth**: 16
 - **resume.repeatable**: true
 - **scsi0.present**: true
 - **scsi0.virtualDev**: vmbuslogic
 - **scsi0:mode**: nonpersistent
 - **scsi0:0.name**: vmhba01:0:0
 - **scsi0:0.present**: true
 - **usb.present**: false
 - **uuid**: 00:03:4d:04:64:1b:4b:4ac:ab:7c
 - **uuid_location**: 56 4d 7d 2e 0a 67 3b 62 73 3c 6c
 - **version**: 1

2. Click **Add**.

3. Enter a name for the option and click **OK**.

 For example, to enable repeatable resume in the virtual machine, create an option called `resume.repeatable`.

4. Enter a value for the option you specified and click **OK**.
For example, set the value of resume.repeatable to TRUE.

5. Click **OK** in the Options dialog box to save the change to the configuration file.

To change an option in the configuration file (.vmx)

1. Under **Verbose Options**, click the link.

 The Options dialog box appears.

2. Locate the option, and change the value for the option in the entry field to the right of the option.

3. Click **OK** to save your change and close the Options dialog box.
Viewing a List of Connected Users

To see a list of users that are connected to a virtual machine with a remote console, click the **Users and Events** tab.

![Image of Users and Events tab](image)

Figure 3-9. Users and Events tab: Remote Console Connections and Permissions

The list under **Remote Console Connections** identifies users connected to the virtual machine with a remote console. The list includes the time and IP address from which the user connected to the virtual machine.

The list under **Permissions** indicates what you can do with the virtual machine. You are either allowed or denied the following abilities:

- Viewing virtual machine status.
- Modifying the virtual machine's configuration.
- Controlling the virtual machine: powering it on or off, suspending or resuming it.
Viewing a Log of a Virtual Machine’s Events

A log of the 15 most recent virtual machine events is available. Click the Users and Events tab.

![Image of Users and Events tab]

Figure 3-10. Users and Events tab: Events

The Events list displays a log of the most recent actions or events recorded in the virtual machine, such as the questions VMware ESX Server asks, errors and other events like the powering on or off of the virtual machine. The events appear in reverse chronological order.

The event log draws its data from the log file for the virtual machine’s configuration file stored, by default, in the virtual machine’s directory, `<homedir>/vmware/<guestOS>`.

When you perform an action within the management interface that prompts the virtual machine to generate a message for your response before it can proceed, a waiting for input message appears in the Display Name column. When you click that link, a popup window appears, prompting you for a response. After you provide your answer, the popup window closes.
The log shows the date and time the event occurred and an explanation of the event. Some events have a symbol associated that corresponds to the type of event that occurred.

⚠️ – Indicates a question or a warning was generated by the virtual machine.

🔴 – Indicates an error occurred in the virtual machine.

Click the tabs at the top of the page to view more information about the virtual machine.

Modifying Virtual Machine Peripherals

A virtual machine's peripheral devices can be viewed and modified through the management interface. This section provides an overview of the configuration modification options.

The changes you can make include:

- “Adding More than Six SCSI Virtual Disks to a Virtual Machine,” next
- “Using a Physical (Raw) Disk in a Virtual Machine” on page 132
- “Using Parallel Ports in a Virtual Machine” on page 133
- “Using Serial Ports in a Virtual Machine” on page 134
- “Using Disk Modes” on page 135

CAUTION These procedures involve modifying a virtual machine's configuration file settings directly. Only advanced users should do this. Consider backing up the configuration file (.vmx) before making changes.

Adding More than Six SCSI Virtual Disks to a Virtual Machine

You can add up to six virtual SCSI disks on a single SCSI controller to a virtual machine using the VMware Management Interface. To do so, log in to the management interface as a user with the permissions to configure the virtual machine, click the link to the virtual machine's name, and click **Hardware** next to **Configuration** in the virtual machine summary. Click **Add Device**, and follow the wizard to add a new **Hard Disk**.

To add more than six disks to the same controller (up to eight more), you must edit the virtual machine’s configuration file directly. Device ID 7 is used by the SCSI controller, so you cannot use that ID for a virtual disk.
To add SCSI disks with IDs between 8 and 15

1. On the Options tab for the virtual machine, click the link under Verbose Options.

2. Click Add.

3. Create an option called `scsi0:8.present` and set its value to true.

4. Click Add.

5. Create an option called `scsi0:8.name` and set its value to `<vmfsname>:<diskfilename>.vmdk`.

 In these entries, `scsi0` refers to the first SCSI controller and 8 is the device ID.

6. Click OK to save your changes and close the configuration file.

By default, the virtual disk is created in persistent mode. To change the disk mode, click the Hardware tab. Edit the disk as described in “Configuring a Virtual Machine’s Virtual Disks” on page 109.

Using a Physical (Raw) Disk in a Virtual Machine

In some configurations, you might give a virtual machine direct access to a physical disk partition stored on a LUN, rather than using a virtual disk stored as a file on a VMFS. This can be useful, for example, if the virtual machine needs shared access to data stored on a physical disk.

For the virtual machine to access a physical disk, add a new virtual disk as described in “Adding a Virtual Disk to a Virtual Machine” on page 112 and click System LUN/Disk.
Using Parallel Ports in a Virtual Machine

Virtual machines must be configured so that parallel ports on the virtual machine are connected to the appropriate port on the physical machine.

To connect the virtual machine's first parallel port (LPT1) to the physical computer's first parallel port

1. Reboot the physical computer and enter the BIOS setup.

 Typically, you press F2 or Delete while the machine is booting. Find the parallel port mode setting and set it to PS/2. (The typical choices are AT and PS/2.) If PS/2 is not available as an option, set it to bidirectional.

2. Log on to the console operating system as root and enter the following commands:

   ```
   /sbin/insmod parport
   /sbin/insmod parport_pc
   /sbin/insmod ppdev
   ```

 Type `lsmod` and confirm that these modules are in the listing of loaded modules.

 To make these changes permanent, add the three lines shown above to the end of the file `/etc/rc.d/rc.local`.

3. Be sure the virtual machine is shut down and powered off, and add the following options to the virtual machine’s configuration file as described in “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

 - Add an option called `parallel0.present` and set its value to `true`.
 - Add an option called `parallel0.fileName` and set its value to `"/dev/parport0"`.
 - Add an option called `parallel0.bidirectional` and set its value to `true`.

4. Look for the line `config.version = 6` in the configuration file to make sure the virtual machine is using virtual hardware version 6.

 This line is present in the configuration file for any virtual machine created with ESX Server 1.5.x and later. If the virtual machine was created under ESX Server 1.0 or 1.1 and has not been updated, add the `config.version = 6` line to the configuration file.
NOTE When the virtual machine starts after you update the virtual hardware version, the message “The CMOS of this virtual machine is incompatible with the current version of VMware ESX Server. A new CMOS with default values will be used instead” appears. Click OK. As the virtual machine starts, the guest operating system may detect new virtual hardware and install drivers for it. Respond to any messages.

5 Start the virtual machine using the remote console.

You might see a message warning that the parallel port is starting disconnected. Connect to the virtual machine with a remote console and use the remote console's Devices menu to connect the parallel port.

6 As it starts to boot, click inside the remote console window, and press F2 to enter the virtual machine's BIOS setup.

7 Go to the Advanced I/O Device Configuration section and configure the parallel port mode for the virtual machine to bidirectional.

Now your virtual machine can use a dongle or other parallel port device.

NOTE Only one operating system can be connected to the parallel port at a time. You cannot configure more than one virtual machine to use a particular parallel port at a given time.

Using Serial Ports in a Virtual Machine

To connect the virtual machine's first serial port (COM1) to the physical computer’s first serial port, edit the virtual machine's configuration directly using the VMware Management Interface.

Be sure the virtual machine is shut down and powered off, and add the following lines to the configuration file as described in “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

- Add an option called `serial0.present` and set its value to `true`.
- Add an option called `serial0.fileType` and set its value to `device`.
- Add an option called `serial0.fileName` and set its value to `/dev/ttyS0`.

When you power on the virtual machine, you can configure the serial port in the guest operating system.

When the virtual machine is running, use the Devices menu on the remote console to connect and disconnect its serial port.

You can also control whether the virtual machine starts with its serial port connected to the physical computer's serial port. To set the first serial port so it is connected when the
virtual machine starts, add an option `serial0.startConnected` to the configuration file and set its value to `true`, as described in “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

To reconfigure the virtual machine so it starts with the first serial port disconnected, change the value for the `serial0.startConnected` option to `false`.

NOTE Only one operating system can be connected to the serial port at one time. You cannot configure more than one virtual machine to use a particular serial port at a time. To use additional serial ports, use a higher number in the lines you add to the configuration file.

Changing the number after `serial` affects the serial port that is available inside the virtual machine. Changing the number after `/dev/ttyS` affects the port that is used on your physical computer. For example, to connect the virtual machine’s second serial port (COM2) to the physical computer’s second serial port, add the following lines to the configuration file as described in “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

- Add an option called `serial1.present` and set its value to `true`.
- Add an option called `serial1.fileType` and set its value to `device`.
- Add an option called `serial1.fileName` and set its value to `/dev/ttyS1`.

Using Disk Modes

ESX Server can use disks in four modes: persistent, nonpersistent, undoable, and append.

- **Persistent** – Persistent mode disks behave exactly like conventional disk drives on a computer. All writes to a persistent disk are written permanently to the disk as soon as the guest operating system writes the data.

- **Nonpersistent** – All changes to a nonpersistent mode disk are discarded after the virtual machine is powered off.

- **Undoable** – You have the option later of keeping or discarding changes you made during a session. The changes are saved in a redo-log file. When you power off the virtual machine, you are prompted to commit the changes, keep the log by continuing to save changes to the redo log, or discard the changes.

- **Append** – VMware ESX Server supports an additional append mode for virtual disks stored as VMFS files. Append mode maintains a redo log, however, no dialog box appears when the virtual machine is powered off to ask whether you want to commit changes. All changes are continually appended to the redo log. At any
point, the changes can be undone by removing the redo log. Shut down the guest operating system and power off the virtual machine before deleting that virtual machine's redo log. You can also commit the changes to the main virtual disk file using the commit option in vmkfstools. See “Using vmkfstools” on page 249 for details.

To change the disk mode for a virtual disk, see “Configuring a Virtual Machine's Virtual Disks” on page 109.

Deleting a Virtual Machine Using the VMware Management Interface

You can delete a virtual machine only if you are the root user, the owner of the configuration file, or if you have the correct permissions to the configuration file or the directory where the configuration file is located.

When you delete a virtual machine, the files associated with it—that is, located in the same directory—are deleted. These files include its configuration file (the .vmx file), log file, and .nvram file. The redo log and any lock files are not deleted.

Any virtual disks that are not associated with another registered virtual machine on the host can be deleted as well, or you can save them for future use. The directory containing these files is also deleted, unless any disk files or other files not deleted still remain.

To delete a virtual machine

1. In the VMware Management Interface, find the virtual machine you want to delete, if the virtual machine is powered on or suspended, power it off.

2. Click the arrow to the right of the terminal icon () to access the virtual machine menu.

The Confirm: Deleting <Virtual Machine> dialog box appears. All the files to be deleted are listed.

4 For each disk file not associated with another registered virtual machine on this host, choose one of the following:
 - To save a virtual disk file, select the Save option.
 - To delete a virtual disk file, select the Delete option.

NOTE Any virtual disk files associated with another registered virtual machine do not appear in this window.

5 To delete the virtual machine, click Delete Selected Files.

The Confirm: Deleting <Virtual Machine> dialog box closes. The virtual machine no longer appears in the management interface.

NOTE If you do not want to delete this virtual machine, click Cancel.

Managing ESX Server Resources

For information on managing server resources, see “VMware ESX Server Resource Management” on page 327.

Configuring VMware ESX Server

To configure certain VMware ESX Server settings, on the Status Monitor, click the Options tab.

NOTE Only a user with administrator privileges (root user) can access this tab.
Figure 3-11. Options tab

These options allow you to configure ESX Server. For information on each of these links, see “Administering ESX Server” on page 187.

Click the Status Monitor tab to return to the Status Monitor.

Logging Out of the VMware Management Interface

When you are ready to log out of the VMware Management Interface, click Logout on the Status Monitor or Options tab. You are prompted to confirm that you want to log out. Logging out does not affect the virtual machines on the host or any remote consoles you opened from the management interface.

VMware Management Interface sessions expire automatically after 60 minutes of inactivity or idle time.

Using the Apache Web Server with the Management Interface

On VMware ESX Server, an Apache server is installed with the VMware Management Interface. These are the commands to start, stop, or restart the Apache server.

To use these commands, you must log in as root (su -).
To start the Apache server, type: `/etc/init.d/httpd.vmware start`

To stop the Apache server, type: `/etc/init.d/httpd.vmware stop`

To restart the Apache server, type: `/etc/init.d/httpd.vmware restart`

Setting a MIME Type to Launch the VMware Remote Console

From a browser, you can connect to a virtual machine from a remote console by clicking the terminal icon (莆) for that virtual machine. Before doing so, Netscape and Mozilla users need to define a MIME type of `x-vmware-console` and associate it with the remote console program file. Internet Explorer is automatically configured when you install the console.

Setting the MIME Type in Netscape 7.0 and Mozilla 1.x

If you are using Netscape 7.0 or Mozilla 1.x and want to launch the VMware Remote Console from the VMware Management Interface, you must set a MIME type for the remote console program.

The procedure is similar for Windows and Linux hosts. Both involve writing a short script that provides the command to launch the remote console.

To set the MIME type in Netscape or Mozilla

1. Open a text editor and do one of the following.

 - On a Windows host, write a short batch file called `vmwareConsole-helper.bat`.

 The batch file must contain the following line:

     ```
     "<path_to_vmwareConsole>" -o "%1"
     ```

 where the default `<path_to_vmwareConsole>` is `C:\Program Files\VMware\VMware Remote Console\vmwareConsole.exe`

 - On a Linux host, write a short shell script called `vmware-console-helper.sh`.

 The shell script must contain the following two lines:

     ```
     #!/bin/sh
     "<path_to_vmware-console>" -o $1 > /dev/null 2>&1;
     ```

 where the default `<path_to_vmware-console>` is `/usr/bin/vmware-console`.
2 Save the file in a location of your choice.

NOTE On a Linux host, change to the directory where you saved the file and give yourself permission to execute the file: `chmod +x vmware-console-helper.sh`.

3 Use the browser to connect to the server you want to manage.

4 Click the terminal icon (_attach) for the virtual machine you want to view in a remote console.

 A dialog box asks what you want to do with the file.

5 Click **Advanced**.

6 In the New Type dialog box, in the **Description of type** field, type **VMware Remote Console**.

7 In the **File extension** field, type **xvm**.

8 In the **MIME type** field, type **application/x-vmware-console**.

9 In the **Application to use** field, type the path to `vmwareConsole-helper.bat` or `vmware-console-helper.sh`.

10 Click **OK** twice.

 Your browser is now set to launch the remote console when you click the terminal icon in the future.

Editing a Virtual Machine’s Configuration File Directly

You can edit specific configuration options for a virtual machine in two ways:

- On the Options tab for a specific virtual machine, you can add and change configuration options. See “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126.

- You can also edit a virtual machine’s configuration file (.vmx) by using a text editor in the service console. This lets you add, change, and remove elements of a virtual machine’s configuration.

Modifying a configuration file using a text editor is recommended for advanced users only. The virtual machine must be powered off. Back up your virtual machine’s configuration file before modifying it with a text editor.
Chapter 3 Using the VMware Management Interface

Changing Your Virtual SCSI Adapter

By default, ESX Server assigns the BusLogic virtual SCSI adapter to Linux, Windows NT 4.0, Windows 2000, or Windows XP Professional guest operating systems. Similarly, ESX Server assigns the LSI Logic SCSI virtual adapter to Windows 2003 Server guest operating systems.

You can change these default settings by editing the virtual machine’s configuration file through the management interface (described in “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126).

To change the default settings

1. Look for lines similar to the following in the virtual machine’s configuration file:
   ```
   scsi0.present = "TRUE"
   scsi0.virtualDev = "vmxbuslogic"
   scsi0.sharedBus = "none"
   ```
2. Change the virtual SCSI adapter to your choice.
 For example, for the `scsi0.virtualDev` option, change `vmxbuslogic` to `vmxlsilogic`.
3. Click OK to save your change and close the Options pane.

NOTE If you change a virtual machine’s virtual SCSI adapter to a custom adapter, your choice is retained if you change the guest operating system in the virtual machine.

If you change the guest operating system on a virtual machine with a BusLogic or LSI Logic SCSI virtual adapter, the virtual SCSI adapter is updated to the default for the new guest operating system.

For example, if you have a virtual machine with a Linux operating system and change the guest operating system to Windows 2003 Server, the virtual SCSI adapter is LSI Logic, the default virtual SCSI adapter for a Windows 2003 Server guest operating systems.

Using the VMware Management Interface File Manager

Using the VMware Management Interface, you can manage the file system of your VMware ESX Server machine remotely. Use the file manager to change the permissions of any file on the physical machine, create new directories on the physical machine or cut, copy, paste, and delete files as you would if you were working directly on the file system itself. To use the file manager, click Manage Files on the Status Monitor or Options tab of the management interface.
In the left pane of the file manager, click a folder to display its contents.

Some file and folder icons have special meanings.

Table 3-2. Folder and File Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Identifies a virtual machine configuration file. If you click the file name or icon for a configuration file, the Edit Configuration page for the virtual machine opens.</td>
</tr>
<tr>
<td></td>
<td>Identifies a virtual disk file on a VMFS file system.</td>
</tr>
<tr>
<td></td>
<td>Identifies a set of files on the service console that hold a virtual disk in the format used by VMware Workstation and VMware GSX Server.</td>
</tr>
<tr>
<td></td>
<td>Identifies a VMFS volume.</td>
</tr>
</tbody>
</table>

To perform an action on a file or folder (directory), select the check box beside its listing, and click the button at the bottom of the screen to delete, edit properties, cut, or copy.

After you cut or copy a file or folder, you can paste it into the same or a different folder. If you copy a file or folder, paste it into the same folder, the new file or folder is renamed, with copy_of_ before the original name. You can select it and use **Edit Properties** to name it.

NOTE
The tree view may fail to load or only partially load when viewed with Mozilla. To restore the proper view, right-click in the left pane, and choose **Reload Frame** or **Refresh** from the context menu.
When you start a long-running operation—for example, pasting a file larger than 10MB after a copy or moving it between logical file systems—a progress bar appears so you can track the progress of the operation.

When you copy and paste or cut and paste a virtual disk file from the VMFS file system to the service console's file system, or vice versa, the file manager uses vmkfstools to import or export the file, translating the format appropriately. This means that a virtual disk larger than 2GB will split into multiple files when it is moved from a VMFS disk or array to the service console's file system.

NOTE The file manager in the management interface may display incorrect information or no information for files larger than 2GB. This means that you cannot use the file manager to import certain virtual disk files created under VMware Workstation 4. For background on vmkfstools, see “Using vmkfstools” on page 249.

After you select a file or folder and click **Edit Properties**, you can change its name and permissions. When you are finished, click **OK** to apply the changes.

![Figure 3-13. Change Name and Permissions dialog box](image)

If you select more than one file or folder, you can change permissions for all the files at once. Any changes you make, using the drop-down lists in the file manager, apply to all the files you have selected.

Use the following list to make changes:

- A letter, corresponding to the letter at the top of the column (read, write or execute), indicates that the setting is the same for all files and it grants the permission indicated by the letter.
- A hyphen (–) indicates that the setting is the same for all files and it does not grant permission.
- A blank space indicates that the setting is not the same for all files.

Figure 3-14. Settings to make changes to files

Use the top pane of the file manager to navigate the directory structure and create new directories.

To create a new directory, click **New**, enter the name for the directory, and click **OK**.

Setting Permissions for Owners of Virtual Machines

The VMware Management Interface uses the permissions of the virtual machine’s configuration (.vmx) file to determine the privileges a user has on a virtual machine. The user needs read (r) access to view the virtual machine, write (w) access to modify the virtual machine's configuration parameters, and execute (x) access to perform power operations on the virtual machine. In addition, the user needs read, write, and execute access to register or unregister the virtual machine. See “Registering and Unregistering Virtual Machines” on page 145.

Previous versions of ESX Server checked the access permissions of the virtual machine's configuration file and the access permissions of the directory in which the configuration (.vmx) file was located. In other words, the user needed execute (x) permissions on all the parent directories for a configuration file.

For example, if a configuration file is `/home/foo/vms/win2k/win2k.vmx`, the user needed to have execute (x) privileges on `/home`, `/home/foo`, `/home/foo/vms`, `/home/foo/vms/win2k` and appropriate privileges on `win2k.vmx`.
Creating a Flagship User

You might choose to have a virtual machine owned by a “flagship user” instead of a real person. By using a “flagship user,” only one user account owns the virtual machines that are in production. An advantage of using flagship accounts is that flagship users never leave the company or go on vacation.

By using a flagship user, you avoid problems in access privileges, if multiple individuals in a group, access the same virtual machine, through the remote console. That is, you can give all group members execute privileges to the flagship user’s directories that contain the virtual machines. Without these execute privileges on parent directories, other group members won’t be able to use the remote console.

Registering and Unregistering Virtual Machines

ESX Server requires that each virtual machine's configuration file be registered before it can be accessed by VMware Remote Consoles and the VMware Management Interface. When you create a new configuration file with the management interface, whether for a new or an existing virtual machine, the configuration file is registered automatically with ESX Server.

You can have up to 80 registered virtual machines on a server at one time. If you intend to run more than 60, you must modify some service console settings. See “Running Many Virtual Machines on ESX Server” on page 148.

When you register a virtual machine, it appears in the management interface and the Connect to VMware Virtual Machine dialog box that appears when you connect to the virtual machine with the remote console.

If you are using a virtual machine that you migrated from another server or VMware product, you must register the configuration file as described below. For more information about migrating virtual disks and virtual machines, see “Importing, Upgrading, and Exporting Virtual Machines” on page 60.

If you do not need a virtual machine, you can unregister it. This is useful if you have more than 80 virtual machines on the server and do not want to delete any excess virtual machines. An unregistered virtual machine no longer appears in the management interface and cannot be connected to by a remote console.

You must have full permissions to the virtual machine’s configuration file (.vmx) to register or unregister it.

NOTE The remote console still requires that the user has execute (x) permission on all parent directories.
Registering a Virtual Machine

Virtual machines created on the server are automatically registered. If you imported a virtual machine from another server or from another VMware product, or if you unregistered a virtual machine, you can register it by completing the following steps.

To register a virtual machine

1. Log into the management interface as the user with full permissions to the virtual machine’s configuration file.

NOTE Only the root user can register and unregister virtual machines through the management interface. However, regular users can register and unregister virtual machines using the scripting API.

2. On the **Status Monitor**, click **Manage Files**.

 The file manager appears.

3. Browse to the directory containing the configuration file (the file with the `.vmx` extension) and click the configuration file icon.

 The Virtual Machine Registration Status pane appears, indicating that the virtual machine is not registered.

4. Click the **register** link.
A message indicates that the virtual machine is registered.

5 Click Close Window.

The virtual machine appears on the Status Monitor and you can connect to it with a remote console.

Unregistering a Virtual Machine

Registered virtual machines can be accessed and managed remotely. Unregister the virtual machine to prevent remote management.

To unregister a virtual machine

1 Log into the management interface as the user with full permissions to the virtual machine’s configuration file.

2 On the Status Monitor, on the row for the virtual machine, click the arrow to the right of the terminal icon ().

3 Click Unregister Virtual Machine.

The Virtual Machine Registration dialog box appears.

4 Click the Unregister link to unregister the virtual machine.

The virtual machine no longer appears on the Status Monitor and cannot be managed remotely.
Running Many Virtual Machines on ESX Server

To run or register more than 60 virtual machines, you must change some settings in the service console. By changing these settings, you provide additional CPU and memory resources to the service console, allowing ESX Server to operate more efficiently under this higher load.

NOTE If you decrease the number of registered or running virtual machines to less than 60, revert the settings back to their defaults through the management interface or through the service console.

Increasing the Reserved Memory for the Service Console

Increasing the memory in the service console allows the service console to operate more efficiently when a greater number of virtual machines are active.

To increase the memory allocation in the service console

1. Log into the VMware Management Interface as root.
2. Click the **Options** tab and click **Startup Profile**.
3. Increase the **Reserved Memory** to at least 512MB, and up to 800MB (the maximum recommended setting).
4. Click **OK** to save the changes.
5. Click **OK** and reboot ESX Server.

For more information, see “**Service Console Memory**” on page 364.

Allocating CPU Resources to the Management Interface

If, after changing these settings, you are unable to open the VMware Management Interface to your server, the number of outstanding processes that are waiting to be executed is too high. Allocate the necessary CPU resources to the management interface by increasing the priority for the vmware-serverd and httpd processes.

To increase the priority for the vmware-serverd and httpd processes

1. Log in as the root user on the service console.
2. Type `ps auxw` and find the process IDs of the `httpd` and `vmware-serverd` processes.

 If there are multiple httpd processes, type `top`. Press Shift-p (P) to sort the output by CPU usage. Note the process ID for the `httpd` process using the most CPU.
3 Raise the vmware-serverd process priority to -15 so that it can connect to all running virtual machines:

renice -15 -p <vmware-serverd_process_ID>

4 Raise the httpd process priority to -15:

renice -15 -p <httpd_process_ID>

5 Verify that you can log into the VMware Management Interface and view correct information about the virtual machines, and continue with the next step.

6 Change the vmware-serverd process priority back to the default of zero (0).

renice 0 -p <vmware-serverd_process_ID>

7 Change the httpd process priority back to the default of zero (0).

renice 0 -p <httpd_process_ID>

Changing Default Parameters in the config File

You can change default parameters for the Apache process, the vmware-authd process, the vmware-serverd process, and for the cpu resources available to the Service Console in the /etc/vmware/config file.

NOTE If you decrease the number of registered or running virtual machines to less than 60, comment out the new lines you added or delete them from /etc/vmware/config.

Increasing Memory to the Apache Process

By default, Apache allocates a shared memory segment of 24MB to contain all the virtual machines’ data. This value of 24MB is sufficient for 80 virtual machines. If you have more than 80 (up to the maximum of 200) registered virtual machines, Apache might run out of memory. You might see a “Panic out of memory” message in /usr/lib/vmware-mui/apache/logs/error_log and the VMware Management Interface shuts down.

To increase memory to the Apache Process

1 Use a text editor and add the following option to /etc/vmware/config:

mui.vmdb.shmSize = “37748736”

where 37748736 represents 36MB (36 multiplied by 1024, multiplied by 1024).

2 Restart the Apache server:

/etc/rc.d/init.d/httpd.vmware restart
Increasing the Timeout Value for the vmware-authd Process

As root, use a text editor and add the following configuration parameter to the /etc/vmware/config file:

```
vmauthd.connectionSetupTimeout = 120
```

This increases the timeout value to 2 minutes from the default of 30 seconds.

Increasing Memory for the vmware-serverd Process

As root, use a text editor and add the following configuration parameter to the /etc/vmware/config file:

```
vmserverd.limits.memory = "49152"
vmserverd.limits.memhard = "65536"
```

These changes raise the soft memory limit for the vmware–serverd process to 48MB (48 multiplied by 1024) and the hard memory limit to 64MB (64 multiplied by 1024).

Running Many Virtual Machines with a Significant CPU Load

To run a large number of virtual machines with applications that use a significant amount of CPU, increase the service console shares to 10000.

To increase the service console shares through the VMware Management Interface

1. Log into the VMware Management Interface as the root user.
2. Click the Options tab, and click Service Console Settings.
 The CPU page should appear. If not, click the CPU tab.
3. Click Edit.
4. Type 10000 in the Shares field and click OK.

If the management interface is unresponsive, you need to make these changes through the service console.
To increase service console shares through the service console

1. Log into the service console as the root user.
2. Type `cat /proc/vmware/sched/cpu`.
3. Find the line that has `console` for the name.
 For example:

<table>
<thead>
<tr>
<th>vcpu</th>
<th>vm</th>
<th>name</th>
<th>uptime</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>125</td>
<td>console</td>
<td>71272.378</td>
<td>RUN</td>
</tr>
<tr>
<td>126</td>
<td>126</td>
<td>idle1</td>
<td>71272.378</td>
<td>RUN</td>
</tr>
<tr>
<td>127</td>
<td>127</td>
<td>idle2</td>
<td>71272.378</td>
<td>RUN</td>
</tr>
</tbody>
</table>

4. Use the echo command to change the number of service console shares:

 `echo 10000 > /proc/vmware/vm/<name>/cpu/shares`

 For the preceding output, type:

 `echo 10000 > /proc/vmware/vm/125/cpu/shares`

Avoiding Management Interface Failures when Many Virtual Machines Are Registered

If you have a large number of virtual machines registered on a single ESX Server machine, the VMware Management Interface might shut down and a Panic out of memory message is recorded in `/usr/lib/vmware-mui/apache/logs/error_log`.

By default, the Apache Web server uses 24MB of memory to store information about the virtual machines on the server. The errors described above can happen when this amount of memory is not adequate for the number of virtual machines.

To work around the problem, open the file `/etc/vmware/config` in a text editor and find the line that begins with `mui.vmdb.shmSize =`. Increase the number in quotation marks, which is specified in bytes of memory. Restart the Apache server using the command:

`/etc/rc.d/init.d/httpd.vmware restart`

Backing Up Virtual Machines

Your backup strategy depends on how you want to protect your data and recover from problems. There are two main goals:

- Recover individual files on the virtual machine (for example, if a user accidentally removes a file).
Recover from catastrophic failures in which your entire virtual machine is damaged.

VMware ESX Server provides several approaches for backing up your data, whether to tape or to another system over the network. The best data protection for your virtual machines is achieved with a combination of these approaches.

Using Tape Drives with VMware ESX Server

This section describes how to make tape drives available to both your virtual machine and your service console. The management interface allows you to allocate a SCSI controller to the service console, to one or more virtual machines or for use by both environments. To make a SCSI tape drive available in a virtual machine, you must allocate the SCSI controller to which it is attached for use only by virtual machines.

You can check the allocation settings for the server’s SCSI controllers in the management interface. On the Status Monitor, click the Options tab, and click Startup Profiles.

CAUTION Do not reassign a server’s only SCSI controller if the service console is running from a drive attached to that controller. If your system is configured this way, you must add a second SCSI controller to control the tape drive.

Backing Up from Within a Virtual Machine

One approach is to back up a particular virtual machine’s data as if it were on a physical machine. You can run either a direct backup tool or the client component of a client-server backup tool within the virtual machine and configure it for direct access to the network or tape drive.

NOTE You can also use a virtual machine to run the server component of a client-server backup product, provided you give it access to one or more tape drives.

Back up from within a virtual machine allows fine-grained recovery of your data.

- You can restore file data by the individual file.
- You can restore database data using the normal database-specific method.

If you need to restore the virtual machine from a backup made from within the virtual machine, recreate the virtual machine and load recovery software into it before restoring data from the backups.

To configure a virtual machine so you can use a tape drive from within it, see “Adding a Tape Drive to a Virtual Machine” on page 121.
Backing Up Virtual Machines from the Service Console

You can back up your virtual machines by copying to tape the entire virtual disk files and any redo logs, along with the backups of the service console. This approach makes it easy to restore your virtual machines in the event of a full system loss or data loss due to failure of unprotected disks.

These full-image backups do not permit you to restore individual files. You must restore the entire disk image and any associated logs, and power on a virtual machine with these drives connected to retrieve specific data.

The next section describes how to ensure data integrity when backing up virtual machines from the physical computer or the service console.

Providing Optimum Data Integrity In Virtual Machine Backups Without Downtime

You can use the VMware Scripting API included with ESX Server 2.5 in conjunction with backup products to provide snapshots or stable disk or redo log images. The appropriate functions can be called from within many backup products to establish a safe basis for backing up images or logs. You can use this approach with any disk mode: persistent, undoable, nonpersistent, or append.

For information on the Scripting API, see the VMware Scripting API documentation at http://www.vmware.com/support/developer/.

Using Hardware or Software Disk Snapshots

You can use the snapshot capabilities offered by your disk subsystem, file system, or volume manager to provide stable copies of disk images. As with physical servers, consider using some level of application integration so you can be sure your backups have the level of data integrity you want.

You can combine these approaches with the ESX Server redo log API (described in “Providing Optimum Data Integrity In Virtual Machine Backups Without Downtime,” previously) to keep the interval during which an extra log is used to a minimum. To do this, take the following general steps:

- Add the new redo log.
- Take a snapshot of the mirror using your disk subsystem’s or volume manager’s interfaces.
- Commit the changes to the live log.

You can still back up from the stable disk image on the snapped mirror, and reconnect the mirror to have it pick up the latest changes in time for your next backup.
Using Network-Based Replication Tools

You can configure any enterprise disk storage subsystems to replicate, or mirror, their data to another subsystem at a local or remote location. This replication can occur either synchronously or asynchronously, as described below:

- If the replication is synchronous, a write operation does not appear to be completed locally until the data is committed to disk at the remote location.

 Synchronous replication improves data integrity but presents a potential performance bottleneck.

- If the replication is asynchronous, the remote copy is permitted to be some number of write operations behind the most current local data.

 Asynchronous replication accepts a higher potential of inconsistent data at the remote site in exchange for increased performance.

You can use either of these hardware-based approaches with ESX Server.

In addition, some disaster protection software products implement remote mirroring in software. These tools provide protection and data integrity semantics similar to those of the hardware-based solutions. However, they might be more cost-effective for configurations with low to medium performance requirements.

These software tools can be used inside guest operating systems.

NOTE VMware recommends that you do not use software remote mirroring tools for service console-driven replication on VMware ESX Server. This is because these software tools usually require file system format awareness, add significantly to the network I/O level and the CPU requirements to service that network I/O, and are more common on Windows and UNIX operating systems than on Linux.
In this chapter, the following sections describe aspects of using the VMware Service Console:

- “Characteristics of the VMware Service Console” on page 167
- “Using DHCP for the Service Console” on page 168
- “Managing the Service Console” on page 168
- “Authentication and Security Features” on page 180
- “Using Devices With ESX Server” on page 184
- “Enabling Users to View Virtual Machines Through the VMware Remote Console” on page 185

Characteristics of the VMware Service Console

The purpose of the VMware service console is to start up and administer your virtual machines. It is a customized version of Linux based on the Red Hat 7.2 distribution. It has been modified so it can be managed by the VMkernel.

The service console has been customized to disable unneeded services. Most network services have been disabled, except for auth. For remote access to the service console, ssh is enabled by default. The root user can modify settings for ssh, Telnet, and FTP using the security configuration page in the management interface (http://<servername>/security-config).

The service console is scheduled by the VMkernel like any other virtual machine. Do not run heavy workloads on the service console, because it might take processor cycles away from your virtual machines.
Using DHCP for the Service Console

The recommended setup is to use static IP addresses for the service console. It is also possible to set up the service console to use DHCP, as long as your DNS server can map the service console’s host name to the dynamically generated IP address.

If your DNS server cannot map the host’s name to its DHCP-generated IP address, determine the service console’s numeric IP address and use that numeric address when accessing the management interface’s Web pages.

The numeric IP address might change as DHCP leases run out or when the system is rebooted. VMware does not recommend using DHCP for the service console unless your DNS server can handle the host name translation.

Managing the Service Console

The command summary in this section provides an introduction to the commands you are most likely to use at the service console. Some are specific to ESX Server. Most are commands that are the same as those you would use at a Linux command line.

Connecting to the Service Console

If you have direct access to the computer where ESX Server is running, you can log in to the physical console on that computer. Press Alt-F2 to get to the login screen.

Depending on the security settings for your ESX Server computer, you might be able to connect remotely to the service console using SSH or Telnet. For information on the security settings, see “Authentication and Security Features” on page 180.

Detailed usage notes for most service console commands are available as manual files (man pages). To view the man page for a command, use the man command followed by the name of the command for which you want to see information. See “Getting Help for Service Console Commands” on page 180.

Whether you use the service console locally or through a remote connection, you must log in using a valid user name and password.
Commands Specific to ESX Server

Identifying Network Cards

The findnic command lets you send network traffic from a specified network adapter so you can observe the LEDs on the adapters and see which physical adapter is associated with that device name. The format of the command is:

\[\text{findnic <options> <nic-name> <local-ip> <remote-ip>} \]

<table>
<thead>
<tr>
<th>Option</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>Do a flood ping.</td>
</tr>
<tr>
<td>-i <seconds></td>
<td>Send pings at specified interval.</td>
</tr>
</tbody>
</table>

Example:

\[\text{findnic -f vmnic1 10.2.0.5 10.2.0.4} \]

Binds VMkernel device vmnic1 to IP address 10.2.0.5, and tries to flood ping the remote machine with the IP address 10.2.0.4.

See “VMkernel Network Card Locator” on page 314.

Managing a VMware ESX Server File System

The vmkfstools command lets you create and manipulate files on SCSI disks managed by ESX Server.

NOTE You must be logged in as the root user to run the vmkfstools command.

The format for the vmkfstools command, when specifying a SCSI device, is:

\[\text{vmkfstools <options> <device_or_VMFS_volume>[:<file>]} \]

where <device_or_VMFS_volume> specifies a SCSI device (a SCSI disk or a partition on a SCSI disk) being manipulated or a VMFS volume, and <options> specifies the operation to be performed.

If <device_or_VMFS_volume> is a SCSI device, it is specified in a form such as:

\[\text{vmhba1:2:0:3} \]

<device_or_VMFS_volume> can also be a VMFS volume name, as set in the management interface or with the vmkfstools --setfsname command.

The variable <file> is the name of a file stored in the VMFS volume on the specified device.
The format for the `vmkfstools` command, when specifying a VMFS volume or file, is:

```
vmkfstools <options> <path>
```

where `<path>` is an absolute path that names a directory or a file under the `/vmfs` directory.

For an explanation on using this command, see “Using `vmkfstools`” on page 249.

Automatically Mounting VMFS Volumes

VMFS volumes are automatically mounted in the `/vmfs` directory on the service console when the VMkernel is loaded as the computer boots.

Loading VMkernel Device Modules

Use the program `vmkload_mod` to load device driver and network shaper modules into the VMkernel. You can also use `vmkload_mod` to unload a module, list the loaded modules, and list the available parameters for each module.

The format for the command is:

```
vmkload_mod <options> <module-binary> <module-tag> <parameters>
```

See “VMkernel Module Loader” on page 240.

Common Linux Commands Used on the Service Console

Many of the commands available on Linux or UNIX are also available on the service console. This section summarizes the most commonly used commands. For more information, see “Getting Help for Service Console Commands” on page 180 or consult a Linux reference book.

Manipulating Files

To navigate through the directory structure and manipulate files and directories, you must have proper permissions. In some areas of the file system, your ability may be restricted when you are logged in as an ordinary user. You might need to log in as root to perform some tasks. Table 5-1 explains some of the common Linux commands available in the service console.
Table 5-1. Linux commands used on the service console

<table>
<thead>
<tr>
<th>Command</th>
<th>Example and Explanation</th>
</tr>
</thead>
</table>
| cd | Change directories.
 cd /home/user
 Change to the directory /home/user (the home directory for a user with the user name user).
 cd ..
 Go up one level from the current directory. |
| cp | Copy a file.
 cp oldfile newfile
 Make a copy of the file oldfile in the current directory. The copy is named newfile.
 cp oldfile /home/user
 Make a copy of the file oldfile in the current directory. The copy has the name oldfile and is in the directory /home/user. |
| ln | Create a link from one file or directory to another file or directory.
 ln -s /bin/program prolinc
 Create a soft link (shortcut) from the existing file /bin/program to prolinc. The link prolinc is created in the current working directory. If you enter the command prolinc, you run the program /bin/program. |
| ls | List the files in the current directory.
 ls -al
 List all (-a) the files in the current directory in long (-l) format.
 ls *.html
 List files in the current directory that end with .html. The * is a wild-card character that represents any number of characters. The ? is a wild-card character that represents a single character.
 ls /home/user
 List the files in the directory /home/user. |
| mkdir | Make a new directory.
 mkdir newdir
 Make a new directory called newdir beneath the current directory.
 mkdir /home/newdir
 Make a new directory called newdir beneath the /home directory. |
| mv | Move a file to a new directory or rename the file.
 mv myfile /home/user
 Move the file myfile from the current directory to the directory /home/user.
 mv myfile yourfile
 Rename the file myfile. The new filename is yourfile. |
| pwd | Show the path to the present working directory. |
Table 5-1. Linux commands used on the service console (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Example and Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>rm</td>
<td>Remove a file.</td>
</tr>
<tr>
<td></td>
<td>rm deadfile</td>
</tr>
<tr>
<td></td>
<td>Remove the file deadfile from the current directory.</td>
</tr>
<tr>
<td>rmdir</td>
<td>Remove a directory.</td>
</tr>
<tr>
<td></td>
<td>rmdir gone</td>
</tr>
<tr>
<td></td>
<td>Remove the directory gone, which exists beneath the current directory.</td>
</tr>
</tbody>
</table>

Finding and Viewing Files

Table 5-2 describes some common Linux commands for finding and viewing files that can also be used in the ESX Server service console.

Table 5-2. Linux commands used on the service console

<table>
<thead>
<tr>
<th>Command</th>
<th>Example and Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>Concatenate the contents of files and display the content on the screen.</td>
</tr>
<tr>
<td></td>
<td>cat /proc/vmware/mem</td>
</tr>
<tr>
<td></td>
<td>Display the contents of the file /proc/vmware/mem.</td>
</tr>
<tr>
<td>find</td>
<td>Find files under a specified directory that match conditions you specify.</td>
</tr>
<tr>
<td></td>
<td>find / -name myfil*</td>
</tr>
<tr>
<td></td>
<td>Find files in the root directory and all directories under it that have file names beginning with myfil. The * is a wild-card character that represents any number of characters. The ? is a wild-card character that represents a single character.</td>
</tr>
<tr>
<td></td>
<td>find -name '*.vmx' -print -exec chown User2 {} ;</td>
</tr>
<tr>
<td></td>
<td>Find files in this directory and subdirectories that end with .vmx, display the names of all files that are found on the screen and, for each file (indicated by curly braces ()), change its owner to User2.</td>
</tr>
<tr>
<td></td>
<td>-print is not necessary, but it helps to track the progress of the find command. If you do not use -print, the find command is silent except for error messages from find or from chown.</td>
</tr>
<tr>
<td></td>
<td>find -name '*.vmx' -exec grep -il 'SOMETHING' {} ;</td>
</tr>
<tr>
<td></td>
<td>Find all files in this directory and all subdirectories that end with .vmx and look for the pattern SOMETHING in each of the files. The -i option to grep makes the search case-insensitive. The -l option to grep causes grep to display the names of the files that have SOMETHING in them. When a file is found that contains SOMETHING, this command displays the full path to the file from the current directory (for example, ./virtualmachines/Linux/RedHat71Test/redhat71.vmx).</td>
</tr>
</tbody>
</table>
Managing the Computer and Its Users

The root user or super user (su) can run all these commands. Some of the commands, those that provide information, are available to other users.

