This document supports the version of each product listed and supports all subsequent versions until the document is replaced by a new edition. To check for more recent editions of this document, see http://www.vmware.com/support/pubs.
You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.
If you have comments about this documentation, submit your feedback to:
docfeedback@vmware.com
Contents

About This Book 9

Getting Started

1 Introduction 15
 Overview 15
 vCenter Server Heartbeat Concepts 15
 Architecture 15
 Protection Levels 15
 Communications 18
 vCenter Server Heartbeat Switchover and Failover Processes 19

Installation

2 vCenter Server Heartbeat Implementation 25
 Overview 25
 Environmental Prerequisites 25
 Common Requirements 26
 Server Architecture Options 27
 Virtual to Virtual (V2V) 27
 Physical to Virtual (P2V) 27
 Physical to Physical (P2P) 27
 Cloning Technology Options 28
 Supported Pre-Clone Technologies 28
 Supported Install Clone Technologies 28
 Application Component Options 29
 vCenter Server with SQL Server on the Same Host 29
 vCenter Server with SQL Server on a Separate Host 30
 vCenter Server Only 30
 Network Options 30
 LAN 30
 WAN 31
 Antivirus Recommendations 32
 Deployment Options Summary 32
 Installation Options Checklist 33

3 vCenter Server Heartbeat Installation on Windows Server 2003 35
 Overview 35
 Installation Process 35
 Primary Server 36
 Secondary Server 55
 vCenter Server Heartbeat Console 64
 Navigate vCenter Server Heartbeat Console 64
 Add a vCenter Server Group 65
 Add a New Connection 65
Post Installation Configuration 65
 Configuring VirtualCenter Plug-in with the Correct Credentials 65
 When Deployed in a WAN Environment 66
 vCenter Server 2.5 66

4 vCenter Server Heartbeat Installation on Windows Server 2008 69
 Overview 69
 Installation Process 69
 Primary Server 70
 Secondary Server 88
 vCenter Server Heartbeat Console 99
 Navigate vCenter Server Heartbeat Console 100
 Add a vCenter Server Group 100
 Add a New Connection 100
 Post Installation Configuration 101
 Configuring VirtualCenter Plug-in with the Correct Credentials 101
 When Deployed in a WAN Environment 101

5 Configuring vCenter Server Heartbeat 103
 Server Configuration Wizard 104
 Configuring the Machine Identity 104
 Configuring the Server Role 105
 Configuring the Client Connection Port 105
 Configuring Channel Routing 105
 Configuring the Default Channel Port 106
 Configuring Low Bandwidth Module 106
 Configuring Public IP Addressing 106
 Managing vCenter Server Heartbeat License Keys 107
 Configuring Message Queue Logs 108
 Configuring the Maximum Disk Usage 109

System Administration and Management

6 Server Protection 113
 Server Protection Overview 113
 Checking the Server Pair Status 113
 Monitoring the Status of Servers 115
 Configuring Heartbeat Settings 115
 Configure Pings 115
 Configure Failover 115
 Configuring Response Times 116
 Common Administrative Tasks in vCenter Server Heartbeat 116
 Forcing a Switchover 116
 Recovering From a Failover 117
 Configuring Split-Brain Avoidance 118

7 Network Protection 121
 Communication Status 121
 Reviewing the VMware Channel Status 121
 Configuring Public Network Connection Checks 121
 Setting Max Server Time Difference 122
8 Application Protection 123
 Application Protection Overview 123
 Applications Tab 123
 Reset the Application Health Status 123
 View Application Status 124
 Editing Individual Applications 124
 Remove an Application 124
 Manually Start and Stop Applications 124
 Configuring Applications 124
 Application Maintenance Mode 124
 Reviewing the State of an Application 125
 Reviewing the Applications Log 125
 Filtering Application Log Entries 125
 Services Tab 125
 Adding a Service 125
 Editing a Service 126
 Checking the Status of Services 126
 Unprotecting User Defined Services and Stopping Monitoring 126
 Change the Order of Services 126
 Removing a Service 126
 Applications: Tasks 127
 Adding a Task 127
 Editing a Task 127
 Remove a Task 127
 Change the Order of Tasks 128
 Starting a Task Manually 128
 View, Add, and Remove User Accounts 128
 Applications: Plugins 128
 Install a Plug-In 128
 Editing a Plug-in 128
 Uninstalling a Plug-in 129

9 Status and Control 131
 vCenter Server Heartbeat Console 131
 About vCenter Server Heartbeat Console 131
 Navigate vCenter Server Heartbeat Console 132
 Change the Font for vCenter Server Heartbeat Console 132
 Work with Groups and Pairs 132
 Add or Remove a vCenter Server Group 132
 Remove a vCenter Server Heartbeat Group 133
 Add, Edit, Move, and Remove Pairs in VCenter Server Heartbeat Groups 133
 Add a New Connection 133
 Edit a Connection 134
 Move a Connection 135
 Remove a Connection 136
 Edit Username and Password Settings 136
 Review the Status of vCenter Server Heartbeat Groups and Pairs 136
 Exit vCenter Server Heartbeat Console 137
 Shut Down Windows Without Stopping vCenter Server Heartbeat 137

10 Performance Protection 139
 Applications: Rules 139
 Rules 139
 Checking a Rule Condition 139
 Edit a Rule 139
11 Data Protection 141
 Data Protection Overview 142
 Replication 142
 Registry and File Synchronization Status 142
 Initiate a Full Registry Check 142
 Initiate a Full System Check 142
 Initiate File Synchronization Manually 143
 Initiate Verify and Synchronize Manually 143
 File Filters 143
 Determine Effective Filters 143
 Add a User-Defined Inclusion Filter 144
 Add a User-Defined Exclusion Filter 144
 Edit User Defined Inclusion/Exclusion Filters 144
 Remove User-Defined Filters 144
 Automatic Filter Discovery 144

12 Other Administrative Tasks 145
 Configure Alerts 145
 Configure Alert Reporting 145
 Test Alert Reporting 146
 Configure Event Log Files 146
 Configure Log File Email Recipients 146
 Review Event Logs 147
 Event Log Filters 147

13 Troubleshooting 149
 Troubleshooting Unexpected Behaviors 149
 Two Active Servers 149
 Symptoms 149
 Causes 150
 Resolution 150
 Two Passive Servers 151
 Symptom 151
 Causes 151
 Resolution 151
 Synchronization Failures 152
 Services Running on the Passive Server 152
 VMware Channel Incorrectly Configured 152
 Incorrect or Mismatched Disk Configuration 153
 Passive Server Has Less Available Space than Active Server 153
 Registry Status is Out of Sync 154
 Resource Issues 154
 Registry Security Issues 154
 Channel Drops 154
 Performance Issues 154
 Passive Server Does Not Meet Minimum Hardware Requirements 155
 Hardware or Driver Issues on VMware Channel NICS 155
 Firewall Connection 156
 Incorrect VMware Channel Configuration 156
 VMware vCenter Server Heartbeat Packet Filter Is Enabled on the Channel NIC(s) 157
 Subnet or Routing Issues 158
 LAN Deployment 158
 WAN Deployment 158
MaxDiskUsage Errors 158
Send Queue 159
Receive Queue 159
MaxDiskUsage Error Messages 159
[L9] Exceeded the Maximum Disk Usage (VCChannelExceededMaxDiskUsageException) 159
[L9] Exceeded the Maximum Disk Usage on the ACTIVE Server 160
[L9] Exceeded the Maximum Disk Usage on the PASSIVE Server 160
[L20] Out of Disk Space (VCChannelOutOfDiskSpaceException) 161
Application Slowdown 162
Poor Application Performance 162
Both Servers Can Accommodate the Initial Load but the Load Has Increased 162
One Server Can Provide Adequate Resource Support, but the Other Cannot 162
Scheduled Resource Intensive Tasks 163