Table 5-3. Linux commands used on the service console

<table>
<thead>
<tr>
<th>Command</th>
<th>Example and Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>grep</td>
<td>Search for a specified text pattern in a specified directory or list of files and display the lines in which the pattern is found.
grep "log file" *
Search all the files in the current directory for the text string log file.</td>
</tr>
<tr>
<td>less</td>
<td>Display the contents of a specified file one screen at a time. Use the arrow keys to move up and down through the file.
less myfile
Display the contents of the file myfile.
grep "log file" *</td>
</tr>
</tbody>
</table>

vdf is an ESX Server-customized version of the df command. Use vdf in place of the df command. vdf works with all the standard df options. Displays free space for all mounted file systems. The list also shows the total space, amount of space used, and percentage of space used for each file system. vdf -h
Display the free space in familiar file size terms.
Table 5-3. Linux commands used on the service console (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Example and Explanation</th>
</tr>
</thead>
</table>
| **fdformat** | Do a floppy disk format.
 `fdformat /dev/fd0`
 Format a floppy disk in the first floppy disk drive. |
| **groupadd** | Add a new group.
 `groupadd newgroup`
 Add a group named newgroup to the system. |
| **hostname** | Display the system's host name. |
| **ifconfig** | Display the network interface configuration information for all network devices.
 NICs allocated to the vmkernel are shown as `vmnic<N>`, where N is the number of the NIC (for example, `vmnic0`, `vmnic1`, and so forth.) |
| **insmod** | Install a loadable module into the running kernel.
 `insmod parport`
 Install the loadable module named `parport` into the running kernel. |
| **kill** | Kill a specified process.
 `kill 3456`
 Kill the process with a process ID of 3456.
 `kill -9` is the surest way to kill a process; however, use it only as a last resort because it will not save editor buffers. |
| **lsmod** | List all loaded modules. |
| **lspci** | List PCI devices available to the service console.
 `lspci -v`
 List PCI devices in verbose mode. |
| **mount** | Mount a specified storage device at a specified location in the file system.
 `mount /dev/fd0 /mount/floppy`
 Mount the first physical floppy drive so its contents are visible in the directory `/mount/floppy`. The directory `/mount/floppy` must already exist. |
| **passwd** | Change your password.
 `passwd user`
 Change the password for a user named user. You must be logged in as the root user (`su`) to change another user's password. |
| **ps** | Show names, process IDs and other information for running processes.
 `ps -ef`
 Show full (-f) information about every (-e) running process. |
| **shutdown** | Shut down the computer.
 `shutdown -h 5`
 Completely halt (-h) the computer in 5 minutes.
 `shutdown -r now`
 Shut down and restart (-r) the computer immediately. |
Setting File Permissions and Ownership

Files and directories on the service console can have read, write, and execute permissions. Those permissions can be on or off for the owner of the file (generally, the user who created it), the specified group (generally, a group to which the creator belongs), and all other users on the system. Permissions are indicated for each file when you display a long directory listing, as shown in Example 5-1.

```
[User@vmwareserver win2000]$ ls -la
```
```
total 104
  drwxr-xr-x    2 User     User         4096 Jul 17 11:15 .
  drwxr-xr-x    5 User     User         4096 Jul 17 09:51 ..
-rw-------    1 User     User         8664 Jul 17 16:17 nvram
-rw-r--r--    1 User     User        77763 Jul 18 14:14 vmware.log
-rwxr-xr--    1 User     User         1307 Jul 17 11:20 win2000.vmx
```

Example 5-1. File permissions

In Example 5-1, in the top two lines of the directory listing, the first character is the letter d indicating the listing on the line is for a directory. The single dot at the end of the first line indicates this listing is for the current directory. The two dots at the end of the second line indicate this listing is for the parent of the current directory.

The first character in the last line is a -. This indicates that `win2000.vmx` is an ordinary file. The word User in the third column indicates the file is owned by a user named User. The word User in the fourth column indicates the file’s owner is a member of a group named User.

Permissions

Permissions for the owner, the specified group, and all other users are indicated in the first column: `-rwxr-xr--`. The owner’s permissions are specified first: rwx (read, write, and execute). Permissions for other members of the group User are r–x (read and...
execute). The final cluster of three characters (r--) indicates that all other users have permission to read the file but not to write to it or execute it.

Change permissions for a file using the chmod command, shown in Table 5-4. One way to specify permissions is by using a numerical shorthand:

- Read = 4
- Write = 2
- Execute = 1

Specify combinations of these permissions by adding the numbers for the permissions you want to set. For example, read and execute is 5. Read, write, and execute is 7.

Permissions are specified in the same order as they are shown in the directory listing—owner, group, all other users.

You can also add or delete permissions by specifying them by the symbols displayed in the long directory listings discussed previously:

- Read = r
- Write = w
- Execute = x

Identify the set of permissions you want to modify by their symbol:

- User = u
- Group = g
- Other = o
- All = a

Table 5-4 lists permissions and commands.
Switching User Names

Table 5-5 describes the common Linux commands for switching user names that are also available in the ESX Server service console.

Table 5-5. Commands for switching user names

<table>
<thead>
<tr>
<th>Command</th>
<th>Example and Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>su</td>
<td>Switch user. By default, this command lets you log in as the root user if you know the root user’s password. You can also use the command to log in as any other user if you know the user name and password. Enter the command and enter the password when prompted. su User2 Log in as User2.</td>
</tr>
<tr>
<td>exit</td>
<td>Log out. If you used su to log in as a different user, this command returns you to your previous user name.</td>
</tr>
</tbody>
</table>

The proc File System

The proc file system is a set of directories, beginning with /proc, that exist in memory while ESX Server is running. The contents of these directories are not stored on disk.
The `/proc/vmware` directory contains information specific to the running of the ESX Server virtualization layer in virtual machines.

You can use the `cat` command to check status and use the `echo` command to write values to certain files in the `proc` file system to change the configuration of ESX Server.

NOTE Most of this information is available through the VMware Management Interface. VMware recommends that you obtain and set information through this management interface. Do not add or change any options in this directory unless you are instructed to by VMware support to solve an issue with ESX Server.

CAUTION Do not use the `proc` interface to set any values other than those mentioned in these sections:

- “Managing CPU Resources from the Service Console” on page 337
- “Managing Memory Resources from the Service Console” on page 352
- “Manual NUMA Optimizations” on page 361
- “Managing Disk Bandwidth from the Management Interface” on page 372
- “Managing Disk Bandwidth from the Service Console” on page 374

NOTE The contents and format of the `/proc/vmware` directory may change between releases of ESX Server.

Table 5-6. proc file system entries and descriptions

<table>
<thead>
<tr>
<th><code>/proc/vmware</code> Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chipset</td>
<td>State of interrupt controllers.</td>
</tr>
<tr>
<td>config</td>
<td>Advanced ESX Server parameters available through the VMware Management Interface.</td>
</tr>
<tr>
<td>debug</td>
<td>Debugging information.</td>
</tr>
<tr>
<td>filters</td>
<td>Network traffic shaping. See “Traffic Shaping with nfshaper” on page 369.</td>
</tr>
<tr>
<td>interrupts</td>
<td>Used, together with chipset, to determine the state of interrupt controllers.</td>
</tr>
<tr>
<td>log</td>
<td>VMkernel log output.</td>
</tr>
<tr>
<td>loglevels</td>
<td>Amount of debug logging.</td>
</tr>
</tbody>
</table>
Table 5-6. proc file system entries and descriptions (Continued)

<table>
<thead>
<tr>
<th>/proc/vmware Entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mem</td>
<td>Memory parameters. See “Memory Resource Management” on page 345</td>
</tr>
<tr>
<td>migration</td>
<td>Reserved for future use.</td>
</tr>
<tr>
<td>net</td>
<td>Configuration and statistics for virtual NICs and bond devices. See “Binding Physical Adapters” on page 320.</td>
</tr>
<tr>
<td>pci</td>
<td>State of PCI adapters in the system (what they are and how they’re partitioned).</td>
</tr>
<tr>
<td>procstats</td>
<td>Statistics for the /proc/vmware directory.</td>
</tr>
<tr>
<td>pshare</td>
<td>Page sharing statistics for memory resource management. See “Sharing Memory Across Virtual Machines” on page 350 and “Memory Sharing” on page 365.</td>
</tr>
<tr>
<td>rpcstats</td>
<td>Statistics on remote procedure calls (RPCs).</td>
</tr>
<tr>
<td>sched</td>
<td>Scheduler statistics on memory and CPU.</td>
</tr>
<tr>
<td>scsi</td>
<td>Information on SCSI devices and mappings between storage controllers and virtual machines.</td>
</tr>
<tr>
<td>shrdev</td>
<td>Statistics on shared devices.</td>
</tr>
<tr>
<td>stats</td>
<td>Counts of various low-level events in ESX Server.</td>
</tr>
<tr>
<td>swap</td>
<td>Swap statistics.</td>
</tr>
<tr>
<td>thermmon</td>
<td>Thermal monitoring information for each Pentium® 4 processor.</td>
</tr>
<tr>
<td>timers</td>
<td>State of ESX Server internal timed event scheduler.</td>
</tr>
<tr>
<td>uptime</td>
<td>ESX Server uptime.</td>
</tr>
<tr>
<td>vm</td>
<td>Statistics for individual virtual machines by VMID.</td>
</tr>
<tr>
<td>vmkperf</td>
<td>Statistics on ESX Server performance.</td>
</tr>
<tr>
<td>watchpoints</td>
<td>Statistics for debugging.</td>
</tr>
</tbody>
</table>
Getting Help for Service Console Commands

Detailed usage notes for most service console commands are available as man files. To view the man page for a command, use the `man` command followed by the name of the command for which you want to see information.

Table 5-7. `man` command

<table>
<thead>
<tr>
<th>Command</th>
<th>Example and Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>man</code></td>
<td>Displays the man page for a specified command. Press the spacebar to go to the next screen of text. Press <code>q</code> to exit from the display.</td>
</tr>
<tr>
<td><code>man cat</code></td>
<td>Display the manual page for the command <code>cat</code>.</td>
</tr>
<tr>
<td><code>man -f cat</code></td>
<td>Display a brief description of the command <code>cat</code>.</td>
</tr>
</tbody>
</table>

Authentication and Security Features

This section contains the following topics:

- “Authenticating Users” on page 180
- “Default Permissions” on page 182
- “TCP/IP Ports for Management Access” on page 182

There are three key aspects to security with VMware ESX Server:

- VMware ESX Server authenticates all remote users who connect to a server using the VMware Management Interface or the VMware Remote Console.
- Security for network traffic to and from the server depends on the security settings in the server configuration.
- Three or more TCP/IP ports are used for access, depending on the security settings in your ESX Server configuration.

Depending on your remote access requirements, you might need to configure your firewall to allow access on one or more of these ports. For details on which ports are used, see “TCP/IP Ports for Management Access” on page 182.

Authenticating Users

VMware ESX Server uses Pluggable Authentication Modules (PAM) for user authentication in the remote console and the VMware Management Interface. The default installation of ESX Server uses `/etc/passwd` authentication, as Linux does, but
it can be configured easily to use LDAP, NIS, Kerberos, or another distributed authentication mechanism.

The PAM configuration is in `/etc/pam.d/vmware-authd`.

Every time a connection is made to the server running ESX Server, the `inetd` process runs an instance of the VMware authentication daemon (`vmware-authd`). The `vmware-authd` process requests a user name and password, and hands them off to PAM, which performs the authentication.

After a user is authenticated, `vmware-authd` accepts a path name to a virtual machine configuration file. Access to the configuration file is restricted in the following ways. The user must have:

- **read** access to the configuration file to see and control the virtual machine in the VMware Management Interface and to view the virtual machine details pages.

- **read** access to the configuration file to use the local console on the service console or to connect to the virtual machine with the VMware Perl API.

- **read** and **execute** access to the configuration file to connect to and control (start, stop, reset, or suspend) a virtual machine in a remote console, with the VMware Perl API or with the management interface.

- **read** and **write** access to the configuration file to change the configuration using the Configure VM page in the management interface.

NOTE: If you have users with list access, but not read access, they might encounter errors in the VMware Management Interface.

If a `vmware` process is not running for the configuration file you are trying to use, `vmware-authd` examines `/etc/vmware/vm-list`, the file where you register your virtual machines. If the configuration file is listed in `vm-list`, `vmware-authd` (not necessarily the user who is currently authenticated) starts VMware ESX Server as owner of this configuration file.

Registered virtual machines (those listed in `/etc/vmware/vm-list`) also appear in the VMware Management Interface. The virtual machines listed on the **Status Monitor** must be listed in `vm-list`, and you must have read access to their configuration files.

The `vmware-authd` process exits as soon as a connection to a `vmware` process is established. Each `vmware` process shuts down automatically after the last user disconnects.
Using Your Own Security Certificates when Securing Your Remote Sessions

When using the VMware Remote Console or the VMware Management Interface over a network connection, the username, password, and network packets sent to ESX Server are encrypted in ESX Server by default when you choose Medium or High security settings for the server.

With SSL enabled, security certificates are created by ESX Server and stored on the server. However, the certificates used to secure your management interface sessions are not signed by a trusted certificate authority; they do not provide authentication. If you use encrypted remote connections externally, consider purchasing a certificate from a trusted certificate authority.

You can use your own security certificate for your SSL connections.

The VMware Management Interface certificate must be placed in /etc/vmware-mui/ssl. The management interface certificate consists of two files: the certificate itself (mui.crt) and the private key file (mui.key). The private key file should be readable only by the root user.

When you upgrade the management interface, the certificate remains in place. If you remove the management interface, the /etc/vmware-mui/ssl directory is not removed from the service console.

Default Permissions

When you create a virtual machine with VMware ESX Server, its configuration file is registered with the following default permissions, based on the user accessing it:

- Read, execute, and write – For the user who created the configuration file (the owner).
- Read and execute – For the owner’s group.
- Read – For users other than the owner or a member of the owner’s group.

TCP/IP Ports for Management Access

The TCP/IP ports available for management access to your ESX Server machine vary, depending on the security settings you choose for the server. To manage ESX Server machines from outside a firewall, you might need to reconfigure the firewall to allow access on the appropriate ports. The lists below show which ports are available when you use each of the standard security settings.
The key ports for use of the VMware Management Interface and the VMware Remote Console are the HTTP or HTTPS port and the port used by `vmware-authd`. Use of other ports is optional.

NOTE For compatibility with GSX Server, TCP ports 8222 and 8333 are handled as HTTP redirects to TCP ports 80 or 443.

High Security
The following list shows the port numbers and use for high security:

- 443 – HTTPS, used by the VMware Management Interface.
- 902 – `vmware-authd`, used when you connect with the remote console.
- 22 – SSH, used for a secure shell connection to the service console.

Medium Security
The following list shows the port numbers and use for medium security:

- 443 – HTTPS, used by the VMware Management Interface.
- 902 – `vmware-authd`, used when you connect with the remote console.
- 22 – SSH, used for a secure shell connection to the service console.
- 23 – Telnet, used for an insecure shell connection to the service console.
- 21 – FTP, used for transferring files to and from other machines.
- 111 – `portmap`, used by the NFS client when mounting a drive on a remote machine.

Low Security
The following list shows the port numbers and use for low security:

- 80 – HTTP, used by the VMware Management Interface.
- 902 – `vmware-authd`, used when you connect with the remote console.
- 22 – SSH, used for a secure shell connection to the service console.
- 23 – Telnet, used for an insecure shell connection to the service console.
- 21 – FTP, used for transferring files to and from other machines.
- 111 – `portmap`, used by the NFS client when mounting a drive on a remote machine.
Using Devices With ESX Server

In this section, we discuss considerations when using devices with ESX Server.

Supporting Generic Tape and Media Changers

For the guest operating system to see and control the media changer, the SCSI ID in the target raw device’s configuration file must match the SCSI ID that ESX Server sees for that device. Check the SCSI ID seen by ESX Server by viewing the output of the files /proc/vmware/scsi/vmhba<x>/<y>:<z>, where <x> is the HBA ID assigned by ESX Server, <y> is the SCSI target ID, and <z> is the SCSI LUN ID.

See “Adding a Tape Drive to a Virtual Machine” on page 121.

Editing the vmware-device.map.local File

The /etc/vmware/vmware-device.map file contains a list of devices supported by ESX Server. This release includes support for a local version of this file, /etc/vmware/vmware-device.map.local.

Modify the vmware-device.map.local to select different device drivers. This file is not modified during an ESX Server upgrade, preserving your customizations. The vmware-device.map.local is read when the VMkernel is loaded:

- Any changes to the vmware-device.map.local file require a reboot or at least an unload/reload of the VMkernel to take effect.
- Entries in the vmware-device.map.local files are used in addition to the entries in the vmware-device.map file. The vmware-device.map.local file does not need to mirror the vmware-device.map file.
- Any vmware-device.map.local file entries that correspond to the vmware-device.map file entries supersede the vmware-device.map file entries.

Finding Disk Controllers

Use the vmkpcidivy command to list physical disk controllers recognized by ESX Server and the device names linked to them in the Service Console. Physical disk controllers may be SCSI or block devices, such as disk array controllers.

The –query option of vmkpcidivy reports ESX Server configuration details.

For example, display disk controllers and their device names with vmhba_devs query:

```
$ vmkpcidivy -q vmhba_devs
vmhba0:0:0 /dev/ida/c0d0
vmhba1:0:0 /dev/sda
vmhba1:0:1 /dev/sdb
```
You can also find the device name linked to a specific controller with the singular `vmhba_dev` query:

```
$ vmkpcidivy -q vmhba_dev vmhba0:0:0
/dev/ida/c0d0
```

The `vmhba_dev` query accepts one or more controller names as arguments.

When You Change Storage Adapters

Whenever you change storage adapters on an ESX Server system, run the `vmkpcidivy` utility to ensure proper loading of the kernel modules.

To run the utility after changing storage adapters

1. After installing the new hardware, boot the ESX Server system to Linux mode.
2. Run `vmkpcidivy` by typing:
   ```
   vmkpcidivy -i
   ```
3. Reboot the ESX Server system.

Enabling Users to View Virtual Machines Through the VMware Remote Console

The default security setting for ESX Server is that users must have read (r) and execute (x) access permissions to connect a remote console to a virtual machine. To allow access to users with only read permissions, use the following global configuration setting:

```
authd.policy.allowRCForRead = "TRUE"
```

Add the preceding line to the `/etc/vmware/config` file. This setting allows users with only read permissions to connect to a virtual machine through the remote console.

Note This configuration setting affects all virtual machines on an ESX Server machine. You cannot change this setting for individual virtual machines.
You can modify ESX Server configuration options by logging in to the VMware Management Interface as root and clicking the **Options** tab. The settings you can change and activities you can perform include updating the startup profile, configuring storage and network settings, and configuring other server options.

Refer to the *VMware ESX Server Installation Guide* for additional information about server configuration during installation.

This chapter provides an overview of the configuration modification options:

- **“Startup Profile”** on page 188
- **“Network Connections”** on page 188
- **“Users and Groups”** on page 192
- **“Security Settings”** on page 194
- **“SNMP Configuration”** on page 196
- **“Licensing and Serial Numbers”** on page 196
- **“Storage Management”** on page 196
- **“Advanced Settings”** on page 205
- **“Service Console Settings”** on page 206
- **“System Logs and Availability Report”** on page 209
- **“Virtual Machines Startup and Shutdown”** on page 217
- **“Rebooting or Shutting Down the Server”** on page 221
Startup Profile

From the **Options** tab of the VMware Management Interface, use the **Startup Profiles** option to create and modify ESX Server boot configurations. For each configuration, you can specify how you want to allocate your devices: to the virtual machines, to the service console, or shared between them.

If you add new hardware to your ESX Server system, such as extra SCSI controllers or network adapters, you can specify here whether to allocate the new hardware to the *vmkernel* and virtual machines, or allocate it to the service console.

You also enable Hyper-Threading for your server with the startup profile. Hyper-Threading allows ESX Server to operate with two logical CPUs for each physical CPU you have installed in your system. Select the **Enable Hyper-Threading** option to enable this feature. See “Using Hyper-Threading” on page 335.

For more information on the changes an administrator can expect to see when running ESX Server on a HT system and details on the advanced algorithms and configuration options used to maximize performance of ESX Server on a Hyper-Threaded system, refer to *HyperThreading Support in VMware ESX Server 2.1* at http://www.vmware.com/support/resources/esx_resources.html.

If you make any changes to the startup profile, you must reboot the server for your changes to take effect.

Network Connections

From the **Options** tab of the VMware Management Interface, use the **Network Connections** option to configure the network connections.

![Network Connections](image)

Figure 6-1. Virtual Switches tab: Network Connections
Creating and Editing Virtual Switches

You can create new virtual switches or edit existing switches.

To create a virtual switch

1. Log in to the VMware Management Interface as root.

 The Status Monitor appears.

2. Click the **Options** tab, and click the **Network Connections** tab.

 The Create Virtual Switch dialog box opens and displays configuration options for the new switch.

3. Enter a name for the virtual switch in the **Network Label** field.

 The **Network Label** feature lets you specify a network label for switches and port groups that are used by virtual machines.

4. In the **Bind Outbound Adapters** list, select an adapter to assign it to the new switch.

5. In the **Other Outbound Adapters** list, select an adapter to reassign it to the new switch.

 This list shows the adapters currently assigned to other switches.

6. Click **Create Switch** to create the new virtual switch and close the window.

To edit an existing virtual switch and its adapters

1. Click **Edit**.

 The Edit Virtual Switch dialog box opens and displays existing configuration and adapter settings for the switch.

2. Edit the network label of the switch in the **Network Label** field.

 The **Network Label** feature lets you specify a network label for switches and port groups used by virtual machines.

 NOTE If virtual machines are configured to use the switch and you change the name of the label, the virtual machines will not power on.

3. In the **Bind Outbound Adapters** list, select an adapter to assign it to the new switch.

4. To route network traffic locally, deselect all the adapters and click **OK**.
An internal adapter is created for the virtual switch. A notification message shows “No outbound adapters. Traffic routed locally.”

5 Select an adapter to assign it to the switch from the Bind Unassigned Adapters list.

Under Other Outbound Adapters, Bind Unassigned Adapters lists any unassigned adapters. You can transfer any listed adapters from other switches to the virtual switch you are configuring.

6 Click OK to save the new switch configuration and close the window.

7 To remove the switch, click Remove Switch.

This action removes the virtual switch and does not save any configuration changes made to the edit page.

Creating Port Groups

Port groups are extensions of networks, using Virtual Local Area Networks (VLANs). VLANs allow configured networks to communicate securely among themselves as if connected to a common isolated physical network. To create a port group, an existing network must be configured.

To create a port group

1 Log in to the VMware Management Interface as root.

 The Status Monitor appears.

2 Click the Options tab, and click the Network Connections tab.

 The Virtual Switches dialog box opens.

3 To create a port group for a switch, click Add next to Port Groups.

 The Create Port Groups dialog box opens and displays configuration options for a port group.

4 Enter a name for the port group in the Port Group Label field.

5 In the VLAN ID field, enter a number between 1 and 4095.

6 Click Create Port Group to create the new port group and close the window.

Disabling vmkernel VLAN Tagging

When VLANs are created within your ESX Server, the vmkernel, by default, manages the VLAN processing of Ethernet frames. If you do not want the vmkernel to manage VLAN processing, configure the vmkernel to pass all Ethernet frames between guest operating systems and the outside network.
To change your VLAN processing settings

1. From the Options tab, select Advanced Settings.
 The Advanced Settings pane appears and displays a list of configuration parameters.

2. Locate the parameter: Net.VlanTrunking.

3. Click the value for the parameter.
 The Modify VMkernel Parameter dialog box opens.

4. In the Value entry field, enter 1 (one) to enable the parameter or 0 (zero) to disable the parameter.

5. Click OK to close the window and save the setting.

Configuring Physical Adapters

From the Options tab of the VMware Management Interface, use the Network Connections option to view and configure the physical adapters assigned to virtual machines. This option lets you change the speed and duplex settings of the adapters.

Figure 6-2. Physical Adapters tab
Configuring Network Speed and Duplex Settings

When you use the VMware Management Interface to configure network settings for the Ethernet adapters assigned to virtual machines, you see the actual speed and duplex settings for each adapter. If the adapter is configured to Autonegotiate, these settings are automatically negotiated by the adapter. If these settings are not appropriate, click Edit next to the physical adapter you want to change.

From the Physical Adapters tab, choose the settings you want from the Configured Speed, Duplex pull-down list. Click OK to save the updated configured speed.

Users and Groups

From the Options tab of the VMware Management Interface, use the Users and Groups option to add, modify, and remove ESX Server users and groups. This dialog box lists each user, the groups to which the user belongs, each group, and the users that are part of each group.

Adding Users and Groups

This section describes how to add new users or groups that can be used to manage virtual machines in the VMware Management Interface.

To add a new user

1. Click the + (plus) sign next to Users to expand the Users list and click Add.

 The Edit Users and Groups dialog box appears.

2. In the User Name field, type the name of the new user.
3 In the **Home Directory** field, type the name of the default directory for the user in the service console.

4 In the **New Password** field, type the password for the user’s account.

5 In the **Confirm New Password** field, type the same password.

6 To add the user to one or more groups, click **Add** and select a group from the list. Repeat this step for each group to which you want to add the user.

NOTE If you do not want the user to be part of a group, click **Remove** next to the group name.

7 Click **OK** to save the new user information and close the window.

To add a new group

1 Click the + (plus) sign next to **Groups** to expand the **Groups** list and click **Add**. The Edit Users and Groups dialog box appears.

2 In the **Group Name** field, type the name of the new group.

3 To add one or more users to the group, click **Add**, and select a user from the list. Repeat this step for each user you want to add to the group.

NOTE To remove a user from the group, click **Remove** next to the user name.

4 Click **OK** to save the new group information and close the window.

Editing and Removing Users and Groups

This section describes how to edit or remove existing users or groups from the VMware Management Interface.
To change information for or remove a user

1 Click the + (plus) sign next to Users to expand the Users list and click the user you want to edit or remove.

The Edit Users and Groups dialog box appears.

2 Do any of the following:
 - To change the user’s home directory, in the Home Directory field, type the name of the default directory for the user in the service console.
 - To change the user’s password, in the New Password field, type the password for the user’s account, and in the Confirm New Password field, type the same password.
 - To add the user to one or more groups, click Add, and select a group from the list. Repeat this step for each group to which you want to add the user.
 - To remove the user from any group, click Remove next to the group name.
 - To remove the user, click Remove next to the user’s name. You are prompted to confirm you want to remove the user. The window closes.

3 Click OK to save your changes and close the window.

To change information for or remove a group

1 Click the + (plus) sign next to Groups to expand the Groups list and click the group you want to edit or remove.

The Edit Users and Groups dialog box appears.

2 Do any of the following:
 - To add one or more users to the group, click Add, and select a user from the list. Repeat this step for each user you want to add to the group.
 - To remove any user from the group, click Remove next to the user name.
 - To remove the group completely, click Remove next to the group’s name. You are prompted to confirm you want to remove the group. The window closes.

3 Click OK to save your changes and close the window.

Security Settings

From the Options tab of the VMware Management Interface, use the Security Settings option to configure ESX Server security properties. You can set up unencrypted Web
access and enable SSH, telnet, and FTP access to the server and enable NFS file sharing. The following standard security settings are available:

- The server is set to **High** security by default, which does not allow unencrypted VMware Management Interface and Remote Console sessions. High security enables SSH access for secure remote login sessions, but it also disables FTP, Telnet, and NFS file sharing services.

- Choose **Medium** security to disallow unencrypted VMware Management Interface and Remote Console sessions. Normal access enables FTP, Telnet, NFS file sharing, and secure remote login (SSH) services.

- Choose **Low** security to allow unencrypted VMware Management Interface and VMware Remote Console sessions, FTP, Telnet, NFS file sharing, and secure remote login (SSH) services.

Using Custom Security Settings

By customizing your security settings, you can enable or disable settings that provide access to the server, such as unencrypted Web access, SSH, telnet, FTP, and NFS file sharing. To customize your security settings, click **Custom**. The Security Settings dialog box changes to allow you to choose specific security settings.

![Security Settings dialog box](image)

**Figure 6-3. **Security Settings dialog box

Select the check boxes for items you want to enable, and click **OK**.
SNMP Configuration

From the Options tab of the VMware Management Interface, use the SNMP Configuration option to configure the ESX Server SNMP agent and sub-agent. These agents allow you to monitor the health of the server and of virtual machines running on the server.

To configure the SNMP agents, see “Configuring the ESX Server Agent Through the VMware Management Interface” on page 227. For information about SNMP, see “Using SNMP with ESX Server” on page 223.

Licensing and Serial Numbers

From the Options tab of the VMware Management Interface, use the Licensing and Serial Numbers option to view the current license information for this product. If you have a new serial number for either ESX Server or VMware Virtual SMP for ESX Server, enter them here.

NOTE If you enter a new serial number for a license that changes the maximum number of processors allowed on the server, you are prompted to reboot the server for the new license to take effect.

Storage Management

From the Options tab of the VMware Management Interface, use the Storage Management option to manage your storage area network and attached storage devices for your ESX Server system and its virtual machines.

Because the disks on the SANs can potentially be accessed by multiple ESX Server computers, there are some configuration issues that are unique to SANs.

For information about SANs, see “Using Storage Area Networks with ESX Server” on page 266.

NOTE Make sure that only one ESX Server system has access to the SAN while you are using the VMware Management Interface to configure it by formatting the VMFS-2 volumes. After you finish the configuration, make sure that all partitions on the shared disk are set for public or shared access for access by multiple ESX Servers (see “VMFS Accessibility” on page 248).

Configuring Storage: Disk Partitions and File Systems

The Disks and LUNS window allows you to view and modify the partitions and file systems on your disks. Create disk partitions that use the VMFS file system, suitable for
storing disks for virtual machines. You can also edit, label, and remove existing partitions.

When you edit a VMFS partition, you can change the volume label, maximum file size, access mode, and whether you want to span the partition.

![Disks and LUNs tab](image)

Figure 6-4. Disks and LUNs tab

NOTE You can have only one VMFS volume per LUN.

Creating a Disk Partition

You can use existing free space on your VMFS volumes to create new disk partitions. For background on how SCSI devices are identified, see “Determining SCSI Target IDs” on page 263.

NOTE You cannot change any partitions set up when you installed ESX Server. These include any volumes with a Linux file system or that are used for Linux swap space.
If a core dump file does not exist on the disk, you are prompted to create one. Creating a new volume consumes all the free space remaining on a disk. ESX Server determines the optimum setting for the maximum file size based on the volume’s file system.

To create a new partition

1. In the **Disks and LUNs** tab, click **Create Volume**.

 The **Volume Creation Method** options appear.

 ![Volume Creation Method Options](image)

2. Click **Typical**.

 If it does not exist, you are asked if you want to create a core dump partition. The core dump partition stores information generated if the VMkernel crashes. The information is important in debugging any problems with the VMkernel.

 The rest of the disk or array is used as a VMFS partition, where you store virtual machine disk files. The VMFS partition provides high-performance access to the virtual machine’s files—the same performance you would get if the virtual machine were installed on a raw SCSI partition.

 You can have only one VMFS volume per LUN.

 NOTE Only four primary partitions can exist on a drive. An extended partition (to contain logical partitions) counts as one of your four primary partitions.

3. Click **Yes** to create the core dump partition.

 ESX Server also creates the VMFS partition.

 After you create the partition, you can add a volume label, determine access mode and the maximum file size, and span the disk with any public extents. For information about access modes, see “**VMFS Accessibility**” on page 248.
Editing a Disk Partition

Select a partition to edit and click Edit.

Figure 6-5. Disks and LUNs tab

If this partition is formatted for VMFS-1, you can convert it to the newer VMFS-2 format. See “File System Management on SCSI Disks and RAID” on page 245 for information on the VMFS-2 file system.

The changes you can make to the partition may include:

- Setting the volume’s type.
- Changing the name of the volume label.
- Setting the volume’s access mode.
- Setting the volume’s maximum file size.

Certain partitions do not allow you to make all of these changes.
Setting the Volume’s Access Mode

There are two modes for accessing VMFS volumes: public or shared.

- **Public** mode – Default mode for ESX Server. VMware recommends this mode.

 With a public VMFS version 1 (VMFS-1) volume, multiple ESX Server computers have the ability to access the VMware ESX Server file system, as long as the VMFS volume is on a shared storage system (for example, a VMFS on a storage area network). Only one ESX Server can access the VMFS volume at a time.

 With a public VMFS version 2 (VMFS-2) volume, multiple ESX Server computers can access the VMware ESX Server file system concurrently. VMware ESX Server file systems with a public mode have automatic locking to ensure file system consistency.

- **Shared** mode – Used for a VMFS volume that is used for failover-based clustering among virtual machines on the same or different ESX Servers.

Note To change the accessibility mode for a VMFS volume, you must deactivate the swap file if it exists. See “Configuring a Swap File” on page 203.

Changing the Maximum Size of a File Allowed by VMFS

To create virtual machines with virtual disks larger than the default maximum size of 144GB, change the value in the **Max File Size** field.

Spanning a VMFS volume.

You can span only VMFS-2 volumes. Spanning a volume allows the volume to comprise multiple VMFS disk partitions. Each disk or partition to which this volume is spanned is called an extent. This creates a single volume that is larger than would be possible from one partition. Also, in the spanned volume or extent, you cannot change the maximum size of files.

After you span a volume, you cannot remove the volume if it is spanned or if it spans other volumes. To span to another volume, select the box next to that volume label.

Caution Any data on the extent is lost when the VMFS volume spans to it, so span to newly created partitions.

Converting a Partition to VMFS-2

To convert the partition to VMFS-2, click the **Convert to VMFS-2** link. To convert the file system, you must deactivate the swap file if it exists. See “Configuring a Swap File” on page 203.
Removing a Disk Partition

To convert the partition to VMFS-2, click the Convert to VMFS-2 link. To convert the file system, you must deactivate the swap partition if it exists. See “Configuring a Swap File” on page 203.

To remove the partition, click Remove. You are asked to confirm that you want to remove the partition. To delete certain partitions, click Edit and Remove.

NOTE If the volume is spanned to other volumes, you cannot remove it.

See “File System Management on SCSI Disks and RAID” on page 245.

Viewing Failover Paths Connections

The Failover Paths tab lets you review the current state of paths between your system and SAN LUNs. Multipathing support allows your system to maintain a constant connection between the server machine and the storage device in case of the failure of a host bus adapter (HBA), switch, storage controller, or a Fibre Channel cable.

Figure 6-6. Failover Paths tab

For each SAN LUN, this page displays the available paths and the preferred path. By default, ESX Server selects the last path used to access a LUN.

The failover paths show the adapter, target, LUN, and the SAN target for the LUN. Each SAN target is identified by its World Wide Port Name.
The status of each path is indicated by a symbol that corresponds to its current status:

- Green diamond (◆) – Indicates that the path is active and data is being transferred successfully.
- Yellow triangle (◇) – Indicates that the path is set to disabled and is available for activation.
- Black circle (●) – Indicates that the path should be active, but the software cannot connect to the LUN through this path.

If you configured a LUN to use a preferred path, that path will be identified with the label **Preferred** after the SAN Target listing.

Configuring Failover Policies

The failover paths edit feature allows you to configure the policy for transferring LUN access from one path to another.

To edit the failover policy for a LUN

1. From the **Failover Paths** tab, click **Edit**.

 The configuration page appears and displays information about the current state of the paths and failover policy options.

2. Choose one of the following failover policies:
 - **Fixed** – Always use the preferred path when available. Requires you to select the preferred path by selecting **Preferred** in the **Adapter** icon pulldown menu for that path
 - **Most Recently Used** – Always use the last active path
3 Click **OK** to save your settings and return to the **Failover Paths** tab.

The name of the failover policy appears next to each SAN LUN in the failover paths list.

For more information on failover policies, see “Setting Your Multipathing Policy for a LUN” on page 275.

Configuring Failover Paths

You can enable or disable individual failover paths by changing their status in the **Adapter** icon pulldown menu.

Configuring a Swap File

Use the **Swap Configuration** option to create and configure a swap file, which enables your virtual machines to use more memory than is physically available on the server. For background, see “Memory Resource Management” on page 345.

![Swap Configuration pane](image)

Figure 6-7. Swap Configuration pane

You can manage a single swap file with the management interface. ESX Server can manage up to eight swap files, but you must use `vmkfstools`. See “Using `vmkfstools`” on page 249.

Click **Edit** to change the following swap file settings:

- **Volume** on which to locate the swap file.
- **Name** of the swap file, which defaults to `SwapFile.vswp`. To change the name of the swap file, select **Other** from the **File Name** list, and type the name of the swap file. The file must have a `.vswp` extension.
- **Capacity** of the swap file in MB. A recommended value is provided.
- **Activation policy.** The swap file can be active when the system boots, or it can be activated manually. To deactivate the swap partition, set the activation policy to **Activated manually**, and restart the server. The swap file is not deactivated until you reboot.

NOTE Because you are making changes to the amount of swap space after the initial configuration, you must restart the server for the changes take effect. If the swap file is set to be activated manually, after you reboot, the swap file is not activated. To activate it manually, use `vmkfstools -w`.

Adapter Bindings

From the **Options** pane of the VMware Management Interface, the **Adapter Bindings** tab displays the World Wide Port Names bound to each Fibre Channel HBA in the system. You can view the persistent binding status for each HBA. With persistent bindings, ESX Server assigns specific target IDs to specific SCSI devices. The target ID association is retained from reboot to reboot unless you change it.

Persistent bindings are useful if you are using raw disks with ESX Server. A raw disk is directly mapped to a physical disk drive on your SAN. ESX Server directly accesses the data on this disk as a raw device (and not as a file on a VMFS volume).
Advanced Settings

From the **Options** tab of the VMware Management Interface, use the **Advanced Settings** option to view and modify the configuration parameters of the VMkernel.

![Advanced Settings: Configuration Parameters of the VMkernel](image)

Figure 6-8. Advanced Settings: Configuration Parameters of the VMkernel

When you configure the VMware ESX Server computer (see the *VMware ESX Server Installation Guide*), some system parameters are assigned default values. These parameters control settings for memory, the processor, and networking, for example, and affect the running of virtual machines. You can view these settings from the management interface.

If you are logged in as the root user, you can change the values for these parameters to fine tune the running of virtual machines.

CAUTION Do not change these settings unless you are working with the VMware support team or you have thorough information about which values you should use.
To change the setting for a VMkernel configuration parameter, click the link for the value. The VMkernel Parameter Update dialog box opens on top of the VMware Management Interface window.

![VMkernel Parameter Update dialog box](image)

Figure 6-9. VMkernel Parameter Update dialog box

In the *Value* field, type the value for the parameter and click **OK**. The dialog box closes and the updated parameter appears on the *Advanced Settings* tab.

Service Console Settings

From the *Options* tab of the VMware Management Interface, use the **Service Console Settings** to configure the server processor and disk resources for the service console. These resources are divided among the service console and all virtual disks on any VMFS partitions located on the same disk on the ESX Server system.
Configuring the Service Console’s Processor Usage

To review and configure the service console’s processor usage, click the CPU tab.

Figure 6-10. CPU tab

The CPU tab shows how much of the server processor or processors the service console is utilizing and how CPU resources are allocated to the service console.

The values under Resources indicate a range of percentages of a processor to which the service console is entitled:

- **Minimum** – Minimum amount of processor capacity that is always available to the service console.
- **Maximum** – Highest amount of processor capacity the service console can ever consume, even if the processor is idle.
- **Shares** – Relative metric for allocating processor capacity, where this value is compared to the sum of all shares of all virtual machines on the server and the service console.

For example, a virtual machine is stored on the same drive as the service console and has a minimum CPU percentage of 20%, and a maximum CPU percentage of 50%. Meanwhile, the service console has a minimum percentage of 30% and no specified maximum percentage. You can give the virtual machine 3000 CPU shares and the service console 1000 CPU shares.

ESX Server interprets this allocation so that the virtual machine never has less than 20% of the total physical CPU resources, while the service console never has less than 30% of the total physical CPU resources.

If other virtual machines on the same disk are idling, ESX Server redistributes this extra CPU time proportionally, based on the virtual machine’s and service console’s CPU shares. Active virtual machines benefit when extra resources are available. In this example, the virtual machine gets three times as much CPU time as the service console, subject to the specified CPU percentages.
That is, the virtual machine has three times as much CPU time as the service console, as long as the virtual machine’s CPU percentage is between 20% and 50%. In actuality, the virtual machine might get only twice the CPU time of the service console, because three times the CPU time exceeds 50%, or the maximum CPU percentage of the virtual machine.

To modify CPU resource values:

1. Click **Edit**.

 The Edit CPU Resources window appears.

2. Change the settings.

3. Click **OK** to save the settings and close the window.

If you are running a large number of virtual machines on the same disk as the service console, consider increasing the minimum processor percentage. Otherwise, you might see performance problems with the service console, even if the virtual machines are idle.

Click the **Disk** tab to view information about the service console processor usage.

Configuring the Service Console’s Disk Usage

To review and configure the service console’s disk usage, click the **Disk** tab.

![Service Console's disk usage](image)

Figure 6-11. Disk tab

The **Disk** tab shows hard disk performance information and resources allocated to the service console. Disk bandwidth represents the amount of data that is written to or read from the server’s physical disks.

The values under **Performance** indicate how much bandwidth is being used when the service console is reading from or writing to the physical disk on the server.
The **Shares** value represents a relative metric for controlling disk bandwidth, where this value is compared to the sum of all shares of all virtual machines on the same disk as the service console and the service console itself.

For example, the service console and two VMFS partitions, VMFS-A and VMFS-B, are located on the same hard disk on the ESX Server system. If the service console has 2000 shares and VMFS-A and VMFS-B each have 1000 shares, the service console has twice the disk bandwidth of both VMFS-A and VMFS-B.

To modify the number of shares.

1. Click the **Edit** link.

![Resource Settings](image)

2. Change the number of shares.

3. Click **OK** to save the change and close the window.

4. Click the **CPU** tab to view information about service console processor usage.

System Logs and Availability Report

From the **Options** tab of the VMware Management Interface, use the **System Logs** and **Availability Report** options to view the following log files and report through the management interface:

- VMkernel warnings and serious system alerts, the data for which is gathered from `/var/log/vmkwarning` in the service console. See “Viewing VMkernel Warnings” on page 210.

- VMkernel messages, the data for which is gathered from `/var/log/vmkernel` in the service console. See “Viewing VMkernel Messages” on page 211.
Service Console messages, the data for which is gathered from
/var/log/messages in the service console. See “Viewing Service Console Logs” on page 212.

The availability report, which contains information and statistics about server uptime and downtime. See “Viewing the Availability Report” on page 213.

Periodically check the VMkernel warning and alert messages for out-of-memory errors, hardware failures, and so on.

To view system log files and the availability report

1. Make sure you are logged into the management interface as the root user.
2. Click Options, and click System Logs.
3. Click the appropriate tab for the log file you want to view.

Viewing VMkernel Warnings

To view VMkernel warnings and serious system alerts, click the VMkernel Warnings tab.

Figure 6-12. VMkernel Warnings tab

This information is useful if you are experiencing problems with ESX Server or your virtual machines. If your log contains any alerts, check the VMware Knowledge Base at http://kb.vmware.com or contact your VMware support representative.
Viewing VMkernel Messages

To view the VMkernel message log, click the VMkernel Log tab.

Figure 6-13. VMkernel Log tab

This information is useful if you are experiencing problems with ESX Server or your virtual machines. If your log contains any alerts, check the VMware Knowledge Base at http://kb.vmware.com or contact your VMware support representative.
Viewing Service Console Logs

To view service console messages, click the Service Console Log tab.

This information is useful if you are experiencing problems with ESX Server or your virtual machines. If your log contains any alerts, check the VMware Knowledge Base at http://kb.vmware.com or contact your VMware support representative.
Viewing the Availability Report

To view the server availability report, click the Availability Report tab.

![Availability Report](image)

Availability Report for testserver

Jul 28, 2004 - Dec 6, 2004

Availability: 98.209%

Total time: 311 days,

- **Uptime:** 308 days, 16 hours
- **Downtime:** 2 days, 8 hours

Note: Downtime is anytime the system isn't capable of running Virtual Machines. This includes reboots, crashes, configuration and running Linux.

Downtime Analysis

1.8% (2 days, 8 hours) downtime caused by:

- 3.3% (19 hours) scheduled downtime
- 96.7% (2 days, 6 hours) unscheduled downtime

Reasons for scheduled downtime:

- 68.6% vmkernel unloaded (2 instances)
- 29.0% server rebooting (2 instances)
- 2.4% server logging (2 instances)
- 1.0% reboot for Startup profile changes (1 instance)

Reasons for unscheduled downtime:

- 100.0% unknown (poweroff / reset) (2 instances)

Figure 6-15. Availability Report tab

The availability report contains useful information about server uptime and downtime. This includes detailed statistics regarding uptime history and an analysis of downtime.
How Memory Is Utilized

The Memory Utilization pane shows how much memory is being used by the ESX Server and how memory resources are allocated to virtual machines. See “Memory Resource Management” on page 345.