Appendix – Setup Error Messages 165
About This Book

The Reference Guide provides information about installing and configuring VMware vCenter Server Heartbeat, including implementation in a Local Area Network (LAN) or Wide Area Network (WAN), configuring network protection, application protection, data protection, Split-brain Avoidance, and more. To help you protect your VMware vCenter Server, the book provides an overview of protection offered by vCenter Server Heartbeat and the actions that vCenter Server Heartbeat can take in the event of a network, hardware, or application failure.

Intended Audience

This guide assumes the reader has working knowledge of networks including the configuration of TCP/IP protocols and domain administration on the Windows™ 2003 and 2008 platforms, notably in Active Directory and DNS.

VMware Technical Publications Glossary

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions of terms as they are used in VMware technical documentation go to http://www.vmware.com/support/pubs.

Overview of Content

This guide is designed to give guidance on the configuration and administration of vCenter Server Heartbeat, and is organized into the following sections:

- Preface — About This Book (this chapter) provides an overview of this guide and the conventions used throughout.
- Chapter 1 — Introduction presents an overview of vCenter Server Heartbeat concepts including the Switchover and Failover processes.
- Chapter 2 — vCenter Server Heartbeat Implementation discusses environmental prerequisites and common requirements for installation, options for server architecture, cloning technology, application components, and network configurations. It also gives guidance on antivirus solutions, and provides a convenient summary and checklist to follow as you perform the installation.
- Chapter 3 — vCenter Server Heartbeat Installation on Windows Server 2003 describes the installation process, guides you through installation on the Primary and Secondary servers, and through post-installation configuration.
- Chapter 4 — vCenter Server Heartbeat Installation on Windows Server 2008 describes the installation process, guides you through installation on the Primary and Secondary servers, and through post-installation configuration.
- Chapter 5 — Configuring vCenter Server Heartbeat shows you how to use the Server Configuration Wizard to configure your new installation of vCenter Server Heartbeat.
- Chapter 6 — *Server Protection* gives an overview of how vCenter Server Heartbeat provides protection against server system crash or server hardware failure, shows you how to check the server pair status, and explains how to configure settings, shutdown options, and Split-Brain Avoidance.

- Chapter 7 — *Network Protection* describes how vCenter Server Heartbeat protects against network failure and provides a way to monitor communication status. It also explains how to configure public network connection checks and maximum server time difference.

- Chapter 8 — *Application Protection* discusses how vCenter Server Heartbeat maintains the protected application environment ensuring that applications and services stay alive on the network.

- Chapter 9 — *Status and Control* introduces you to the vCenter Server Heartbeat Console and shows you how to configure its look and feel.

- Chapter 10 — *Performance Protection* describes how vCenter Server Heartbeat monitors system and application attributes to prevent an unexpected system or application failure.

- Chapter 11 — *Data Protection* discusses how vCenter Server Heartbeat intercepts all data written by users and protected applications and maintains a copy of this data for use in case of failure.

- Chapter 12 — *Other Administrative Tasks* discusses additional tasks for the administrator to configure system logging and alerting functions.

- Chapter 13 — *Troubleshooting* provides techniques to troubleshoot common issues and unexpected behaviors.

- Appendix A — *Setup Error Messages* lists error messages that may appear during setup and tests that will help you resolve the errors.

Document Feedback

VMware welcomes your suggestions for improving our documentation and invites you to send your feedback to docfeedback@vmware.com.

Abbreviations Used in Figures

The figures in this book use the abbreviations listed in Table 1.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>VMware Channel</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Card</td>
</tr>
<tr>
<td>P2P</td>
<td>Physical to Physical</td>
</tr>
<tr>
<td>P2V</td>
<td>Physical to Virtual</td>
</tr>
<tr>
<td>V2V</td>
<td>Virtual to Virtual</td>
</tr>
</tbody>
</table>

Technical Support and Education Resources

The following sections describe the technical support resources available to you. To access the current version of this book and other books, go to www.vmware.com/support/pubs.

Online and Telephone Support

Go to www.vmware.com/support to use online support to submit technical support requests, view your product and contract information, and register your products.

Go to www.vmware.com/support/phone_support.html to find out how to use telephone support for the fastest response on priority 1 issues (applies to customers with appropriate support contracts).
Support Offerings

Go to www.vmware.com/support/services to find out how VMware support offerings can help meet your business needs.

VMware Professional Services

Go to www.vmware.com/services to access information about education classes, certification programs, and consulting services. VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials designed for use as on-the-job reference tools. Courses are available onsite, in the classroom, and live online. For onsite pilot programs and implementation best practices, VMware Consulting Services provides offerings to help you assess, plan, build, and manage your virtual environment.
Getting Started
This chapter includes the following topics:

- “vCenter Server Heartbeat Concepts” on page 15
- “vCenter Server Heartbeat Switchover and Failover Processes” on page 19

Overview

vCenter Server Heartbeat is a Windows based service specifically designed to provide high availability protection for vCenter Server configurations without requiring any specialized hardware.

vCenter Server Heartbeat Concepts

Architecture

vCenter Server Heartbeat software is installed on a Primary server and a Secondary server. These names refer to the physical hardware (identity) of the servers.

The Secondary server has the same domain name, same file and data structure, same network address, and can run all the same applications and services as the Primary server.

vCenter Server Heartbeat uses two servers with identical names and IP addresses. One is an active server that is visible on the Principal (Public) network and the other is a passive server that is hidden from the network but remains as a ready standby server. Only one server name and IP address can be visible on the Principal (Public) network at any given time.

The vCenter Server Heartbeat software is symmetrical in almost all respects, and either the Primary server or the Secondary server can take the active role and provide the protected application to the user.

Protection Levels

vCenter Server Heartbeat provides the following protection levels:

- **Server Protection** – vCenter Server Heartbeat provides continuous availability to end users through a hardware failure scenario or operating system crash. Additionally, vCenter Server Heartbeat protects the network identity of the production server, ensuring users are provided with a replica server including server name and IP address on the failure of the production server.

- **Network Protection** – vCenter Server Heartbeat proactively monitors the network by polling up to three nodes to ensure that the active server is visible on the network.

- **Application Protection** – vCenter Server Heartbeat maintains the application environment ensuring that applications and services stay alive on the network.
- **Performance Protection** – vCenter Server Heartbeat proactively monitors system performance attributes to ensure that the system administrator is notified of problems and can take pre-emptive action to prevent an outage.

- **Data Protection** – vCenter Server Heartbeat intercepts all data written by users and applications, and maintains a copy of this data on the passive server that can be used in the event of a failure.

vCenter Server Heartbeat provides all five protection levels continuously, ensuring all facets of the user environment are maintained at all times, and that the network (Principal (Public) network) continues to operate through as many failure scenarios as possible.

Server Protection

vCenter Server Heartbeat provides continuous availability to end users through a hardware failure scenario or operating system crash. Additionally, vCenter Server Heartbeat protects the network identity of the production server, ensuring users are provided with a replica server including server name, IP address on the failure of the production server.

Two instances of vCenter Server Heartbeat regularly send “I’m alive” messages and message acknowledgments to one another over a network connection referred to as the VMware Channel to detect interruptions in responsiveness. If the passive server detects that this monitoring process (referred to as the heartbeat) has failed, it initiates a failover as illustrated in Figure 1-1.

Figure 1-1. Failover

A failover is similar to a switchover but is used in more urgent situations, such as when the passive server detects that the active server is no longer responding. This can occur when the active server hardware fails, loses its network connections, or otherwise becomes unavailable. Rather than the active server gracefully closing, the passive server determines that the active server has failed and requires no further operations. In a failover, the passive server immediately assumes the active server role. The failover process is discussed later in this guide.