![Figure 6-16. Memory tab](image)

System Summary: Physical Memory

This list shows the current allocation of physical memory on the server:

- **Virtual Machines** – Memory currently allocated to virtual machines.
- **Shared Common** – Memory required for the single copy of memory shared between virtual machines.
- **Virtualization** – Total virtualization overhead for all virtual machines and the vmkernel.
- **Service Console** – Memory allocated to the Service Console.
- **Free** – Memory currently available to be used by the system or virtual machines.
- **Total** – Total physical memory on the server.

Memory

- **Memory Savings Due to Sharing** – Amount of memory saved by sharing memory between virtual machines.
Many VMware ESX Server workloads present opportunities for sharing memory across virtual machines. For example, several VMs might be running instances of the same guest operating system, might have the same applications or components loaded, or might contain common data. In such cases, VMware ESX Server uses a proprietary transparent page sharing technique to securely eliminate redundant copies of memory pages. With memory sharing, a workload running as virtual machines often consumes less memory than it would when running on physical machines. As a result, higher levels of overcommitment can be supported efficiently.

System Summary: Reserved Memory

This list shows the current allocation of reserved memory and swap space on the server.

RAM
- **Reserved** – Memory committed for guaranteed allocations to existing virtual machines.
- **Unreserved** – Uncommitted memory available for guaranteed allocations to power on new virtual machines.
- **Total** – Total reserved and unreserved RAM memory.

Swap
- **Reserved** – System swap file space committed for existing virtual machines.
- **Unreserved** – Total unreserved swap file space currently available to be used by virtual machines.
- **Total** – Total reserved and unreserved space in system swap files.

Memory
- **Memory Available to Power On a Virtual Machine** – Maximum memory size that can be specified when powering on the next single- or dual-processor virtual machine.

Virtual Machines: Virtual Machine Summary

For each running virtual machine, this list shows a breakdown of the virtual machine’s memory allocation.

Memory
- **Private** – Total memory allocated to virtual machines that is not shared.
- **Shared** – Total memory allocated to virtual machines and securely shared with other virtual machines.
- **Swapped** – Total memory forcibly reclaimed from virtual machines and stored in system swap files.

- **Balloon Driver** – Memory reclaimed from virtual machines by cooperation with the VMware Tools (vmmemctl driver) and guest operating systems.

 This is the preferred method for reclaiming memory from virtual machines, because it reclaims the memory that is considered least valuable by the guest operating system. The system “inflates” the balloon driver to increase memory pressure within the virtual machine, causing the guest operating system to invoke its own native memory management algorithms. When memory is tight, the guest operating system determines which pages of memory to reclaim, and swaps them to its own virtual disk. This proprietary technique provides predictable performance that closely matches the behavior of a native system under similar memory constraints.

- **Unused** – Memory that has never been accessed by the virtual machines, and has not yet been allocated.

- **Total** – Total memory allocated to virtual machines.

Virtual Machines: Virtual Machine Name

For each running virtual machine, this list includes a breakdown of the virtual machine's memory allocation.

- **RAM** – Maximum amount of memory configured for use by the guest operating system running in the virtual machine. This value is often larger than the actual amount of memory currently allocated to the virtual machine, which may vary depending on the current level of memory overcommitment.

- **Private** – Memory allocated to the virtual machine that is not shared.

- **Shared** – Memory allocated to the virtual machine that is shared.

- **Swapped** – Memory forcibly reclaimed from the virtual machine and stored in the system swap files.

- **Balloon Driver** – Memory reclaimed from virtual machines by cooperation with the VMware Tools (vmmemctl driver) and the guest operating system.

- **Unused** – Memory that has never been accessed by the virtual machine, and has not yet been allocated.

- **Active** – Memory that has been accessed recently by the virtual machine.

- **Swap I/O** – Rate at which the virtual machine is reading from and writing to system swap files, in bytes per second.
To adjust the allocation of server memory to a virtual machine, click the virtual machine name. This takes you to the Status Monitor, where you view details about the virtual machine. Click the virtual machine’s Memory tab to set the number of memory shares granted to the virtual machine.

Virtual Machines Startup and Shutdown

From the Options tab of the VMware Management Interface, use the system-wide Virtual Machine Startup and Shutdown option to do the following:

- Configure your server to determine whether virtual machines start up or shut down when the system starts or shuts down.

- Set a delay for starting or stopping one virtual machine before starting or stopping the next. This delay helps prevent overburdening the system due to the processor and memory capacities required to simultaneously start or stop multiple guest operating systems.

- Determine the global order in which virtual machines start and stop.

After these settings are enabled for the system, you can customize the settings for each virtual machine. See “Setting Startup and Shutdown Options for a Virtual Machine” on page 123.

System Configuration Settings

The system-wide virtual machine startup and shutdown options include:

- **Start Up and Shutdown Virtual Machines** – Whether virtual machines should be started and stopped with the system. If enabled, default startup and shutdown policies are applied to all virtual machines on your system (where no virtual machines are powered on when the host system starts and all virtual machines are shut down when the host system shuts down). You can customize each virtual machine’s startup and shutdown policies.

 If disabled, you cannot set startup and shutdown policies for any virtual machines on your system.

- **Continue Starting Virtual Machines After** – Sets the type of delay between starting up virtual machines. You can set this to:
 - **Don’t Wait** – Start the next virtual machine immediately.
 - **<n> Minutes** – Wait <n> number of minutes to start the next virtual machine.
 - **Other** – Specify a longer interval to wait before starting the next virtual machine.
■ **when VMWare Tools starts** – Wait until VMWare Tools is operating in the current virtual machine before starting up the next virtual machine.

This option applies an additional condition for starting up the next virtual machine. It does not override the delay period set in the pulldown menu.

■ **Attempt to Continue Stopping Virtual Machines After** – Sets the delay limit between initiating shutdowns of virtual machines. The server will stop the next virtual machine as soon as the current virtual machine shuts down. If the current virtual machine does not shut down within the delay limit, the server attempts to stop the next virtual machine. You can set this to:

■ **Don’t Wait** – Stop the next virtual machine immediately.

■ **<n> Minutes at most** – Wait `<n>` number of minutes for the current virtual machine to shut down before stopping the next virtual machine.

■ **Other** – Specify a longer interval to wait for the current virtual machine to shut down before stopping the next virtual machine.

Enabling the System’s Configuration Settings

To enable the system-wide configuration settings for virtual machines

1. From the **Options** tab, select **Virtual Machine Startup and Shutdown**.

 The **System Configuration** pane appears and displays a list of configuration parameters.

2. Under **System Configuration**, click **Edit**.
The System Startup and Shutdown Defaults dialog box appears.

3. To enable system-wide startup and shutdown policies, select the **Start Up and Shut Down Virtual Machines** check box.

4. To configure when ESX Server should start the next virtual machine after a virtual machine starts, do one or both of the following:
 - To specify a period of time before the next virtual machine starts, in the **Continue Starting Virtual Machines After** list, choose from the number of minutes listed or whether ESX Server should not wait before starting the next virtual machine. Set a delay between starting virtual machines to avoid placing a burden on the host’s server’s processors and memory.
 - To specify that VMware Tools should start in a virtual machine before the next virtual machine starts, select the **when VMware Tools start** check box. If VMware Tools does not start in the virtual machine before the specified time elapses, ESX Server starts the next virtual machine.

5. To configure when ESX Server should stop the next virtual machine after a virtual machine stops, in the **Attempt to Continue Stopping Other Virtual Machines After** list, choose the number of minutes or whether ESX Server should not wait before starting the next virtual machine.

6. Click **OK** to save your settings.

7. Click **Close Window** to return to the management interface **Options** pane.
Disabling the System’s Configuration Settings

To disable the system-wide configuration settings

1. Under System Configuration, click Edit.

 The System Startup and Shutdown Defaults dialog box appears.

2. Deselect the Start Up and Shut Down Virtual Machines check box and click OK.

3. Click Close Window to return to the management interface’s Options pane.

Specifying the Order In Which Virtual Machines Start

After you set whether virtual machines should start and stop with the system, set the order in which the virtual machines start and stop and specify the position of a virtual machine in the system-wide startup and shutdown sequence. If set, virtual machines are listed under one of the following categories:

- **Specified Order** – Lists the virtual machines in the order in which they are configured to start and stop.

- **Any Order** – Lists the virtual machines specified to start and stop in any order.

Editing the Startup Sequence for Virtual Machines

To edit the startup sequence for virtual machines, click Edit under Startup Sequence. The Virtual Machine Startup Sequence configuration pane appears and displays the virtual machines on your system.
Figure 6-17. Virtual Machine Startup Sequence configuration pane

To specify the startup order for virtual machines, select the check box next to one or more machines. Navigation arrows become active, allowing you to move machines between the three lists. Virtual machines can be set to one of the following options:

- **Other** – Contains virtual machines that are not configured to start and stop with the system.

- **specified Order** – Lists virtual machines in the order in which they are configured to start. The order in which the virtual machines stop is the reverse of the order in which they start, so the last virtual machine to start on system startup is the first to stop when the system shuts down. To specify the startup order, select machines and use the arrows to move them up or down within the list.

- **Any Order** – Lists virtual machines that are configured to start and stop in any order. Move virtual machines to this category if you want them to start and stop with the system, but you do not want to set the order for those virtual machines. The virtual machines in this category do not start or stop until all the virtual machines listed in the **Specified Order** list have started or stopped.

Rebooting or Shutting Down the Server

From the Options tab of the VMware Management Interface, use the **Shut Down** and **Restart** options to shut down and reboot the ESX Server system. To shut down or restart a virtual machine, see “Shutting Down and Restarting a Virtual Machine” on page 50.
To reboot the computer where ESX Server is running

1. Log in to the management interface as root.
 The URL to connect to the server is http://<hostname>.

2. On the Status Monitor, make sure all virtual machines are shut down or suspended.

3. Click the Options tab.

4. Click Restart to reboot the server.

 A prompt appears.

5. Enter the reason for the reboot, and click OK.
 This information is logged for reliability monitoring.
 You are logged out of the management interface and the system reboots.

To shut down the computer where ESX Server is running

1. Log in to the management interface as root.
 The URL to connect to the server is http://<hostname>.

2. On the Status Monitor, make sure all virtual machines are shut down or suspended.

3. Click the Options tab.

4. Click Shut Down to shut down the server.

5. Enter the reason for the shutdown, and click OK.
 This information is logged for reliability monitoring.
 You are logged out of the management interface and the system shuts down.
Using SNMP with ESX Server

Simple network management protocol (SNMP) is a communication protocol between an SNMP client (for example, a workstation) and an SNMP agent (management software that executes on a remote device including hosts, routers, X terminals, and so on). The SNMP client queries the SNMP agent that provides information to the client regarding the device’s status. The SNMP agent controls a database called the SNMP Management Information Base (MIB), a standard set of statistical and control values. SNMP allows the extension of these standard values with values specific to a particular device.

This chapter contains the following sections about using SNMP with ESX Server:

- “Using SNMP to Monitor the Computer Running ESX Server” on page 223
- “Overview of Setting Up ESX Server SNMP” on page 226
- “Configuring the ESX Server Agent” on page 227
- “Configuring SNMP” on page 230
- “Using SNMP with Guest Operating Systems” on page 231
- “VMware ESX Server SNMP Variables” on page 231

Using SNMP to Monitor the Computer Running ESX Server

ESX Server ships with an SNMP agent that allows you to monitor the health of the physical machine where ESX Server is running and of virtual machines running on it. This agent is based on Net-SNMP with enhancements to support data specific to ESX Server. Background information on Net-SNMP is available at http://net-snmp.sourceforge.net.
You can use the ESX Server SNMP agent with any management software that can load and compile a management information base (MIB) in SMIv1 format and can understand SNMPv1 trap messages.

The location of the VMware subtree in the SNMP hierarchy is:

```
.iso.org.dod.internet.private.enterprises.vmware (.1.3.6.1.4.1.6876)
```

You can choose to use SNMP with or without any specific ESX Server MIB items.

Information About the Physical Computer

SNMP get variables allow you to monitor a wide variety of items about the physical computer and how virtual machines are using its resources. Some of the key types of information available are:

- Number of CPUs on the physical computer.
- CPU resources on the physical computer being used by particular virtual machines.
- Amount of RAM installed on the physical computer.
- Physical memory used by the service console.
- Physical memory used by particular virtual machines.
- Physical memory that is not being used.
- Usage data for disks on the physical computer, including number of reads and writes and amount of data read and written.
- Usage data on the physical computer’s network adapters, including packets sent and received and kilobytes sent and received.
- State of the VMkernel (loaded or not loaded).

NOTE If the variable showing whether the VMkernel is loaded is no, regard values reported for any other variable as invalid.

Information About the Virtual Machines

SNMP get variables allow you to monitor a number of items about particular virtual machines running on the computer. Some of the key types of information available are:

- Path to the virtual machine’s configuration file
- Guest operating system running on the virtual machine
- Amount of memory the virtual machine is configured to use
■ State of the virtual machine’s power switch: on or off
■ State of the guest operating system: on or off (running or not running)
■ Disk adapters seen by the virtual machine
■ Network adapters seen by the virtual machine
■ Floppy disk drives seen by the virtual machine
■ State of the floppy drive: connected or disconnected
■ CD-ROM drives seen by the virtual machine
■ State of the CD-ROM drive: connected or disconnected

NOTE SNMP information is provided for virtual machines if their configuration files are stored locally on the ESX Server computer. If the configuration files are stored on an NFS-mounted drive, information for the virtual machines does not appear in the SNMP tables.

SNMP Traps

Four SNMP traps notify you of critical events in particular virtual machines. The affected virtual machine is identified by ID number and configuration file path. The traps notify you:

■ When a virtual machine is powered on or resumed from a suspended state.
■ When a virtual machine is powered off.
■ When the virtual machine detects a loss of heartbeat in the guest operating system.
■ When a virtual machine is suspended.
■ When the virtual machine detects that the guest operating system’s heartbeat has started or resumed.

VMware Tools must be installed in the guest operating system to support the traps that detect loss and resumption of the guest’s heartbeat.

NOTE Traps are not generated when virtual machines are registered using the VMware Management Interface. To enable trap generation, restart `vmware-serverd`. You can restart `vmware-serverd` by rebooting the server or by logging in to the service console as root and issuing the command `killall -HUP vmware-serverd`.
Overview of Setting Up ESX Server SNMP

ESX Server 2.5 includes two daemons, a master (snmpd), and a subagent (vmware-snmpd), as illustrated in Figure 7-1. The master snmpd daemon is either the default snmpd daemon shipped with ESX Server or a third party SNMP application daemon. The subagent vmware-snmpd exports ESX Server MIB information to the master that communicates directly with the SNMP client application.

![Diagram of ESX Server 2.5 setup](image)

Figure 7-1. ESX Server 2.5 setup

Installing the ESX Server SNMP Agents

The default master snmpd daemon and the VMware-specific vmware-snmpd daemon are automatically installed when you install ESX Server.

To see ESX Server MIB items, configure the ESX Server SNMP subagent (vmware-snmpd). If you aren’t interested in ESX Server-specific SNMP items, do not configure that particular subagent.

Configure the ESX Server SNMP subagent after you have installed and configured ESX Server through the VMware Management Interface. You can configure the ESX Server SNMP subagent by using a script or through the VMware Management Interface.

Depending on your preference, complete one of the following:

- “Configuring the ESX Server Agent Through the VMware Management Interface” on page 227
- “Configuring the ESX Server Agent from the Service Console” on page 228

Configure your SNMP trap destinations. See “Configuring SNMP Trap Destinations” on page 230.
Configuring the ESX Server Agent

You can configure the ESX Server agent in two ways, described in these sections:

- “Configuring the ESX Server Agent Through the VMware Management Interface,” next
- “Configuring the ESX Server Agent from the Service Console” on page 228

Configuring the ESX Server Agent Through the VMware Management Interface

This section describes how to use the VMware Management Interface to configure the ESX Server Agent. To configure the agent using the service console, refer to “Configuring the ESX Server Agent from the Service Console” on page 228.

To configure the ESX Server SNMP subagent

1. Log in to the VMware Management Interface as root.
 The Status Monitor appears.
2. Click the Options tab.
3. Click SNMP Configuration.
 The options on this tab toggle between two choices. To change an option, click the link.

![Image of SNMP Configuration interface]
4 Make sure the paths to the `snmpd` daemon startup script and its configuration file are correct.

 If either of these is incorrect, click Change and type the correct path.

5 Make sure that the status of the master SNMP agent is Running.

6 If you’re interested in VMware-specific SNMP MIBs, make sure the status and VMware traps of the VMware SNMP subagent is Enabled.

7 Optional: If you want the master SNMP agent (and the VMware SNMP subagent, if its status is Enabled) to start automatically upon booting, make sure the Startup Type is Automatic.

8 Configure your traps. See “Configuring SNMP Trap Destinations” on page 230.

Configuring the ESX Server Agent from the Service Console

Use the `snmpsetup.sh` script to configure the ESX Server SNMP subagent to work with the default `snmpd` or with a third party management application.

NOTE If you’re not interested in VMware-specific SNMP modules, don’t run this script. This script sets up a connection, between the master `snmpd` daemon and the `vmware-snmpd` daemon, which enables access to ESX Server MIB items.

CAUTION Do not use the `snmpsetup.sh` script to set up third-party SNMP daemons.

Configuring the Default SNMP Daemon

Configure ESX Server to use either the default SNMP daemon or your selection of third party management applications. Configure the default SNMP daemon through the service console using one of the following procedures.

To use the VMware SNMP daemon with the default SNMP daemon

1 Log into the service console as the root user.

2 Type the following to run the script:

   ```bash
   snmpsetup.sh default
   ```

 The default option sets up the `snmpd.conf` file for the default master SNMP daemon. This connects `snmpd` to `vmware-snmpd`, enabling you to query for ESX Server MIB items.

 The script starts both the master and subagent SNMP daemons.
To use the VMware SNMP Daemon with Third Party Management Applications

1. Install your third party management application.
 Refer to your management application documentation and the ESX Server release notes at www.vmware.com/support/pubs/esx_pubs.html.

2. Log into the service console as the root user.

3. Type the following to run the script:
   ```
   snmpsetup.sh connect
   ```
 The `connect` option configures exporting ESX Server MIB items through your third party SNMP daemon. Use this option to enable the export of ESX Server MIB items after installing the third party management application.

 The script connects the third party application `snmpd` daemon with the `vmware-snmpd` subagent daemon.

 The script starts both daemons.

Starting the SNMP Agents Automatically

You can set the master and subagent SNMP daemons to start whenever ESX Server boots by logging in as the root user in the service console and running the `chkconfig` commands:

```
chkconfig snmpd on
chkconfig vmware-snmpd on
```

The first command enables starting the master SNMP daemon (either the default SNMP daemon shipped with ESX Server or your third party management application SNMP daemon) on startup.

The second command enables starting the subagent `vmware-snmpd` daemon on startup.

NOTE
The master `snmpd` daemon can run by itself or together with the subagent `vmware-snmpd` daemon. However, the subagent daemon cannot run alone.

Starting the SNMP Agents Manually

To start the SNMP agents manually, log in as root in the service console and run the following commands:

```
/etc/rc.d/init.d/snmpd start
/etc/rc.d/init.d/vmware-snmpd start
```

The first command starts the master SNMP daemon (either the default SNMP daemon shipped with ESX Server or your third party management application SNMP daemon).
The second command starts the subagent `vmware-snmpd` daemon.

By default, the agents start and run as background processes.

NOTE The master `snmpd` daemon can run by itself or together with the subagent `vmware-snmpd` daemon. However, the subagent daemon cannot run alone.

Configuring SNMP

The following sections discuss SNMP configuration options for setting trap destinations, configuring management client software, security settings, and guest operating system configuration.

Configuring SNMP Trap Destinations

You cannot configure trap destinations through the VMware Management Interface.

To configure traps

1. Log into the service console as the root user and modify the `/etc/snmp/snmpd.conf` file.

2. Using a text editor, add the following line, replacing `mercury.solar.com` with the name of the host on your network that will receive traps.

   ```
   trapsink mercury.solar.com
   ```

 Repeat this line to specify more than one destination.

3. Add the following line, replacing `public` with a community name of your choice.

   ```
   trapcommunity public
   ```

 There can be only one instance of this line.

4. Save your changes.

NOTE If you use a file other than `/etc/snmp/snmpd.conf`, make sure the file name is correctly specified on the SNMP configuration page in the management interface.

Configuring SNMP Management Client Software

To use your SNMP management software with the ESX Server agent, take the steps needed to accomplish the following:

- In your management software, specify the ESX Server machine as an SNMP-based managed device.
Set up appropriate community names in the management software. These must correspond to the values set in the master SNMP agent's configuration file, for example, rocommunity, trapcommunity, and trapsink.

Load the ESX Server MIBs into the management software so you can view the symbolic names for the ESX Server variables. You can find the MIB files on VMware ESX Server, in the /usr/lib/vmware/snmp/mibs directory.

Configuring SNMP Security

The ESX Server SNMP package takes the simplest approach to SNMP security in the default configuration. It sets up a single community with read-only access. This is denoted by the rocommunity configuration parameter in the configuration file for the master snmpd daemon, snmpd.conf which is set up for you by running snmpsetup.sh default.

By design, SNMP is not a secure protocol, and the community-based security model is a retrofit to the protocol. Other enhancements to the SNMP security mechanism allow an administrator to set up a more elaborate permissions scheme. See the snmpd.conf(5) man page for details.

Using SNMP with Guest Operating Systems

To use SNMP to monitor guest operating systems or applications running in virtual machines, install the SNMP agents you would normally use in the guest operating systems. No special configuration is required on ESX Server.

The virtual machine uses its own virtual hardware devices. Do not install in the virtual machine agents intended to monitor hardware on the physical computer.

VMware ESX Server SNMP Variables

The VMware enterprise tree consists of several groups and is located at .iso.dod.org.internet.private.enterprises.vmware. (.1.3.6.1.4.1.6876.)

The variables in each group appear in the tables below.

<table>
<thead>
<tr>
<th>NOTE</th>
<th>All variables are read-only.</th>
</tr>
</thead>
</table>

The data type field refers to the SNMP type described by the structure of management information (SMI).

vmware.vmwSystem

This group consists of three variables providing basic information about the system.
Table 7-1. vmware.vmwSystem variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmwProdName</td>
<td>Display string</td>
<td>Product name.</td>
</tr>
<tr>
<td>vmwProdVersion</td>
<td>Display string</td>
<td>Product version.</td>
</tr>
<tr>
<td>vmwProdOID</td>
<td>ObjectId</td>
<td>A unique identifier for this product in the VMware MIB. This ID is unique also within versions of the same product.</td>
</tr>
<tr>
<td>vmwProdBuild</td>
<td>Display string</td>
<td>Product build number.</td>
</tr>
</tbody>
</table>

vmware.vmwVirtMachines

This group consists of virtual machine configuration information in six tables.

vmTable Contains information on virtual machines that have been configured on the system. Each row provides information about a particular virtual machine.

Table 7-2. vmTable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmIdx</td>
<td>Integer</td>
<td>Dummy number for an index.</td>
</tr>
<tr>
<td>vmDisplayName</td>
<td>Display string</td>
<td>Name by which this virtual machine is displayed.</td>
</tr>
<tr>
<td>vmConfigFile</td>
<td>Display string</td>
<td>Path to the configuration file for this virtual machine.</td>
</tr>
<tr>
<td>vmGuestOS</td>
<td>Display string</td>
<td>Operating system running on this virtual machine.</td>
</tr>
<tr>
<td>vmMemSize</td>
<td>Integer</td>
<td>Memory configured for this virtual machine in MB.</td>
</tr>
<tr>
<td>vmState</td>
<td>Display string</td>
<td>Virtual machine on or off.</td>
</tr>
<tr>
<td>vmVMID</td>
<td>Integer</td>
<td>If a virtual machine is active, an ID is assigned to it (like a pid). Not all virtual machines may be active, so this cannot be used as the index.</td>
</tr>
<tr>
<td>vmGuestState</td>
<td>Display string</td>
<td>Guest operating system on or off.</td>
</tr>
</tbody>
</table>

hbaTable Contains disk adapters seen by this virtual machine.

Table 7-3. hbaTable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hbaVmIdx</td>
<td>Integer</td>
<td>Corresponds to the index of the virtual machine in vmTable.</td>
</tr>
<tr>
<td>hbaIdx</td>
<td>Integer</td>
<td>A correspondence to the order of the SCSI device module loaded into the VMkernel.</td>
</tr>
</tbody>
</table>
Table 7-3. hbaTable (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hbaNum</td>
<td>Display string</td>
<td>Device number (format: scsi*).</td>
</tr>
<tr>
<td>hbaVirtDev</td>
<td>Display string</td>
<td>Virtual device name for this adapter.</td>
</tr>
</tbody>
</table>

hbaTgtTable Contains SCSI targets seen by this virtual machine.

Table 7-4. hbaTgtTable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hbaTgtVmIdx</td>
<td>Integer</td>
<td>Corresponds to the index of the virtual machine in vmTable.</td>
</tr>
<tr>
<td>hbaTgtIdx</td>
<td>Integer</td>
<td>Dummy target index.</td>
</tr>
<tr>
<td>hbaTgtNum</td>
<td>Display string</td>
<td>Target description (format: scsi<hba>:<tgt>).</td>
</tr>
</tbody>
</table>

netTable Contains network adapters seen by this virtual machine.

Table 7-5. netTable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netVmIdx</td>
<td>Integer</td>
<td>Corresponds to the index of the virtual machine in vmTable.</td>
</tr>
<tr>
<td>netIdx</td>
<td>Integer</td>
<td>Index for this table.</td>
</tr>
<tr>
<td>netNum</td>
<td>Display string</td>
<td>Device number. (format: ethernet*)</td>
</tr>
<tr>
<td>netName</td>
<td>Display string</td>
<td>Device name of VMkernel device that this virtual network adapter is mapped to. (format: vmnic* or vmnet*)</td>
</tr>
<tr>
<td>netConnType</td>
<td>Display string</td>
<td>Connection type (user or virtual machine monitor device).</td>
</tr>
</tbody>
</table>

floppyTable Contains floppy drives seen by this virtual machine.

Table 7-6. floppyTable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fdVmIdx</td>
<td>Integer</td>
<td>Corresponds to the index of the virtual machine in vmTable.</td>
</tr>
<tr>
<td>fdIdx</td>
<td>Integer</td>
<td>Index into floppy table. Order of the floppy device on this virtual machine.</td>
</tr>
</tbody>
</table>
**Table 7-6. **floppyTable (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fdName</td>
<td>Display string</td>
<td>Device number/name (/dev/fd0, etc. NULL if not present).</td>
</tr>
<tr>
<td>fdConnected</td>
<td>Display string</td>
<td>Is the floppy drive connected (mounted)?</td>
</tr>
</tbody>
</table>

cdromTable Contains CD-ROM drives seen by this virtual machine.

**Table 7-7. **cdromTable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdVmIdx (Index field)</td>
<td>Integer</td>
<td>Corresponds to the index of the virtual machine in vmTable.</td>
</tr>
<tr>
<td>cdromIdx (Index field)</td>
<td>Integer</td>
<td>Index into CD-ROM table. Order of the CD-ROM device on this virtual machine.</td>
</tr>
<tr>
<td>cdromName</td>
<td>Display string</td>
<td>Device number/name (/dev/CDROM, etc. NULL if not present).</td>
</tr>
<tr>
<td>cdromConnected</td>
<td>Display string</td>
<td>Is the CD-ROM drive connected (mounted)?</td>
</tr>
</tbody>
</table>

vmware.vmwResources

This group contains statistics on the physical machine’s resources categorized into several subgroups.

vmware.vmwResources.vmwCPU

This group contains CPU-related information in one variable and one table.

**Table 7-8. **vmware.vmwResources.vmwCPU

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>numCPUs</td>
<td>Integer</td>
<td>Number of physical CPUs on the system.</td>
</tr>
</tbody>
</table>

cpuTable CPU usage by virtual machine.

**Table 7-9. **cpuTable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpuVMID (Index field)</td>
<td>Integer</td>
<td>ID allocated to running virtual machine by the VMkernel.</td>
</tr>
</tbody>
</table>
Table 7-9. cpuTable (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpuShares</td>
<td>Integer</td>
<td>Share of CPU allocated to virtual machine by VMkernel.</td>
</tr>
<tr>
<td>cpuUtil</td>
<td>Integer</td>
<td>Amount of time the virtual machine has been running on the CPU (seconds).</td>
</tr>
</tbody>
</table>

vmware.vmwResources.vmwMemory

This group contains RAM information in three variables and one table.

Table 7-10. vmware.vmwResources.vmwMemory

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>memSize</td>
<td>Integer</td>
<td>Amount of physical memory present on machine (KB).</td>
</tr>
<tr>
<td>memCOS</td>
<td>Integer</td>
<td>Amount of physical memory used by the service console (KB).</td>
</tr>
<tr>
<td>memAvail</td>
<td>Integer</td>
<td>Amount of physical memory available/free (KB).</td>
</tr>
</tbody>
</table>

memTable Contains memory usage by virtual machine.

Table 7-11. memTable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>memVMID (Index field)</td>
<td>Integer</td>
<td>ID allocated to running virtual machine by the VMkernel.</td>
</tr>
<tr>
<td>memShares</td>
<td>Integer</td>
<td>Shares of memory allocated to virtual machine by VMkernel.</td>
</tr>
<tr>
<td>memConfigured</td>
<td>Integer</td>
<td>Amount of memory the virtual machine was configured with (KB).</td>
</tr>
<tr>
<td>memUtil</td>
<td>Integer</td>
<td>Amount of memory utilized by the virtual machine (KB; instantaneous).</td>
</tr>
</tbody>
</table>

vmware.vmwResources.vmwHBATable

This group contains physical disk adapter and targets information in one table.
vmwHBATable Disk adapter and target information table.

Table 7-12. vmwHBATable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hbaIdx</td>
<td>Integer</td>
<td>Index into table for HBA (corresponds to the order of the adapter on the physical computer).</td>
</tr>
<tr>
<td>hbaName</td>
<td>Display string</td>
<td>String describing the disk. (format: <devname#:<tgt>:<lun>)</td>
</tr>
<tr>
<td>hbaVMID</td>
<td>Integer</td>
<td>ID assigned to running virtual machine by the VMkernel.</td>
</tr>
<tr>
<td>diskShares</td>
<td>Integer</td>
<td>Share of disk bandwidth allocated to this virtual machine.</td>
</tr>
<tr>
<td>numReads</td>
<td>Integer</td>
<td>Number of reads to this disk since disk module was loaded.</td>
</tr>
<tr>
<td>kbRead</td>
<td>Integer</td>
<td>KB read from this disk since disk module was loaded.</td>
</tr>
<tr>
<td>numWrites</td>
<td>Integer</td>
<td>Number of writes to this disk since disk module was loaded.</td>
</tr>
<tr>
<td>kbWritten</td>
<td>Integer</td>
<td>KB written to this disk since disk module was loaded.</td>
</tr>
</tbody>
</table>

vmware.vmwResources.vmwNetTable

This group contains network statistics organized by network adapter and virtual machine, in one table.

vmwNetTable Network adapter statistics.

Table 7-13. vmwNetTable

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>netIdx</td>
<td>Integer</td>
<td>Index into table for Net (corresponds to the order of the adapter on the physical computer).</td>
</tr>
<tr>
<td>netName</td>
<td>Display string</td>
<td>String describing the network adapter (format: vmnic* or vmnet*).</td>
</tr>
<tr>
<td>netVMID</td>
<td>Integer</td>
<td>ID assigned to running virtual machine by the VMkernel.</td>
</tr>
<tr>
<td>ifAddr</td>
<td>Display string</td>
<td>MAC address of virtual machine's virtual network adapter.</td>
</tr>
<tr>
<td>netShares</td>
<td>Integer</td>
<td>Share of net bandwidth allocated to this virtual machine. (reserved for future use)</td>
</tr>
</tbody>
</table>
Table 7-13. vmwNetTable (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pktsTx</td>
<td>Integer</td>
<td>Number of packets transmitted on this network adapter since network module was loaded.</td>
</tr>
<tr>
<td>kbTx</td>
<td>Integer</td>
<td>KB sent from this network adapter since network module was loaded.</td>
</tr>
<tr>
<td>pktsRx</td>
<td>Integer</td>
<td>Number of packets received on this network adapter since network module was loaded.</td>
</tr>
<tr>
<td>kbRx</td>
<td>Integer</td>
<td>KB received on this network adapter since system start.</td>
</tr>
</tbody>
</table>

vmware.vmwProductSpecific
This group contains variables categorized into product-specific subgroups.

vmware.vmwProductSpecific.vmwESX
This group contains variables specific to VMware ESX Server.

vmware.vmwProductSpecific.vmwESX.esxVMKernel
This group contains variables specific to VMware ESX Server’s VMkernel. It contains one variable.

Table 7-14. vmware.vmwProductSpecific.vmwESX.esxVMKernel

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmkLoaded</td>
<td>Display string</td>
<td>Has the VMkernel been loaded? (yes/no)</td>
</tr>
</tbody>
</table>

NOTE If the variable showing the state of the VMkernel is no, any values reported for quantitative variables should be regarded as invalid.

vmware.vmwTraps
This group contains the variables defined for VMware traps and related variables for use by the trap receiver (for example, snmptrapd).

Table 7-15. vmware.vmwTraps

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmPoweredOn</td>
<td>Trap</td>
<td>Sent when a virtual machine is powered on or resumed from a suspended state.</td>
</tr>
<tr>
<td>vmPoweredOff</td>
<td>Trap</td>
<td>Sent when a virtual machine is powered off.</td>
</tr>
<tr>
<td>vmSuspended</td>
<td>Trap</td>
<td>Sent when a virtual machine is suspended.</td>
</tr>
</tbody>
</table>
Table 7-15. vmware.vmwTraps (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmHBLost</td>
<td>Trap</td>
<td>Sent when a virtual machine detects a loss in guest heartbeat.</td>
</tr>
<tr>
<td>vmHBDetected</td>
<td>Trap</td>
<td>Sent when a virtual machine detects or regains the guest heartbeat.</td>
</tr>
<tr>
<td>vmID</td>
<td>Integer</td>
<td>The vmID of the affected virtual machine in the preceding traps. If the vmID is nonexistent, (such as for a power-off trap) -1 is returned.</td>
</tr>
<tr>
<td>vmConfigFile</td>
<td>Display string</td>
<td>The configuration file of the affected virtual machine in the preceding traps.</td>
</tr>
</tbody>
</table>

vmware.vmwOID

There are no variables in this group. This group is used to allocate a unique identifier for the product denoted by the vmwSystem.vmwOID variable.

vmware.vmwExperimental

There are no variables in this group. This group is reserved for VMware ephemeral, experimental variables.
Using VMkernel Device Modules

The ESX Server virtualization layer, also known as the VMkernel, runs on the native hardware. It manages all the operating systems on the machine, including both the service console and the guest operating systems running on each virtual machine.

The VMkernel supports device driver modules. Using these modules, the VMkernel can provide access to all devices on the server.

This chapter includes the following sections:

- “Configuring Your Server to Use VMkernel Device Modules” on page 239
- “Controlling VMkernel Module Loading During Bootup” on page 243

Configuring Your Server to Use VMkernel Device Modules

Through the service console, you can configure your server to use VMkernel device modules.

Loading VMkernel Device Modules

The installation process should detect the devices that are assigned to the VMkernel and automatically load appropriate modules into the VMkernel to make use of these devices.

You might want to load VMkernel device modules explicitly. Modules supported in this release are located in `/usr/lib/vmware/vmkmod`. The command `vmkload_mod(1)` loads VMkernel modules.
VMkernel Module Loader

The program `vmkload_mod` is used to load device driver and network shaper modules into the VMkernel. `vmkload_mod` can also be used to unload a module, list the loaded modules and list the available parameters for each module.

The format for the command is:

```
vmkload_mod <options> <module-binary> <module-tag> <parameters>
```

where `<module-binary>` is the name of the module binary that is being loaded. `<module-tag>` is the name that the VMkernel associates with the loaded module. The tag can be any string of letters and numbers. If the module is a device driver, the VMkernel names the module with the `<module-tag>` plus a number starting from zero. If there are multiple device instances created by loading the module or multiple device driver modules loaded with the same tag, each device gets a unique number based on the order in which device instances are created.

The `<module-binary>` and `<module-tag>` parts of the command line are required when a module is loaded and are ignored when the `--unload`, `--list` and `--showparam` options are used. The `<parameters>` part of the command line is optional and is used only when a module is being loaded.

Options

- `-l`

 `--list`

 Lists the current modules loaded. If the `-l` option is given, other arguments on the command line are ignored.

- `-u <module-binary>`

 `--unload <module-binary>`

 Unload the module named `<module-binary>`.

- `-v`

 `--verbose`

 Be verbose during the module loading.

- `-d <scsi-device-name>`

 `--device <scsi-device-name>`

 The module being loaded is for a SCSI adapter that is currently being used by the service console. After the module is loaded the SCSI adapter is controlled by the VMkernel but the service console continues to be able to access all SCSI devices.
The format of <scsi-device-name> is <PCI-Bus>:<PCI-slot>.

-e
--exportsym

Export all global exported symbols from this module. This allows other modules to use exported functions and variables from the loaded module. Do not use this option for normal device driver and shaper modules because there might be symbol conflicts.

-s
--showparam

List all available module parameters that can be specified in the <parameter> section of the command line.

Parameters

Modules can specify parameters that can be set on the command line. A list of these parameters is shown via the --showparam option. In order to set one of these parameters, you must specify a name-value pair at the end of the command line. The syntax is of the form <name>=<value>. Any number of parameters can be specified.

Examples

vmkload_mod ~/modules/e100.o vmnic debug=5

Loads the module ~/modules/e100.o into the VMkernel. The tag for this module is vmnic. Each EEPro card that was assigned to the VMkernel is given the name vmnic<#, where <#> starts at 0. For example, if there are two EEPro cards assigned to the VMkernel, they have VMkernel names of vmnic0 and vmnic1. The module parameter debug is set to the value 5.

vmkload_mod --device 0:12 ~/modules/aic7xxx.o vmhba

Loads the module ~/modules/aic7xxx.o into the VMkernel. The tag for this module is vmhba. The Adaptec SCSI adapter is currently being used by the service console. The SCSI adapter is located on PCI bus 0, slot 12.

vmkload_mod --exportsym ~/modules/vmklinux linuxdrivers

Loads the module ~/modules/vmklinux into the VMkernel. All exported symbols from this module are available to other modules that are subsequently loaded. The vmklinux module is the module that allows Linux device drivers to run in the VMkernel so it is one of the few modules for which the --exportsym option makes sense.

Following are several examples of command lines that load various modules.
Preparing to Load Modules

vmkload_mod -e /usr/lib/vmware/vmkmod/vmklinux linux

This command must be given before you load other device modules. It loads common code that allows the VMkernel to make use of modules derived from Linux device drivers to manage its high-performance devices. The -e option is required so that the vmklinux module exports its symbols, making them available for use by other modules.

Loading Modules

vmkload_mod /usr/lib/vmware/vmkmod/e100.o vmnic
vmkload_mod /usr/lib/vmware/vmkmod/aic7xxx.o vmhba

The first of these commands loads a module to control the EEPro Ethernet device(s) reserved for the VMkernel. The second loads a module to control the Adaptec SCSI device(s). The last argument supplied (vmnic and vmhba in the above examples) determines the base name that VMware uses to refer to the device(s) in the VMware virtual machine configuration file.

For example, suppose your machine has two EEPro Ethernet cards and three Adaptec SCSI cards, and you assigned one Ethernet card and two SCSI cards to the VMkernel during the installation process. After you issue the two commands above, the EEPro Ethernet card assigned to the VMkernel is given the name vmnic0 and the two SCSI cards assigned to the VMkernel are given the names vmhba0 and vmhba1.

NOTE You need to load the Adaptec VMkernel module once, even though two Adaptec SCSI cards are assigned to the VMkernel.

The VMkernel can also share SCSI adapters with the service console, rather than exclusively controlling them. The installation process allows you to specify SCSI adapters that are shared and load the device module appropriately. However, if you wish to control the sharing explicitly, assign the SCSI device to the service console during the installation process. Load the VMkernel SCSI module using the following syntax:

vmkload_mod -d bus:slot /usr/lib/vmware/vmkmod/aic7xxx.o vmhba

To obtain the bus and slot (also known as device or cardnum) information, examine /proc/pci, output from the scanpci command, or both.

NOTE The device must be correctly assigned to the service console. Devices assigned exclusively to the VMkernel during the installation process no longer appear in /proc/pci.
After you load a VMkernel device module, an entry appears in /proc/vmware/net or /proc/vmware/scsi. For example, when e100.o is loaded as described above, the entry /proc/vmware/net/vmnic0 appears, indicating there is one EEPro card controlled by the VMkernel and available as vmnic0 to the virtual machines. See “Creating and Configuring Virtual Machines” on page 39 for information on how to configure virtual machines to use VMkernel devices.

Other Information about VMkernel Modules

The only non-device VMkernel module available in this release of VMware ESX Server is the nfshaper module, which provides support for network filtering, as described in “Managing Network Bandwidth” on page 367.

Load nfshaper using the following syntax:

vmkload_mod /usr/lib/vmware/vmkmod/nfshaper.o nfshaper

VMkernel modules must be reloaded each time the VMkernel is loaded (as described in “Loading VMkernel Device Modules” on page 239).

Controlling VMkernel Module Loading During Bootup

You can customize the loading of VMkernel device driver modules during startup by editing one of the following files:

- /etc/vmware/hwconfig – Automatically supply extra parameters to a driver when it is loaded during bootup.
- /etc/vmware/vmkmodule.conf – Supply extra parameters to a driver, add or prevent a driver module from loading, or determine the order in which the driver modules are loaded during bootup.

CAUTION Editing these files is recommended for advanced users only. If you have any questions, contact your authorized service provider before editing these files.

Customizing Parameters of VMkernel Device Driver Modules on Startup

You can supply extra parameters to be passed to a driver when it is loaded during bootup. You do this by editing the file /etc/vmware/hwconfig. This file contains information about the hardware on your system, including device driver modules.
As an example of passing a parameter to the Emulex device driver, identify the bus, slot, and function holding the first (or only) Emulex card. (Find this information in the Startup Profile pane of the Options tab.) Add a line with the format:

```
device.vmnix.6.14.0.options = "lpfc_delay_rsp_err=0"
```

to the end of `/etc/vmware/hwconfig`. The numbers 6.14.0 specify the bus, slot, and function where the Emulex card is located. If you have more than one Emulex card, you should have only a line referencing the first card.

Customizing Loading of VMkernel Device Driver Modules on Startup

You can customize the loading of modules at startup by editing the `/etc/vmware/vmkmodule.conf` file. By adding or removing entries from this file, you can add or prevent a device driver module from loading. Also, by rearranging the order of the device driver modules in this file, you can specify the order in which these modules are loaded during startup. You can also supply extra parameters to a driver when it is loaded on startup.

NOTE If you use this file to customize the loading of device driver modules, you must manually update this file whenever you add new hardware. VMware recommends using the VMware Management Interface to manage your hardware, or if you need to add parameters, editing the hwconfig file as described in the previous section.

The `vmkmodule.conf` file takes effect only if it contains a comment line containing the keyword MANUAL-CONFIG. Otherwise, the configuration is obtained automatically from the management interface.

Each non-blank line that does not begin with `#` should contain the name of a module file, the tag to be associated with the module in the VMkernel and possibly a sharing specification (the argument specified with the `-d` flag above). The module file should just be the base file name, without the `/usr/lib/vmware/...` path.

A sample `vmkmodule.conf` file is:

```
# MANUAL-CONFIG
vmklinux.o linux
nfshaper.o nfshaper
e100.o vmnic
aic7xxx.o vmhba -d 0:1
```
Storage and File Systems

This chapter contains information about SCSI disks, accessed by local SCSI adapters, or on a Storage Area Network (SAN) by Fibre Channel adapters. Instructions given for using SCSI adapters apply to both local and Fibre Channel adapters.

For additional information about configuring SANs, see the VMware SAN Configuration Guide at www.vmware.com/support/pubs/esx_pubs.html.

This chapter provides the following information:

- “File System Management on SCSI Disks and RAID” on page 245
- “Using vmkfstools” on page 249
- “Accessing Raw SCSI Disks” on page 261
- “Determining SCSI Target IDs” on page 263
- “Sharing the SCSI Bus” on page 264
- “Using Storage Area Networks with ESX Server” on page 266
- “Using Persistent Bindings” on page 270
- “Using Multipathing in ESX Server” on page 272

File System Management on SCSI Disks and RAID

VMFS (VMware ESX Server File System) is a simple, high-performance file system on physical SCSI disks and partitions, used for storing large files such as the virtual disk images for ESX Server virtual machines and, by default, the memory images of suspended virtual machines. The VMFS also stores the redo-log files for virtual
machines in nonpersistent, undoable, or append disk modes. For information on disk modes, see “Creating a New Virtual Machine” on page 39.

ESX Server 2.5 supports two types of file systems: VMFS version 1 (VMFS-1) or VMFS version 2 (VMFS-2). VMFS-1 is the same VMFS shipped with 1.x versions of ESX Server. The VMFS-2 file system contains the following features that are not available with VMFS-1:

- Ability to span multiple VMFS-2 partitions on the same or different SCSI disks.
- Ability for multiple ESX Servers (and the virtual machines on these servers) to access files on a VMFS-2 volume concurrently (non-clustering setup).

VMware ESX Server 2.5 includes an automatic per-file locking mechanism that allows these concurrent accesses without file system corruption.

- Larger file system volumes and larger files on the VMFS volumes.
- Raw disks can be mapped as VMFS files.

NOTE Unlike VMFS-1, VMFS-2 is not backwardly compatible with previously released (1.x) versions of ESX Server.

A server's VMFS volumes are mounted automatically by the service console, as soon as the storage adapter drivers are loaded, and appear in the /vmfs directory.

The `vmkfstools` command provides additional functions that are useful to create files of a particular size and to import files from and export files to the service console’s file system. In addition, `vmkfstools` is designed to work with large files, overcoming the 2GB limit of some standard file utilities.

Viewing and Manipulating Files in the /vmfs Directory

You can view and manipulate files under /vmfs in these mounted VMFS volumes with file commands such as `ls` and `cp`. Mounted VMFS volumes might appear similar to other file system such as ext3, but VMFS is primarily intended to store large files such as disk images. The service console (which is based on a Linux 2.4 kernel) does not support files greater than 2GB.

Use `ftp`, `scp`, and `cp` for copying files to and from a VMFS volume, as long as the host file system supports these large files. `nfs` is known to run into this limitation, while `ftp`, `scp`, and `cp` are not affected by it.
VMFS Volumes

In ESX Server 2.5, a VMFS-2 volume can span multiple partitions, across the same or multiple (up to 32) LUNs or physical disks. A VMFS-2 volume is a logical grouping of physical extents. Each physical extent is part of a disk, for example, a physical disk partition. That is, a physical extent is a disk partition that is part of a VMFS-2 volume.

By contrast, VMFS-1 volumes are limited to a single physical extent.

You can view the VMFS volumes on your ESX Server at any time by changing directories to the `/vmfs` directory, then listing its contents. You can use `vmkfstools -P <VMFS_volume_label>`, to obtain more details about your VMFS volume.

```
# cd /vmfs
# ls
vhba0:0:0:2 vhba0:0:0:6
```

The entries in the `/vmfs` directory are updated dynamically. Any changes you make to VMFS-2 volumes through the VMware Management Interface are immediately reflected in this directory.

For more details on `vmkfstools`, see “Using `vmkfstools`” on page 249.

Labelling VMFS Volumes

If you create a VMFS volume on a SCSI disk or partition, give a label to that volume and use that label when specifying VMFS files on that volume. For example, suppose you have a VMFS volume on the SCSI partition `vhba0:3:0:1` and have created a VMFS file `nt4.vmdk`. You can label that volume using a `vmkfstools` command such as:

```
vmkfstools -S mydisk vhba0:3:0:1
```

You can then refer to the `nt4.vmdk` file as `mydisk:nt4.vmdk` (instead of `vhba0:3:0:1:nt4.vmdk`) in a virtual machine configuration file and in other `vmkfstools` commands. See “`vmkfstools Options`” on page 250.

If there is no persistent binding, labelling VMFS volumes is useful if you might add SCSI adapters or disks to your system. The actual disk and target numbers specifying a particular VMFS may change, but the label stays the same. Also, other ESX Servers see the same label, which is useful for LUN ID between servers.

For more information, see “Using Persistent Bindings” on page 270.
VMFS Accessibility

There are two modes for accessing VMFS volumes: **public** and **shared**.

- **public** – The default mode for ESX Server.

 With a public VMFS version 1 (VMFS-1) volume, multiple ESX Server computers can access the VMware ESX Server file system, as long as the VMFS volume is on a shared storage system (for example, a VMFS on a storage area network). Only one ESX Server can access the VMFS volume at a time.

 With a public VMFS version 2 (VMFS-2) volumes, multiple ESX Server computers can access the VMware ESX Server file system concurrently. VMware ESX Server file systems with a public mode have automatic locking to ensure file system consistency.

- **shared** – Used for a VMFS volume that is used for failover-based clustering among virtual machines on the same or different ESX Servers.

 For more information on clustering with ESX Server, see “Configuration for Clustering” on page 279.

NOTE
In ESX Server 2 and later, private VMFS volumes are deprecated. If you have existing VMFS version 1 (VMFS-1) or VMFS version 2 (VMFS-2) private volumes, you can continue to use them, but VMware recommends that you change the access mode to public. There is no performance penalty in making this change.

VMFS Accessibility on a SAN

Any VMFS volume on a disk that is on a SAN should have VMFS accessibility set to public or shared. **Public**, the default and recommended accessibility mode, makes the VMFS volume available to multiple physical servers, and to the virtual machines on those servers. With VMFS-2 volumes, public access is concurrent to multiple physical servers, whereas for VMFS-1 volumes, public access is limited to a single server at a time. See “Using Storage Area Networks with ESX Server” on page 266.

Changing Storage Configuration Options

To create or modify disk partitions through the VMware Management Interface

1. Log in to the VMware Management Interface as root.

 The **Status Monitor** appears.

2. Click the **Options** tab.

3. Click **Storage Configuration**.
4 Make the appropriate changes, and click **OK**.

<table>
<thead>
<tr>
<th>NOTE</th>
<th>You cannot change VMFS accessibility if any files are open on the VMFS volume. The attempted operation returns errors. Close any open files, and edit the VMFS volume.</th>
</tr>
</thead>
</table>

See “Configuring Storage: Disk Partitions and File Systems” on page 196 for additional information.

Using vmkfstools

The `vmkfstools` command supports the creation of a VMware ESX Server file system (VMFS) on a SCSI disk. Use `vmkfstools` to create, manipulate and manage files stored in VMFS volumes. You can store multiple virtual disk images on a single VMFS volume.

You can also perform most of the `vmkfstools` operations through the VMware Management Interface.

vmkfstools Command Syntax

You must be logged in as the root user to run the `vmkfstools` command.

vmkfstools Syntax When Specifying a SCSI Device

The format for the `vmkfstools` command, when specifying a SCSI device, is:

```
vmkfstools <options> <device_or_VMFS_volume>[:<file>]
```

where `<device_or_VMFS_volume>` specifies a SCSI device (a SCSI disk or a partition on a SCSI disk) being manipulated or a VMFS volume, and `<options>` specifies the operation to be performed.

If `<device_or_VMFS_volume>` is a SCSI device, it is specified in a form such as:

```
vmbba1:2:0:3
```

Here, `vmbba1` specifies the second SCSI adapter activated by the command `vmkload_mod .../XXX.o vmbba`. (See “VMkernel Module Loader” on page 240 for details on `vmkload_mod`.) The second number specifies the target on the adapter, the third number specifies the LUN (logical unit number) and the fourth number specifies the partition. Partition 0 (zero) implies the whole disk. Otherwise, the number specifies the indicated partition.

`<device_or_VMFS_volume>` can also be a VMFS volume label, as set in the management interface or with the `vmkfstools --setfsname` command.

`<file>` is the name of a file stored in the file system on the specified device.
vmkfstools Syntax When Specifying a VMFS Volume or File

The format for the `vmkfstools` command, when specifying a VMFS volume or file, is:

```
vmkfstools <options> <path>
```

where `<path>` is an absolute path that names a directory or a file under the `/vmfs` directory.

For example, you can specify a VMFS volume by a path such as:

```
/vmfs/vmhba1:2:0:3
```

You can also specify a single VMFS file:

```
/vmfs/lun1/rh9.vmdk
```

vmkfstools Options

This section includes a list of all the options used with the `vmkfstools` command.

Some of the tasks in this section include options that are suggested for advanced users only. These advanced options are not available through the VMware Management Interface.

NOTE The long and short (single letter) forms of options are equivalent. For example, the following commands are identical:

```
vmkfstools --createfs vmfs2 --blocksize 2m --numfiles 32 vmhba1:3:0:1
vmkfstools -C vmfs2 -b 2m -n 32 vmhba1:3:0:1
```

If the `vmkfstools` command fails, and you don't know why, check the log files in `/var/log/vmkernel` or use the management interface to view the latest warning.

To view the system log warnings

1. Log in to the VMware Management Interface as root.

The Status Monitor appears.

2. Click the Options tab.

3. Click System Logs.

Basic vmkfstools Options

Basic options are common tasks that you perform frequently. You can also perform these tasks through the management interface.
Create a VMFS on the specified SCSI device

- `--createfs [vmfs1|vmfs2]`
- `--blocksize # [gGmMkK]`
- `--numfiles #`

This command creates a VMFS version1 (vmfs1) or version 2 (vmfs2) file system on the specified SCSI device.

<table>
<thead>
<tr>
<th>NOTE</th>
<th>When creating a VMFS volume on a LUN, you can have only one VMFS volume per LUN.</th>
</tr>
</thead>
</table>

For advanced users:

- Specify the block size using the `--blocksize` option. The block size must be \(2^x\) (a power of 2) and at least 1MB. (The default file block size is 1MB.) You can specify the size in kilobytes, megabytes, or gigabytes by adding a suffix of k (kilobytes), m (megabytes), g (gigabytes) respectively.

- Specify the maximum number of files in the file system with the `--numfiles` option. The default maximum number of files is 256 files.

List the attributes of a VMFS volume or a raw disk mapping

- `--querypartitions <VMFS_volume:fileName>`

For a `VMFS_volume:fileName`, the listed attributes include the vmhba name of the raw disk or partition, corresponding to the mapping referenced by `fileName`, and any identification information for the raw disk.
Create a file with the specified size on the file system of the specified SCSI device

-c --createfile #[gGmMkK]

The size is specified in bytes by default, but you can specify the size in kilobytes, megabytes, or gigabytes by adding a suffix of k (kilobytes), m (megabytes), or g (gigabytes) respectively.

Export the contents of the specified file on the specified SCSI device to a virtual disk on the file system of the service console

-e --exportfile <dstFile>

After the export, you may transfer the virtual disk to another server machine and import it to a SCSI device on the remote machine.

If your virtual disk has redo logs, you have the following options:

- To use the exportfile option on the base virtual disk, only the base virtual disk is exported. Any uncommitted redo logs are not exported, but can be copied separately.

- To use the exportfile option on a ESX Server redo log, the exported virtual disk contains the redo log, any previously created redo logs, and the base virtual disk. That is, the newly created exported virtual disk appears as if the redo log(s) was committed to its base virtual disk.

 Your original source redo log(s) and base virtual disk remain unchanged.

- To export your redo logs and base virtual disk separately, use the exportfile option to export the base virtual disk, and the cp command to export each redo log separately.

Use the combination of exportfile and importfile together to copy VMFS files to remote machines. The virtual disk should take less space than the full size of the VMFS file, because the virtual disk does not include zeroed sectors of the VMFS file.

Import the contents of a VMware virtual, plain, or raw disk on the service console to the specified file on the specified SCSI device

-i --importfile <srcFile>

This command is often used to import the contents of a VMware Workstation or VMware GSX Server virtual disk onto a SCSI device. Run this command to import a virtual disk that was created by exporting the contents of a disk from another SCSI device.
List the files on the file system on the specified device
-`l` --list
-`h` --human-readable
-`M` --verbose mappings

The output includes permissions, sizes and the last modification time for redo logs, virtual disk files, and swap files. Use the `h` option to print the sizes in an easier-to-read format; for example, 5KB 12.1MB, and so on.

The `M` option lists the vmhba name that corresponds to each raw disk mapping.

Set the name of the VMFS on the specified SCSI device
-`S` --setfsname `<fsName>`

You can see the VMFS name by running the `vmkfstools` command with the `-l` option, `vmkfstools -l`.

Advanced vmkfstools Options

Advanced options are tasks that you can perform infrequently. These tasks are not available through the management interface, or are available in a limited form, and are suggested for advanced users only.

Commit the redo log of the specified file, making the associated changes permanent
-`m` --commit

If a virtual machine is in undoable or append mode, the redo log is created automatically. The name of the redo log is derived by appending .REDO to the name of the file that contains the base disk image. You can commit the changes to the disk that are stored in the redo log using the `commit` option or eliminate the changes using the `rm` command to delete the redo-log file.

CAUTION The `vmkfstools` command may fail when attempting to import plain disks created with version 2.5 or earlier of GSX Server. If `vmkfstools` returns an error when importing a plain disk, see “Path Name Failures When Importing GSX Server Virtual Machines” on page 66.

NOTE The destination device must have space for the entire size of the virtual disk, even if it is mostly free space, as the complete contents of the source disk are copied.
Set the VMFS on the specified SCSI device to the specified mode

-F --config [public|shared|writable]

Note
In ESX Server 2 and later, private VMFS volumes are deprecated. If you have existing VMFS version 1 (VMFS-1) or VMFS version 2 (VMFS-2) private volumes, change the access to public.

Public
With public VMFS-2 volumes, multiple ESX Server computers can access the same VMware ESX Server VMFS volume concurrently. VMware ESX Server file systems with a public access mode use an automatic per-file locking to ensure file system consistency.

With a public VMFS-1 volume, multiple ESX Server computers can access the VMware ESX Server VMFS volume, as long as the VMFS volume is on a shared storage system (for example, a VMFS on a storage area network). Only one ESX Server can access the VMFS-1 volume at a time.

Note
ESX Server creates VMFS volumes as public by default.

Shared
The shared access mode allows virtual machines on multiple servers to access the same virtual disk on a VMFS-2 volume simultaneously. (In public mode, virtual machines can access only the same VMFS volume, never the same virtual disk, at the same time.)

Note
A VMFS volume that is used for failover-based clustering should have its mode set to shared.

Writable
When virtual machines access a file on a shared VMFS, the file system metadata becomes read-only. That is, no virtual machine or user command can create, delete, or change the attributes of a file.

To create, remove, or change the length of a file (`vmkfstools -X`), change the volume to "writable". Make sure that no virtual machines are accessing the VMFS volume (all virtual machines are powered off or suspended), and change the file system metadata to writable with the command, `vmkfstools --config writable`. After you power on or resume a virtual machine, the file system metadata reverts to being read-only.

Extend an existing logical VMFS-2 volume by spanning multiple partitions

-Z --extendfs <extension-SCSIDevice>

-n --numfiles #
This option adds another physical extent (designated by `<extension-SCSIDevice>`), starting at the specified SCSI device. By running this option, you lose all data on `<extension-SCSIDevice>`.

A logical VMFS-2 volume can have at most 32 physical extents.

This operation is not supported on the VMFS-1 file system and in fact, returns an error if the specified SCSI device is formatted as VMFS-1. Each time you use this option and extend a VMFS-2 volume with a physical extent, the VMFS volume supports, by default, an additional 64 files. You can change this default number of files by using the `-n` option.

Map a Raw Disk or Partition to a File on a VMFS-2 Volume

`-r --maprawdisk <raw-SCSI-device>`

After this mapping is established, you can access the raw disk like a normal VMFS file. The file length of the mapping is the same as the size of the raw disk or partition. The mapping can be queried for the raw SCSI device name by using the `-P` option.

By mapping a raw disk or partition to a file, you can manipulate this raw disk or partition as any other file.

All VMFS-2 file-locking mechanisms apply to raw disks.

Display Disk Geometry for a VMware Workstation or GSX Server Virtual Disk

`-g -- geometry <virtual-disk>`

The output is in the form: Geometry information C/H/S is 1023/128/32, where C represents the number of cylinders, H represents the number of heads, and S represents the number of sectors.

When importing VMware Workstation or VMware GSX virtual disks to VMware ESX Server, you may see a disk geometry mismatch error message. A disk geometry mismatch may also be the cause if you have problems loading a guest operating system, or running a newly created virtual machine.

View the events log through the VMware Management Interface (Users and Events page for the virtual machine) or through the service console (the `vmware.log` file, found, by default, in the `<user>/vmware/<guest_operating_system>` directory). Look for C/H/S and compare this with the output of the `vmkfstools -g` command.

If the disk geometry information is different, then specify the correct information, from the output of the `vmkfstools -g` command, in the configuration file of the newly created virtual machine.
See “Migrating VMware Workstation and VMware GSX Server Virtual Machines” on page 63 for details on specifying the disk geometry in a virtual machine's configuration file.

Extend the specified VMFS to the specified length

```
-X --extendfile #[gGmMkK]
```

Use this command to extend the size of a disk allocated to a virtual machine, after the virtual machine has been created. The virtual machine that uses this disk file must be powered off when you enter this command. Also, the guest operating system must be able to recognize and use the new size of the disk, for example, by updating the file system on the disk to take advantage of the extra space.

Specify the size in kiloytes, megabytes, or gigabytes by adding a suffix of k (kilobytes), m (megabytes), g (gigabytes) respectively.

Manage SCSI reservations of physical targets or LUNs

```
-L --lock [reserve|release|reset]
```

| CAUTION | The reserve, release, and reset commands can interrupt the operations of other servers on a storage area network (SAN), so use these commands with great caution. |

The `-L reserve` command reserves the specified raw disk, or the disk containing the specified VMFS volume. After the reservation, other servers will get a SCSI reservation error if they attempt to access that disk, but the server that did the reservation will be able to access the disk normally.

The `-L release` command releases the reservation on the specified disk, or disk containing the specified VMFS volume. Any other server can access the disk again.

The `-L reset` command does a SCSI reset to the specified disk. Any reservation held by another server is released.

Recover a VMFS

```
-R --recover
```

This command enables you to recover a VMFS (accessible by multiple ESX servers) when other `vmkfstools` commands indicate that the file system is locked by another ESX Server machine, but, in fact, no other server is currently accessing this file system. This situation may occur if the VMFS was being accessed by a server (for example, running a virtual machine) and that server crashed.
Scans the specified vmhba adapter for devices and LUNs

`s --scan <FC_SCSI_adapter>`

This option is useful for adapters connected to storage area networks, particularly if you are reconfiguring your SAN. If a new device or LUN becomes accessible through the adapter, ESX Server registers this new virtual device for use by virtual machines. If an existing device or LUN is no longer used and appears to be gone, it is removed from use by virtual machines.

Create or Resize a Swap File in a VMFS Volume of the specified SCSI device

`-k --createswapfile #[gGmMkK]`

The size is specified in bytes by default, but you can specify the size in kilobytes, megabytes, or gigabytes by adding a suffix of k (kilobytes), m (megabytes), or g (gigabytes), respectively.

You can resize an existing swap file by specifying the new file size as an argument to the `-k` option.

To resize the swap file

1. Deactivate the swap file, if it is active, with `vmktools -y`.
2. Resize the swap file with the `-k` option.
3. Activate the swap file with `vmktools -w filename`.

If you try to resize an active swap file, ESX Server returns an error message.
ESX Server does not activate a swap file after it is created. Use vmkfstools with the –w option to activate a swap file. You can set a swap file to be activated automatically after a system reboot with the Activation Policy option of the Swap Management pane in the Options tab of the Management Interface.

Activate a Swap File

–w --activateswapfile

This command activates the specified swap file.

| NOTE | You must be logged in to the Service Console with root user permissions to activate a swap file. |

Deactivate a Swap File

–y --deactivateswapfile <fileID>

ESX Server assigns a fileID tag to a swap file when it is activated. You must identify a swap file by its fileID tag when specifying which swap file to deactivate with the –y option.

| NOTE | You must be logged in to the Service Console with root user permissions to activate a swap file. |

You can find the fileID tag assigned to a swap file in the swap status file, /proc/vmware/swap/stats.

| NOTE | You must shutdown all virtual machines before deactivating a swap file. Entering a vmkfstools –y command returns an error message if any virtual machines are powered on. |

Migrate a VMFS from VMFS-1 to VMFS-2

–T --tovmfs2

This command converts the VMFS volume on the specified partitions from VMFS-1 to VMFS-2, while preserving all files in the volume. ESX Server’s locking mechanism attempts to ensure that no remote ESX Server or local process is accessing the VMFS volume that is being converted.

| NOTE | If you have an active swap partition, deactivate it before running this command. Deactivate swap through the VMware Management Interface and reboot your server. After this vmkfstools –T command completes, you can reactivate your swap file. |
This conversion may take several minutes. When your prompt returns, the conversion is complete.

NOTE In ESX Server 2.5, private VMFS volumes are deprecated. If you have an existing VMFS version 1 (VMFS-1) private volume, the newly created VMFS-2 volume’s access mode is changed to public.

Before starting this conversion, check the following:

- Back up the VMFS-1 volume that is being converted.
- Make sure no virtual machines are powered on using this VMFS-1 volume.
- (SAN only) Make sure no other ESX Server is accessing this VMFS-1 volume.
- (SAN only) Make sure this VMFS-1 volume is not mounted on any other ESX Server.

Caution The VMFS-1 to VMFS-2 conversion is a one-way process. After the VMFS volume is converted to VMFS-2, you cannot revert to a VMFS-1 volume.

NOTE The first time you access a newly converted VMFS-2 volume, the access will be slow because of internal volume consistency checking.

Examples Using vmkfstools

This section includes examples using the `vmkfstools` command with the different options described previously.

Create a new file system

```
vmkfstools -C vmfs2 -b 2m -n 32 vmhba1:3:0:1
```

This example illustrates creating a new VMFS version 2 (vmfs2) on the first partition of target 3, LUN 0 of SCSI adapter 1. The file block size is 2MB and the maximum number of files is 32.

Extends the new logical volume by spanning two partitions

```
vmkfstools -Z vmhba0:1:2:4 vmhba1:3:0:1
```

This example illustrates extending the new logical file system by adding the 4th partition of target 1 (and LUN 2) of vmhba adapter 0. The extended file system supports a maximum of 64 (2 X 32) files, and spans two partitions — `vmhba1:3:0:1` and `vmhba0:1:2:4`.
You can address the file system by using the name of its head partition, for example, vmhba1:3:0:1.

Names a VMFS volume

vmkfstools -S mydisk vmhba1:3:0:1

This example illustrates assigning the name of mydisk to the new file system.

Creates a new VMFS virtual disk file

vmkfstools -c 2000m mydisk:rh6.2.vmdk

This example illustrates creating a 2GB VMFS file with the name of rh6.2.vmdk on the VMFS volume named mydisk. The rh6.2.vmdk file represents an empty disk that can be accessed by a virtual machine.

Imports the contents of a virtual disk to the specified file on a SCSI device

vmkfstools -i ~/vms/nt4.vmdk vmhba0:2:0:0:nt4.vmdk

The example illustrates importing the contents of a virtual disk (which contains Windows NT 4.0) from the service console's file system to a file named nt4.vmdk on target 2 of SCSI adapter 0.

Configure a virtual machine to use this virtual disk by adding the following lines to its configuration file:

```
scsi0.virtualDev = vmxbuslogic
scsi0:0.present = TRUE
scsi0:0.name = vmhba0:2:0:0:nt4.vmdk
```

Migrate virtual machines to VMware GSX Server or VMware Workstation, then back to VMware ESX Server

This example illustrates migrating a virtual machine's virtual disk file from ESX Server to VMware GSX Server or VMware Workstation, and migrating the virtual disk back to ESX Server.

```
vmkfstools -e winXP.vmdk vmhba0:6:0:1:winXP.vmdk
```

NOTE

The examples, illustrating the -e and -i options, result in the export or import of a virtual disk.

The command exports the winXP.vmdk virtual disk file to one or more .vmdk files, maximum size 2GB, that you can use as a virtual disk in a virtual machine on GSX Server or Workstation. The resultant winXP.vmdk file(s) can reside on a VMFS volume, or an /ext2, /ext3, or NFS file system.
The following example imports a GSX Server or Workstation virtual disk file into the VMFS volume on the specified SCSI device:

```
vmkfstools -i winXP.vmdk vmhba0:6:0:1:winXP.vmdk
```

By contrast, if you are importing directly into a raw partition, the example becomes:

```
vmkfstools -i winXP.vmdk vmhba0:6:0:1
```

Lists the files on the VMFS of the specified device
```
vmkfstools -l vmhba0:2:0:0
```

This command illustrates listing the contents of the file system, including redo logs, virtual disk files, and swap files on target 2 of SCSI adapter 0.

Accessing Raw SCSI Disks

You can access raw disks directly or use the `vmkfstools -r` command to map them to files on VMFS-2 volumes. After this mapping is established, you access the raw disk or partition like a normal file. For information about this mapping, see “Using vmkfstools” on page 249, in particular, the `vmkfstools -r` option.

NOTE See also the VMware technical note ESX Server Raw Device Mapping, available at www.vmware.com/support/resources/esx_resources.html.

Using a Physical Disk in a Virtual Machine

For the virtual machine to access a physical disk or LUN, you must add the disk to the virtual machine. This example assumes that the virtual machine’s first disk is a virtual disk and you are adding the physical disk as the second disk.

If you want the virtual machine’s first disk to be a physical disk, see “Creating a New Virtual Machine” on page 39 and select **System LUN/Disk** for your virtual disk.

To configure the virtual machine to use a physical disk

1. Log into the VMware Management Interface as the user who owns the virtual machine or as the root user.

 The **Status Monitor** appears.

2. Click the arrow to the right of the terminal icon () for the virtual machine you want to change and choose **Configure Hardware**.
The **Hardware** tab for this virtual machine appears.

3. Click **Add Device** to start the Add Device wizard.

4. Click **Hard Disk**.

 The Virtual Disk Type page appears.

5. Click **System LUN/Disk** to allow the virtual machine to access a physical disk stored on a LUN.
6 Specify the following:
 a Select **Use Metadata** to enable access to the disks metadata file information.
 b Choose the **Metadata File Location**.
 c Enter a name in the **Metadata File Name** field.
 d Select the appropriate SCSI ID in the Virtual SCSI Node list.
 e Choose the **Compatibility** of the guest operating system:

 Physical – Gives the guest operating system direct disk access.
 Virtual – Allows you to choose a disk mode for the guest operating system.

7 Click **OK** to add the disk.

Determining SCSI Target IDs

To assign SCSI disks to a virtual machine, you need to know which controller the drive is on and what the SCSI target ID of the controller is. This section helps you determine these values without physically looking at the SCSI target ID settings on the drives.

SCSI disks can be accessed by local SCSI adapters or on a SAN by Fibre Channel adapters. Descriptions of SCSI adapters in this section, also apply to Fibre Channel adapters, although they are not explicitly mentioned.

On a standard Linux system, or for a VMware service console that has SCSI or Fibre Channel (FC) controllers assigned to the service console rather than the VMkernel, information on attached SCSI devices, including SCSI target IDs is available in the boot log (usually `/var/log/messages`), or from examining `/proc/scsi/scsi`.

Information about the SCSI controllers assigned to the VMkernel and about the devices attached to these controllers is available in the `/proc/vmware/scsi` directory when the VMkernel and the VMkernel device module(s) for the SCSI controller(s) have been loaded.

Each entry in the `/proc/vmware/scsi` directory corresponds to a SCSI controller assigned to the VMkernel. For example, assume you issued a `vmkload_mod` command with the base name `vmhba` and a single SCSI controller was found.

To identify the controller, type this command:

```
ls -l /proc/vmware/scsi
```

The output of the `ls` command is:

```
total 0
dr-xr-xr-x 2 root root  0 Jun 22 12:44 vmhba0
```
Each SCSI controller's subdirectory contains entries for the SCSI devices on that controller, numbered by SCSI target ID and LUN (logical unit number). Run `cat` on each target ID:LUN pair to get information about the device with that target ID and LUN. For example, type this command:

```
cat /proc/vmware/scsi/vmhba0/1:0
```

The following information is displayed:

```
Vendor: SEAGATE Model: ST39103LW Rev: 0002
Type: Direct-Access ANSI SCSI revision: 02
Size: 8683 Mbytes
Queue Depth: 28

Partition Info:
Block size: 512
Num Blocks: 17783240

    num: Start    Size  Type
      4:   1 17526914  fb

Partition 0:
  VM   11
  Commands  2
  Kbytes read  0
  Kbytes written  0
  Commands aborted  0
  Bus resets  0
Partition 4:
  Commands  336
  Kbytes read  857
  Kbytes written  488
  Commands aborted  0
  Bus resets  0
```

This information helps you determine the SCSI target ID to use in the storage configuration page, as displayed by the VMware Management Interface. See “Configuring Storage: Disk Partitions and File Systems” on page 196.

Sharing the SCSI Bus

Normally, VMware ESX Server enforces locking and does not allow two virtual machines to access the same virtual disk (VMFS file) at the same time. If a second virtual machine tries to access a VMFS file, it gets an error and does not power on.

It is often useful to have more than one virtual machine share a disk to provide high availability. This configuration is commonly used for disk-based failover, in which one machine takes over running an application when the primary machine fails. The data required for the application is typically stored on a shared disk, so the backup machine
can immediately access the necessary data when the failover occurs. See “Configuration for Clustering” on page 279 for information on clustering with ESX Server.

The bus sharing setting is used to determine whether virtual machines are allowed to access the same virtual disk simultaneously.

Setting Bus Sharing Options

Use the VMware Management Interface to change the bus sharing settings for each virtual machine that will access the same virtual disk simultaneously.

There are three bus sharing options:

- **None** – Disks cannot be shared by other virtual machines.
- **Virtual** – Disks can be shared by virtual machines on same server.
- **Physical** – Disks can be shared by virtual machines on any server.

To enable sharing of virtual disks, choose **Virtual** or **Physical**. All virtual disks on the specified virtual bus will be sharable and have the specified mode.

- **Virtual** bus sharing – Only virtual machines on the same physical machine will be able to share disks. This setting allows for a “cluster-in-a-box” configuration, in which all members of a high-availability cluster are on the same physical machine. This setup is useful for providing high availability when the likely failures are due to software or administrative errors.

- **Physical** bus sharing – Virtual machines on different physical machines will be able to share disks. In this case, the VMFS holding the virtual disks must be on a physically shared disk, so all of the physical machines can access it. This setup is useful for providing high availability when the likely failures also include hardware errors.

When a shared disk is used for high availability, the current machine running the application and using the shared data often reserves the disk using a SCSI command.

Also, if the bus sharing is **Physical**, commands that reserve, reset or release a shared virtual disk are transmitted through to the physical disk, so other machines sharing the disk can properly detect when a virtual disk has been reserved or reset.

When you are sharing disks among virtual machines across physical machines for high availability purposes, it is often best to put only a single VMFS with a single virtual disk on each shared disk, that is, have only one virtual disk per physical disk. In such a configuration, each virtual disk can be reserved and released independently.
To change the bus sharing setting

1. Log into the management interface as the appropriate user and be sure the virtual machine you want to configure is powered off.

2. Point to the terminal icon for the virtual machine you want to configure and click Configure Hardware.

3. Click Edit next to the appropriate SCSI controller.

4. Choose the bus sharing setting you want from the drop-down list, and click OK.

Using Storage Area Networks with ESX Server

VMware ESX Server can be used effectively with storage area networks (SANs). ESX Server supports Qlogic and Emulex host bus adapters, which allow an ESX Server computer to be connected to a SAN and to see the disk arrays on the SAN.

The SCSI configuration information contained in this section also applies to FC adapters, but FC adapters may require additional configuration as well.

For information on supported SAN hardware, download the VMware ESX Server SAN Compatibility List from the VMware Web site at http://www.vmware.com/support/resources/esx_resources.html.

Understanding Storage Arrays

Large storage systems (also known as disk arrays) combine numerous disks into arrays for availability and performance. Typically, a collection of disks is grouped into a Redundant Array of Inexpensive Disks (RAID) array to protect the data by eliminating disk drives as a potential single point of failure.

Disk arrays carve the storage RAID set into logical units (LUNs) that are presented to the server in a manner similar to an independent single disk. Typically, LUNs are few in number, relatively large, and fixed in size.

You can create LUNs with the storage management application of your disk array.

Installing ESX Server with Attached SANs

With ESX Server 2.5, you can install the system on a SAN and boot from the SAN. This is described in the VMware SAN Configuration Guide, available at http://www.vmware.com/support/pubs/esx_pubs.html.

If you are not installing ESX Server so that it can be booted from a SAN, VMware recommends that FC adapters are dedicated exclusively to the virtual machines. Even
though these FC adapters are dedicated to virtual machines, the LUNs on the SANs are visible to system management agents on the service console.

Configuring VMFS Volumes on SANs

Make sure that only one ESX Server system has access to the SAN while you are using the VMware Management Interface to configure the SAN and format the VMFS-2 volumes.

NOTE You can have only one VMFS volume per LUN.

After you finish the configuration, make sure all partitions on the physically shared SAN disk are set for public or shared access for access by multiple ESX Server systems. See “VMFS Accessibility” on page 248.

For information on configuring SANs, scanning for LUNs, and setting persistent bindings through the VMware Management Interface, see “Storage Management” on page 196.

Scanning for Devices and LUNs

ESX Server scans for devices, and LUNs on these devices, whenever a Fibre Channel driver is loaded. You can manually initiate a scan through the VMware Management Interface or by using the `cos-rescan.sh` command.

VMware recommends using `cos-rescan.sh`, because it is easier to use with certain FC adapters than `vmkfstools`.

To use `cos-rescan.sh`, enter the command at a shell prompt.

You may want to rescan devices or LUNs whenever you add a new disk array to the SAN or create new LUNs on a disk array. You may also want to rescan LUNs when you change the LUN masking on a disk array.

NOTE If you are using multipathing with multiple FC HBAs, run this command on all of the FC HBAs. If, after your rescan, you see new LUNs and they have VMFS volumes, you will see the appropriate subdirectories when you view the contents of the `/vmfs` directory.

Changing VMkernel Configuration Options for SANs

To use all storage devices on your SAN, you might need to change some VMkernel configuration options.
To change VMkernel configuration options

1. Log in to the VMware Management Interface as root.

The Status Monitor appears.
2. Click the Options tab.
3. Click Advanced Settings.
4. To change an option, click the current value.
5. Enter the new value in the dialog box and click OK.

For information on changing these settings, see “Advanced Settings” on page 205.

Detecting All LUNs

By default, the VMkernel scans for only LUN 0 to LUN 7 for every target. If you are using LUN numbers larger than 7 you must change the setting for the DiskMaxLUN field from the default of 8 to the value that you need. For example, if you now have LUN numbers 0 to 15 active, set this option to 16. Currently, an ESX Server machine can see a maximum of 128 LUNs over all disk arrays on a SAN.

By default, the VMkernel is configured to support sparse LUNs, that is, a case where some LUNs in the range 0 to N-1 are not present, but LUN N is present. If you do not need to use such a configuration, change the DiskSupportSparseLUN field to 0. This change decreases the time needed to scan for LUNs.

The DiskMaskLUNs configuration option allows the masking of specific LUNs on specific HBAs. Masked LUNs are not touched or accessible by the VMkernel, even during initial scanning. The DiskMaskLUNs option takes a string comprised of the adapter name, target ID and comma-separated range list of LUNs to mask. The format is as follows:

<adapter>:<target>:<comma_separated_LUN_range_list>;

For example, you want to mask LUNs 4, 12, and 54-65 on vmhba 1 target 5, and LUNs 3-12, 15, and 17-19 on vmhba 3 target 2. To accomplish this, set the DiskMaskLUNs option to the following:

"vmhba1:5:4,12,54-65;vmhba3:2:3-12,15,17-19;"

NOTE
LUN 0 cannot be masked.

The DiskMaskLUNs option subsumes the DiskMaxLUN option for adapters that have a LUN mask. Continuing the preceding example, there are four adapters, vmhba0, vmhba1, vmhba2, and vmhba3, and the DiskMaxLUN option is set to 8.
In this example, `vmhba0` and `vmhba2` only scan LUNs 0-7, but `vmhba1` and `vmhba3` scan all LUNs that are not masked, up to LUN 255, or the maximum LUN setting reported by the adapter, whichever is less.

For administrative or security purposes, use LUN masking to prevent the server from seeing LUNs that it doesn’t need to access. Refer to your documentation on disk arrays for more information.

Using IBM FASTT Disk Arrays

An IBM FASTT disk array sometimes returns vendor-specific status codes that ESX Server interprets as errors. These status codes are temporary indicating, for example, that the firmware has been upgraded or that the battery for the disk cache needs to be charged. ESX Server, in its default configuration, might interpret these status codes to mean that a LUN exists but is not accessible.

Avoid this problem by using a special ESX Server configuration option. Log in to the management interface as the root user, click **Advanced Settings**, and click **VMkernel Configuration**. Find the option `DiskRetryUnitAttention` and make sure it is enabled (the default).

With this option enabled, ESX Server retries SCSI commands when these vendor-specific status codes are received.

Using IBM FASTT disk arrays with ESX Server requires additional configuration options that are described in more detail in the VMware Knowledge Base at http://kb.vmware.com/vmtnkb/supportcentral/supportcentral.do?id=m1.

Troubleshooting SAN Issues with ESX Server

You can view LUNs through the VMware Management Interface or view the output of `ls /proc/vmware/scsi/<FC_SCSI_adapter>`. If the output differs from what you expect, check the following:

- **DiskMaxLUN** – Maximum number of LUNs per `vmhba` that are scanned by ESX Server.

 View and set this option through the VMware Management Interface (Advanced Settings in the Options page) or through `/proc/vmware/config/Disk`.

- **DiskSupportSparseLUN** – If this option is on, ESX Server scans past any missing LUNs. If this option is off, ESX Server stops scanning for LUNs if any LUN is missing.

 View and set this option through the VMware Management Interface (Advanced Settings in the Options page) or through `/proc/vmware/config/Disk`.
LUN masking – With LUN masking, each LUN is assigned and accessed by a specific list of connections. Be sure that LUN masking is implemented properly and that the LUNs are visible to the HBAs on ESX Server.

Zoning – Limits access to specific storage devices and increases security and decreases traffic over the network. If you use zoning, be sure that zoning on the SAN switch is set up properly and that all vmhba and the controllers of the disk array are in the same zone.

Storage controller – If a disk array has more than one storage controller, make sure that the SAN switch has a connection to the controller that owns the LUNs you want to access. On some disk arrays, one controller is “active” and the other controller is “passive” until there is a failure. If you are connected to the wrong controller, you might not see the expected LUNs; or you might see the LUNs, but might get errors when trying to access them.

For more information on using SANs with ESX Server, check the Knowledge Base on the VMware Web site at http://kb.vmware.com/vmtnkb/supportcentral.

Using Persistent Bindings

You can specify persistent bindings for your Fibre Channel HBAs. With persistent binding, ESX Server assigns specific target IDs to specific FC SCSI devices. This target ID association is retained from reboot to reboot unless changed by you.

Persistent binding is useful if you are using raw disks with ESX Server. A raw disk is directly mapped to a LUN or physical disk drive on your storage area network (SAN). ESX Server directly accesses the data on this disk as a raw device (and not as a file on a VMFS volume).

You can persist bindings through the VMware Management Interface or through the service console. For information on persisting bindings, see “Storage Management” on page 196.

Determining Target IDs Through the Service Console

To use the service console, type cat /proc/scsi/<FC_SCSI_driver>/<adapter_number> to determine the target IDs.

Example Output for an Emulex HBA

#cat /proc/scsi/<FC_SCSI_driver>/<adapter_number>
...
...
Portname: 10:00:00:00:c9:32:23:49 Nodename: 20:00:00:00:c9:32:23:49
Link Up – Ready:
 PortID 0x21900
 Fabric
 Current speed 1G
lpfc0t00 DID 021500 WWPN 20:00:00:60:16:3c:ad:13 WWNN 20:00:00:60:16:3c:ad:13

where:
Portname: 10:00:00:00:c9:32:23:49 Adapter port name
Nodename: 20:00:00:00:c9:32:23:49 Adapter node name
lpfc0t00 0 (lpfc0) is the host bus adapter and 00 is the target
WWPN 20:00:00:60:16:3c:ad:13 Target world wide port name (WWPN)
WWNN 20:00:00:60:16:3c:ad:13 Target world wide node name (WWNN)

Example Output for a QLogic HBA

 # cat /proc/scsi/<FC_SCSI_driver>/<adapter_number>
 .
 .
 .
 SCSI Device Information:
 scsi-qla0-adapter-node=200100e08b229b53;
 scsi-qla0-adapter-port=210100e08b229b53;
 scsi-qla0-target-0=20000060163cad13;
 .
 .
 .

where:
200100e08b229b53 Adapter world wide port name
 (adapter-port)
210100e08b229b53 Adapter world wide node name
 (adapter-node)
qla0 0 is the host bus adapter
target-0 0 is the target
20000060163cad13 World wide port name
pbind.pl Script

The `pbind.pl` script is located in the `/usr/sbin` directory. As root, type `pbind.pl` to see the list of options for this command.

Table 9-1. pbind.pl options

<table>
<thead>
<tr>
<th>pbind.pl Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pbind.pl -A</code></td>
<td>Persists bindings for all adapters.</td>
</tr>
<tr>
<td><code>pbind.pl -D</code></td>
<td>Deletes bindings for all adapters.</td>
</tr>
<tr>
<td><code>pbind.pl -a <path></code></td>
<td>Adds bindings for all adapters specified in <code><path></code>.</td>
</tr>
<tr>
<td><code>pbind.pl -d <path></code></td>
<td>Deletes bindings for all adapters specified in <code><path></code>.</td>
</tr>
<tr>
<td><code>pbind.pl -r</code></td>
<td>Shows you the result without making any change.</td>
</tr>
<tr>
<td><code>pbind.pl -s</code></td>
<td>Displays supported adapters and their paths.</td>
</tr>
<tr>
<td><code>pbind.pl -q</code></td>
<td>Quiet mode; suppresses normal status output.</td>
</tr>
</tbody>
</table>

Examples Using the pbind.pl Script

This example adds bindings for all QLogic 2200 hosts.

`pbind.pl -a /proc/scsi/qla2200/`

This example adds binding for QLogic 2200 host 2.

`pbind.pl -a /proc/scsi/qla2200/2`

NOTE

Typing a wildcard character, for example, `pbind.pl -a /proc/scsi/qla2200/*` is invalid.

Using Multipathing in ESX Server

ESX Server 2.5 includes multipathing support to maintain a constant connection between the server machine and the storage device in case of the failure of a HBA, switch, storage controller (or storage processor; abbreviated as SP in the following diagram), or a Fibre Channel cable. Unlike previous versions of ESX Server, this version of multipathing support does not require specific failover drivers.
Figure 9-1. HBA failover paths

In the diagram in Figure 9-1, there are multiple, redundant paths from each server to the storage device. For example, if HBA1, or the link between HBA1 and the Fibre Channel (FC) switch breaks, HBA2 takes over and provides the connection between the server and the switch. This process is called HBA failover.

Similarly, if SP1, or the link between SP1 and the switch breaks, SP2 takes over and provides the connection between the switch and the storage device. This process is called SP failover. VMware ESX Server 2.5 provides both HBA and SP failover with its multipathing feature. (SP failover may not be supported by all disk arrays.)