Network Protection

vCenter Server Heartbeat proactively monitors the network by polling up to three nodes to ensure that the active server is visible on the network. vCenter Server Heartbeat polls defined nodes around the network, including the default gateway, the primary DNS server, and the global catalog server at regular intervals. If all three nodes fail to respond, for example, in the case of a network card failure or a local switch failure, vCenter Server Heartbeat can initiate a switchover, allowing the Secondary server to assume an identical network identity as the Primary server.
Application Protection

vCenter Server Heartbeat running on the active server locally monitors the applications and services it has been configured to protect (through the use of plug-ins) to verify that protected applications are operational and not in an unresponsive or stopped state. This level of monitoring is fundamental in ensuring that applications remain available to users.

If a protected application fails, vCenter Server Heartbeat first tries to restart the application on the active server (1) in Figure 1-2.

If the application does not successfully restart, vCenter Server Heartbeat initiates a switchover (2) in Figure 1-2. Refer to “vCenter Server Heartbeat Switchover and Failover Processes” on page 19 for further information about the switchover process.

Figure 1-2. Switchover

A switchover gracefully closes any protected applications that are running on the active server and restarts them on the passive server, including the application or service that caused the failure. In the example where the Primary server is active and the Secondary server is passive, the Primary server is demoted to a passive role and is hidden from the network when the Secondary server is promoted to an active role and is made visible to the network. The mechanics of switchovers are discussed in more detail later in this guide.

Performance Protection

Ensuring that your protected applications are operational and providing service at a level of performance adequate for users to remain productive is important. The vCenter Server Heartbeat plug-in provides these monitoring and pre-emptive repair capabilities.

vCenter Server Heartbeat proactively monitors system performance attributes to ensure that the system administrator is notified of problems and can take pre-emptive action to prevent an outage.

In addition to monitoring application services, vCenter Server Heartbeat can monitor specific application attributes to ensure that they remain within normal operating ranges. Similar to application monitoring, various rules can be configured to trigger specific corrective actions whenever these attributes fall outside of their respective ranges.

vCenter Server Heartbeat provides the same level of flexibility to define and perform multiple corrective actions in the event of problems on a service by service or even attribute by attribute basis.
Data Protection

You can configure vCenter Server Heartbeat to protect the application environment. All data files that users or the applications require in the application environment are made available should a failure occur. After installation, vCenter Server Heartbeat configures itself to protect files, folders, and registry settings for vCenter Server on the active server by mirroring them in real time to the passive server. If a failover occurs, all files protected on the failed server are available to users after the failover, hosted on the Secondary server.

vCenter Server Heartbeat intercepts all file system I/O operations on the active server. If the intercepted write and update operations are within the protected set, these are placed in a queue on the active server referred to as the active server’s send queue, pending transmission to the passive server. Each request is numbered to maintain its order in the queue.

With the request in the active server’s send queue, vCenter Server Heartbeat allows the disk I/O to continue with the requested disk operation.

If the channel is connected, the active server’s send queue is transferred to the passive server, which places all the requests in the passive server’s receive queue. The passive server confirms the changes were logged by sending the active server an acknowledgement. The active server clears the data from its queue.

Figure 1-3. Apply Process

The apply process running on the passive server’s receive queue applies all updates in strict sequence, duplicating an identical set of file operations on the passive server as illustrated in Figure 1-3.

Communications

The VMware Channel is a crucial component of the setup and can be configured in a number of ways. Both the Primary and Secondary servers must have two or more network interface connections (NICs).

The Principal (Public) network requires one NIC. The VMware Channel uses a separate NIC for the private connection between the servers used for control and data transfer between the pair of servers.