For information on supported SAN hardware, download the VMware ESX Server SAN Compatibility List from the VMware Web site at http://www.vmware.com/support/resources/esx_resources.html.

Choosing Path Management Tools

ESX Server allows you to configure and manage multipath access to storage devices through both the Management Interface and the Service Console. The following sections describe how to manage multipathing in the Service Console with the `vmkmultipath` command. For instructions on configuring multipathing with the Management Interface, see “Viewing Failover Paths Connections” on page 201.
Viewing the Current Multipathing State

You can view your current multipathing configuration with the `vmkmultipath -q` command. The `-q` option displays the state of all or selected paths recognized by ESX Server. The report displayed by `vmkmultipath` shows the current multipathing policy for a disk and the connection state and mode for each path to the disk.

The report identifies disks by their canonical name. The canonical name for a disk is the first path ESX Server finds to the disk. Because ESX Server begins its scans at the first controller and the lowest device number, the first path (and the canonical name of the disk) is the path with the lowest number controller and device number. For example, if the paths to a disk are `vmhba0:0:2`, `vmhba1:0:2`, `vmhba0:1:2` and `vmhba1:1:2`, the canonical name of the disk is `vmhba0:0:2`.

To see a report for all disks, type:

```bash
# vmkmultipath -q
```

Below is a typical report displayed for a configuration of ESX Server managing a SAN.

```
Disk and multipath information follows:

Disk vmhba0:0:1 (34,326 MB) has 6 paths. Policy is fixed.
vmhba0:0:1 on (active, preferred)
vmhba0:1:1 on
vmhba0:2:1 on
vmhba1:0:1 on
vmhba1:1:1 on
vmhba1:2:1 on

Disk vmhba0:0:2 (100,319 MB) has 6 paths. Policy is fixed.
vmhba0:0:2 on (active, preferred)
vmhba0:1:2 on
vmhba0:2:2 on
vmhba1:0:2 on
vmhba1:1:2 on
vmhba1:2:2 on

Disk vmhba0:0:4 (0 MB) has 6 paths. Policy is fixed.
vmhba0:0:4 on (active, preferred)
vmhba0:1:4 on
vmhba0:2:4 on
vmhba1:0:4 on
vmhba1:1:4 on
vmhba1:2:4 on

Disk vmhba0:0:6 (0 MB) has 6 paths. Policy is fixed.
vmhba0:0:6 on (active, preferred)
vmhba0:1:6 on
vmhba0:2:6 on
```
In this system configuration, the disk \texttt{vmbha0:0:2} has a “fixed” policy. Six paths to the disk are recognized by ESX Server. The list of paths indicates the different physical routes by which the disk can be accessed.

The status of each path to the disk is indicated in the second column. The report lists each path as \texttt{on}, \texttt{off}, or \texttt{dead}:

- \texttt{on} – Indicates that the path is functional and that data is being transferred successfully.
- \texttt{off} – Indicates that this path has been deliberately turned off.
- \texttt{dead} – Indicates that the path should be active, but the software cannot connect to the disk through this path.

The report lists the mode of each path in the third column:

- \texttt{preferred} – Identifies the primary path ESX Server uses to access the disk.
- \texttt{active} – Identifies the actual path used by ESX Server to access the disk.

The preferred mode is used only by ESX Server to access fixed policy disks. If a disk has a most-recently used (MRU) policy, the preferred mode is displayed in the report above, but ESX Server does not use it to access the disk.

\textbf{NOTE} Reports returned by \texttt{vmkmultipath} list paths to both physical disks and storage controllers. In the example above, the “disks” listed as having no space available are actually storage processors.

You can display the multipathing status for a single disk by specifying it in the query command. For example, to display the report for disk \texttt{vmbha0:0:6}, type:

\begin{verbatim}
vmkmultipath -q vmbha0:0:6
\end{verbatim}

\section*{Setting Your Multipathing Policy for a LUN}

You can specify the default policy for the multipathing feature. There are two policies:

- \texttt{fixed} – ESX Server always uses the preferred path to the disk. If it cannot access the disk through the preferred path, it tries the alternate paths. Fixed is the default policy for active/active storage devices.
Type the following command to select the fixed policy for a disk, in this example, vmhba0:0:0.

vmkmultipath -s vmhba0:0:0 -p fixed

NOTE Use the MRU path policy for disks on active/passive storage devices.

Type the following command to select the mru policy for a disk, in this example, vmhba0:0:0.

vmkmultipath -s vmhba0:0:0 -p mru

You can select a different policy for each disk.

NOTE Use the MRU policy for disks on active/passive storage devices. Using the fixed policy can cause path thrashing and significantly reduced performance.

Specifying Paths

Use the `vmkmultipath` command to disable and enable paths, set the active path, and set the preferred path, as illustrated in the following examples. Configure paths by setting path modes with the `-s` option.

Enabling a Path

Use the `-e` option to enable paths with `vmkmultipath`. In this example, you are enabling the path from controller vmhba1:0:1 to disk vmhba0:0:1.

vmkmultipath -s vmhba0:0:1 -e vmhba1:0:1

Disabling a Path

Use the `-d` option to disable paths with `vmkmultipath`. In this example, you are disabling the path from controller vmhba1:0:1 to disk vmhba0:0:1.

vmkmultipath -s vmhba0:0:1 -d vmhba1:0:1

Setting the Preferred Path

Use the `-r` option to specify the preferred path to a disk. In this example, you are setting as preferred the path from controller vmhba1:0:1 to disk vmhba0:0:1.

vmkmultipath -s vmhba0:0:1 -r vmhba1:0:1
NOTE ESX Server ignores the preferred path when the multipathing policy is set to mru.

Saving Your Multipathing Settings

Your multipathing settings are saved when shutting down ESX Server. However, VMware suggests that you run the following command, as root, to ensure your settings are saved, in case of an abnormal shutdown.

```
# /usr/sbin/vmkmultpath -S
```

By running this command, your multipathing settings are restored automatically when you restart your system.

In Case of Failover

When a cable is pulled, I/O freezes for approximately 30-60 seconds, until the SAN driver determines that the link is down, and failover occurs. During that time, the virtual machines (with their virtual disks installed on a SAN) might appear unresponsive, and any operations on the /vmfs directory might appear to hang. After the failover occurs, I/O should resume normally.

Even though ESX Server’s failover feature ensures high availability and prevents connection loss to SAN devices, all connections to SAN devices can be lost due to disastrous events, that include multiple breakages.

If all connections to the storage device are not working, the virtual machines will begin to encounter I/O errors on their virtual SCSI disks. Also, operations in the /vmfs directory may eventually fail after reporting an “I/O error”.

Settings for QLogic Adapters

For QLogic cards, you can adjust the PortDownRetryCount value in the QLogic BIOS. This value determines how quickly a failover occurs when a link goes down.

If the PortDownRetryCount value is \(<n>\), a failover typically takes a little longer than \(<n>\) multiplied by 2 seconds. A typical recommended value for \(<n>\) is 15, so in this case, failover takes a little longer than 30 seconds.

For more information on changing the PortDownRetryCount value, refer to your QLogic documentation.

For the Windows 2000 and Windows Server 2003 guest operating systems, you can increase the standard disk TimeOutValue so that Windows will not be extensively disrupted during failover.

To increase the TimeOutValue

1. Select Start > Run, type `regedit.exe`, and click OK.
2. In the left panel hierarchy view, double-click HKEY_LOCAL_MACHINE, System, CurrentControlSet, Services, and Disk.
3. Select the TimeOutValue and set the Data value to x03c (hexadecimal) or 60 (decimal).

 By making this change, Windows waits at least 60 seconds, for delayed disk operations to complete, before generating errors.
4. Click OK and exit the Registry Editor program.
In this chapter, the following sections describe how to use VMware ESX Server to provide clustered virtual machines in a variety of environments.

- “What Is Clustering?” on page 279
- “Clustering Virtual Machines” on page 280
- “Network Load Balancing” on page 302

What Is Clustering?

Clustering provides a service through a group of servers to get high availability, scalability, or both.

For example, all nodes in a cluster serve a Web site that serves static content. The main gateway distributes requests to all nodes according to load. It redirects requests to remaining nodes if one crashes. This gives better availability and better performance. Network Load Balancing in Windows 2000 provides such a service.

Another example of a more complex configuration: A single node serves a database. If that node crashes, the clustering software must restart the database on another node. The database application knows how to recover from a crash. In normal operation, other nodes are used for running other applications. Microsoft Cluster Service and Veritas Cluster Service provide such a service.
Applications that Can Use Clustering

To take advantage of clustering services, applications need to be able to recognize clustering.

Such applications can be:

- Stateless, as are Web servers and VPN servers.
- With built-in recovery features, like those in database servers, mail servers, file servers, or print servers.

Clustering Software

Available clustering software includes:

- Microsoft Clustering Service (MSCS)
 Provides fail-over support for applications such as databases, file servers, and mail servers
- Microsoft Network Load Balancing (NLB)
 Load balances incoming IP traffic across a cluster of nodes for applications such as Web servers and terminal services.
- Veritas Clustering Service (VCS)

Clustering Hardware

A typical clustering setup includes:

- Disks that are shared between nodes. Needed if the application uses dynamic data as mail servers or database servers do.
 The shared disks can be shared SCSI disks or a storage area network using Fibre Channel.
- Extra network connectivity between nodes for monitoring heartbeat status.
- A method for redirecting incoming requests.

Clustering Virtual Machines

ESX Server hosts can utilize clustering services to enable the clustering of virtual machines that are running on ESX Server hosts. Clustering virtual machines allows the virtual machines to share data or applications across multiple virtual machines. Use of clustering services in virtual machines provides high availability with less hardware (such as machines and network adapters).
Clustering Software in Virtual Machines

Network Load Balancing, Microsoft Clustering Service, and Veritas Clustering Service run without modification in virtual machines on ESX Server 2.5.

Clustering Scenarios

Several scenarios are possible for clustering in virtual machines.

Cluster in a Box

This scenario provides simple clustering to deal with software crashes or administrative errors. The cluster consists of multiple virtual machines on a single physical machine. It supports shared disks without any shared SCSI hardware. It supports heartbeat network without any extra network adapters.

![Figure 10-1. Two-node cluster on a single physical machine; each node running clustering software.](image)

Cluster Across Boxes

This type of cluster consists of virtual machines on multiple physical machines. The virtual disks are stored on shared, physical disks, so all virtual machines can access them. Using this type of cluster, you can deal with the crash of a physical machine.
Consolidating Clusters

This type of cluster combines features of the previous two types. For example, you can consolidate four clusters of two machines each to two physical machines with four virtual machines each for protection from hardware and software failures.

Cost-Effective Standby Host

Provide a standby host for multiple physical machines on one standby box with multiple virtual machines.
Figure 10-4. Standby host using three virtual machines on a single physical machine; all running clustering software.

Configuring Virtual Machine Clusters with Shared Disks

To create a set of clustered virtual machines, configure each set with the following:

- **Primary virtual SCSI host adapter** with one SCSI virtual disk.
- At least two virtual network adapters:
 - **Public network adapter** connected to *vmnicx* (that is, to *vmnic0* or higher). A *vmnic* is a virtual machine device that uses a network adapter dedicated to the virtual machines.
 - **Private network adapter** connected to *vmnicx* (that is, to *vmnic0* or higher) or to *vmnet_x* (that is, to *vmnet_0* or higher). This device selection must match in all virtual machines in a cluster set. This is the network adapter that the clustering service will use to monitor the heartbeat between nodes.
- Remaining default virtual machine devices (such as the CD-ROM drive and the floppy disk drive).

In addition to the above devices, the following is required for shared storage:

- A secondary virtual SCSI host adapter
- One or more virtual disks that will be shared attached to the secondary SCSI host adapter.
QLogic and Emulex HBAs in a clustered environment must be dedicated to VMkernel.

Important Notes

- Each virtual machine by default has five PCI slots available. In this configuration (two network adapters and two SCSI host bus adapters), four of these slots are used. This leaves one more PCI slot for a third network adapter if needed.
- VMware virtual machines emulate only the SCSI-2 disk reservation protocol and do not support applications using SCSI-3 disk reservations. However, all popular clustering software (including MSCS and VCS) currently uses SCSI-2 reservations.
- You may cluster only two nodes.
- You cannot use VMotion with clustered virtual machines.

Two Node Cluster with Microsoft Cluster Service on a Single ESX Server Machine

This procedure creates a two-node cluster using Microsoft Cluster Service on a single ESX Server machine and uses the following:

- Portsaid = host name of node 1 of the cluster
- Kena = host name of node 2 of the cluster
- Arish = public host name of the cluster
- sharedfs = VMFS volume label of the shared storage
- vms = VMFS volume label of the local storage

NOTE Virtual disks stored on vms and sharedfs can also be stored on the same partition. In this case, use the partition label on which these virtual disks reside.

Creating the First Node’s Base Virtual Machine

To ease the task of creating each node in the cluster, create a base virtual machine and clone that virtual machine for each node in the cluster. Create the virtual machine, configure the virtual hardware, and install the operating system. After those tasks have all been completed, the virtual machine can be cloned easily to create each node in the cluster.
To create a base virtual machine in the first node

1. Access the VMware Management Interface at: https://<hostname>/
2. Log on as the user who will own the virtual machine.
3. Click Add Virtual Machine.

<table>
<thead>
<tr>
<th>NOTE</th>
<th>This example uses Microsoft Windows 2000 Server as the guest operating system. You can use another Windows operating system that supports Microsoft Cluster Service.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Change the Display Name field to describe the virtual machine, for example, MSCS Node 1 (Portsaid).</td>
</tr>
<tr>
<td>6</td>
<td>Change the Location of the virtual machine configuration file to /home/<user>/vmware/cluster1/cluster1.vmx.</td>
</tr>
<tr>
<td>7</td>
<td>Click Next.</td>
</tr>
<tr>
<td>8</td>
<td>Select the number of processors you want the guest operating system to use (up to 2).</td>
</tr>
<tr>
<td>9</td>
<td>Change Memory to show the amount of RAM you want to allocate to this virtual machine and click Next.</td>
</tr>
<tr>
<td>10</td>
<td>Click Blank to create a new virtual disk.</td>
</tr>
<tr>
<td>11</td>
<td>Choose the VMFS volume on which you want to store the virtual disk.</td>
</tr>
<tr>
<td>12</td>
<td>Give the virtual disk image a unique name, for example, cluster1.vmdk.</td>
</tr>
<tr>
<td>13</td>
<td>If you need a primary SCSI disk larger than 4GB, enter the value in the Capacity field.</td>
</tr>
<tr>
<td>14</td>
<td>Choose the virtual SCSI node to which you want to attach the virtual disk.</td>
</tr>
<tr>
<td>15</td>
<td>Click Persistent to verify the disk mode and click Next.</td>
</tr>
</tbody>
</table>

By default, the disk mode is set to Persistent.

You have successfully created the virtual machine.

The hardware tab for this virtual machine appears. From that tab, you add additional hardware devices.
Virtual Disk Configuration

You need a shared SCSI controller and shared SCSI disks for shared access to clustered services and data.

To add a shared SCSI controller and shared SCSI disks

1. Access the VMware Management Interface.
2. Click the **Hardware** tab.
3. Click **Add Device**.
4. Click **Hard disk**.
5. Click **Blank** to create a new virtual disk.
6. Choose the VMFS volume on which you want to store the virtual disk.
7. Give the virtual disk image a unique name, for example, **quorum.vmdk**.
8. Enter the appropriate value in the **Capacity** field.
9. Choose the virtual SCSI node to which you want to attach the virtual disk.

 Shared disks must be attached to a separate virtual SCSI controller.
10. Select **SCSI 1:1**.
11. Click **Persistent** to verify the disk mode and click **OK**.

 By default, the disk mode is set to **Persistent**.
12. A new virtual disk and SCSI Controller 1 are now visible on the **Hardware** tab.
13. Click **Edit** next to **SCSI Controller 1**, and change the bus sharing from **none** to **virtual**.
14. From the **Bus Sharing** drop-down list, select **virtual**, and click **OK**.

Repeat **Step 1–Step 9** to create an additional shared virtual disk using SCSI 1:2 with the filename **shared2.vmdk**.

Network Device Configuration

You need an additional virtual network adapter to be used by Microsoft Cluster Service to maintain the cluster heartbeat.

To add an additional network adapter:

1. Access the VMware Management Interface.
2. Click the **Hardware** tab.
3 Click **Add Device**.

4 Click **Network Adapter**.

5 From the **Device Binding** drop-down list choose **vmnet_0**.

 This attaches the second Ethernet adapter to a private network between the cluster nodes.

6 Click **OK**.

You have created the first cluster node virtual machine.

Installing the Guest Operating System

Now you need to install Windows 2000 Advanced Server in the virtual machine you just created.

To install Windows 2000 Advanced Server in the virtual machine

1 Insert the Windows 2000 Advanced Server CD in the ESX Server machine’s CD-ROM drive.

2 In the management interface, click the blue terminal icon next to the virtual machine’s name to launch the remote console.

3 Log on as the user who created the virtual machine or as root.

4 Click **Power On**.

5 Install Windows 2000 Advanced Server on the disk connected to **scsi0**.

6 Accept all the default options during the installation.

 Do not install the clustering service at this time.

7 When the installation is completed, install VMware Tools in the guest operating system.

Cloning the Virtual Machine

Now that you have a virtual machine with Windows 2000 Advanced Server installed, you can clone this virtual machine instead of creating virtual machines individually.

To clone the virtual machine

1 Run **sysprep.exe**, which is available on the Windows 2000 CD in the `\support\tools\deploy.cab` file.

 This strips the security ID assigned to the guest operating system and resets the machine information as well as the TCP/IP network configuration.
2 Shut down the guest operating system and power off the virtual machine.
3 Remove the Windows 2000 Advanced Server CD from the server’s CD-ROM drive.
4 On the management interface’s Overview page, click Manage Files.
5 Locate the vmfs folder and the vms folder.
 This action might take time to refresh.
6 Select the check box next to the cluster1.vmdk file.
7 Click Copy and click Paste.
8 When the copy process is complete, select the check box next to the file copy of cluster1.vmdk.
9 Click the Edit Properties button.
10 Change the filename to cluster2.vmdk.
11 Click OK.
12 Close the Manage Files window.

This concludes the cloning process. Now continue with creating the second node virtual machine

Creating the Second Node Virtual Machine

To create a new virtual machine

1 On the management interface’s Overview tab, click Add Virtual Machine.
2 Keep the default Guest Operating System selection of Microsoft Windows 2000 Server.
3 Change the Display Name field to describe the virtual machine.
 For example, use MSCS Node 2 (Kena).
4 Change the Location to home/<user>/vmware/cluster2/cluster2.vmx
5 Click Next.
6 Select the number of processors for the guest operating system to use, up to 2.
7 Change Memory to show the amount of RAM you want to allocate to this virtual machine and click Next.
8 Click Existing to attach an existing virtual disk to this virtual machine.
9 From the **Virtual Disk Image** drop-down list, choose `cluster2.vmdk`.

10 Choose the virtual SCSI node to which you want to attach the virtual disk, and click **Next**.

Virtual Disk Configuration
You need a shared SCSI controller and shared SCSI disks for shared access to clustered services and data.

To add a shared SCSI controller and shared SCSI disks

1 Click the **Hardware** tab for this virtual machine.

2 Click **Add Device**.

3 Click **Hard Disk**.

4 Add the pre-exiting quorum disk (quorum.vmdk) that you created in “**Virtual Disk Configuration**” on page 286.

5 Choose the virtual SCSI node to which you want to attach the virtual disk.

Shared disks must be attached to a separate SCSI controller. Select SCSI 1:1.

6 Click **Persistent** to verify the disk mode, and click **OK**.

By default the disk mode is set to **Persistent**.

A new virtual disk and SCSI Controller 1 are now visible on the **Hardware** tab.

7 Click **Edit** next to **SCSI Controller 1** to change the bus sharing from **none** to **virtual**.

8 From the **Bus Sharing** drop-down list select **virtual**, and click **OK**.

Repeat **Step 1–Step 7** to add an additional shared virtual disk using SCSI 1:2 with the filename `shared2.vmdk`.

Network Device Configuration
You need an additional virtual network adapter to be used by Microsoft Cluster Service to maintain the cluster heartbeat.

To add this adapter

1 Click the **Hardware** tab for this virtual machine.

2 Click **Add Device**.

3 Click **Network Adapter**.

4 From the **Device Binding** drop-down list choose `vmnet_0`.
This attaches the second Ethernet adapter to a private network between the cluster nodes.

5 Click OK.

You have created the second cluster node virtual machine.

Go to the management interface’s Overview page. The management interface should list both virtual machines and show them powered off.

Installing Microsoft Cluster Service

To install Microsoft Clustering Service

1 Start the node 1 virtual machine.

2 Follow the Windows 2000 Advanced Server mini-setup prompts to enter Advanced Server’s serial number, the host name (Portsaid), and the IP addresses.
 - For the public network adapter, enter an IP address that belongs to the physical network.
 - For the private IP address, use an address like 192.168.x.x with a class C subnet mask (255.255.255.0).

Windows automatically reboots.

3 Start the Disk Administrator and change both shared disks to basic disks.

4 Format both shared virtual disks with NTFS, if they are not formatted.

5 Assign the first shared disk to Q: (quorum) and the second disk to R:.

 If you joined this virtual machine to an existing Active Directory domain, skip to Step 10.

6 Run dcpromo.exe from the command prompt.

 This starts the Active Directory wizard.

7 Set up the current machine as a domain controller.

 For the domain name, use, for example, vmcluster.domain.com where domain.com is your DNS domain and vmcluster is your Active Directory domain. This node may be setup as a new domain tree and also a new domain forest, or it may join existing ones.

8 Make sure the DNS server is installed.

9 Set the domain permissions as mixed mode unless you plan otherwise.
10 To add a cluster services account in the domain, go to **Programs > Administrative Tools > Active Directory Users and Computers**.

11 Add an account named `cluster`, check **User cannot change password** and **Password never expires**.

12 Insert the Windows 2000 Advanced Server CD in the server’s CD-ROM drive.

13 Go to **Control Panel > Add/Remove Programs**.

14 Select **Add/Remove Windows Components**.

15 Check the **Cluster Service** component and click **Next**.

16 Follow the prompts to install the service.

17 Choose **Form a New Cluster**.

- Specify the cluster name (Arish).
- Specify the cluster IP address. This address must be on the same network as that of the vmnic0.

18 Specify the cluster service account created above.

19 Specify that both shared disks should be managed by the cluster service.

20 Indicate the shared disk (Q:) to be the quorum disk.

21 Specify which network adapter is public and which is private.

22 Stop the cluster service on the local node (from Cluster Manager, right-click the node name), so the second virtual machine can access the shared disks.

23 Start the node 2 virtual machine.

24 Start the Disk Administrator and assign the first shared disk to Q: (quorum) and the second disk to R:.

25 Start `dcpromo.exe` and add this virtual machine as a domain controller in the same domain created in **Step 7** or add it to an existing domain.

You must match the setup done in **Step 7**.

26 In the node 1 virtual machine, start the cluster service by reversing **Step 22**.

27 In the node 2 virtual machine, repeat **Step 13–Step 21** with one exception: In **Step 17**, select **Join a Cluster**.

This concludes the Microsoft Cluster Service installation and configuration.
Running Microsoft Cluster Service

Microsoft Cluster Service should operate normally in the virtual machine after it is installed.

NOTE Some disk errors are recorded in the Windows event log in normal operation. These error messages have a format similar to the following:

The driver detected a controller error on \Device\Scsi\BusLogic3

They should be reported periodically only on the passive node of the cluster and should also be reported when the passive node is taking over during a failover. The errors are reported because the active node of the cluster has reserved the shared virtual disk(s). The passive node periodically probes the shared disk and receives a SCSI reservation conflict error. This is normal operation.

Two Nodes with Microsoft Cluster Service on Separate ESX Server Machines

This procedure creates a two-node cluster in virtual machines that will run on two separate ESX Server machines. It uses the same naming conventions as in the previous procedure.

In addition, the physical shared storage is either:

- Shared SCSI
- A storage area network (SAN)

For this exercise the VMFS partition for the internal storage on each ESX Server computer is labeled *vms*. The VMFS partition for the shared storage is labeled *sharedfs*.

Each ESX Server machine must have an additional physical network adapter assigned to the virtual machines to use for the private network that monitors the heartbeat. The procedure assumes this network adapter uses the device named *vmnic1*. Connect the private network adapter to a separate network from that used by the public network adapter.

Creating the First Node’s Base Virtual Machine

Follow the procedure in “Creating the First Node’s Base Virtual Machine” on page 284, with the following changes:

- In “Virtual Disk Configuration” on page 286, in Step 8 click **Edit** next to **SCSI Controller 1** to change the bus sharing from **none** to **physical** instead of virtual. From the **Bus Sharing** drop-down list select **physical**, and click **OK**.
In “Network Device Configuration” on page 286, in Step 5 use vmnic1 instead of vmnet_0 as the device used by Ethernet Adapter 1.

Access the virtual machine menu by clicking the arrow to the right of the virtual machine icon. Choose Configure Options. Under Verbose Options, click the click here link.

Change the specifications of scsi1:1.name and scsi1:2.name to use the strict vmhba name (for example, vmhba0:1:0:1:shared1.vmdk) for the VMFS partition, rather than the VMFS name (for example, sharedfs:shared1.vmdk). The reason for this change is that if one ESX Server machine reboots while a virtual machine on the other physical machine is reserving the shared SCSI disk, ESX Server cannot read the VMFS name on the shared disk when it is loaded and initialized. If the shared virtual disk is not specified using the full vmhba name, ESX Server cannot determine the disk specified by the VMFS name and gives an error when restarting the virtual machine.

Click OK.

In addition, change the access rights of the VMFS partition where you store the shared virtual disks. By default, VMFS partitions are configured for public access. To support clustering, the VMFS partition must be configured for shared access.

To change the access settings for the VMFS partition
1. From the management interface, click the Options tab
2. Click Storage Management.
3. Identify the disk volume that contains the VMFS partition where the shared virtual disks are stored.
4. Click Edit for the disk volume.
5. From the Access Mode drop-down menu, choose Shared.
6. Click OK.

You have created the first cluster node virtual machine.

Installing the Guest Operating System
Follow the procedure in “Installing the Guest Operating System” on page 287.
Cloning the Virtual Machine

Now that you have a virtual machine with Windows 2000 Advanced Server installed, clone this virtual machine instead of creating virtual machines individually.

To clone the virtual machine

1. Run sysprep.exe, which is available on the Windows 2000 CD in the \support\tools\deploy.cab file.

 Strips the Security ID assigned to the guest operating system and resets the machine information as well as the TCP/IP network configuration.

2. Shut down the guest operating system and power off the virtual machine.

3. Go to the console of the second ESX Server machine.

 This is where you copy the virtual disk that resulted from creating the first node.

4. Log on as root.

 Assumes that the internal storage for the second server is in a VMFS partition labeled vms.

 Changes the current directory to the VMFS partition on the first server where you created the first node’s virtual disk.

8. Set the type (transfer mode) to binary: bin.

 If you use text transfer mode, the virtual disk may not be usable on the target server.

9. Type: hash on.

 Turns on the display of a series of hash signs as a transfer progress indicator.

10. Retrieve the virtual disk file: get cluster1.vmdk

 Initiates the transfer of the virtual disk file to the current directory on the second ESX Server machine.

11. After the file transfer is completed, type bye to end the FTP session.

12. Rename the file: mv cluster1.vmdk cluster2.vmdk

 This renames the virtual disk to cluster2.vmdk.
This concludes the cloning process. Continue with creating the second node virtual machine.

Creating the Second Node Virtual Machine

Follow the procedure in “Creating the First Node’s Base Virtual Machine” on page 292, noting the following differences:

- In “Virtual Disk Configuration” on page 286, Step 8, click **Edit** next to **SCSI Controller 1** to change the bus sharing from **none** to **physical** instead of virtual. From the **Bus Sharing** drop-down list, choose **physical**, and click **OK**.

- In “Network Device Configuration” on page 286, Step 5, from the **Device Binding** drop-down list, choose **vmnic1** instead of **vmnet_0**. This attaches the second Ethernet adapter to the second physical adapter designated for virtual machine use. This is used to create a private network between the cluster nodes.

- Change the specifications of **scsi1:1.name** and **scsi1:2.name** as you did when creating the first node’s base virtual machine.

Clustering Using a Raw SCSI Disk

The shared disk used for clustering can also be a complete shared SCSI disk, rather than a VMFS file on a shared disk. Using a raw SCSI disk as a shared disk might simplify initial setup. It might be useful for importing an existing physical cluster that already has cluster data on a SCSI disk. In addition, using a raw SCSI disk as a shared disk allows a virtual machine to participate in a cluster with a physical machine. For example, the virtual machine can be used as the passive node for a physical machine that is the active node.

For the virtual machine to access a physical disk, replace the instructions in “Virtual Disk Configuration” on page 286 with the following steps.

To add a physical SCSI controller and shared raw SCSI disks

1. Click the **Hardware** tab.
2. Click **Add Device**.
3. Click **Hard disk**.
4. Click **System LUN/Disk** to give your virtual machine direct access to a SAN or shared storage volume.
5. Choose the **LUN/Partition** you want to attach to this VM as a raw disk.
6 Choose the virtual SCSI node to which you want to attach the raw disk.

NOTE Shared disks must be attached to a separate SCSI controller from the system disk. Select, SCSI 1:1

7 Click **OK**.

A new virtual disk and SCSI Controller 1 appear on the **Hardware** tab.

8 Click **Edit** next to **SCSI Controller 1** to change the bus sharing from **none** to **physical**.

9 From the **Bus Sharing** drop-down list choose **physical**, and click **OK**.

Setting the bus sharing to **physical** makes sure that all the SCSI reserve and reset commands go through to the physical disk.

Repeat Step 1 – Step 8 to create an additional shared raw disk using SCSI 1:2.

You have completed the virtual machine configuration.

For information about adding a raw SCSI device, see the VMware technical note *Using Raw Device Mappings with ESX Server*, available at http://www.vmware.com/support/resources/esx_resources.html.

Installing Microsoft Cluster Service

Follow the procedure in “Installing Microsoft Cluster Service” on page 290.

Additional Notes for Clustering Across Physical Machines

- Supply an extra parameter to the Emulex driver when it is loaded by editing the file `/etc/vmware/hwconfig`. Identify the bus, slot and function holding the first (or only) Emulex card. Find this information at the Startup Profile page. Add a line with the format:

 `device.vmnix.6.14.0.options = "lpfc_delay_rsp_err=0"

`to the end of `/etc/vmware/hwconfig`. The numbers `6.14.0` specify the bus, slot, and function where the Emulex card is located. If you have more than one Emulex card, you should have only a line referencing the first card.
Table 10-1 summarizes additional, important points for using Microsoft Clustering Software with ESX Server.

Table 10-1. MSCS Configuration Considerations

<table>
<thead>
<tr>
<th>Area</th>
<th>Component</th>
<th>Single-Host Clustering</th>
<th>Multi-Host Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-clustered disks</td>
<td>Virtual machine and swap (paging) file</td>
<td>Must be on local storage, not on a SAN.</td>
<td>Must be a non-clustered disk.</td>
</tr>
<tr>
<td></td>
<td>Non-clustered virtual disks (.vmdk)</td>
<td>Must reside on a public VMFS volume.</td>
<td>Must use VMFS label notation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virtual adapter must be set to shared mode = none.</td>
<td>LUN must host only one VMFS file system.</td>
</tr>
<tr>
<td></td>
<td>Non-clustered raw device (disk) mapping</td>
<td>Revision must be ESX 2.5.2 or higher.</td>
<td>Must use VMFS label notation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Must reside on a public VMFS volume.</td>
<td>Disk must be in persistent mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Must use VMFS label notation.</td>
<td>DeviceType must be scsi-nonpassthru-rdm or scsi-passthru-rdm.</td>
</tr>
<tr>
<td></td>
<td>Non-clustered raw device (disk)</td>
<td>Use raw device mapping instead, if ESX Server 2.5.2 and higher.</td>
<td></td>
</tr>
<tr>
<td>Clustered disks</td>
<td>Clustered virtual disks (.vmdk)</td>
<td>Must use VMFS label notation.</td>
<td>Must have been created with vmkfstools -z.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Virtual adapter must be in shared mode = virtual.</td>
<td>Must use the vmhba<H>:<T>:<L>:<P> notation, not the VMFS label notation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LUN must host only one VMFS file system.</td>
<td>Virtual adapter must be set to shared mode = physical.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VMFS volume must be dedicated to the cluster.</td>
<td>Must reside on its own physical LUN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Must reside on public VMFS volume.</td>
<td>LUN can host one VMFS file system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shared virtual disk must be the only file on this VMFS volume.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VMFS volume must be in shared mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VMFS volume can have one physical extent.</td>
</tr>
</tbody>
</table>

VMware, Inc. 297
Clustered disks (Continued)

Clustered non-pass-through raw device mapping
- Revision must be ESX 2.5 or higher.
- Must reside on a public VMFS volume.
- Must use VMFS label notation.
- Disk must be in persistent mode.
- DeviceType must be scsi-nonpassthru-rdm.
- Virtual adapter must be set to shared mode = virtual.

Clustered pass-through raw device mapping
- Not supported
- Revision must be ESX 2.5.2 or higher.
- Must use VMFS label notation.
- Disk must be in persistent mode.
- DeviceType must be scsi-passthru-rdm.
- Virtual adapter must be set to shared mode = physical.

Must use one of the following:
- A single PassThruRDM (Physical compatibility mode) on a VMFS2 Volume that is in “Shared” mode.

Or
- Two different RDM files using the same RAW LUN on a VMFS2 Volume that is in “Public” mode. Two different Public volumes can also be used. This requires using vmkfstools -r to create the separate RDM files as the Graphical Interface does not provide an option for that.

Clustered raw disk
- Not supported
- Use raw device mapping instead, if ESX Server 2.5.2 or higher.
Table 10-1. MSCS Configuration Considerations (Continued)

<table>
<thead>
<tr>
<th>Area</th>
<th>Component</th>
<th>Single-Host Clustering</th>
<th>Multi-Host Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESX Server Configuration</td>
<td>/proc/vmware/config/Disk/UseLunReset must be set to 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/proc/vmware/config/Disk/UseDeviceReset must be set to 0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swap partitions must be local, not on a SAN.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RDM LUNs cannot be used with ESX Server versions earlier than 2.5.2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>QLogic and Emulex HBAs in a clustered environment must be dedicated to VMkernel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A separate virtual adapter must be used for clustered disks.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qlogic</td>
<td>Driver revision should be 7.0.4 on ESX Server 2.5.1 or later, version 6.07 on ESX Server 2.5, and 6.04 on earlier revisions of ESX Server.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOS settings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Enable Target Reset = Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Full LIP Login = Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Full LIP Reset = No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emulex</td>
<td>Driver revision is 2.01g on ESX Server and 4.20q on earlier revisions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft Windows</td>
<td>■ Operating system must be Windows 2000 or Windows 2003.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Each cluster is limited to two nodes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Use the VMware Buslogic driver rather than the native Windows driver if you use Buslogic virtual adapters.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Make sure the I/O timeout is 60 seconds or more:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Disk\TimeOutV value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Cluster Service must restart automatically on failure (for first, second, and subsequent times)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Running Microsoft Cluster Service

Microsoft Cluster Service should operate normally in the virtual machines after it is installed.

NOTE Some disk errors are recorded in the Windows event log in normal operation and have a format similar to

The driver detected a controller error on \Device\Scsi\BusLogic3

They should be reported periodically only on the passive node of the cluster and should also be reported when the passive node is taking over during a failover. The errors are reported because the active node of the cluster has reserved the shared virtual disk. The passive node periodically probes the shared disk and receives a SCSI reservation conflict error.
VMFS Locking and SCSI Reservation

For a shared SCSI disk that can be accessed by multiple ESX Server machines, two kinds of locking may be in use. These two kinds of locking are somewhat independent and can cause confusion. The shared SCSI disk may be on shared SCSI bus or, more likely, on a storage area network (SAN).

VMFS File System Locking

The first kind of locking is VMFS file system locking. ESX Server locks VMFS file systems on a server level when a VMFS file system is configured as a public or shared file system. This locking is done to ensure that there is no corruption caused by multiple accesses to the file system by different hosts.

If a VMFS-1 volume is configured in public mode, only one server can access that VMFS at a time. If one server is accessing the VMFS-1 volume, through a virtual machine or a file system command, a file system operation by another host fails. For example, a vmkfstools command fails with a message that says:

```
vmkfstools: file system is locked by another server. Use 'vmkfstools --recover' to unlock file system if no other server is accessing
```

Typically, do not run vmkfstools --recover, because another host is using the file system. The error message indicates that this server cannot access the VMFS until the other server has finished accessing it. However, if a server fails while accessing the file system, the file system may stay in the locked state and you might need to run vmkfstools --recover.

In a public VMFS-2 volume, locking is at a per-file level, resulting in fewer locking issues. You might still get the preceding message and need to use vmkfstools --recover, if a server fails.

If a VMFS is used to store a virtual disk that is accessed by multiple virtual machines on multiple physical servers for the purposes of failover clustering, the VMFS should be configured as a shared file system. The locking protocol is relaxed to allow multiple virtual machines on different servers to access the same VMFS file at the same time. However, file system commands do the same locking as with public file systems (that is, per-VMFS in VMFS-1 volumes and per-file in VMFS-2 volumes).

Additionally, when multiple virtual machines access the VMFS, the VMFS file system enters a read-only mode in which it is impossible to create, delete, or change the size of files. The contents of the individual files can still be modified. If you later want to create or remove VMFS files, you must stop all virtual machines using the VMFS and re-enter writable mode using the command:

```
vmkfstools --config writable vmhba0:1:0:0
```
Substitute the name of the appropriate disk or VMFS in place of vmhba0:1:0:0.

Locking at SCSI Disk Level

The second kind of locking is locking at the SCSI disk level, which is called SCSI disk reservation.

Any server connected to a SCSI disk can issue a SCSI command to reserve the disk. If no other server is reserving the disk, the current server obtains a reservation on the disk. As long as that reservation exists, no other server can access the disk. All SCSI commands to that disk by other servers fail with an appropriate error code.

If a `vmkfstools` command is attempted on a VMFS on a disk that is reserved by another server, the `vmkfstools` command fails with a message:

```
vmkfstools: shared SCSI disk is reserved by another server. Use
'vmkfstools -L release/reset' to end reservation if no other server is
using the SCSI reservation
```

Similarly, a virtual machine fails to start if its virtual boot disk is stored on a physical disk that is reserved by another host.

Most applications do not ever reserve a SCSI disk. However, failover clustering software reserves SCSI disks to ensure that only the active node is able to access the shared SCSI disk. Expect that the shared disk in a physical clustering setup is reserved when the cluster is active. Similarly, for a virtual machine cluster that is running across physical machines, reservations by the clustering software are transmitted through to the physical shared disk.

If you encounter a disk that is reserved unexpectedly, try to determine whether some clustering software has explicitly reserved the disk. If not, you can release the reservation on the server that has the reservation by running a command in this format:

```
vmkfstools -L release vmhba0:1:0:0
```

Substitute the name of the appropriate disk or VMFS in place of vmhba0:1:0:0.

If you cannot determine which server holds the reservation, you might be able to eliminate the reservation by issuing a SCSI bus reset on any server machine using a command in this format:

```
vmkfstools -L lunreset vmhba0:1:0:0
```

If this fails, try the following command:

```
vmkfstools -L reset vmhba0:1:0:0
```
Using LUN Masking to Avoid Locking Issues

Locking issues are likely to happen on a SAN, where multiple users may be accessing some of the same disks or may mistakenly access a disk assigned to another user.

It is helpful to use LUN masking or zoning to limit which disks are visible to each server in the system and reduce the ways in which one user can affect another user. In particular, the use of LUN masking or zoning can help prevent problems such as those described above in which one server unexpectedly locks or reserves the wrong SCSI disk.

Network Load Balancing

Network Load Balancing is a Windows 2000 Advanced Server feature. By using Network Load Balancing to build a server cluster, you can enhance the availability of Internet server programs, such as those used on Web, proxy, domain name service (DNS), FTP, virtual private network (VPN), and streaming media servers. Network Load Balancing (NLB) can help you scale your server’s performance.

NLB can be used in unicast or multicast modes. If the is cluster operating in unicast mode (the default), ordinary network communication among cluster hosts is not possible unless each cluster host has at least two network adapters.

NOTE Set the vmkernel configuration option NetNotifySwitch to 0 when using unicast mode.

VMware recommends that you use multicast mode, because unicast mode forces the physical switches on the LAN to broadcast all NLB cluster traffic to every machine on the LAN.

Creating Multinode Network Load Balancing Clusters on ESX Server

This section covers procedures for creating a Network Load Balancing cluster using nodes running in virtual machines. These virtual machines can be located on one or more ESX Server machines.

Creating the First Node’s Base Virtual Machine

To create a base virtual machine on the first node

1. Access the VMware Management Interface at https://<hostname>/ and log on as the user who will own the virtual machine.

2. Click Add Virtual Machine.
Keep the default **Guest Operating System** selection of **Microsoft Windows 2000 Server**.

NOTE This example uses Microsoft Windows 2000 Server as the guest operating system. You can substitute another Windows operating system that supports Microsoft Cluster Service.

4 Change the **Display Name** field to describe the virtual machine.

 For example, MSCS Node 1 (Portsaid).

5 Change the **Location** of the virtual machine configuration file to
 `/home/<user>/vmware/cluster1/cluster1.vmx`.

6 Click **Next**.

7 Choose the number of processors you want the guest operating system to use, up to 2.

8 Change **Memory** to show the amount of RAM you want to allocate to this virtual machine and click **Next**.

9 Click **Blank** to create a new virtual disk.

10 Choose the VMFS volume on which you want to store the virtual disk.

11 Give the virtual disk file a unique name, for example, `cluster1.vmdk`.

12 If you need a primary SCSI disk larger than 4GB, enter the value in the **Capacity** field.

13 Choose the virtual SCSI node to which you want to attach the virtual disk.

 By default, the disk mode is set to **Persistent**.

14 Click **Persistent** to verify the disk mode and click **Next**.

 You have created the virtual machine.

 The **Hardware** tab for this virtual machine appears. Use it to add hardware devices.

Network Device Configuration

Add another virtual network adapter the cluster nodes will use to communicate with each other.
To add a virtual network adapter

1. On the **Hardware** tab for this virtual machine, click **Add Device**.
2. Click **Network Adapter**.
3. From the **Device Binding** drop-down list, choose **vmnic1**.

NOTE If all nodes of the cluster will reside on the same ESX Server machine, use vmnet_0 for the second network adapter. This allows all nodes to communicate with each other on a private virtual network connected to the vmnet_0 virtual switch.

4. Click **OK**.

You have finished creating and configuring the first node virtual machine.

Installing the Guest Operating System

Now you need to install Windows 2000 Advanced Server in the virtual machine.

To install Windows 2000 Advanced Server

1. Insert the Windows 2000 Advanced Server CD in the ESX Server machine’s CD-ROM drive.
2. In the management interface, click the blue terminal icon next to the virtual machine’s name to launch the remote console.
3. Log on using the user account that created the virtual machine or as root.
4. Click **Power On**.
5. Install Windows 2000 Advanced Server on the disk connected to scsi0.
6. Accept all the default options during the installation.

You can install the applications at this time. Network Load Balancing is installed by default.

7. When the installation is completed, install VMware Tools in the guest operating system.
8. Remove the Windows 2000 Advanced Server CD from the server’s CD-ROM drive.

Cloning the Virtual Machine

Now that you have a virtual machine with Windows 2000 Advanced Server installed, clone this virtual instead of creating virtual machines individually.
To clone the virtual machine using the management interface

1. Run `sysprep.exe`, which is available on the Windows 2000 CD in the \support\tools\deploy.cab file.
 This strips the security ID assigned to the guest operating system and resets the machine information as well as the TCP/IP network configuration.

2. Shut down the guest operating system and power off the virtual machine.

3. On the management interface **Overview** tab, click **Manage Files**.

4. Drill down to the **vmfs** folder and to the **vms** folder.
 This might take time to refresh.

5. Select the check box next to the **cluster1.vmdk** file.

6. Click **Copy** and click **Paste**.

7. When the copy process is complete, select the check box next to the file **copy of cluster1.vmdk**.

8. Click **Edit Properties**.

9. Change the filename to **cluster2.vmdk** and click **OK**.

10. Close the Manage Files window.

This concludes the cloning process. Now continue with creating the second node virtual machine

Cloning the Virtual Machine, an Alternate Method

To clone the virtual machine using the ESX Server console

1. Run `sysprep.exe`, which is available on the Windows 2000 CD in the \support\tools\deploy.cab file.
 This strips the security ID assigned to the guest operating system and resets the machine information as well as the TCP/IP network configuration.

2. Shut down the guest operating system and power off the virtual machine.

3. At the ESX Server console, log on as root.

4. Change directories: `cd /vmfs/vms`

 This directory is where you created the virtual disk.

5. Create a copy of the virtual disk: `cp cluster1.vmdk cluster2.vmdk`.
Repeat this command using a different target filename to create more than one copy.

This concludes the cloning process. Now continue with creating the second node virtual machine

Cloning the Virtual Machine to Another ESX Server Machine

This section assumes that you are planning to run each node of an eight-node cluster on a separate ESX Server machine. To run a different number of nodes on each ESX Server machine, adjust the procedure.

To clone a virtual machine and move it to another ESX Server physical machine

1. Run `sysprep.exe`, which is available on the Windows 2000 CD in the `\support\tools\deploy.cab` file.

 This strips the security ID assigned to the guest operating system and resets the machine information as well as the TCP/IP network configuration.

2. Shut down the guest operating system and power off the virtual machine.

3. At the ESX Server console (on a machine other than the one where you created the first node), log on as root.

 This is the directory where you want to create the virtual disk.

7. Set the type to binary: `bin`.

8. Type: `hash on`.

9. Retrieve the virtual disk file: `get cluster1.vmdk`.

 This transfers a copy of the virtual disk to the second ESX Server machine’s VMFS partition.

10. Quit the `ftp` session: `bye`.

 This assumes that this ESX Server machine will host nodes 9 and up.

 Repeat this command using a different target file name if you want to create more than one copy.
This concludes the cloning process. Continue with creating the second node virtual machine.

Repeat Step 3 – Step 11 on each ESX Server machine that will participate in the cluster.

Creating the Second Node Virtual Machine

To create a new virtual machine

1. On the management interface Overview tab, click Add Virtual Machine.
3. Change the Display Name field to describe the virtual machine, for example, MSCS Node 2 (Kena).
4. Change the Location of the virtual machine to /home/<user>/vmware/cluster2/cluster2.vmx.
5. Click Next.
6. Choose the number of processors you want the guest operating system to utilize, up to 2.
7. Change Memory to show the amount of RAM you want to allocate to this virtual machine.
8. Click Next.
9. Click Existing to attach an existing virtual disk to this virtual machine.
10. From the Virtual Disk Image drop-down list, choose cluster2.vmdk.
11. Choose the virtual SCSI node to which you want to attach the virtual disk and click Next.

Network Device Configuration You need to add another network adapter that the cluster nodes will use to communicate with each other.

To add a virtual network adapter

1. On the hardware tab for this virtual machine, click Add Device.
2. Click Network Adapter.
3. From the Device Binding drop-down list, choose vmnic1.
To configure the cluster

1. Using the management interface connected to the first ESX Server machine, launch the remote console for the first node.

2. Power on the virtual machine.

3. Follow the Windows 2000 Server mini-setup prompts to enter the Windows 2000 Advanced Server serial number and the host name and IP addresses.

4. At the end of the process, Windows reboots.

5. Log on to the Windows 2000 Advanced Server virtual machine as Administrator.

6. Open Network and Dial-up Connections.

7. Right-click the local area connection on which you will install Network Load Balancing and choose Properties. The Local Area Connection Properties dialog box appears.

8. Under Components checked are used by this connection, select the Network Load Balancing check box.

9. Click Properties.

10. On the Cluster Parameters tab, configure cluster operations using these parameters:

NOTE If all nodes of the cluster will reside on the same ESX Server machine, use vmnet_0 for the second network adapter. This allows all nodes to communicate with each other on a private virtual network connected to the vmnet_0 virtual switch.
- **Primary IP Address**: Address for the cluster as a whole. This is the address that the clients will use to access the cluster.

- **Subnet Mask**: Subnet mask of the network to which the above address belongs.

- **Multicast**: Check this box to enable multicast mode.

NOTE All members of the cluster must use the same setting for this option. When you enable multicast mode, you might need to change the configuration of your physical LAN switches. Consult your LAN hardware documentation for information.

Refer to Network Load Balancing Help for the remaining options.

11 Click **OK** to return to the Local Area Connection Properties dialog box.

12 Click **OK** again to return to the Local Area Connection Status dialog box.

13 Right-click the local area connection on which Network Load Balancing is to be installed, and click **Properties**.

14 Select **Internet Protocol (TCP/IP)**, and click **Properties**.

15 Set up TCP/IP for Network Load Balancing.

 For more information and links, see Related Topics in the Network Load Balancing Help.

NOTE You must add Cluster’s Primary IP Address to the list of IP Addresses bound to the adapter.

16 Repeat these steps on each host to be used in your Network Load Balancing cluster.

Repeat this procedure for each node that will join the cluster.
This chapter guides you through the basic concepts of networking in the ESX Server environment and how to set up and configure a network. It contains the following sections:

- “Setting the MAC Address Manually for a Virtual Machine” on page 311
- “VMkernel Network Card Locator” on page 314
- “Forcing the Network Driver to Use a Specific Speed” on page 315
- “Enabling a Virtual Adapter to Use Promiscuous Mode” on page 315
- “Sharing Network Adapters and Virtual Networks” on page 316
- “Using Virtual Switches” on page 320

Setting the MAC Address Manually for a Virtual Machine

VMware ESX Server generates MAC addresses for the virtual network adapters in each virtual machine. In most cases, these MAC addresses are appropriate. You might need to set a virtual network adapter’s MAC address manually. For example:

- Virtual network adapters on different physical servers share the same subnet and are assigned the same MAC address, causing a conflict.
- Ensure that a virtual network adapter always has the same MAC address.

This section explains how VMware ESX Server generates MAC addresses and how you can set the MAC address for a virtual network adapter manually.
How VMware ESX Server Generates MAC Addresses

Each virtual network adapter in a virtual machine gets a unique MAC address. ESX Server attempts to ensure that the network adapters for each virtual machine that are on the same subnet have unique MAC addresses. The algorithm used by ESX Server limits the number of virtual machines that can be running and suspended at once on a given machine. It also does not handle all cases when virtual machines on distinct physical machines share a subnet.

NOTE

Addresses generated by Virtual Center or by VMware GSX Server are in the 00:50:56 range.

A MAC address is a six-byte number. Each network adapter manufacturer gets a unique three-byte prefix called an OUI (organizationally unique identifier) that it can use to generate unique MAC addresses. VMware has two OUIs: one for automatically generated MAC addresses and one for manually set addresses. One OUI (00:0C:29) is used only for generated addresses and the other OUI (00:50:56) is used for both generated and manually set addresses.

Because the VMware OUI for generated MAC addresses is 00:0C:29, the first three bytes of the MAC address that is generated for each virtual network adapter have this value. ESX Server then uses a MAC address generation algorithm to produce the other three bytes. The algorithm guarantees unique MAC addresses within a machine and attempts to provide unique MAC addresses between ESX Server machines.

The algorithm that ESX Server uses to generate MAC address is the following:

ESX Server uses the VMware UUID (Universally Unique Identifier) to generate MAC addresses and then checks for any conflicts. If there is a conflict, an offset is added and it is checked again, until there is no conflict. (The VMware UUID is based on the path to the virtual machine and the host’s SMBIOS UUID.)

After the MAC address has been generated, it does not change, unless the virtual machine is moved to a different location, for example, a different path on the same server or a different ESX Server machine. ESX Server saves the MAC address in the configuration file of the virtual machine.

ESX Server keeps track of all MAC addresses that have been assigned to network adapters of running and suspended virtual machines on a given physical machine. ESX Server ensures that the virtual network adapters of all of these virtual machines have unique MAC addresses.

The MAC address of a powered-off virtual machine is not checked against running or suspended virtual machines. ESX Server does not keep track of your predetermined generated MAC addresses. So you can have multiple NICs (of the same virtual machine
of different virtual machines) having the same predetermined generated MAC addresses and your virtual machines will start up. The guest OS must detect these duplicate MAC addresses. Ensure that on your LAN, your predetermined addresses do not conflict with each other and do not conflict with those that ESX Server has generated.

Setting MAC Addresses Manually

To avoid possible MAC address conflicts between virtual machines, system administrators can assign the MAC addresses manually. VMware uses a different OUI for manually generated addresses: 00:50:56. The MAC address range is 00:50:56:00:00-00:50:56:3F:FF:FF.

Set the addresses by adding the following line to a virtual machine's configuration file:

```
ethernet<number>.address = 00:50:56:XX:YY:ZZ
```

where `<number>` refers to the number of the Ethernet adapter, XX is a valid hex number between 00 and 3F, and YY and ZZ are valid hex numbers between 00 and FF. The value for XX must not be greater than 3F to avoid conflict with MAC addresses that are generated by the VMware Workstation and VMware GSX Server products.

The maximum value for a manually generated MAC address is

```
ethernet<number>.address = 00:50:56:3F:FF:FF
```

You must also set the option in a virtual machine's configuration file:

```
ethernet<number>.addressType="static"
```

VMware ESX Server virtual machines do not support arbitrary MAC addresses, so the above format must be used. As long as you choose XX:YY:ZZ uniquely among your hard-coded addresses, conflicts between the automatically assigned MAC addresses and the manually assigned ones should never occur.

Using MAC Addresses

Familiarize yourself with MAC addresses by setting the MAC address statically and removing the virtual machine configuration file options `ethernet<number>.address`, `ethernet<number>.addressType`, and `ethernet<number>.generatedAddressOffset`. Verify that the virtual machine is assigned a generated MAC address.

VMware cannot guarantee that a host stays within a specific MAC address range. However, VMware guarantees that the MAC address never conflicts with any physical host by using our OUIs (00:0C:29 and 00:50:56), which are unique to virtual machines.
VMkernel Network Card Locator

When network interface cards are assigned to the VMkernel, it can be difficult to map from the name of the VMkernel device to the physical network adapter on the machine.

For example, if four Intel EEPro cards in a machine are dedicated to the VMkernel, these cards are called vmnic0, vmnic1, vmnic2, and vmnic3. The name of a card is based on its order in the PCI bus/slot hierarchy on the machine—the lower the bus and slot, the lower the number at the end of the name.

If there is more than one type of network interface card, the first driver that is loaded claims its virtual NICs (vmnic) in PCI slot order, the next driver that is loaded claims its virtual NICs (vmnic) in PCI slot order, and so on.

This naming policy is also valid for the functions within a slot for multifunction devices, for example, a dual port NIC which occupies a single slot but has two functions: bus1.slot1.function1 and bus1.slot1.function2. The functions are enumerated for each slot in the same way that the slots are enumerated for each device type.

findnic Command

If you know the bus and slot order of the adapters, you can determine which adapter has which name. If you don’t, use the findnic program to make the proper association of network adapter to name.

The format of the command is

findnic <options> <nic-name> <local-ip> <remote-ip>

The findnic program takes a VMkernel network device name, an IP address to give the device on the local machine and an IP address that findnic should try to ping. When you issue the command, findnic pings the remote IP address.

This allows you to determine which adapter is which by looking at the LEDs on the cards to see which one has flashing lights or by seeing whether the ping is successful.

Options

-f
Do a flood ping.

-i <seconds>
Interval in seconds between pings.
Examples

findnic vmnic0 10.2.0.5 10.2.0.4

Binds VMkernel device vmnic0 to IP address 10.2.0.5 and tries to ping the remote machine with the IP address 10.2.0.4.

findnic -f vmnic1 10.2.0.5 10.2.0.4

Binds VMkernel device vmnic1 to IP address 10.2.0.5, and tries to flood ping the remote machine with the IP address 10.2.0.4.

Forcing the Network Driver to Use a Specific Speed

The VMkernel network device drivers start with a default setting of Autonegotiate. This setting will work correctly with network switches set to autonegotiate. If your switch is configured for a specific speed and duplex setting, force the network driver to use the same speed and duplex setting.

If you encounter problems—in particular, very low bandwidth—it is likely that the NIC did not autonegotiate properly. Configure the speed and duplex settings manually.

To resolve the problem, change the settings on your switch or change the settings for the VMkernel network device using the VMware Management Interface.

To change the settings of the VMkernel network device

1. Log in to the management interface as root.

2. Click on the Options tab.

3. Click Network Connections.

4. Locate the device you want to reconfigure and choose the appropriate setting from the drop-down list for Configured Speed, Duplex.

5. Click OK.

The network speed settings change takes effect after a reboot.

Enabling a Virtual Adapter to Use Promiscuous Mode

For security, guest operating systems cannot set their virtual Ethernet adapters to use promiscuous mode. However, you might need to use the virtual Ethernet adapters in promiscuous mode. To enable this use, set the PromiscuousAllowed configuration variable to yes.
To enable the setting of the PromiscuousAllowed configuration variable

1. Click the Edit Configuration tab of the VMware Management Interface to determine which network the virtual Ethernet adapter is using.

 For this example, assume that the Networking section of the page shows the adapter is using vmnic0.

2. Log in to the server’s service console and type the following command:

   ```
   echo "PromiscuousAllowed yes" > /proc/vmware/net/vmnic0/config
   ```

 This allows the guest operating systems in all virtual machines using vmnic0 to enable promiscuous mode. If the adapter is using a different network, such as vmnet_0, make the appropriate substitution in the command.

3. Take the appropriate steps in the guest operating system to enable promiscuous mode on the virtual network adapter.

 You might want to allow only some adapters on a particular network to use promiscuous mode. You can selectively disable promiscuous mode based on the MAC address of the virtual machine’s Ethernet adapter.

To set the PromiscuousAllowed variable to “no”

1. Connect to the virtual machine with the remote console and use the guest operating system tools to determine the MAC address of the virtual Ethernet adapter.

2. Log in to the service console and type the following command:

   ```
   echo "PromiscuousAllowed no" > /proc/vmware/net/vmnic0/<MACAddress>
   ```

 In place of <MACAddress>, substitute the virtual Ethernet adapter’s MAC address in the standard format 00:05:69:XX:YY:ZZ. If the adapter is using a different network, such as vmnet_0, make the appropriate substitution in the command.

Sharing Network Adapters and Virtual Networks

In many ESX Server configurations, a clear distinction exists between networking resources used by the virtual machines and those used by the service console. This might be important for security reasons, for example, isolating the management network from the network used by applications in the virtual machines.

You might want to share resources, including physical network adapters and virtual networks. This section provides instructions on sharing in both directions: making the
virtual machines’ resources available to the service console and allowing virtual machines to share the network adapter used by the service console.

This sharing is made possible by the \texttt{vmxnet_console} driver, which is installed with the service console.

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>VMware recommends that only advanced users make these configuration changes. The steps below are easier for someone who is familiar with administering a Linux system.</th>
</tr>
</thead>
</table>

| NOTE | If you bring down the local loopback interface while you are reconfiguring network devices, the VMware Management Interface does not function properly. To bring it back up, use the command \texttt{ifconfig lo up}. |

Allowing the Service Console to Use the Virtual Machines’ Devices

All network adapters used by virtual machines (that is, assigned to the VMkernel) and virtual networks can be made accessible to the service console. Virtual networks—identified as \texttt{vmnet_<n>} on the \texttt{Edit Configuration} pane of the VMware Management Interface—provide high-speed connections among virtual machines on the same physical server.

To give the service console access to VMkernel network adapters and virtual networks, install the \texttt{vmxnet_console} module. When you install it, you provide a list of VMkernel network adapters and virtual networks that the \texttt{vmxnet_console} module should attach to. For example, if the VMkernel had an adapter named \texttt{vmnic1} and a virtual network named \texttt{vmnet_0} and you wanted to provide access to them from the service console, use the following command to install the \texttt{vmxnet_console} module.

```
insmod vmxnet\_console devName="vmnic1;vmnet\_0"
```

The \texttt{devName} parameter is a semicolon-separated list of names of VMkernel network adapters and virtual networks.

When you install the module, it adds the appropriate number of \texttt{eth_n} devices on the service console in the order that you list the VMkernel network adapter and virtual network names after the \texttt{devName} parameter. In the example above, if the service console already had a network adapter named \texttt{eth0}, when you load \texttt{vmxnet_console} with \texttt{vmnic1 and vmnet_0; vmnic1 is seen as eth1 on the service console and vmnet_0 is seen as eth2.}

After the \texttt{eth_n} devices are created on the service console, bring the interfaces up in the normal manner. For example, if you want the service console to use IP address
10.2.0.4 for the network accessed through the vmnic1 adapter, use the following command:

```
ifconfig eth1 up 10.2.0.4
```

If you want an easy way to see which eth<n> devices are added by the insmod command, add the tagName parameter to the insmod command, as shown in this example:

```
insmod vmxnet_console devName="vmnic1;vmnet_0" tagName=<tag>
```

In this case, the vmxnet_console module adds the names of each of the eth<n> devices that it created to /var/log/messages. Each message begins with the string <tag>. To determine the names of the devices that were added, use this command:

```
grep <tag> /var/log/messages
```

Starting Shared VMkernel Network Adapters and Virtual Networks when the Service Console Boots

There are two ways to configure the service console to start VMkernel network adapters when the service console boots. The simpler case involves sharing a network adapter other than eth0. Sharing eth0 is more complicated and is described later.

Continuing with the example from the previous section, you can append the following lines to /etc/rc.d/rc.local:

```
insmod vmxnet_console devName="vmnic1;vmnet_0"
ifconfig eth1 up 10.2.0.4
ifconfig eth2 up 63.93.12.47
```

NOTE You might want to add commands that depend on networking to the end of rc.local (such as mount -a to mount any NFS entries in /etc/fstab).

Another method is to set up the files /etc/sysconfig/network-scripts/ifcfg-eth1 and /etc/sysconfig/network-scripts/ifcfg-eth2 with the appropriate network information. Make sure the ONBOOT= line is ONBOOT=yes. The ifcfg-eth1 file for this example would be:

```
DEVICE=eth1
BOOTPROTO=static
BROADCAST=10.255.255.255
IPADDR=10.2.0.4
NETMASK=255.0.0.0
NETWORK=10.0.0.0
ONBOOT=yes
```
The lines you add to /etc/rc.d/rc.local would be:

```
insmod vmxnet_console devName="vmnic1;vmnet_0"
ifup eth1
ifup eth2
```

Sharing the Service Console’s Network Adapter with Virtual Machines

When you install and configure ESX Server, the VMkernel is not loaded, so the service console needs to control the network adapter that is eth0. When you configure ESX Server, assign the adapter that is eth0 to the service console.

CAUTION To share the adapter that is eth0 on the service console, be careful as you implement the following steps. To configure ESX Server initially, you must have a network connection. After the initial configuration is set, make several changes. At one point, there is no network connection to the service console, and you must work directly at the server.

After you have completely configured ESX Server and rebooted the machine, the VMkernel is loaded.

To share the Service Console’s network adapter with virtual machines

1. Use the VMware Management Interface to reconfigure the server.
2. On the **Options** tab, click **Startup Profile** to open the Startup Profile pane.
3. Find the table row that lists the Ethernet controller assigned to the console and click the link **If you must reassign this device, click here**.
4. Select **Virtual Machines** from the **Dedicated To** list.
5. Click **OK** to save your changes and reboot the machine when prompted.

 When the machine reboots, no network adapter is assigned to the service console, so you must do this step at the server.

6. Add the appropriate lines to /etc/rc.d/rc.local.

 For example, if eth0 is the only network adapter that you intend to share between the VMkernel and the service console, and if it is named vmnic0 in the VMkernel, add the lines:

   ```
   insmod vmxnet_console devName="vmnic0"
   ifup eth0
   ```
If you are unsure what name the VMkernel has assigned to the network adapter that formerly was `eth0` in the service console, determine its name using the `findnic` program (see “VMkernel Network Card Locator” on page 314).

The next time you reboot the system, the network adapter is shared by the service console and the virtual machines.

To begin sharing the network adapter without rebooting the system, manually issue the same commands you added to `/etc/rc.d/rc.local`:

```
inmod vmxnet_console devName="vmnic0"
ifup eth0
```

Using Virtual Switches

ESX Server lets you create abstracted network devices called virtual Ethernet switches. Each virtual switch is a network hub that can be used by virtual machines. A virtual switch can route traffic internally between virtual machines or link to external networks.

Use virtual switches to combine the bandwidth of multiple network adapters and balance communications traffic among them. They can also be configured to maintain persistent network connections despite link failures for individual adapters.

A virtual switch models a physical Ethernet switch. A virtual switch contains 32 logical ports. You can connect one network adapter of a virtual machine to each port.

Each virtual switch can also have one or more port groups assigned to it. See “Creating Port Groups” on page 190.

Choosing a Network Label

ESX Server uses network labels to represent network connections to virtual machines. The network label is intended to be a functional descriptor for the network connection. ESX Server represents both virtual switches and port groups to virtual machines by assigning them a network label.

You can change the network label for a switch only when it is not being used by a virtual machine.

Binding Physical Adapters

Group physical adapters by “binding” them together. This is the functional equivalent for NIC teaming in ESX Server. Certain options you can configure through the Service Console refer to grouped adapters as a “bond.”
Bind together similar physical adapters whenever possible. ESX Server uses only features or capabilities common to all adapters when defining the functionality of a bonded switch. For example, ESX Server can use a hardware acceleration feature for a bond only if all adapters in the bond include that feature.

Hardware acceleration features supported by ESX Server include:

- VLAN tag handling
- Checksum calculations
- TCP Segmentation Offloading

Binding together identical models of physical adapters ensures that ESX Server can use all features of the adapter.

When you choose a network connection for a virtual machine, ESX Server links it to the associated virtual switch. The operation of the virtual machine depends on the configuration of its network connection. You cannot bind or detach physical adapters while a virtual switch is being used by a virtual machine.

You can bind up to ten physical adapters to each virtual switch.

Finding Bonds and Adapters in the Service Console

When you bind together adapters in a virtual switch, ESX Server assigns a bond number identifying the new logical grouping of physical adapters. You need the bond number to configure the bond options described below. Check `/etc/vmware/netmap.conf` to determine the bond number assigned to a virtual switch.

You might also need the device name that ESX Server assigns to a physical adapter. Certain options use the device name to designate a specific adapter. ESX Server defines device names with the string `vmnic<n>`, for which `<n>` is the same adapter number displayed for an adapter in the Management Interface. For example, the physical adapter identified as **Outbound Adapter 1** would have the device name `vmnic1`.

You can also determine the device name by searching `/etc/vmware/devnames.conf` for the name definition. The PCI bus address of the adapter in the Management Interface and search for the corresponding name definition.

To find the device name for the adapter at PCI 2:4.0:

1. Log into the Service Console.
2 Search `/etc/vmware/devnames.conf`:

 $ grep 2:04.0 /etc/vmware/devnames.conf
 002:04.0 nic vmnic0

 The device name is vmnic0.

Creating a Virtual Switch

You can find basic instructions for creating and modifying virtual switches in “Network Connections” on page 188.

NOTE The configuration options described below are used for optimizing virtual switches for complex operating conditions. You can create and use a virtual switch without changing these options for most configurations.

Choosing a Load Balancing Mode

You can choose one of three modes to determine how ESX Server distributes traffic among the network adapters assigned to a virtual switch:

- MAC address balancing
- IP address balancing
- Standby

Select the load balancing mode by setting the `load_balance_mode` option for a virtual switch. All options for virtual switches are defined in `/etc/vmware/hwconfig`, which you can modify through the Service Console.

MAC address load balancing distributes networking traffic based on the MAC hardware addresses of the source network adapters. Select MAC address balancing by setting `load_balance_mode` to `out-mac`.

NOTE MAC address balancing is the default load balancing mode in ESX Server.

IP address load balancing distributes networking traffic based on IP addresses. ESX Server distributes network traffic not using the IP protocol on a fixed-volume sequential cycle. Select IP address balancing by setting `load_balance_mode` to `out-ip`.

Standby mode designates a specific adapter to use as the primary connection. Use Standby mode for redundant connection switches, as described in the next section.
To set the load balancing mode for `bond1` to IP address load balancing

1. Log into the Service Console as root.
2. Edit `/etc/vmware/hwconfig`.
3. Define the load balancing mode for `bond1`:
   ```
   nicteam.bond1.load_balance_mode = "out-ip"
   ```
 If you previously defined the option for this switch, change the current mode value to `out-ip`.
4. Save the file and close it.

Configuring the Bond Failure Mode

You can select one physical adapter to be the primary network connection for a virtual switch. In this configuration, ESX Server routes all traffic through the primary adapter and reserves the other adapters in case of connection failure. This type of redundant connection switch is defined as using a “failover” configuration.

To select a primary adapter by setting the `home_link` option for a virtual switch

1. Log into the Service Console as root.
2. Edit `/etc/vmware/hwconfig`.
3. Define the primary adapter.
 For example, to choose `vmnic2` for `bond1`:
   ```
   nicteam.bond1.home_link = "vmnic2"
   ```
 If you previously defined the option for this switch, change the current mode value to `vmnic2`.
4. Save the file and close it.

NOTE Designating a primary link for a virtual switch overrides the load balancing mode. If you set the `home_link` option, ESX Server ignores the value of `load_balance_mode`.

ESX Server monitors the primary link for physical connection failures. When the primary adapter loses contact, ESX Server transfers the network traffic to one of the secondary adapters while continuing to monitor the primary adapter. When ESX Server detects that the physical connection of the primary link has been restored, it transfers the connection for the virtual switch back to the primary.
This basic failure detection mode passively monitors an adapter for loss of physical connection to an external switch. You can configure ESX Server to actively search for network failures using beacon monitoring.

Using Beacon Monitoring

The beacon monitoring feature broadcasts beacon packets on the external network linked to the server to detect distributed connection failures. ESX Server issues beacon packets from one adapter addressed to other adapters assigned to a virtual switch. By monitoring beacon reception, the server can determine the state of connections in a multi-point network route. You can configure beacon monitoring for each virtual switch and for the entire server.

Beacon monitoring is used in configurations where the multiple adapters assigned to a virtual switch are connected to more than one external switch. Physical link monitoring indicates only whether an adapter is communicating with one external switch. Beacon failures can detect connection failures between external switches or routing errors among switches in a distributed network domain.

ESX Server uses beacon monitoring as a variable indicator of network connection failure. The server indicates a connection loss after it fails to receive a set number of broadcast beacons in succession. Only when the number of failed beacons exceeds the failure threshold will the server identify a link as disconnected and switch to another adapter.

By default, the beacon failure threshold is set to zero for each virtual switch. You can enable beacon monitoring by setting the failure threshold to two or greater.

ESX Server also lets you determine the frequency with which it issues beacons. The rate at which the server broadcasts beacons, in conjunction with the failure threshold, determines the total monitoring interval before the server identifies a link as isolated:

\[
\text{Beacon Interval (in seconds)} \times \text{Beacon Failure Threshold} = \text{Total Beacon Failure Interval}
\]

You set the failure threshold for an individual switch with the `switch_failover_threshold` option.

To set the failure threshold for bond1 to 2 beacons

1. Log into the Service Console as root.
2. Edit `/etc/vmware/hwconfig`.
3. Set the beacon failure threshold for bond1:

   ```
   nicteam.bond1.switch_failover_threshold = "2"
   ```
4 Save the file and close it.

ESX server broadcasts beacons with the same frequency for all switches. The SwitchFailoverBeaconInterval option sets this value. The server also defines an overall failure threshold for all switches with the SwitchFailoverThreshold option, but switch_failover_threshold overrides this value for each individual switch.

You can set the values of the SwitchFailoverBeaconInterval and SwitchFailoverThreshold options in the Advanced Settings panel of the Management Interface. See “Advanced Settings” on page 205.

Beacon monitoring can cause false indications of network connection failure. External switches may trap beacon packets, causing ESX Server to declare a switch failure for a connection that is functioning normally. When the server switches to a secondary link, traffic from the primary may still be transmitted because the connection has not actually failed. This can result in an external switch receiving duplicate packets from both links.

NOTE ESX Server uses beacon monitoring as a secondary method to detect network failures. When the server detects a physical link failure for the primary adapter, it will switch to a secondary adapter without regard to whether beacon monitoring indicates a failed connection.

Configuring External Network Switches

ESX Server host allow you to configure external network switches to ensure the proper interaction of the host with the external network. The following options can be configured:

- **IP Load Balancing** – With this load balancing mode enabled, ESX Server may present duplicate MAC addresses to an external network switch. The external switch should be set static 802.3ad (EtherChannel) mode to avoid external routing errors.

- **SwitchFailoverBeaconEtherType** – Sets the Ether type of monitor beacons. You can change this value so that your external switches correctly handle monitor beacons.

- **Beacon Monitoring with Multiple Switches** – All external switches connected to a virtual switch using beacon monitoring must be within the same network broadcast domain.

- **Spanning-Tree Protocol** – If an adapter loses the physical connection to an external switch that is using the Spanning-Tree Protocol, the switch may induce a delay in reconnecting the link while it applies the protocol to check for duplicate active
connections. ESX Server can detect only that the link has been physically restored, but not that the port is blocked by the Spanning-Tree check.

- **Portfast Mode** – Use to reduce errors caused by Spanning-Tree checks. If you cannot disable the Spanning-Tree Protocol for an external switch, configure the ports connected to the server to use Portfast mode. This reduces Spanning-Tree delays, resulting in fewer false indications of link failures.

Troubleshooting

If, while booting your virtual machine, you see an error message stating that the Ethernet device cannot be detected, check the following:

- **Network Connections pane** – Be sure that the correct physical adapters are assigned to a bond

- **VM Configuration page** – Be sure the correct bond is selected for the specified Ethernet device and that the selected vmnic is not already assigned to a bond device or already in use.

Make the appropriate change(s), and reboot your virtual machine to determine whether the error message persists.
VMware ESX Server allows you to optimize the performance of your virtual machines by managing a virtual machine’s resource allocations. You must be the root user to manage virtual machine resources. You can control a virtual machine’s access to:

- CPU time
- Memory space
- Network bandwidth
- Disk bandwidth

You can manage virtual machine resource allocations through the VMware Management Interface, from the procfs interface on the service console, and the VMware Scripting API. The first two methods are covered in this chapter. The Scripting API is described in the *VMware Scripting API User’s Manual* at http://www.vmware.com/support/developer.

This chapter contains the following sections:

- “Virtual Machine Resource Management” on page 328
- “Using ESX Server Resource Variables” on page 328
- “Improving Performance” on page 329
- “CPU Resource Management” on page 331
- “Managing Virtual Machine CPU Resources” on page 336
- “Memory Resource Management” on page 345
- “Managing Virtual Machine Memory” on page 351
Virtual Machine Resource Management

ESX Server uses a proportional share mechanism to allocate CPU, memory, and disk resources when multiple virtual machines are contending for the same resource. Network bandwidth is controlled with network traffic shaping.

CPU and memory resource each offer an additional dimension of control. For CPU management, you can specify a minimum and maximum percentage of a single physical CPU’s processing power for each virtual machine. You may also specify CPU shares and restrict a virtual machine to run on a certain set of physical CPUs (CPU scheduling affinity). See “Admission Control Policy” on page 11.

You can also specify minimum and maximum memory sizes, as well as memory shares, for each virtual machine. Your level of control is greatly impaired if you fail to install VMware Tools in each virtual machine or if you fail to set up the VMkernel swap space. See “Allocating Memory Resources” on page 25.

NOTE You do not have to adjust resources for every virtual machine you create. Determine which virtual machines are performance-sensitive and adjust only these.

Service Console Resource Management

The service console receives 2000 CPU shares and has a minimum CPU percentage of 8 percent, by default. In most cases, this is an appropriate allocation, because the service console should not be used for CPU-intensive tasks.

If you need to adjust the service console’s allocation of CPU shares, use the VMware Management Interface. See “Managing the Service Console” on page 168.

Depending on the number of virtual machines you plan to run concurrently, we have approximate guidelines for the memory you should allocate to the service console. See “Service Console Memory” on page 46.

Using ESX Server Resource Variables

This chapter describes the parameters you can use to optimize resources on ESX Server. Also included is information the algorithms and policies ESX Server use to determine resource allocation.
Improving Performance

Before deploying all your virtual machines, we suggest that you create a list of all the virtual machines you plan to run on ESX Server. For each virtual machine, identify its primary functions and applications. Based on its primary function, determine its limiting resources. For example, a Web server’s most limiting resource may be memory, while a terminal services server’s most limiting resource may be CPU. Similarly, a database server’s most limiting resource may be disk bandwidth.

In this section, we provide some general guidelines on improving performance on VMware ESX Server. However, some of these guidelines may not be appropriate for you, depending on your particular workplace situation.

NOTE
Determine which virtual machines are more important and which ones will benefit from additional resources. You do not need to optimize each resource for each virtual machine.

For example, you might want to give more memory shares and a higher memory minimum to a virtual machine Web server for Platinum customers, compared to a virtual machine Web server for Silver customers or for an internal Web server.

NOTE
If you run several virtual machines with similar guest operating systems on ESX Server, you will have a higher overcommitment of memory, without noticing a performance degradation in ESX Server. In general, similar guest operating systems enable greater memory sharing in virtual machines. See “Managing Virtual Machine Memory” on page 351.

Improving Slow Performance

If performance seems slow, determine whether the slow performance applies to all virtual machines on an ESX Server or to just one virtual machine.

Improving Slow Performance on ESX Server

If you notice slow performance on all your virtual machines, examine CPU usage. Determine how much idle time each processor has. Check overall system CPU utilization through the VMware Management Interface. If the processors are not taxed, and total system CPU utilization is under 80%, the problem is probably not CPU usage.

If CPU resources are not the problem, check whether the VMkernel is swapping out memory. Check the output of `/proc/vmware/sched/mem` from the procfs interface in the service console. For more information, see “Service Console Commands” on page 353.
If the problem is VMkernel swapping, make sure VMware Tools is installed. Place the swap file in a different physical drive than the virtual disks. Also consider adding more physical memory to the server or migrating some virtual machines onto another ESX Server.

Improving Slow Performance on Virtual Machines

If slow performance is isolated on a few virtual machines, check their resource utilization before examining the service console.

NOTE Determine whether the guest operating system is doing a lot of paging (swapping).

- In a Linux guest operating system, run the `vmstat` command. See the `vmstat(8)` man page.
- In a Windows guest operating system, open the Control Panel. Double-click Administrative Tools, and double-click Performance. Check the value for pages/second.

If a virtual machine is paging a lot, increase the minimum memory so that excessive paging is eliminated. If you are close to the maximum memory size, increase that resource setting.

Optimizing Performance on the Service Console

If the problem is with CPU resources, increase the CPU minimum of the service console and determine whether that solves the problem.

You can also improve performance by not connecting unnecessarily through the remote console. For example, unless you are performing an action in a virtual machine, close the remote console. Having a remote console window open, without any activity, still uses CPU resources in the service console.

To optimize performance, you can use other third-party software, such as Virtual Network Computing (VNC) viewer or Microsoft Terminal Services to connect to your virtual machine, without consuming CPU resources in the service console.
CPU Resource Management

VMware ESX Server provides dynamic control over both the execution rate and the processor assignment of each scheduled virtual machine. The ESX Server scheduler performs automatic load balancing on multiprocessor systems.

You can manage the CPU resources on a server from the VMware Management Interface, from the procfs interface on the service console, and from the VMware Scripting API.

For each virtual machine, you can define a minimum and maximum amount of CPU that a virtual machine can use, guaranteeing a percentage of the CPU resource. You also allocate CPU shares to specify the relative importance of virtual machines.

If you purchased the VMware Virtual SMP for ESX Server product and your guest operating system is SMP-capable, you can control whether the virtual machine runs on one or two CPUs and restrict a virtual machine to run only on certain physical CPUs. For more information on the VMware Virtual SMP for ESX Server product, contact VMware, Inc. or your authorized sales representative.

For information on CPU management by VMware ESX Server, see the cpu(8) man page.

Allocating CPU Resources

Three parameters control the allocation of CPU resources to each virtual machine:

- **Minimum rate (min)**

 The minimum CPU percentage represents an absolute fixed lower limit of a single physical CPU’s processing power. The virtual machine will always be able to use this minimum percentage of a CPU’s resources, regardless of what else is happening on the server. The system uses an admission control policy to enforce this guarantee. You cannot power on a new virtual machine if it cannot reserve its minimum CPU percentage.

- **Maximum rate (max)**

 The maximum CPU percentage represents an absolute fixed upper limit on the consumption of a single physical CPU’s processing power. The virtual machine will never consume more than this maximum percentage of a CPU’s resources, even if idle time is on the system.

- **Shares allocation**

 CPU shares entitle a virtual machine to a relative fraction of CPU resources. For example, a virtual machine that has twice as many shares as another is generally
entitled to consume twice as much CPU time, subject to their respective minimum and maximum percentages.

You may specify shares by specifying a numerical value, or specifying high, normal, or low. By default, the setting for normal shares is twice that of low. The setting for high shares is twice that of normal (or four times that of low).

You can specify a minimum percentage, a maximum percentage, CPU shares, or a combination of these. The system automatically allocates CPU time to each virtual machine somewhere between its minimum and maximum percentages, refined by the number of shares.

Admission Control Policy

ESX Server uses an admission control policy. While CPU reservations are used for admission control, actual CPU time allocations vary dynamically and unused reservations are not wasted.

NOTE If ESX Server is unable to guarantee a virtual machine’s specified minimum percentage, it will not allow you to power on that virtual machine.

Specifying Minimum and Maximum CPU Percentages

Starting with ESX Server 2.0, you can specify a minimum and maximum percentage of CPU for each virtual machine. The minimum percentage represents an absolute, fixed lower limit while the maximum percentage represents an absolute, fixed upper limit. A virtual machine will use at least as much CPU time as specified by the minimum percentage and never use more CPU time than the specified maximum percentage.

For a single virtual CPU virtual machine, the percentage ranges from 0% to 100%. For a dual-virtual CPU machine, the percentage ranges from 0% to 200%.

NOTE Set a virtual machine’s minimum for the minimal acceptable performance.

For example, if one of your virtual machines is running an important application, you can specify a higher minimum percentage for this virtual machine, compared to the other virtual machines on your ESX Server.

NOTE You can set CPU percentages for some, or all of your virtual machines. Alternately, you can set only minimum, or only maximum CPU percentages. You do not need to set both.

For example, you plan to run 20 virtual machines on your ESX Server machine, but have currently deployed only five virtual machines. These five virtual machines would utilize any extra CPU time that is available on the ESX Server machine. However, after
you deploy an additional 15 virtual machines, these five initial virtual machines will receive a smaller share of CPU time than what they used previously.

To have the users of these original five virtual machines become accustomed to this higher level of CPU time, set a maximum CPU percentage for these five virtual machines and limit the amount of CPU time they receive. Then, these users won’t see a difference when you deploy the additional virtual machines.

NOTE The CPU percentage(s) you choose represent an absolute fixed limit for that virtual machine.

Assigning Virtual Machines to Run on Specific Processors

In multiprocessor systems, you can also restrict the assignment of virtual machines to a subset of the available processors by specifying an affinity set for each virtual machine. The system assigns each virtual machine to processors in the specified affinity set to achieve the CPU allocations specified by the minimum, maximum, and shares settings associated with each virtual machine. If the affinity set for a uniprocessor virtual machine contains a single processor, the virtual machine is placed there.

The scheduler performs automatic load balancing of CPU time. To optimize this automatic load balancing, avoid manually specifying affinity for a virtual machine. Instead, set a CPU minimum to guarantee the minimal acceptable performance for a virtual machine. See “CPU Resource Management” on page 331.

NOTE By specifying a minimum (instead of specifying affinity), ESX Server has the maximum flexibility for automatic optimizations.

You can modify CPU shares and affinity sets at any time using the procfs interface on the service console or using the VMware Management Interface. Initial values for a virtual machine can be specified in its configuration file.

Using Proportional-share Scheduling by Allocating Shares

With proportional-share processor scheduling, you can allocate a number of shares to each scheduled virtual machine. CPU shares are relative.

For example, a virtual machine that is allocated 2000 shares is entitled to consume twice as many CPU cycles as a virtual machine with 1000 shares. Similarly, a virtual machine that is allocated 200 shares is entitled to consume twice as many CPU cycles as a virtual machine with 100 shares. The number of shares may vary, but the first virtual machine has twice as many shares as the second virtual machine.
By default, the setting for **high** is twice that of **normal**, or four times that of **low**. For example, a virtual machine with **high** shares can consume twice as many CPU cycles as a virtual machine with **normal** shares, or four times as many CPU cycles as a virtual machine with **low** shares. To change these defaults, see “Using procfs” on page 339.

You can use proportional-share scheduling by itself, or in combination with CPU percentages. See “Managing CPU Time with Percentages and Shares” on page 334.

For example, if you are running three virtual machines, each starts with a default allocation of **normal** shares. To give one virtual machine half the CPU time and give each of the other two virtual machines one-quarter of the CPU time, assign **high** shares to the first virtual machine and leave the other two at their default allocations. Because these share allocations are relative, the same effect can be achieved by giving 500 shares to the first virtual machine and 250 to each of the other two virtual machines.

Controlling Relative CPU Rates

You can control relative CPU rates by specifying the number of shares allocated to each virtual machine. Increasing the number of shares allocated to a virtual machine dilutes the effective value of all shares by increasing the total number of shares.

The service console receives 2000 shares and has a minimum CPU percentage of 8 percent, by default. In most cases, this should be an appropriate allocation, because the service console should not be used for CPU-intensive tasks.

If you need to adjust the service console’s allocation of CPU shares, use the VMware Management Interface or the procfs interface on the service console, as described in this section. Through the management interface, you can increase the minimum CPU percentage or the number of CPU shares to allocated more CPU to the service console. See “Managing the Service Console” on page 168.

NOTE
CPU share allocations, by themselves, do not guarantee the rate of progress within a virtual machine.

For example, suppose virtual machine A is allocated **high** shares, while virtual machine B is allocated **normal** shares. If both virtual machines are CPU-bound—that is, both are running the same compute-intensive benchmark—virtual machine A should run twice as fast as virtual machine B. If virtual machine A instead runs an I/O-bound workload that causes it to stop as it waits for other resources, it does not run twice as fast as virtual machine B, even though it is allowed to use twice as much CPU time.

Managing CPU Time with Percentages and Shares

You can use both CPU percentages and shares to manage CPU resources for your virtual machines. CPU percentages specify absolutes, an absolute minimum or
maximum usage by a virtual machine. Shares represent relative importance or priority. You set shares to specify which virtual machines will get preferential treatment when ESX Server is constrained.

For example, virtual machine A has a minimum CPU percentage of 20%, and a maximum CPU percentage of 50%, while virtual machine B has a minimum percentage of 30% and no specified maximum percentage. You give virtual machine A high CPU shares and virtual machine B low CPU shares.

ESX Server interprets this allocation so that virtual machine A will never have less than 20% of a single physical CPU, and virtual machine B will never have less than 30% of a single physical CPU, in any situation.

However, if one or more virtual machines are idling, ESX Server redistributes this extra CPU time proportionally, based on the virtual machines’ CPU shares. Active virtual machines benefit when extra resources are available. In the example, virtual machine A gets four times as much CPU time as virtual machine B, subject to the specified CPU percentages. (By default the setting for high shares is four times that for low shares.)

That is, virtual machine A has four times as much CPU time as machine B, as long as the virtual machine A’s CPU percentage is between 20% and 50%. Actually, virtual machine A might get only twice the CPU time of virtual machine B, because four times the CPU time exceeds 50%, or the maximum CPU percentage of virtual machine A.