A second pair of NICs can be used to provide a degree of redundancy for the VMware Channel. In this configuration, the VMware Channel has a dual channel if more than one dedicated NIC is provided for the VMware Channel on each server. To provide added resilience, the communications for the second channel must be completely independent from the first channel. They must not share any switches, virtual switches, routers or the same WAN connection.
The IP address a client uses to connect to the active server (the Principal (Public) IP address) must be configured as a static IP address, that is, not DHCP (Dynamic Host Configuration Protocol) enabled. In the figure above, the IP address is configured as 192.168.1.127.

NOTE Obtain the IP address: type `ipconfig` at the prompt in a DOS shell. For additional information about the IP configuration, add the switch `/All` to the `ipconfig` command.

The Principal (Public) NICs on the passive server are configured to use the same IP address as that of the active server but are prevented from communicating with the live network through an IP packet filtering system installed with vCenter Server Heartbeat. This packet filter prevents traffic using the Principal (Public) address from being committed to the wire. It also prevents NetBIOS traffic utilizing other IP addresses on the NIC from being sent to prevent NetBIOS name resolution conflicts.

The NICs on the active and passive servers used for the VMware Channel are configured so that their IP addresses are outside of the subnet range of the Principal (Public) network. These addresses are referred to as VMware Channel addresses.

During installation, setup will switch off NetBIOS for the VMware Channel(s) on the active and passive servers as this connection remains live and both the passive and active machines have the same NetBIOS name. Following restore and after the vCenter Server Heartbeat installation completes (runtime), NetBIOS is disabled across the channel(s). This occurs during installation to prevent a name conflict, which occurs when both servers have the same name.

The NICs that support connectivity across the VMware Channel can be standard 100BaseT Ethernet cards providing a throughput of 100 Mbits per second across standard Cat-5 cabling. In its most basic form, a dedicated channel requires no hubs or routers, but the direct connection requires crossover cabling.

When configured for a WAN deployment, configure the VMware Channel to use static routes over switches and routers to maintain continuous communications independent from corporate or public traffic.

vCenter Server Heartbeat Switchover and Failover Processes

vCenter Server Heartbeat uses four different procedures — managed switchover, automatic switchover, automatic failover, and managed failover — to change the role of the active and passive servers depending on the status of the active server.

Managed Switchover

You can click Make Active on the vCenter Server Heartbeat Console Server: Summary page to manually initiate a managed switchover. When a managed switchover is triggered, the running of protected applications is transferred from the active machine to the passive machine in the server pair. The server roles are reversed.
A managed switchover performs the following steps:

1. Stop the protected applications on the active server. After the protected applications stop, no more disk updates are generated.

2. Send all updates that are still queued on the active server to the passive server. After this step, all updates are available on the passive server.

3. Re-designate the Secondary server as the new active server. After this step, vCenter Server Heartbeat:
 - Hides the previously active server from the network.
 - Makes the newly active server visible on the network. The newly active server has the same identity as the previously active server, and begins to intercept and queue disk I/O operations for the newly passive server.

4. vCenter Server Heartbeat causes the newly passive server to begin accepting updates from the active server.

5. vCenter Server Heartbeat starts the same protected applications on the new active server. The protected applications become accessible to users. The managed switchover is complete.

Automatic Switchover

Automatic switchover (auto-switchover) is similar to failover (discussed in the next section) but is triggered automatically when system monitoring detects failure of a protected application.

Like managed switchover, auto-switchover changes the server roles but then stops vCenter Server Heartbeat on the previously active server to allow the administrator to investigate the cause of the auto-switchover and verify the integrity of the data.

After the cause for the auto-switchover is determined and corrected, the administrator can use vCenter Server Heartbeat Console to return the server roles to their original state.