Using Hyper-Threading

You can enable Hyper-threading to allow a single processor to execute two independent threads simultaneously. While this feature does not provide the performance of a true dual-processor system, it can improve utilization of on-chip resources, leading to greater throughput for certain important workloads.

Enabling Hyper-Threading in ESX Server

Enable Hyper-Threading with the Enable Hyper-Threading option for your system startup profile. Set this option with Options->Startup Profile in the Management Interface. See “Startup Profile” on page 188.

You can also enable Hyper-Threading in the Service Console.

To edit /etc/vmware/hwconfig and set the hyperthreading option

1. Log into the Service Console as root.
2. Edit /etc/vmware/hwconfig.
3 Define the hypethreading option:

 hypethreading = "true"

If you previously defined this option, change the current value to true.

4 Save the file and close it.

Configuring Hyper-Threadin Options for Virtual Machines

You can configure the htsharing option with the **Verbose Options** configuration panel. Use the complete name of the option: cpu.htsharing. See “Setting Startup and Shutdown Options by Modifying the Configuration File Directly (Advanced Users Only)” on page 126 for detailed instructions.

You can also configure htsharing in the Service Console, by editing the virtual machine configuration file or by using the procfs command. See “Editing the Virtual Machine Configuration File” on page 337 or “Using procfs” on page 339.

Managing Virtual Machine CPU Resources

You can manage CPU resources from the VMware Management Interface or from the service console, as described in the following sections:

- “Managing CPU Resources from the Management Interface” next
- “Managing CPU Resources from the Service Console” on page 337

Managing CPU Resources from the Management Interface

You may also view and change settings from the virtual machine details pages in the VMware Management Interface.

To change CPU resources in the VMware Management Interface

1 On the server’s Status Monitor pane, click the name of an individual virtual machine.

 The details page for that virtual machine appears.
2 Click the CPU tab.

3 Click Edit.

The CPU Resource Settings dialog box appears.

4 Enter the settings you want, and click OK.

You must log in as root to change resource management settings using either the management interface or procfs.

Managing CPU Resources from the Service Console

You can manage CPU resources by editing the virtual machine configuration (.vmx) file or using procfs.

Editing the Virtual Machine Configuration File

The following configuration options enable you to manage CPU resources.
sched.cpu.shares = <n>

This configuration file option specifies the initial share allocation for a virtual machine to <n> shares. The valid range of numerical values for <n> is 1 to 100000. You can use the values low, normal, and high. These values are converted into numbers, through the configuration options CpuSharesPerVcpuLow, CpuSharesPerVcpuNormal, and CpuSharesPerVcpuHigh, described in the next section, “Using procfs.”

If the number of CPU shares is not specified, the default allocation is normal, that by default, is set to 1000 shares per virtual CPU. The default allocation for a uniprocessor virtual machine is 1000 shares or 2000 shares for a dual-virtual CPU (SMP) virtual machine.

sched.cpu.min = <minPercent>

This configuration file option specifies a minimum CPU reservation <min>, as a percentage, for a virtual machine. The valid range of values for <minPercent> is 0 (the default minimum) to the number representing the total physical CPU resources. The minimum might be greater than 100 for SMP virtual machines that are guaranteed more than one full physical CPU.

NOTE If ESX Server is unable to guarantee a virtual machine's specified minimum percentage(s), you cannot power on that virtual machine. For example, if you have two uniprocessor (UP) virtual machines, each has a CPU minimum of 80%, and both are bound to the same processor, ESX Server does not allow you to power on both virtual machines. The total CPU percentage is 160%, greater than a single processor.

sched.cpu.max = <maxPercent>

This configuration file option specifies a maximum CPU percentage <maxPercent> for a virtual machine. The valid range of values for <maxPercent> is 0 to the number representing the total physical CPU resources. The maximum might be greater than 100 for SMP virtual machines that are guaranteed more than one full physical CPU. The default maximum is 100 times the number of virtual CPUs in the virtual machine (100 percent for uniprocessor virtual machines and 200 percent for dual-virtual CPU virtual machines).

NOTE A virtual machine will never use more CPU time than the specified maximum percentage.

sched.cpu.affinity = <set>

This configuration file option specifies the initial processor affinity set for a virtual machine. If <set> is all or default, the affinity set contains all available processors. The specified set can also be a comma-separated list of CPU numbers such as 0,2,3.
Setting the htSharing Option

Setting the `htSharing` option configures the Hyper-Threading operation mode for the virtual machine identified by `<id>`. Valid modes are:

- **any** — Each CPU of the virtual machine can share the server's logical CPUs with all other virtual machines. Default value for `htSharing`.
- **none** — Each CPU of the virtual machine requires an entire physical CPU (two logical CPUs) of the server to operate. This prevents the virtual machine from operating with the shared system resources provided by Hyper-Threading and can reduce performance.
- **internal** — Each CPU of the virtual machine can share logical CPUs with the second CPU in the same virtual machine, but not with CPUs from other virtual machines. This mode switches to `none` for virtual machines with one CPU.

Using procfs

You can also use procfs to manage CPU resources. Use the following command:

```bash
echo <new_value> > <proc_filename>
```

in the service console, where `<new_value>` is the value you want to set and `<proc_filename>` is the full path name of the configuration option's proc entry. See “Examples” on page 342 for more information.

NOTE

For SMP virtual machines, use the `<id>` of any of the virtual CPUs to view or change configuration options for that virtual machine.

```bash
/proc/vmware/vm/<id>/cpu/min
```

Reading from this file reports the minimum CPU percentage allocated to the virtual machine identified by `<id>`.

Specifying a percentage `<minPercent>` to this file changes the minimum percentage allocated to the virtual machine identified by `<id>` to `<minPercent>`. The valid range of values for `<minPercent>` is 0 to 100 multiplied by the number of virtual CPUs; that is, 100 percent for uniprocessor virtual machines and 200 percent for dual-virtual CPU virtual machines.
/proc/vmware/vm/<id>/cpu/max

Reading from this file reports the maximum CPU percentage allocated to the virtual machine identified by <id>. Specifying a percentage \texttt{<maxPercent>} to this file changes the maximum percentage allocated to the virtual machine identified by <id> to \texttt{<maxPercent>}. The valid range of values for \texttt{<maxPercent>} is 0 to 100 multiplied by the number of virtual CPUs; that is, 100 percent for uniprocessor virtual machines and 200 percent for dual-virtual CPU virtual machines.

/proc/vmware/vm/<id>/cpu/shares

Reading from this file reports the number of shares allocated to the virtual machine identified by <id>. Writing a number \texttt{<n>} to this file changes the number of shares allocated to the virtual machine identified by <id> to \texttt{<n>}. The valid range of numerical values for \texttt{<n>} is 1 to 100000. You can also use the values \texttt{low}, \texttt{normal}, and \texttt{high}. These values are converted into numbers, through the configuration options \texttt{CpuSharesPerVcpuLow}, \texttt{CpuSharesPerVcpuNormal}, and \texttt{CpuSharesPerVcpuHigh}, described in this section.

/proc/vmware/vm/<id>/cpu/affinity

Reading from this file reports the number of each CPU in the current affinity set for the virtual machine identified by <id>. Writing a comma-separated list of CPU numbers to this file, such as \texttt{0,2,3}, changes the affinity set for the virtual machine identified by <id>. Writing \texttt{all} or \texttt{default} to this file changes the affinity set to contain all available processors.

For SMP virtual machines, writing to this file changes the affinity of all virtual CPUs in the virtual machine to the specified affinity set.

/proc/vmware/vm/<id>/cpu/hyperthreading

Reading from this file reports the Hyper-Threading state of the virtual machine identified by <id>. Setting the \texttt{htSharing} option configures the Hyper-Threading operation mode for the virtual machine identified by <id>. Valid modes are:

- \texttt{any} – Each CPU of the virtual machine can share the server’s logical CPUs with all other virtual machines. Default value for \texttt{htSharing}.

\textbf{NOTE}\hspace{1em}If not enough unreserved CPU time is available in the system to satisfy a demand for an increase in \texttt{min}, the reservation will not be changed.
none – Each CPU of the virtual machine requires an entire physical CPU (two logical CPUs) of the server to operate. This prevents the virtual machine from operating with the shared system resources provided by Hyper-Threading, and can reduce performance.

internal – Each CPU of the virtual machine can share logical CPUs with the second CPU in the same virtual machine, but not with CPUs from other virtual machines. This mode switches to none for virtual machines with one CPU.

NOTE Only SMP virtual machines can use multiple virtual CPUs.

/proc/vmware/vm/<vcpuid>/cpu/status

Reading from this file reports current status information for the virtual CPU identified by `<vcpuid>`, including the specified shares and affinity parameters; and the virtual machine name, state (running, ready, waiting), current CPU assignment, and cumulative CPU usage in seconds.

/proc/vmware/sched/cpu

Reading from this file reports the status information for all virtual machines in the entire system. Each virtual CPU is displayed on its own line, with information including uptime, time used, and resource management parameters.

/proc/vmware/config/Cpu/SharesPerVcpuLow

Specifies the a numerical value for the **low** value. By default, this number is 500. Because this value is expressed in shares per virtual CPU, the allocation for a uniprocessor virtual machine is 500 shares, or 1000 shares for a dual-virtual CPU (SMP) virtual machine.

/proc/vmware/config/Cpu/SharesPerVcpuNormal

Specifies the a numerical value for the **normal** value. By default, this number is 1000. For a uniprocessor virtual machine, the default allocation is 1000 shares, or 2000 shares for a dual-virtual CPU (SMP) virtual machine.

/proc/vmware/config/Cpu/SharesPerVcpuHigh

Specifies the a numerical value for the **high** value. By default, this number is 2000. For a uniprocessor virtual machine, the default allocation is 2000 shares, or 4000 shares for a dual-virtual CPU (SMP) virtual machine.
Examples

Suppose that we are interested in the CPU allocation for the virtual machine with ID 103. To query the number of shares allocated to virtual machine 103, read the file.

cat /proc/vmware/vm/103/cpu/shares

The number of shares is displayed.

1000

This indicates that virtual machine 103 is currently allocated 1,000 shares. To change the number of shares allocated to virtual machine 103, simply write to the file. Note that you need root privileges to change share allocations.

echo 2000 > /proc/vmware/vm/103/cpu/shares

You can also write to the file by specifying low, normal, or high. ESX Server writes the numerical value for these special values.

echo high > /proc/vmware/vm/103/cpu/shares

The change can be confirmed by reading the file again.

cat /proc/vmware/vm/103/cpu/shares

The number of shares is displayed.

2000

To query the affinity set for virtual machine 103, read the file:

cat /proc/vmware/vm/103/cpu/affinity

The identifying numbers of the processors in the affinity set are displayed.

0,1

This indicates that virtual machine 103 is allowed to run on CPUs 0 and 1. To restrict virtual machine 103 to run only on CPU 1, write to the file. You need root privileges to change affinity sets.

echo 1 > /proc/vmware/vm/103/cpu/affinity

The change can be confirmed by reading the file again.

NOTE The affinity set must contain at least as many CPUs as virtual CPUs; that is, 1 CPU for a uniprocessor (UP) virtual machine and 2 CPU for a SMP virtual machine.

Monitoring CPU Statistics

The VMware Management Interface provides information on the current use of CPU by the physical computer and the virtual machines running on it. View the Status Monitor tab in the management interface. See Figure 12-1.
Figure 12-1. Status Monitor tab

The **System Summary** section shows systemwide information. The **Virtual Machines** section below it shows information for particular virtual machines.

You can read the current CPU statistics for a virtual machine from its status file on the service console. For example, to view the statistics for the virtual machine with ID 137, use this command:

```
cat /proc/vmware/vm/137/cpu/status
```

The results appear in the following format:

```
vcpu  vm  name                uptime  status  costatus  usedsec  syssec
137   137  vmm0:Win2kAS  357.866  RUN      RUN      265.143  3.105

wait  waitsec  cpu  affinity  min  max  shares  emin  extrasec
NONE  51.783    0  0,1        0  200   2000    72   124.758
```
The output above is shown with additional line breaks, to avoid wrapping long lines. All times are reported in seconds, with millisecond resolution. Min and max percentages are reported as a percentage of a single processor.

Figure 12-2. The columns are described in Table 12-1.

Table 12-1. CPU statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vcpu</td>
<td>Virtual CPU identifier.</td>
</tr>
<tr>
<td>vm</td>
<td>Virtual machine identifier.</td>
</tr>
<tr>
<td>name</td>
<td>Display name associated with the virtual machine.</td>
</tr>
<tr>
<td>uptime</td>
<td>Elapsed time since the virtual machine was powered on.</td>
</tr>
<tr>
<td>status</td>
<td>Current VCPU run state: running (RUN), ready to run (READY), waiting on an event (WAIT or WAITB), terminating (ZOMBIE). There are additional states for SMP virtual machines: ready with pending co-schedule (CORUN), ready but co-scheduled (COSTOP).</td>
</tr>
<tr>
<td>costatus</td>
<td>Current SMP virtual machine co-scheduling state: uniprocessor virtual machine (NONE), ready to run (READY), co-scheduled (RUN), co-descheduled (STOP).</td>
</tr>
<tr>
<td>usedsec</td>
<td>Cumulative processor time consumed by the VCPU.</td>
</tr>
<tr>
<td>syssec</td>
<td>Cumulative system time consumed by the VCPU.</td>
</tr>
<tr>
<td>wait</td>
<td>Current VCPU wait event type: not waiting (NONE), idle (IDLE), file system (FS), swap (SWPA, SWPS), remote procedure call (RPC), waiting for request (RQ), and so on.</td>
</tr>
<tr>
<td>waitsec</td>
<td>Cumulative VCPU wait time.</td>
</tr>
<tr>
<td>cpu</td>
<td>Current VCPU processor assignment.</td>
</tr>
<tr>
<td>affinity</td>
<td>Processor affinity for VCPU.</td>
</tr>
<tr>
<td>min</td>
<td>Minimum processor percentage reservation for the virtual machine.</td>
</tr>
<tr>
<td>max</td>
<td>Maximum processor percentage allowed for the virtual machine.</td>
</tr>
<tr>
<td>shares</td>
<td>CPU shares allocation for the virtual machine.</td>
</tr>
<tr>
<td>emin</td>
<td>Effective minimum percentage allocation for the virtual machine.</td>
</tr>
<tr>
<td>extrasec</td>
<td>Cumulative processor consumption above emin by the virtual machine.</td>
</tr>
</tbody>
</table>

In this example, ID 137 is an SMP virtual machine with two virtual CPUs. The output shows statistics associated with its first virtual cpu vmm0, identified as vcpu 137, with a configured display name that begins with “Win2kAS”. The virtual CPU is currently running on processor 0 and is currently co-scheduled with the second VCPU associated with this virtual machine. The VCPU has been up for about 358 seconds, during which
time it has consumed about 265 seconds of processor time, including about 3 seconds of ESX Server system time (such as processing interrupts on behalf of the virtual machine).

The virtual CPU is not currently waiting, but has waited for a total of about 52 seconds since it has powered on. Together, both of the virtual machine’s virtual CPUs are allowed to use between 0 and 2 physical processors (\(\text{min}=0\%\) and \(\text{max}=200\%\)). The virtual machine’s allocation of 2000 shares currently entitles it to consume processor time equivalent to 72% of a single processor. Since powering on, the virtual machine has received about 124 seconds of CPU time above its entitlement, by consuming “extra” time leftover from other virtual machines that did not fully utilize their allocations.

Memory Resource Management

VMware ESX Server provides dynamic control over the amount of physical memory allocated to each virtual machine. You can overcommit memory so that the total size configured for all running virtual machines exceeds the total amount of available physical memory. The system manages the allocation of memory to virtual machines based on allocation parameters and system load.

You can specify initial memory allocation values for a virtual machine in its configuration file. You can also modify most memory allocation parameters dynamically using the VMware Management Interface, the `procfs` interface on the service console or the VMware Scripting API. Reasonable defaults are used when parameters are not specified explicitly.

You have access to information about current memory allocations and other status information through the management interface, the `procfs` interface on the service console and the VMware Scripting API.

For more information on memory management by VMware ESX Server, see the `mem(8)` man page. You can also view the abstract of a technical paper describing memory resource management at www.vmware.com/landing/academic.html.

If you have a server with NUMA architecture, see “Using Your NUMA System” on page 358. Refer to the VMware ESX Server2 NUMA Support White Paper, available at www.vmware.com/pdf/esx2_NUMA.pdf for information on supported NUMA platforms.
Allocating Memory Resources

Three parameters control the allocation of memory resources to each virtual machine:

- **Minimum size – min**

The minimum size is a guaranteed lower bound on the amount of memory that is allocated to the virtual machine, even when memory is overcommitted. The system uses an admission control policy to enforce this guarantee. You cannot power on a new virtual machine if there isn’t sufficient memory to reserve its minimum size.

 Set a virtual machine’s minimum for the minimal acceptable performance and above the threshold where the guest operating system begins swapping heavily. Use the performance monitoring tool of the guest operating system to see if you are swapping. For information on improving guest operating system performance, see “Improving Slow Performance on Virtual Machines” on page 330.

- **Maximum size – max**

The maximum size is the amount of memory configured for use by the guest operating system running in the virtual machine. This maximum size must be specified in the configuration file for the virtual machine. By default, virtual machines operate at their maximum allocation, unless memory is overcommitted.

 The system allocates an amount of memory to each virtual machine somewhere between its minimum and maximum sizes based on its shares and an estimate of its recent working set size.

NOTE Specify a maximum memory size for a guest operating system, or it will not boot. Also, you can change a virtual machine’s maximum memory size only when it is powered off.

- **Share allocation**

 Memory shares entitle a virtual machine to a fraction of physical memory. For example, a virtual machine that has twice as many shares as another is generally entitled to consume twice as much memory, subject to their respective minimum and maximum constraints, provided they are both actively using the memory they have been allocated.

 You can specify shares by specifying a numerical value, or specifying **high**, **normal**, or **low**. By default, the setting for **normal** shares is twice that of **low**. Similarly, **high** shares are twice that of **normal** (or four times that of **low**).
Setting Memory Minimum, Maximum, and Shares

You can set a memory minimum, memory maximum, and shares to manage memory resources for your virtual machines. Memory minimums and maximums specify absolutes, an absolute minimum or maximum memory usage by a virtual machine. Shares, on the other hand, represent relative importance or priority. You set shares to specify which virtual machines will get preferential treatment when ESX Server is overcommitted.

For example, virtual machine A has a minimum memory size of 192MB, and a maximum memory size of 256MB, while virtual machine B has a minimum memory size of 256MB and a maximum memory size of 512MB.

You then give virtual machine A high memory shares and virtual machine B normal memory shares. By default, the setting for high is twice that of normal, or four times that of low. For example, a virtual machine with high shares has twice as many shares as a virtual machine with normal shares, or four times as many shares as a virtual machine with low shares. To change these defaults, see “Service Console Commands” on page 353.

ESX Server interprets this allocation so that virtual machine A will never have less than 192MB memory, and virtual machine B will never have less than 256MB memory, in any situation.

However, if one or more virtual machines are not actively using their allocated memory (for example, the virtual machines are idling), ESX Server can redistribute a portion of unused memory proportionally, based on the virtual machines’ memory shares. Active virtual machines benefit when extra resources are available. In this example, because virtual machine A has high shares, it can get twice as much memory as virtual machine B (low shares), subject to the specified memory minimum or maximum.

For detailed information on how ESX Server dynamically redistributes memory, see “Allocating Memory Dynamically” on page 348.

Admission Control Policy

VMware ESX Server uses an admission control policy to ensure that sufficient unreserved memory and swap space are available before powering on a virtual machine. Memory must be reserved for the virtual machine’s guaranteed minimum size; additional overhead memory is required for virtualization. Thus the total required for each virtual machine is the specified minimum plus overhead.

The overhead memory size is determined automatically; it is typically 54MB for a single virtual CPU virtual machine, and 64MB for a dual-virtual CPU SMP virtual machine. Additional overhead memory is reserved for virtual machines larger than 512MB.
NOTE

To create SMP virtual machines with ESX Server, you must also have purchased the VMware Virtual SMP for ESX Server product. For more information on the VMware Virtual SMP for ESX Server product, contact VMware, Inc. or your authorized sales representative.

Swap space must be reserved on disk for the remaining virtual machine memory—that is the difference between the maximum and minimum settings. This swap reservation is required to ensure the system is able to preserve virtual machine memory under any circumstances. In practice, only a small fraction of the swap space may actually be used.

Similarly, while memory reservations are used for admission control, actual memory allocations vary dynamically, and unused reservations are not wasted.

The amount of swap space configured for the system limits the maximum level of overcommitment. A default swap file size equal to the physical memory size of the computer is recommended in order to support a reasonable 2x level of memory overcommitment. You may configure larger or smaller swap files or add additional swap files.

If you do not configure a swap file, memory may not be overcommitted. You may configure the swap file using the VMware Management Interface (Swap Configuration in the Options page) or from the service console using the vmkfstools command.

You can create additional swap files using the vmkfstools command. You should consider adding additional swap files if you want to run additional virtual machines but you’re unable to do so because of the lack of swap space. See “Using vmkfstools” on page 249.

Allocating Memory Dynamically

Virtual machines are allocated their maximum memory size unless memory is overcommitted. When memory is overcommitted, each virtual machine is allocated an amount of memory between its minimum and maximum sizes. The amount of memory granted to a virtual machine above its minimum size can vary with the current memory load. The system determines allocations for each virtual machine based on two factors: the number of shares it has been given and an estimate of its recent working set size.

ESX Server uses a modified proportional-share memory allocation policy. Memory shares entitle a virtual machine to a fraction of physical memory. For example, a virtual machine that has twice as many shares as another is entitled to consume twice as much memory, subject to their respective minimum and maximum constraints, provided that they are both actively using the memory they have been allocated. In general, a virtual machine with S memory shares in a system with an overall total of T shares is entitled to receive at least a fraction S/T of physical memory.
Virtual machines that are not actively using their allocated memory automatically have their effective number of shares reduced, by levying a tax on idle memory. This “memory tax” prevents virtual machines from hoarding idle memory. A virtual machine is charged more for an idle page than for a page that it is actively using.

The MemIdleTax configuration option provides explicit control over the policy for reclaiming idle memory. Use this option, together with the MemSamplePeriod configuration option, to control how the system reclaims memory. In most cases, changes shouldn’t be necessary. For information on using these options, see “Service Console Commands” on page 369.

ESX Server estimates the working set for a virtual machine by monitoring memory activity over successive periods of virtual machine virtual time. Estimates are smoothed over several time periods using techniques that respond rapidly to increases in working set size and more slowly to decreases in working set size. This approach ensures that a virtual machine from which idle memory has been reclaimed is be able to ramp up quickly to its full share-based allocation once it starts using its memory more actively. You can modify the default monitoring period of 60 seconds by adjusting the MemSamplePeriod configuration option.

Reclaiming Memory from Virtual Machines

ESX Server uses two techniques for dynamically expanding or contracting the amount of memory allocated to virtual machines: a VMware supplied vmmemctl module that is loaded into the guest operating system running in a virtual machine, and swapping pages from a virtual machine to a server swap file without any involvement by the guest operating system.

The preferred mechanism is the vmmemctl driver, which cooperates with the server to reclaim pages that are considered least valuable by the guest operating system. The vmmemctl driver uses a proprietary “ballooning” technique that provides predictable performance that closely matches the behavior of a native system under similar memory constraints. It effectively increases or decreases memory pressure on the guest operating system, causing the guest to invoke its own native memory management algorithms.

When memory is tight, the guest operating system determines which pages to reclaim and, if necessary, swaps them to its own virtual disk. The guest operating system must be configured with sufficient swap space. Some guest operating systems have additional limitations. See the notes in “Managing Memory Resources from the Service Console” on page 352. You can limit the amount of memory reclaimed using vmmemctl by setting the sched.mem.maxmemctl option. This option specifies the maximum amount of memory that you can reclaim from a virtual machine in megabytes (MB).
Swapping is used to forcibly reclaim memory from a virtual machine when no vmmemctl driver is available. This might be the case if the vmmemctl driver was never installed, has been explicitly disabled, is not running (for example, while the guest operating system is booting), or is temporarily unable to reclaim memory quickly enough to satisfy current system demands. Standard demand paging techniques swap pages back in when the virtual machine needs them.

Use the vmmemctl approach for optimum performance. Swapping is a reliable mechanism of last resort that the system uses to reclaim memory only when necessary.

Swap Space and Guest Operating Systems

If you overcommit memory with ESX Server, be sure your guest operating systems have sufficient swap space. This swap space must be greater than or equal to the difference between the virtual machine’s maximum and minimum sizes.

| CAUTION | If memory is overcommitted, and the guest operating system is configured with insufficient swap space, the guest operating system in the virtual machine may fail. |

To prevent virtual machine failure, increase the swap size in your virtual machines:

- **Windows guest operating systems** – Refer to swap space as “paging files.” Some Windows operating systems try to increase the size of paging files, if sufficient free disk space is available.

 Refer to your Windows documentation or search the Windows help files for “paging files.” Follow the instructions for changing the size of the virtual memory paging file.

- **Linux guest operating system** – Refers to swap space as “swap files.” For information on increasing swap files, see to the mkswap (sets up a Linux swap area) and swapon (enables devices and files for paging and swapping) man pages in your Linux guest operating system.

Guest operating systems with large memory and small virtual disks (for example, a virtual machine with 3.6GB RAM and a 2 GB virtual disk) are more susceptible to this problem.

Sharing Memory Across Virtual Machines

Many ESX Server workloads present opportunities for sharing memory across virtual machines. For example, several virtual machines may be running instances of the same guest operating system, have the same applications or components loaded, or contain common data. In such cases, ESX Server uses a proprietary transparent page sharing
technique to securely eliminate redundant copies of memory pages. With memory
sharing, a workload running in virtual machines often consumes less memory than it
would when running on physical machines. As a result, higher levels of
overcommitment can be supported efficiently.

The ESX Server approach does not require any cooperation from the guest operating
system. Use the MemShareScanVM and MemShareScanTotal configuration options to
control the rate at which the system scans memory to identify opportunities for sharing
memory. See “Service Console Commands” on page 353.

Managing Virtual Machine Memory

You can manage virtual machine memory from the VMware Management Interface or
from the service console.

Managing Memory Resources from the Management Interface

You can also view and change settings from the virtual machine details pages in the
VMware Management Interface.

To manage memory from the VMware Management Interface

1. On the server’s Status Monitor page, click the name of an individual virtual
machine.

 The details page for that virtual machine appears.

2. Click the Memory tab.

3. Click Edit.
The Memory Resource Settings dialog box appears.

4 Enter the settings, and click OK.

Log in as root to change resource management settings using either the management interface or procfs.

Managing Memory Resources from the Service Console

You can manage memory resources by editing the following settings in the virtual machine's configuration file. To edit the configuration file, use the configuration file editor in the management interface. See “Editing the Virtual Machine Configuration File” on page 337.

\[\text{memsize} = \text{<size>}\]

Specifies the maximum virtual machine size to be \(<\text{size}>\)MB.

\[\text{sched.mem.minsize} = \text{<size>}\]

Specifies the guaranteed minimum virtual machine size to be \(<\text{size}>\)MB. The maximum valid value for \(<\text{size}>\) is 100 percent of the specified maximum virtual machine size. The minimum valid value for \(<\text{size}>\) depends on the amount of available swap space. The default minimum size is 50 percent of the specified maximum virtual machine size.

\[\text{sched.mem.shares} = \text{<n>}\]

Specifies the initial memory share allocation for a virtual machine to be \(<\text{n}>\) shares. The valid range of numerical values for \(<\text{n}>\) is 0 to 100000. You can also use the values low, normal, and high. These values are converted into numbers, through the configuration options MemSharesPerMBLow, MemSharesPerMBNormal, and MemSharesPerMBHigh, described in the next section. If the number of shares for a virtual machine is not specified, the assigned allocation is normal, with a default value equal to 10 times the virtual machine’s maximum memory, in MB.
For example, if you created a virtual machine with a maximum memory of 256MB, and with its shares settings as normal, this virtual machine has 10 times 256, or 2560 shares. Similarly, a virtual machine with a maximum memory of 1GB with a normal share setting, has 10240 shares.

 sched.mem.maxmemctl = <size>

Specifies the maximum amount of memory that can be reclaimed from the virtual machine using vmmemctl to be <size>MB. If additional memory needs to be reclaimed, the system swaps instead of using vmmemctl. The default maximum size is half of the specified maximum virtual machine size.

 sched.mem.affinity = <NUMA_node>

Specifies that, if possible, all the virtual machine’s memory should be allocated on the specified NUMA node. See “Associating Future Virtual Machine Memory Allocations with a NUMA Node” on page 362.

Service Console Commands

/proc/vmware/vm/<id>/mem/min

Reading from this file reports the minimum memory size in megabytes for the virtual machine identified by <id>.

Writing a number <size> to this file changes the minimum memory size for the virtual machine identified by <id> to <size>MB.

/proc/vmware/vm/<id>/mem/shares

Reading from this file reports the number of memory shares allocated to the virtual machine identified by <id>.

Writing a number <n> to this file changes the number of memory shares allocated to the virtual machine identified by <id> to <n>. The valid range of numerical values for <n> is \(0\) to \(100000\). You may also use the special values **low**, **normal** and **high**. These values are converted into numbers, through the configuration options MemSharesPerMBLow, MemSharesPerMBNormal, and MemSharesPerMBHigh, described below.

A value of zero (0) shares causes the virtual machine memory size allocation to be exactly equal to its specified minimum size, even if excess memory is available.

/proc/vmware/vm/<id>/mem/status

Reading from this file reports current status information for the virtual machine identified by <id>, including the specified shares, minimum size and maximum size parameters as well as the virtual machine name, current status, whether the virtual machine is currently waiting for memory to be reserved, current memory usage,
current target size, memory overhead for virtualization and the amount of allocated memory actively in use. All memory sizes are reported in kilobytes.

/proc/vmware/sched/mem

Reading from this file reports the memory status information for all non-system virtual machines in the entire system as well as several aggregate totals.

Writing the string realloc to this file causes an immediate memory reallocation. Memory is normally reallocated periodically every MemBalancePeriod seconds. (See /proc/vmware/config/MemBalancePeriod below for more information.) Reallocations are also triggered by significant changes in the amount of free memory.

/proc/vmware/mem

Reading from this file reports the maximum size with which a new virtual machine can be powered on, admission control status including the amount of unreserved memory and unreserved swap space and the current amount of free memory in the system.

/proc/vmware/pshare/status

Reading from this file reports various detailed statistics about the current status of transparent page sharing.

/proc/vmware/swap/stats

Reading from this file reports various detailed swap statistics.

/proc/vmware/config/Mem/SharesPerMBLow

Specifies the a numerical value for the low shares value. By default, this number is 5. This number is multiplied by the virtual machine’s maximum memory size to obtain the number of shares.

/proc/vmware/config/Mem/SharesPerMBNormal

Specifies the a numerical value for the normal shares value. By default, this number is 10. This number is multiplied by the virtual machine’s maximum memory size to obtain the number of shares.

/proc/vmware/config/Mem/SharesPerMBHigh

Specifies the a numerical value for the high shares value. By default, this number is 20. This number is multiplied by the virtual machine’s maximum memory size to obtain the number of shares.

/proc/vmware/config/Mem/BalancePeriod
This ESX Server option specifies the periodic time interval, in seconds, for automatic memory reallocations. Reallocations are also triggered by significant changes in the amount of free memory. The default is 15 seconds.

```
/proc/vmware/config/Mem/SamplePeriod
```

This ESX Server option specifies the periodic time interval, measured in seconds of virtual machine virtual time, over which memory activity is monitored in order to estimate working set sizes. The default is 30 seconds.

```
/proc/vmware/config/Mem/IdleTax
```

This ESX Server option specifies the idle memory tax rate as a percentage. A tax rate of x percent means that up to x percent of a virtual machine's idle memory may be reclaimed. Virtual machines are charged more for idle memory, than for memory that they are actively using. A tax rate of 0 percent defines an allocation policy that ignores working sets and allocates memory strictly based on shares. A high tax rate results in an allocation policy that allows idle memory to be reallocated away from virtual machines that are unproductively hoarding it, regardless of shares. The default is 75 percent.

```
/proc/vmware/config/Mem/ShareScanVM
```

This ESX Server option specifies the maximum per-virtual machine rate at which memory should be scanned for transparent page sharing opportunities. The rate is specified as the number of pages to scan per second. The default is 50 pages per second per virtual machine.

```
/proc/vmware/config/Mem/ShareScanTotal
```

This ESX Server option specifies the total systemwide rate at which memory should be scanned for transparent page sharing opportunities. The rate is specified as the number of pages to scan per second. The default is 200 pages per second.

```
/proc/vmware/config/Mem/CtlMaxPercent
```

This ESX Server option limits the maximum amount of memory that may be reclaimed from any virtual machine using vmmemctl, based on a percentage of its maximum size. Specifying 0 effectively disables reclamation via vmmemctl for all virtual machines. Defaults to 50.

```
/proc/vmware/config/Mem/CtlMax[OSType]
```

These ESX Server options restrict the maximum amount of memory that may be reclaimed from a virtual machine using vmmemctl, based on the limitations of guest operating system type. The value is specified in megabytes. Defaults to 128 for OSType=NT4 (Windows NT 4.0), 2048 for OSType=NT5 (Windows 2000 or Windows Server 2003), and 768 for OSType=Linux.
Monitoring Memory Statistics

The VMware Management Interface provides information on the current use of RAM by the physical computer and the virtual machines running on it. View the Status Monitor page in the management interface.

Figure 12-3. Status Monitor tab

The System Summary section shows systemwide information. The Virtual Machines section below it shows information for particular virtual machines.

You can read the current memory statistics for a virtual machine from its status file on the service console. For example, to view the statistics for the virtual machine with ID 103, use this command:

```
cat /proc/vmware/vm/103/mem/status
```

The results appear in the following format:

```
vm    mctl?  shares  min   max  size/sizetgt
103    yes   2560    131072 262144 217300/217300

memctl/mctltgt  swapped/swaptgt  swapin  swapout
39168/ 39168  5672/ 5672  13289  18961

cptread/cpt-tgt  shared  active  overhd/ovhdmax  ovhdpeak  affinity
0/0  38164   191756  14508/55296  14508 0
```
The preceding output is shown with additional line breaks, in order to avoid wrapping long lines. All memory sizes are reported in kilobytes; 1 megabyte = 1024KB.

The columns are described in Table 12-2.

Table 12-2. Memory statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vm</td>
<td>Virtual machine identifier</td>
</tr>
<tr>
<td>mctl?</td>
<td>vmmemctl driver active?</td>
</tr>
<tr>
<td>shares</td>
<td>Memory shares associated with the virtual machine</td>
</tr>
<tr>
<td>min</td>
<td>Minimum size</td>
</tr>
<tr>
<td>max</td>
<td>Maximum size</td>
</tr>
<tr>
<td>size</td>
<td>Current size</td>
</tr>
<tr>
<td>sizetgt</td>
<td>Target size</td>
</tr>
<tr>
<td>memctl</td>
<td>Currently reclaimed using vmmemctl</td>
</tr>
<tr>
<td>mctltgt</td>
<td>Target to reclaim using vmmemctl</td>
</tr>
<tr>
<td>swapped</td>
<td>Currently swapped to VMFS swap file</td>
</tr>
<tr>
<td>swaptgt</td>
<td>Target to swap to VMFS swap file</td>
</tr>
<tr>
<td>swapin</td>
<td>Total number of pages swapped in from VMFS swap file</td>
</tr>
<tr>
<td>swapout</td>
<td>Total number of pages swapped out to VMFS swap file</td>
</tr>
<tr>
<td>cptread</td>
<td>(Resumed virtual machines only) Number of pages read from suspend file</td>
</tr>
<tr>
<td>cpt-tgt</td>
<td>(Resumed virtual machines only) Number of pages to read from suspend file</td>
</tr>
<tr>
<td>shared</td>
<td>Memory shared through transparent page sharing</td>
</tr>
<tr>
<td>active</td>
<td>Current working set estimate</td>
</tr>
<tr>
<td>overhd</td>
<td>Current overhead memory size</td>
</tr>
<tr>
<td>ovhdmax</td>
<td>Maximum overhead memory size</td>
</tr>
<tr>
<td>ovhdpeak</td>
<td>Maximum overhead memory used</td>
</tr>
<tr>
<td>affinity</td>
<td>(NUMA machines only) Memory affinity for the virtual machine</td>
</tr>
</tbody>
</table>

In this example, the virtual machine with ID 103 is running the vmmemctl driver and is not currently blocked waiting for memory. The virtual machine is configured to use between 128MB and 256MB and has been allocated 2560 memory shares. It is currently allocated about 212MB. Approximately 44MB has been reclaimed for use by other virtual machines—38MB through vmmemctl and nearly 6MB by swapping to the ESX server swap file. Of the 212MB allocated to the virtual machine, more than 37MB is shared, for example, with other virtual machines. The current working set estimate for
the virtual machine is approximately 187MB. About 14MB of overhead memory is currently being used for virtualization, out of a maximum of 54MB.

Cautions
VMware supplies vmmemctl drivers for Windows Server 2003, Windows XP, Windows 2000, Windows NT 4.0, and Linux. The appropriate vmmemctl driver is installed when you install VMware Tools in the guest operating system. The system uses swapping to reclaim memory from virtual machines running other guest operating systems and from virtual machines that do not have VMware Tools installed.

The maximum amount of memory that the system may attempt to reclaim using vmmemctl is restricted based on known limitations of the type of guest operating system. Alternatively, you can specify the configuration file option sched.mem.maxmemctl manually. See the description of the ESX Server options MemCtlMax[OSType] for appropriate limits.

Using Your NUMA System
ESX Server 2.5 includes additional support for machines that are based on NUMA (Non-Uniform Memory Access) architecture. NUMA machines are made up of multiple nodes (also called CECs on some multiple-node machines).

Each node comprises one to four processors and main memory. In a node, each CPU has the same distance from its “local memory.”

Each processor can access memory on any node, but accessing memory on a different node (referred to as “remote memory”) is substantially slower than accessing “local memory” that lies on the same node as the processor. That is, the memory access speed for CPUs on a node vary, depending on the “distance” of the memory from the node.

For more information on NUMA management by VMware ESX Server, see the numa(8) man page.

NUMA Configuration Information
This section describes how to obtain statistics about your NUMA system.
Obtaining NUMA Statistics

This command checks for the presence of a NUMA system. If it finds a NUMA system, it also lists the number of nodes, the amount of memory, and the physical CPUs on the NUMA node:

```bash
cat /proc/vmware/NUMA/hardware
```

Here’s an example of what you might see:

```
# NUMA Nodes: 2
Total memory: 8192 MB

<table>
<thead>
<tr>
<th>Node</th>
<th>ID</th>
<th>MachineMem</th>
<th>ManagedMem</th>
<th>CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>4096 MB</td>
<td>3257 MB</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>4096 MB</td>
<td>4096 MB</td>
<td>4 5 6 7</td>
</tr>
</tbody>
</table>
```

The absence of the `/proc/vmware/NUMA` directory indicates that this system is not a NUMA system.

There are two NUMA nodes. The fields in the table are defined as follows:

- **Node** – Node number.
- **ID** – Hardware ID number of the NUMA node.
- **MachineMem** – Amount of physical memory located on this NUMA node, including memory that can be used by the service console.
- **ManagedMem** – Amount of physical memory located on this NUMA node, excluding memory used by the service console and the ESX Server virtualization layer.
- **CPUs** – A space-separated list of the physical processors in this node.

Physical CPUs 0, 1, 2, and 3 are in NUMA node 0, and physical CPUs 4, 5, 6, and 7 are in NUMA node 1.

Total memory tells you how much memory is physically installed on each NUMA node. However, not all this memory may be managed by the VMkernel, because some of the memory is used by the service console.

Determining the Amount of Memory for Each NUMA Node

Type the following:

```bash
cat /proc/vmware/mem/
```
Here’s an example of what you might see:

```
Node Total-/MB FreeHi/MB FreeLow/MB Reserved/MB Kernel/MB
0 836022/3265 98304/384 737528/2880 34574/135 190/0
1 2621440/10240 2601144/10160 0/0 0/0 20296/79
Totals 2699448/10544 737528/2880
```

In this example, the total memory managed by the VMkernel for the NUMA nodes is listed in the Totals row. This amount might be smaller than the total amount of physical memory on the server machine.

Determining the Amount of Memory for a Virtual Machine on a NUMA Node

Type the following:

```
cat /proc/vmware/vm/<id>/mem/numa
```

Here’s an example of what you might see:

<table>
<thead>
<tr>
<th>Node#</th>
<th>Pages/MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13250/51</td>
</tr>
<tr>
<td>1</td>
<td>0/0</td>
</tr>
</tbody>
</table>

The preceding output indicates that the virtual machine, with the specified ID, occupies 51MB of memory on node 0, and no memory on node 1.

NOTE In this example, the memory affinity is set so that only pages associated with node 0 are allocated for this virtual machine (sched.mem.affinity = 0). If memory affinity had not been set, typically the output would have shown a more even distribution of memory between nodes 0 and 1. See “Associating Future Virtual Machine Memory Allocations with a NUMA Node” on page 362.

Automatic NUMA Optimizations

By default, ESX Server balances virtual machines and their related data between the available NUMA nodes. ESX Server attempts to maximize use of “local memory,” that lies on the same NUMA node as the virtual machine that is running.

ESX Server assigns each virtual machine to a temporary “home” NUMA node. The virtual machine runs only on CPUs in the home node, with access to its “local memory.” Periodically, ESX Server compares the utilization levels of all NUMA nodes and attempts to “rebalance” the nodes if one node has a higher utilization level than the
other nodes. ESX Server rebalances the nodes by changing a virtual machine’s “home” NUMA node from the overutilized node to an underutilized node.

When the NUMA nodes are balanced, ESX Server again attempts to maximize use of “local memory.” For more information, refer to the numa man page.

You can also set affinity manually as described in the next section. If you do, ESX Server won’t automatically rebalance the nodes, and you must balance the NUMA nodes to avoid overloading any single node.

Manual NUMA Optimizations

If you have applications that use a lot of memory or have a small number of virtual machines, you might want to optimize performance by setting your NUMA optimizations manually. For most users, ESX Server’s automatic NUMA optimizations, should provide you with good performance.

You can set two NUMA options manually:

- **CPU affinity** – See “Associating Virtual Machines to a Single NUMA Node,” next.
- **Memory affinity** – See “Associating Future Virtual Machine Memory Allocations with a NUMA Node” on page 362.

Typically, to bind a virtual machine to a NUMA node, set the virtual machine’s CPU affinity to use only the CPUs on the specified node and set the NUMA memory affinity to the same node.

NOTE If you set these optimizations manually, ESX Server does not automatically “rebalance” the nodes if one node becomes overloaded. You must balance the NUMA nodes to avoid overloading any single NUMA node.

Associating Virtual Machines to a Single NUMA Node

You can improve the performance of the applications on a virtual machine by associating it to the CPU numbers on a single NUMA node (manual CPU affinity). (“NUMA Configuration Information” on page 358.)

- VMware Management Interface – Associate a virtual machine to a single NUMA node. Click **Edit** in the **Scheduling Affinity** section of the CPU page for the virtual machine. Click the appropriate choices next to **Run on Processor(s)** and **Do not Run on Processor(s)**. Click OK.

 See “Managing CPU Resources from the Management Interface” on page 336.

- Virtual machine configuration file – Add the following:

  ```
sched.cpu.affinity = <set>
  ```
where `<set>` comprises CPU numbers on a single NUMA node. This entry binds all virtual CPUs in this virtual machine to the NUMA node.

For example, typing `sched.cpu.affinity = 4,5,6,7` binds this virtual machine to the NUMA node that has physical CPUs 4 through 7.

See “Editing the Virtual Machine Configuration File” on page 337.

- **procfs** interface on the service console

 `/proc/vmware/vm/<id>/cpu/affinity`

 Write a comma-separated list of the CPU numbers on a single NUMA node. See “Using procfs” on page 339.

NOTE If you manually set CPU affinity using one of the preceding options, ESX Server sets the virtual machine's memory to be allocated on the same NUMA node. To disable this feature, change the NUMAAutoMemAffinity configuration option to 0 (zero). See “Advanced Settings” on page 205.

Associating Future Virtual Machine Memory Allocations with a NUMA Node

You can improve performance by specifying that all future memory allocations on a virtual machine use pages associated with a single NUMA node (manual memory affinity). When the virtual machine uses “local” memory, the performance improves on this virtual machine. (See “Obtaining NUMA Statistics” on page 359 to determine the NUMA node number.)

NOTE Specify nodes to be used for future memory allocations only if you have also specified CPU affinity. If you make manual changes only to the memory affinity settings, automatic NUMA rebalancing will not work properly.

Do one of the following:

- **VMware Management Interface** – Associate a virtual machine to a single NUMA node. Click **Edit** in the **Memory Affinity** section of the Memory pane for the virtual machine. Click the appropriate choices next to the NUMA nodes and click **OK**.

 See “Managing Memory Resources from the Management Interface” on page 351.

- **Virtual machine configuration file** – Add the following:

  ```python
  sched.mem.affinity = <NUMA_node>
  ```

 where `<NUMA_node>` is the number of a single NUMA node.
procfs interface on the service console:

/proc/vmware/vm/<id>/mem/affinity

Write the number of the NUMA node.

Binding a Virtual Machine to a Single NUMA Node on an 8-way Server

The following example illustrates manually binding four CPUs to a single NUMA node for a virtual machine. You want the virtual machine to run only on node 1.

An example output of `cat /proc/vmware/NUMA/hardware` is:

```
# NUMA Nodes: 2
Total memory: 14336 MB

<table>
<thead>
<tr>
<th>Node</th>
<th>ID</th>
<th>MachineMem</th>
<th>ManagedMem</th>
<th>CPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>4096 MB</td>
<td>1210 MB</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>10240 MB</td>
<td>6143 MB</td>
<td>4 5 6 7</td>
</tr>
</tbody>
</table>
```

The CPUs—for example, 4, 5, 6 and 7—are the physical CPU numbers.

To manually bind four CPUs to a single NUMA node for a virtual machine

1. Complete one of the following to bind a two-way virtual machine to use only the last four physical CPUs of an eight-processor machine:
 - Add the following in the virtual machine’s configuration file.
     ```
     sched.cpu.affinity = 4,5,6,7
     ```
 - In the VMware Management Interface, associate a virtual machine to a single NUMA node by checking the appropriate boxes next to **Run on Processor(s)** in the CPU tab of the virtual machine details page.

2. Set the virtual machine’s memory affinity to specify that all of the virtual machine’s memory should be allocated on node 1.

 Add the following in the virtual machine’s configuration file.
   ```
   sched.mem.affinity = 1
   ```

 Completing these two steps ensures that the virtual machine runs only on NUMA node 1 and, when possible, allocates memory from the same node.

Sizing Memory on the Server

These guidelines are to help system administrators determine an appropriate amount of hardware memory for running a virtual machine workload on ESX Server 2.5. Because the characteristics of your workload also influence memory needs, follow up
with testing to confirm that memory sizes computed according to these guidelines achieve the results you want.

ESX Server uses a small amount of memory for its virtualization layer, additional memory for the service console, and all remaining memory for running virtual machines. The following sections explain each of these uses and provide a quantitative sizing example.

Server Memory

ESX Server 2.5 uses approximately 24MB of system memory for its virtualization layer. This memory is allocated when the ESX Server is loaded and is not configurable.

Service Console Memory

The recommended amount of memory to configure for the service console varies between 192MB and 512MB, depending on the number of virtual machines you plan to run concurrently on the server:

- 192MB for <= 8 virtual cpus
- 272MB for <= 16 virtual cpus
- 384MB for <= 32 virtual cpus
- 512MB for > 32 virtual cpus

The maximum amount of memory that can be reserved is 800MB.

Virtual Machine Memory Pool

The remaining pool of system memory is used for running virtual machines. ESX Server manages the allocation of this memory to virtual machines automatically based on administrative parameters and system load. ESX Server also attempts to keep some memory free at all times in order to handle dynamic allocation requests efficiently. ESX Server sets this level at approximately 6 percent of the memory available for running virtual machines.

Virtual Machine Memory

Each virtual machine consumes memory based on its configured size, plus additional overhead memory for virtualization.
The dynamic memory allocation for a virtual machine is bounded by its minimum and maximum size parameters. The maximum size is the amount of memory configured for use by the guest operating system running in the virtual machine. By default, virtual machines operate at their maximum allocation, unless memory is overcommitted.

The minimum size is a guaranteed lower bound on the amount of memory that is allocated to the virtual machine, even when memory is overcommitted. Set the minimum size to a level that ensures the virtual machine has sufficient memory to run efficiently, without excessive paging.

You can set the maximum size to a higher level to allow the virtual machine to take advantage of excess memory, when available.

Overhead memory includes space reserved for the virtual machine frame buffer and virtualization data structures. A virtual machine configured with less than 512MB of memory requires 54MB of overhead memory for a single virtual CPU virtual machine, and 64 MB for a dual-virtual CPU SMP virtual machine. Larger virtual machines require an additional 32MB of overhead memory per additional gigabyte of configured main memory. For example, a single virtual CPU virtual machine with a configured maximum memory size of 2GB requires 102MB of overhead memory.

Memory Sharing

Many workloads present opportunities for sharing memory across virtual machines. For example, several virtual machines may be running instances of the same guest operating system, have the same applications or components loaded or contain common data. ESX Server uses a proprietary transparent page sharing technique to securely eliminate redundant copies of memory pages.

With memory sharing, a workload consisting of multiple virtual machines often consumes less memory than it would when running on physical machines. As a result, the system can support higher levels of overcommitment efficiently.

The amount of memory saved by memory sharing is highly dependent on workload characteristics. A workload consisting of many nearly-identical virtual machines may free up more than 30 percent of memory, while a more diverse workload may result in savings of less than 5 percent of memory.

To determine the effectiveness of memory sharing for a workload, run the workload, and observe the savings by looking at the output of the `/proc/vmware/mem` file.

ESX Server memory sharing runs as a background activity that scans for sharing opportunities over time. The amount of memory saved may vary over time; for a fairly constant workload, the amount generally increases slowly until all sharing opportunities are exploited.
Memory Overcommitment

In many consolidated workloads, it is rare for all virtual machines to be actively using all of their memory simultaneously. Typically, some virtual machines are lightly loaded, while others are more heavily loaded, and relative activity levels generally vary over time. In such cases, it might be reasonable to overcommit memory to reduce hardware memory requirements.

ESX Server transfers memory from idle virtual machines to virtual machines that actively need more memory to improve memory utilization.

You can also specify configuration parameters to preferentially devote space to important virtual machines.

The minimum size for a virtual machine defines a guaranteed lower bound on the amount of memory that it is allocated, even when memory is overcommitted. You can also use memory shares to specify the relative importance of different virtual machines. In any case, you should configure an appropriate minimum size for each virtual machine to ensure that each virtual machine can function effectively (without excessive paging), even when all virtual machines are active concurrently.

When memory is scarce, ESX Server dynamically reclaims space from some virtual machines based on importance and current working sets. For optimal performance, the server attempts to reclaim memory from a virtual machine via a VMware-supplied vmmemctl module running in the guest. This allows the guest operating system to invoke its own native memory management policies, causing it to swap to its own virtual disk only when necessary.

ESX Server also has its own swap file and may also swap memory from a virtual machine to the ESX Server swap file directly, without any involvement by the guest operating system.

Example: Web Server Consolidation

Suppose that you are using ESX Server to consolidate eight nearly-identical Web servers running IIS on Windows 2000. Each Windows 2000 machine is configured with 512MB of memory. The native memory requirement with eight physical servers is 8 * 512MB = 4GB.

To consolidate these servers as virtual machines, 24MB is needed for the server virtualization layer and 192MB is recommended for the service console. Each virtual machine also requires an additional 54MB of overhead memory. An additional 6 percent should be added to account for the minimum free memory level. Assuming no overcommitment and no benefits from memory sharing, the memory required for virtualizing the workload is 24MB + 192MB + (1.06 * 8 * (512MB + 54MB)) = 5016MB. The total overhead for virtualization in this case is 920MB.
If memory sharing achieves a 10 percent savings (410MB), the total memory overhead drops to only 510MB. If memory sharing achieves a 25 percent savings (1GB), the virtualized workload actually consumes 104MB less memory than it would on eight physical servers.

It may also make sense to overcommit memory. For example, suppose that on average, two of the eight Web server virtual machines are typically idle and that each Web server virtual machine requires only 256MB to provide minimally acceptable service. In this case, the hardware memory size can be reduced safely by an additional $2 \times 256\text{MB} = 512\text{MB}$. In the worst case where all virtual machines are active at the same time, the system might need to swap some virtual machine memory to disk.

For additional background information on ESX Server memory usage, see “Memory Resource Management” on page 345.

Managing Network Bandwidth

VMware ESX Server supports network traffic shaping with the nfshaper loadable module. A loadable packet filter module defines a filter class; multiple filter instances may be active for each loaded class. The current release supports only one filter class, nfshaper, which is a transmit filter for outbound bandwidth management that can be attached to virtual machines using either a procfs interface on the service console or the VMware Management Interface.

Using Network Filters

This section describes how to use the VMware Management Interface to attach and detach nfshaper and obtain statistics from it. It also describes how to attach, detach, and query filter instances from the procfs interface on the service console.

Managing Network Bandwidth from the Management Interface

You can view and change settings from the virtual machine details pages in the VMware Management Interface.

To change settings from the VMware Management Interface

1. On the server’s Status Monitor pane, click the name of an individual virtual machine.

 The details page for that virtual machine appears.
2 Click the **Network** tab.

![Image of VMware ESX Server Network tab](image1.png)

3 Click **Edit**.

4 The Network Resource Settings dialog box appears.

![Image of Network Resource Settings dialog box](image2.png)

5 Enter the settings, and click **OK**.

For information on these settings, see “Configuring a Virtual Machine’s Networking Settings” on page 100.

You must log in as root to change resource management settings using either the management interface or procfs.

Managing Network Bandwidth from the Service Console

You must log in as root to change resource management settings using the procfs interface on the service console.

```
/proc/vmware/filters/status
```
Contains network filtering status information, including a list of all available filter classes and, for each virtual machine with attached filters, its list of attached filter instances. Read the file with `cat` to see a quick report on network filtering status.

/proc/vmware/filters/xmitpush
Command file used to add a new transmit filter instance to a virtual machine. Writing `<id> <class> [<args>]` to this file attaches a new instance of filter `<class>` instantiated with `<args>` to the virtual machine identified by `<id>`.

/proc/vmware/filters/xmitpop
Command file used to detach a transmit filter from a virtual machine. Writing `<id>` to this file detaches the last filter attached to the virtual machine identified by `<id>`.

/proc/vmware/filters/xmit
This directory contains a file for each active filter instance. Each file named `<class.n>` corresponds to the `<n>th instance of filter class `<class>`.

Reading from a file reports status information for the filter instance in a class-defined format. Writing to a file issues a command to the filter instance using a class-defined syntax.

NOTE The current release allows only a single network packet filter to be attached to each virtual machine. Receive filters are not implemented in this release.

Traffic Shaping with nfshaper

You can manage network bandwidth allocation on a server from the VMware Management Interface or from the procfs interface on the service console.

The shaper implements a two-bucket composite traffic shaping algorithm. A first token bucket controls sustained average bandwidth and burstiness. A second token bucket controls peak bandwidth during bursts. Each nfshaper instance can accept parameters to control average bps, peak bps and burst size.

The procfs interface, described in “Using Network Filters” on page 367, is used to attach an nfshaper instance to a virtual machine, detach an nfshaper instance from a virtual machine, query the status of an nfshaper instance or issue a dynamic command to an active nfshaper instance.

Service Console Commands

```bash
config <bpsAverage> <bpsPeak> <burstSize> [<periodPeak>]
```

Dynamically reconfigure the shaper to use the specified parameters: average bandwidth of `<bpsAverage>` bits per second, peak bandwidth of `<bpsPeak>` bits per
second, maximum burst size of <burstSize> bytes, and an optional peak bandwidth enforcement period <periodPeak> in milliseconds. Each parameter can optionally use the suffix k (1k = 1024) or m (1m = 1024k).

maxq <nPackets>
Dynamically set the maximum number of queued packets to <nPackets>.

reset
Dynamically reset shaper statistics.

Examples
Suppose you want to attach a traffic shaper to limit the transmit bandwidth of the virtual machine with ID 104. To create and attach a new shaper instance, issue an xmitpush command as described in “Managing Network Bandwidth from the Service Console” on page 368. You need root privileges are required to attach a filter.

```sh
echo "104 nfshaper 1m 2m 160k" > /proc/vmware/filters/xmitpush
```
This attaches a traffic shaper with average bandwidth of 1Mbps, peak bandwidth of 2Mbps and maximum burst size of 160Kb.

To find the number of the attached nfshaper instance, query the network filtering status, which contains a list of all filters attached to virtual machines:

```sh
cat /proc/vmware/filters/status
```
Suppose the reported status information indicates that the filter attached to virtual machine 104 is nfshaper.2.104. Use the procfs node for this filter to obtain status information:

```sh
cat /proc/vmware/filters/xmit/nfshaper.2.104
```
You can use the same procfs node to issue commands supported by the nfshaper class. For example, you can dynamically adjust the bandwidth limits by issuing a config command:

```sh
echo "config 128k 256k 20k" > /proc/vmware/filters/xmit/nfshaper.2.104
```
When a virtual machine is terminated, all attached network filters are removed and destroyed. To manually remove a shaper instance, issue an xmitpop command as described in “Managing Network Bandwidth from the Service Console” on page 368. You need root privileges to detach a filter.

```sh
echo "104" > /proc/vmware/filters/xmitpop
```
Managing Disk Bandwidth

ESX Server provides dynamic control over the relative amount of disk bandwidth allocated to each virtual machine. You can control disk bandwidth separately for each physical disk or logical volume. The system manages the allocation of disk bandwidth to virtual machines automatically based on allocation parameters and system load. This is done in a way that maintains fairness and tries to maximize throughput.

You can specify initial disk bandwidth allocation values for a virtual machine in its configuration file. You can also modify disk bandwidth allocation parameters dynamically using the VMware Management Interface, the procfs interface on the service console, or the VMware Scripting API.

Reasonable defaults are used when you do not specify parameters explicitly. To run a virtual machine that will have disk-intensive workloads, such as a database, or file server, you might want to increase its disk shares.

Information about current disk bandwidth allocations and other status is available through the management interface, the procfs interface on the service console, and the VMware Scripting API.

Allocation Policy

ESX Server uses a modified proportional-share allocation policy for controlling disk bandwidth per virtual machine. This policy attempts to control the disk bandwidth used by a virtual machine to access a disk while also trying to maximize throughput to the disk.

Disk bandwidth shares entitle a virtual machine to a fraction of the bandwidth to a disk or LUN. For example, a virtual machine that has twice as many shares as another for a particular disk is entitled to consume twice as much bandwidth to the disk, provided that they are both actively issuing commands to the disk.

Bandwidth consumed by a virtual machine is represented in consumption units. Every SCSI command issued to the disk effectively consumes one unit by default and additional units proportional to the size of the data transfer associated with the command.

Throughput to the disk is maximized through the use of a scheduling quantum for disk requests from a virtual machine to a disk. A virtual machine is allowed to issue a number of requests to a disk (the scheduling quantum) without being preempted by another virtual machine. The issuing of a multiple requests without preemption is applicable only if these requests access sequential sectors on the disk.
Managing Disk Bandwidth from the Management Interface

You can view and change settings from the virtual machine details pages in the VMware Management Interface. To change disk bandwidth settings, you must be logged in as root and the virtual machine must be running.

To change disk bandwidth settings

1. On the server’s Status Monitor page, click the name of an individual virtual machine.

 The details page for that virtual machine appears.

2. Click the Disk tab.

3. Click Edit.

 The Disk Resource Settings dialog box appears.

4. Specify the shares value, and click OK.

Configuration File Options

You can edit the configuration file using a text editor on the service console or through the management interface.
To edit configurations parameters in the management interface

1. Click the arrow to the right of the terminal icon and select **Configure Options** in the Virtual Machine menu.

2. In the **Options** pane, in the **Verbose Options** section, click **here**.

3. Click **Add** to add a new configuration parameter or click in the text field to edit an existing parameter.

4. Click **OK**.

If you edit a virtual machine's configuration file by hand, use the following formats to control disk bandwidth allocation for the virtual machine:

```plaintext
scsi0:1.name = <fsname>:<diskname>.vmdk
```

This is the standard format for specifying the VMFS file underlying a virtual disk:

```plaintext
sched.scsi0:1.shares = n
```

This configuration option specifies the initial disk bandwidth share allocation for a virtual machine for the disk `scsi0:1` to be `n` shares. The valid range of numerical values for `n` is 1 to 100000. You can also use the special values **low, normal, and high**. These values are converted into numbers, through the configuration options `DiskSharesLow`, `DiskSharesNormal` and `DiskSharesHigh`, described in the next section. If the number of shares for a disk is not specified, the assigned allocation is **normal**, with a default value of 1000 shares.

NOTE It is possible for a configuration file to have multiple lines specifying the number of shares. If this happens, the last value specified is used.

Configuration File Examples

```plaintext
scsi0.virtualdev = vmxbuslogic
    scsi0:1.present = TRUE
    scsi0:1.name = vmhba0:2:0:5:rh6.2.vmdk
    scsi0:1.mode = persistent
    sched.scsi0:1.shares = high

scsi0:2.present = TRUE
    scsi0:2.name = scratchfs:scratch1.vmdk
    sched.scsi0:2.shares = 800
```

In the example above, the first four lines in the first group and the first two lines in the second group are present in the configuration file before you make your changes. The final line in each group is the added line to specify the disk bandwidth allocation.
Managing Disk Bandwidth from the Service Console

Use the following guidelines for the service console commands to monitor and manage allocation of disk bandwidth on an ESX Server computer.

/proc/vmware/vm/<id>/disk/vmhba<x:y:z>

Reading from this file reports the number of disk bandwidth shares allocated to the virtual machine identified by <id> for the disk identified by vmhba<x:y:z>. It also reports disk usage statistics.

Writing a number <n> to this file changes the number of disk bandwidth shares allocated to the virtual machine identified by <id> to <n>. The valid range of values for <n> is 0 to 100000. You can also use the values low, normal, and high. These values are converted into numbers, through the configuration options DiskSharesLow, DiskSharesNormal, and DiskSharesHigh, described in this section.

/proc/vmware/config/Disk/SchedNumReqOutstanding

Specifies the number of outstanding commands allowed to a disk when there are multiple virtual machines competing for bandwidth. The default value is 16; the valid range of numeric values is from 1 to 256. Selecting a number larger than 16 might affect the ability of ESX Server to provide fair allocation of disk bandwidth.

/proc/vmware/config/Disk/SchedQuantum

Specifies the number of sequential requests that a virtual machines may issue to a disk, without being preempted by another virtual machine. The default value is 8; the valid range of numeric values is from 1 to 64.

/proc/vmware/config/Disk/SharesLow

This option specifies the a numerical value for the low shares value. By default, this number is 500.

/proc/vmware/config/Disk/SharesNormal

Specifies the a numerical value for the normal shares value. By default, this number is 1000.

/proc/vmware/config/Disk/SharesHigh

Specifies the a numerical value for the high shares value. By default, this number is 2000.
Index

A
- **Access**
 - SNMP controls 230
 - to configuration file 181
- **Accessibility**
 - of virtual disks 264
 - activation policy
 - swap file 204
- **adapters**
 - running vmkpcidivy after changing 185
- **Affinity set** 333
- **Apache server**
 - and the VMware Management Interface 138
- **API**
 - VmPerl 52, 153
- **Append**
 - disk mode 110
- **ASCII characters** 39, 81
- **Authentication** 180
- **availability report** 213

B
- **Backup** 151
 - creating stable disk images for 153
- **Beacon monitoring** 324
- **Bind Outbound Adapters list** 189
- **binding adapters** 320
- **Bootup, loading VMkernel device modules** 243
- **Build number** 164
- **bus sharing** 265–266

C
- **capacity**
 - swap file 203
- **CD-ROM**
 - attaching to image file 117
- **Clone**
 - virtual machine 287, 294, 304, 305, 306
- **Clustering**
 - and FASTT storage 309
 - and SCSI reservation 301
 - and shared disks 283
 - basic configuration types 281
 - configuration to use Microsoft Cluster Service 284, 292
 - consolidating to ESX Server machine 282
 - description 279
 - network adapters needed for 283
 - on a single ESX Server machine 281
 - on multiple ESX Server machines 281
 - sharing virtual disks 264
 - using an ESX Server machine as a standby host 282

Color depth
 - 111

Command
- **Linux** 170–177, 180
passing from console operating system to guest 52
Commit 253
Communication
from console operating system to guest 52
Configuration
SNMP agent 230
virtual machine 40, 73, 140
Configuration options for SANs 267–269
Configuring a Virtual Machine’s Startup and Shutdown Options 124
Console operating system 167
Copy
in file manager 142
text 165
cp 246
CPU
affinity set 333
maximum percentage 331
minimum percentage 331
monitoring with SNMP 224
scheduling virtual machine use of 331
shares 331
CPU resources 331
managing from the management interface 336
managing from the service console 337
CPU statistics 342–345
Cut
in file manager 142
text 165

D
Debug monitor 123
Devices 184
devices
notes on adding and removing adapters 185
DHCP 168
Directories
managing remotely 141
Directory
creating 144
Disk bandwidth
managing from the management interface 372
managing from the service console 374
Disk bandwidth management 371
Disk mode 42, 110, 135
append 42, 110
nonpersistent 42, 110
persistent 42, 110
undoable 42, 110
Disks
monitoring with SNMP 224
SCSI target IDs 263
shared in clustering configuration 283
using vmkfstools to manipulate files on 249
Display name
for virtual machine 40

E
Edit configuration
open from file manager 142
ESX Server, configuring 137
Export
virtual machine 68, 163, 252

F
Failover 277
failover policies, configuring 202
Failover switches 323
FASTT storage
 configuring for failover in a cluster 309
File manager 141
 cut, copy and paste 142
 renaming files and folders 143
 setting permissions 143
Files
 managing remotely 141
Filters
 network 367
 findnic 169, 314
Floppy disk image file 118
Folder
 creating 144
For 201
FTP 246
 TCP/IP port 183
G
 Gigabit Ethernet 108
 Guest operating system
 and SNMP 231
 installing 43
 setting in configuration 40
 Guest operating system service 49
 Linux reboot commands 51
 shutting down and restarting a virtual machine 50
H
 Heartbeat 281
 monitoring with SNMP 225
 host bus adapters
 running vmkpcidivys after changing 185
 htSharing option 336
 HTTP
TCP/IP port 183
HTTPS
 TCP/IP port 183
Hyper-Threading 97
 enabling 335
 htSharing option 336
 Startup Profile 188
 using 335
 virtual machines 336
I
 ID
 virtual machine 86
Import
 virtual machine 252
Installation
 of guest operating system 43
 of Microsoft Cluster Service 290
 of software in a virtual machine 164
 of the SNMP agent 226–229
Internet Explorer 6.0
 and management interface 82, 156
Interrupt clustering
 and network performance 320
 parameters 320
ISO disc image file 117
K
 Knowledge base 21
L
 Legacy mode
 virtual machines 63
 Linux
 installing VMware Tools in 47
Load balancing 322
logs 209
 availability report 213
service console messages 212
VMkernel messages 211
VMkernel warnings 210
LUN 201
LUNs
detecting 268
setting multipathing policy for 275
VMFS volumes on 251

M
MAC address
setting manually 311
machine.id 52
Management
CPU resources 331
disk bandwidth 371
memory resources 345
network bandwidth 367
registering virtual machines 69
remote management software 69
setting MIME type in browser 139
TCP/IP ports used 182
VMware Management Interface 80
Management Interface
Startup Profile 335
Media changer
SCSI ID 184
Memory 363
maximum size 346
minimum size 346
monitoring with SNMP 224
reclaiming unused 349
resource management 345
shares 346
Memory resources 345
managing from the management interface 351
managing from the service console 352
Memory statistics 356–358
Message
passing from console operating system to guest 52
Microsoft Cluster Service 279
configuring cluster to use 284, 292
installing 290
Migration
older ESX Server virtual machines 62
MIME type, setting 139
Multipathing 272–277
Multiprocessor virtual machines 60, 61

N
NDIS.SYS 47
Network
adapters for clustering configuration 283
bandwidth management 367
bandwidth, managing from management interface 367
bandwidth, managing from service console 368
driver in virtual machine 65
installing driver in virtual machine 44
locating adapter in use 314
MAC address 311
monitoring with SNMP 224
performance tuning 320
setting virtual adapter to promiscuous mode 315
shaping traffic 369
sharing adapters 316
using Gigabit Ethernet 108
virtual 316
vmnet adapter 108
vmnic adapter 107
Network driver
 manual speed settings 315
 vlance 108
 vmxnet 108
Network label 320
NFS 246
nfshaper 243
NIC teaming ??–326
Node
 in clustering configuration 279
Nonpersistent
disk mode 110
NUMA node 358–363
 automatic optimization 360
 manual optimization 361–363
O
Other Outbound Adapters list 189
P
PAM
 configuration location 181
Paste
 in file manager 142
text 165
pbind.pl script 272
Performance
 network 320
Permissions 182
 changing in file manager 143
 VMware Management Interface 80
Persistent
disk mode 110
Persistent bindings 270
portmap
 TCP/IP port 183
Primary adapter 323
proc interface 178–179
Processor
 affinity set 333
 scheduling virtual machine use of 331
 SMP virtual machines 61
 virtual 61
Promiscuous mode 315
PXE boot 53
R
RAID
 file system management 245
Raw disks 261–263
raw disks 204
Register
 virtual machines 69
Remote console 87
 color depth setting 111
 enabling users to view virtual machines 185
 installing 70
 using 155
Remote management 69
Rename
 using the file manager 143
Repeatable resume 126
Reservation
 SCSI, in clustering configuration 301
Restart
 using guest operating system service 50
Resume 89, 165
 repeatable 90
SANs 266–270
 configuration options 267–269
 persistent bindings 270
 troubleshooting 269–270
scp 246
Scripts
 running during power state changes 71
 VMware Tools and 162
SCSI 264
 bus sharing 265–266
 file system management 245
 reservation in clustering configuration 301
 target IDs 263
SCSI disk reservation 301
Security 180
 SNMP 231
Server
 shutting down 221
 service console 246
 DHCP 168
 managing CPU resources 337
 managing disk bandwidth 374
 managing memory resources 352
 managing network bandwidth 368
 memory 364
 service console messages 212
 session lengths
 VMware Management Interface 81
Set up
 Microsoft Cluster Service 290
Setting Startup and Shutdown Options for a Virtual Machine 123
Shaping network traffic 369
Shares
CPU 331
 memory 346
 of CPU time 333
Sharing
 disks in clustering configuration 283
 virtual disks 264
sharing the SCSI bus 264
Shut down
 server 221
 using guest operating system service 50
 virtual machine 166
Sizing
 memory 363
 sizing for the server 363
SleepWhenIdle 74
SMP virtual machines 60
Snapshots
 of virtual disks for backup 153
SNMP 223
 access controls 230
 and guest operating systems 231
 and VMware Tools 225
 configuring management software 230
 configuring the agent 230
 installing the agent 226–229
 location of the VMware sub-tree 224
 security 231
 traps 225
 variables 231–238
SNMP agent, starting 229
snmpd daemon 226
Software
 installing in a virtual machine 164
index

speed
setting for network driver 315

ssh
 tcp/ip port 183

startup profile
 hyper-threading 335

string
 passing from console operating system to guest 52

suspend 89, 165
 location of suspended state file 123
 swap file
 activation policy 204
 capacity 203
 name 203
 volume 203

switches
 virtual 320
 system logs 209

T
 tape drive 184
 adding to virtual machine 121
 assigning to virtual machines or service console 152
 SCSI ID 184
 tcp/ip ports
 used for management access 182

Telnet
 tcp/ip port 183

time
 synchronizing between guest and console operating systems 50

troubleshooting
 virtual switches 326
 troubleshooting
 SANs 269–270

U
undoable
 disk mode 110

user groups 21

uuid
 modifying 75

V
variables
 SNMP 231–238

verbose options
 hyper-threading 336

Veritas cluster service 279

virtual disk 41
 exporting 68, 163
 sharing 264

virtual machine
 multiprocessor 60

virtual machine
 backing up 151
 cloning 287, 294, 304, 305, 306
 configuring 73
 creating 39
 deleting from VMware Management Interface 136–137
 display name 40
 exporting 252
 hyper-threading 97
 ID number 86
 importing 252
 legacy mode 63
 monitoring with SNMP 224
 registering 69
 shutting down 166
 SMP 60
 suspending and resuming 89
 viewing through remote
console 185
Virtual Machine Wizard 40
Virtual machines
 special power options 157
Virtual network 316
Virtual switches 320
 beacon monitoring 324
 failover 323
 load balancing 322
vlance network driver 108
VMFS 249
 default block size 251
 extending a VMFS-2 volume across multiple partitions 254
 maximum number of files 251
 maximum number per LUN 251
 migrating from VMFS-1 to VMFS-2 258
 mounting 246
 naming 247, 253
VMFS-2
 converting to 199, 201
VMkernel device modules 239
 loading during bootup 243
VMkernel messages 211
VMkernel warnings 210
vmkfstools 249
 activating a swap file 258
 attributes of a VMFS volume or raw device mapping 251
 commit a redo log 253
 creating a file on a SCSI device 252
 creating a VMFS volume 251
 creating and resizing swap files 257
 deactivating a swap file 258
 display disk geometry for Workstation or GSX Server virtual disk 255
example commands 259
 export contents of file to a virtual disk 252
 extend a VMFS volume 256
 extend an existing logical VMFS-2 volume 254
 import contents of virtual, plain or raw disks to the service console 252
 log files and troubleshooting 250
 mapping a raw device or partition to a file 255
 migrating from VMFS-1 to VMFS-2 258
 recovering a locked VMFS volume 256
 scan a specified vmhba adapter 257
 SCSI reservations of physical targets or LUNs 256
 set the VMFS volume to a specified mode 254
syntax 249
vmkload_mod 170, 240
vmkpcidivy
 running after changing adapters 185
vm-list 69, 181
vmnet network adapter 108
vmnic network adapter 107
VMware community forums 21
VMware GSX Server
 migrating virtual machines 63
VMware guest operating system service
VMware Tools 49
VMware Management Interface 80–140
 and Apache server 138
ASCII characters 39, 81
attaching VMware Remote Console 86
browsers required 84
changing virtual machine power state 88
configuration options 122
configuring for Windows systems 82
connected users 129
controls 86–94
creating a new virtual machine 39–42
deleting a virtual machine 136–137
editing a configuration 95
event log 130
host status monitor 84
launching remote console 82, 156
logging in 84
logging out 138
permissions 80
proxy servers 83
refresh rate 81
session lengths 81
setting remote console MIME type 139
timeout 138
virtual machine CPU 96
virtual machine details 94
virtual machine hardware 97, 99, 100, 102
virtual machine menu 86
VMware Remote Console
attaching from VMware Management Interface 86
enabling users to view virtual machines 185
launching from management interface 82, 156
setting a MIME type 139
special power options 157
VMware Scripting API 52, 153
VMware Tools
and SNMP 225
build number 164
choosing scripts 162
installing 43, 44
running scripts during power state changes 71
settings 159
starting automatically in Linux guest 48
VMware guest operating system service 49
VMware Virtual SMP 41, 106
VMware Workstation
migrating virtual machines 63
vmware-authd
TCP/IP port 183
vmware-authd daemon 181
vmware-device.map.local file 184
vmxnet network driver 108
vmxnet.sys 47
volume
swap file 203
W
Web browser
and the VMware Management Interface 84
Windows 2000
installing VMware Tools in 46
Windows NT
installing VMware Tools in 46
Using the VMware Remote Console

The VMware Remote Console gives you a direct window from a management workstation into an individual virtual machine running under VMware ESX Server. In this chapter, the following sections describe aspects of using the VMware Remote Console:

- “Starting the Remote Console” on page 156
- “Running a Virtual Machine Using the Remote Console” on page 157
- “Special Power Options for Virtual Machines” on page 157
- “VMware Tools Settings” on page 159
- “Installing New Software Inside the Virtual Machine” on page 164
- “Cutting, Copying, and Pasting” on page 165
- “Suspending and Resuming Virtual Machines” on page 165
- “Shutting Down a Virtual Machine” on page 166

Using the Remote Console

VMware Remote Console software is available for Windows XP, Windows 2000, Windows NT, and Linux management workstations. For instructions on installing the software, see “Installing the Remote Console Software” on page 70.

You can connect up to three remote consoles to a virtual machine at a time and connect up to 80 remote consoles to the server at a time.
Starting the Remote Console

Select the appropriate procedure for your remote workstation operating system.

To start the Remote Console on Windows

1. Start the remote console program.
 Select: **Start > Programs > VMware > VMware Remote Console**

2. Fill in the dialog box fields with information to connect to the virtual machine:
 - Host name (or IP address)
 - Your user name
 - Your password

3. Click **Connect**.
 When the connection is made, a dialog box displays the paths to the configuration files of virtual machines registered on the server.

4. Select the virtual machine you want to connect to and click **OK**.

NOTE If you launch the remote console from the management interface from Internet Explorer 6.0 on a system where SSL is encrypting your ESX Server remote connections, configure Internet Explorer. See “Launching the Remote Console from the Management Interface on an Encrypted Server” on page 82.

To start the Remote Console on Linux

1. Start the remote console program by typing:
   ```
   vmware-console
   ```

2. Fill in the dialog box fields with information to connect to the virtual machine:
 - The host name (or IP address)
 - Your user name
 - Your password

3. Click **Connect**.
 When the connection is made, a dialog box displays the paths to the configuration files of virtual machines registered on the server.

4. Select the virtual machine you want to connect to and click **OK**.
Running a Virtual Machine Using the Remote Console

When you view your virtual machine through a remote console, it behaves much like a separate computer that runs in a window on your computer’s desktop.

Instead of using physical buttons to turn this computer on and off, use buttons located at the top of the VMware console window. You can also reset the virtual machine, suspend a virtual machine, and resume a suspended virtual machine.

![Figure 4-1. Virtual machine is powered off](image1)

![Figure 4-2. Virtual machine is powered on](image2)

![Figure 4-3. Virtual machine is suspended](image3)

NOTE Figure 4-1 – Figure 4-3 show the toolbar from a remote console running on a Windows management workstation. If you are running the remote console on a Linux management workstation, the appearance of the toolbar is different, but the same functions are available.

Special Power Options for Virtual Machines

When VMware Tools is running, you can configure scripts to run whenever the power state of a virtual machine is changed. That is, when you power on, power off, suspend, or resume the virtual machine. See “Executing Scripts When the Virtual Machine’s Power State Changes” on page 71.

When you reset a virtual machine, you can restart the guest operating system, which gracefully closes applications and restarts the guest operating system, or reset the virtual machine, which is the same as pressing the reset button on a physical computer.
Similarly, when you power off the virtual machine, you can shut down the guest operating system, which gracefully closes applications and shuts the guest operating system down, or turn off the virtual machine, which is the same as pressing the power button on a physical computer.

All the power options are available on the **Power** menu. Each menu item corresponds to a button on the toolbar and opens a submenu containing the associated options. The menu items may not be available, depending upon the current power state of the virtual machine. For example, if the virtual machine is powered off, you cannot select any power off, suspend, resume, or reset options.

From a remote console, choose from the following options when powering on a virtual machine:

- **Power On Virtual Machine** – Powers on the virtual machine in the remote console. This is the same as clicking the **Power On** button on the toolbar.

- **Power On Then Run Script** – Powers on the virtual machine in a remote console, and executes the associated script.

Options for Powering Off a Virtual Machine

Choose from the following options when powering off a virtual machine:

- **Power Off Virtual Machine** – Powers off the virtual machine. This is similar to turning off a physical computer by pressing its power button, so any programs running in the virtual machine can be adversely affected. Click the **Power Off** button on the toolbar to power off the virtual machine.

- **Shut Down Guest Operating System** – Gracefully shuts down the guest operating system and, if the guest operating system supports Advanced Power Management, powers off the virtual machine. If a script is associated with this power operation, it executes after the shut down begins. This is the same as choosing **Start > Shut Down > Shut Down** in a Windows operating system or issuing a **shutdown** command in a Linux operating system.

Options for Suspending a Virtual Machine

Choose from the following options when suspending a virtual machine:

- **Run Script Then Suspend** – Executes the associated script, and suspends the virtual machine. This is the same as clicking **Suspend** on the toolbar, unless a script is not associated with suspending a virtual machine.

- **Suspend Virtual Machine** – Suspends the virtual machine.
Option for Resuming a Virtual Machine

Choose from the following options when resuming a virtual machine:

- **Resume Then Run Script** – Resumes the suspended virtual machine, and executes the associated script. This is the same as clicking **Resume** on the toolbar, unless a script is not associated with resuming a virtual machine.

- **Resume Virtual Machine** – Resumes the suspended virtual machine.

Options for Resetting a Virtual Machine

Choose from the following options when resetting a virtual machine:

- **Reset Virtual Machine** – Resets the virtual machine. This is similar to resetting a physical computer by pressing its reset button, so any program running in the virtual machine may be adversely affected. Clicking the **Reset** button on the toolbar resets the virtual machine.

- **Restart Guest Operating System** – Gracefully restarts the virtual machine. If a script is associated with shutting down, it executes after the guest operating system restarts. This is the same as choosing **Start > Shut Down > Restart** in a Windows operating system or issuing a **reboot** command in a Linux operating system.

VMware Tools Settings

The following description of the settings for VMware Tools is based on a Windows 2000 guest operating system. Similar configuration options are available in VMware Tools for other guest operating systems.

To open the VMware Tools control panel, double-click the VMware Tools icon in the virtual machine’s system tray. The VMware Tools Properties dialog box appears.

Setting Options with VMware Tools

Specify time synchronization and the VMware Tools icon display in the **Options** tab.
Figure 4-4. VMware Tools Properties: Options tab

- **Time synchronization** – Specify whether to synchronize the time in the guest operating system with the time in the service console.

NOTE Synchronize the time in the guest operating system with the time in the service console only when the time in the guest is earlier than the time in the service console.

- **Show VMware Tools in the taskbar** – If you do not display the VMware Tools icon in the system tray, launch the control panel from the **Start** menu (**Start > Settings > Control Panel > VMware Tools**).
Connecting Devices with VMware Tools

You can enable or disable removable devices in the Devices tab.

![VMware Tools Properties: Devices tab](image)

Figure 4-5. VMware Tools Properties: Devices tab

The devices you can enable or disable include the server machine’s floppy disk drive, the CD-ROM drive, and the virtual network interface card. You can also set these options from the Devices menu of the ESX Server remote console window.
Choosing Scripts for VMware Tools to Run During Power State Changes

Through VMware Tools, you can run scripts that execute when you power on, power off, suspend, or resume the virtual machine.

![VMware Tools Properties: Scripts tab](image)

Figure 4-6. VMware Tools Properties: Scripts tab

A default script for each power state is included in VMware Tools. These scripts are located in the guest operating system in C:\Program Files\VMware.

Table 4-1. Power state default scripts

<table>
<thead>
<tr>
<th>When You …</th>
<th>This Default Script Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspend the guest operating system</td>
<td>suspend-vm-default.bat</td>
</tr>
<tr>
<td>Resume the guest operating system</td>
<td>resume-vm-default.bat</td>
</tr>
<tr>
<td>Shut down the guest operating system</td>
<td>poweroff-vm-default.bat</td>
</tr>
<tr>
<td>Power on the guest operating system</td>
<td>poweron-vm-default.bat</td>
</tr>
</tbody>
</table>

For each power state, you can use the default script or you can substitute a script you created. In addition, you can test a script or disable the running of a script.

To configure which scripts run

1. In the **Script Event** list, select the power operation with which to associate the script.

2. Do one of the following:
 - To select a different script, click **Custom Script** and click **Browse** to select the new script.
To edit a script, click **Edit**. The script opens in your default editor to make your changes.

To test the script, click **Run Now**.

To disable the running of a script, deselect the **Use Script** check box.

3 Click **Apply** to save your settings.

Shrinking Virtual Disks with VMware Tools

The **Shrink** tab lets you prepare to export a virtual disk to VMware GSX Server using the smallest possible disk files. This step is optional.

Virtual disks on ESX Server take up the full amount of disk space indicated by the virtual disk’s size. For example, the `.vmdk` file for a 4GB virtual disk occupies 4GB of disk space.

GSX Server works differently. Under GSX Server, virtual disk files start small—only as big as needed to hold the data stored on the virtual disk—and grow as needed up to the designated maximum size.

![VMware Tools Properties: Shrink tab](image)

Figure 4-7. VMware Tools Properties: Shrink tab

To export a virtual disk to use under GSX Server, click the **Shrink** tab. Make sure there is a check next to the name of the disk to export, and click **Prepare to shrink**.

NOTE When you export the virtual disk (using the file browser in the management interface or the `vmkfstools` command), a single virtual disk may be exported to multiple `.dsk` (.vmdk) files.
Viewing Information About VMware Tools

On the About tab, you see general information about VMware Tools installed in the virtual machine.

This tab contains the following information:

- VMware Tools build number, which lets you verify that your VMware Tools version matches the VMware ESX Server version you are running. It is useful when you request support.
- An indication as to whether the VMware guest operating system service is running.
- A button you click to visit the VMware Web site.

Installing New Software Inside the Virtual Machine

Installing new software in an ESX Server virtual machine is like installing it on a regular computer.

If you are using physical media, you must have access to the ESX Server computer to insert installation CD-ROM discs or floppy disks into the server’s drives.

You may use image files in place of physical floppy disks and CD-ROM discs. To connect the virtual drive to a floppy or ISO image, use the Devices menu and edit the settings for the drive you want to change.

The following steps are based on using a Windows guest operating system and physical media. If you are using a Linux guest operating system or if you are using ISO or floppy image files, some details are different.

To install software in a Windows guest operating system

1. Make sure you started the virtual machine and, if necessary, logged on.
2. Check the Devices menu to make sure the virtual machine has access to the CD-ROM and floppy drives.
3. Insert the installation CD-ROM or floppy disk into the proper drive.
 If you are installing from a CD-ROM, the installation program might start automatically.
4. If the installation program does not start, click the Windows Start button, go to Settings > Control Panel, and double-click Add/Remove Programs.
5. Click Add New Programs.
 Follow the instructions on screen and in the user manual for your new software.
Cutting, Copying, and Pasting

Make sure you installed and started VMware Tools in your virtual machine. In a Windows guest operating system, a VMware Tools icon appears in the system tray when VMware Tools is running.

When VMware Tools is running, you can copy and paste text between applications in the virtual machine and on your management workstation or between two virtual machines. Use the normal hot keys or menu choices to cut, copy, and paste.

Suspending and Resuming Virtual Machines

You can save the current state of your virtual machine. The resume feature lets you quickly pick up work where you stopped—with all running applications in the same state they were at the time you suspended the virtual machine.

You can suspend a virtual machine two ways:

- With a remote console connected to that virtual machine, click **Suspend** on the toolbar.
- With the VMware Management Interface connected to the virtual machine’s server, click the pause button (\[\]) on the row for that virtual machine. See Figure 4-8.
You can restore a suspended virtual machine in two ways:

- With a remote console connected to that virtual machine, click **Resume** on the toolbar.
- With the VMware Management Interface connected to the virtual machine’s server, click the pause button () for that virtual machine.
- You can also set your virtual machine so it always resumes in the same state. See “Enabling Repeatable Resume” on page 90.

Shutting Down a Virtual Machine

To shut down any virtual machine, shut down the guest operating system as you would usually shut down the operating system. The virtual machine will power down when the operating system closes.