Automatic Failover

Automatic failover is similar to automatic switchover (discussed above) but is triggered when the passive server detects that the active server is no longer running properly and assumes the role of the active server.
Chapter 1 Introduction

Figure 1-6. Failover

During the automatic failover, the passive server performs the following steps:

1. Apply any intercepted updates currently in the passive server’s receive queue as identified by the log of update records that are saved on the passive server but not yet applied to the replicated files. The amount of data in the passive server’s receive queue affects the time required to complete the failover process. If the passive server’s receive queue is long, the system must wait for all updates to the passive server to complete before the rest of the process can take place. An update record can be applied only if all earlier update records are applied, and the completion status for the update is in the passive server’s receive queue. When no more update records can be applied, any update records that cannot be applied are discarded.

2. Switch mode of operation from passive to active. This enables the public identity of the server. The active and passive servers both use the same system name and same Principal (Public) IP address. This Principal (Public) IP address can be enabled only on one system at anytime. When the public identity is enabled, any clients previously connected to the server before the automatic failover are able to reconnect.

3. Start intercepting updates to protected data. Any updates to the protected data are saved in the send queue on the local server.

4. Start all protected applications. The applications use the replicated application data to recover, and then accept re-connections from any clients. Any updates that the applications make to the protected data are intercepted and logged.

At this point, the originally active server is offline and the originally passive server is filling the active role and is running the protected applications. Any updates that completed before the failover are retained. Application clients can reconnect to the application and continue running as before.

Managed Failover

Managed failover is similar to automatic failover in that the passive server automatically determines that the active server has failed and can warn the system administrator about the failure; but no failover actually occurs until the system administrator manually triggers this operation.

Automatic Switchover and Failover in a WAN Environment

Automatic switchover and failover in a WAN environment differ from a automatic switchover and failover in a LAN environment due to the nature of the WAN connection. In a WAN environment, automatic switchover and failover are disabled by default in the event that the WAN connection is lost.
Should a condition arise that would normally trigger an automatic switchover or failover, the administrator will receive vCenter Server Heartbeat alerts. The administrator must manually click the **Make Active** button on the **Server: Summary** page of the vCenter Server Heartbeat Console to allow the roles of the servers to switch over the WAN.

To enable Automatic Switchover in a WAN

1. In the vCenter Server Heartbeat Console, click the **Network** tab to display the **Network Monitoring** page.
2. Click **Configure Auto-switchover**.
3. Select the **Auto-switchover if client network connectivity lost for** check box.
4. Configure the number of pings to wait before performing the auto-switchover.
5. Click **OK**.

Recovery from a Failover

Assuming that the Primary server was active and the Secondary server was passive before the failover, after the failover the Secondary server is active and the Primary server is passive.

NOTE When failover conditions such as a power failure cause both active and passive servers to fail, the condition may result that causes both servers to restart in passive mode. In this situation, manual intervention is required. See Appendix 13, “Two Passive Servers,” on page 151 for more information.

After rectifying the problem that initiated the failover, it is a simple process to reinstate the Primary server as the active server and the Secondary server as the passive server.

When vCenter Server Heartbeat starts on the failed Primary server, it detects that it did not stop cleanly the previous time. It disables the public identity by deploying the IP packet filter and halts vCenter Server Heartbeat so that the issues that caused the failure can be resolved.

To restore the previously failed server to the active role

1. Correct the conditions that caused the failover.
2. Verify the integrity of the disk data on the failed server.
3. Restart the failed, now passive, server after all issues are resolved.
4. Start vCenter Server Heartbeat on the passive server.
 - At this point, the instances of vCenter Server Heartbeat running on the servers connect and begin to re-synchronize the data on the Primary server.
5. Wait until vCenter Server Heartbeat is fully synchronized.
 - When the re-synchronization is complete, you can continue operating with this configuration (for example, the Secondary server is the active server and the Primary server is the passive server), or initiate a managed switchover.
6. Optionally, perform a managed switchover to return the Primary and Secondary servers to the same roles they had before the failover.
Installation
This chapter includes the following topics:

- “Overview” on page 25
- “Environmental Prerequisites” on page 25
- “Common Requirements” on page 26
- “Server Architecture Options” on page 27
- “Cloning Technology Options” on page 28
- “Application Component Options” on page 29
- “Network Options” on page 30
- “Antivirus Recommendations” on page 32
- “Deployment Options Summary” on page 32

Overview

vCenter Server Heartbeat is a versatile solution that provides complete protection of vCenter Server and SQL Server. It can be deployed in a LAN for high availability or across a WAN to provide disaster recovery. vCenter Server Heartbeat can protect vCenter Server and SQL Server installed on the same server, or protect vCenter Server and SQL Server on separate servers. This flexibility enables vCenter Server Heartbeat to protect vCenter Server when using remote databases other than SQL Server.

This chapter discusses the deployment options and prerequisites to successfully implement vCenter Server Heartbeat and provides a step-by-step process to assist in selecting options required for installation. The deployment scenario table provides a visual reference to configuration options supported by vCenter Server Heartbeat.

During the installation process, vCenter Server Heartbeat performs a variety of checks to ensure the server meets the minimum requirements for a successful installation. A critical stop or warning message appears if the server fails a check. Refer to the Appendix – Setup Error Messages in this guide for a list of the checks and an explanation of the message. You must resolve critical stops before you can proceed with setup.

Prior to installing vCenter Server Heartbeat, select the deployment options you intend to use. The installation process prompts you to select options throughout the procedure to create the configuration you want.

Environmental Prerequisites

vCenter Server Heartbeat cannot protect a server configured with the following roles: domain controller, global catalog, or DNS.

NOTE Because vCenter Server Heartbeat only protects the vCenter Server and SQL Server applications, no other critical business applications should be installed on the server.
Common Requirements

The following requirements are in addition to those required for vCenter Server and SQL Server.

- **Supported vCenter Server Versions**
 - VirtualCenter Server 2.5
 - VirtualCenter Server 2.5 Update 1
 - VirtualCenter Server 2.5 Update 2
 - VirtualCenter Server 2.5 Update 3
 - VirtualCenter Server 2.5 Update 4
 - VirtualCenter Server 2.5 Update 5
 - VirtualCenter Server 2.5 Update 6
 - vCenter Server 4.0
 - vCenter Server 4.0 Update 1
 - vCenter Server 4.0 Update 2
 - vCenter Server 4.1

- **Operating Systems**
 - Windows Server 2003 x86 Standard SP2
 - Windows Server 2003 x86 Enterprise SP1 and SP2
 - Windows Server 2003 x64 Enterprise SP2
 - Windows Server 2008 x86 SP1 and SP2
 - Windows Server 2008 x64 SP1 and SP2
 - Windows Server 2008 R2

NOTE vCenter Server Heartbeat supports protection of both standalone instances of vCenter Server 4.0.x and also when in Linked Mode groups.

- Prior to installing vCenter Server Heartbeat, verify that vCenter Guided Consolidation, vCenter Update Manager, and vCenter Converter are configured using Fully Qualified Domain Names (FQDN) rather than IP addresses.
- During the setup process, vCenter Server Heartbeat verifies that a minimum of 1GB RAM is available. To ensure proper operation, vCenter Server Heartbeat requires a minimum of 1GB RAM (2GB is recommended) in addition to any other memory requirement for the Operating System or vCenter Server.
- Verify that 2GB of disk space is available on the installation drive for vCenter Server Heartbeat.
- Obtain and use local administrator rights to perform vCenter Server Heartbeat installation.
- Apply the latest Microsoft security updates.
- All applications that will be protected by vCenter Server Heartbeat must be installed and configured on the Primary server prior to installing vCenter Server Heartbeat.
- Verify that both Primary and Secondary servers have identical system date, time, and time Zone settings. Once configured, do not change the time zone.
- Verify that the Principal (Public) network adapter is listed as the first network adapter in the Network Connections Bind Order. ([Network Connections > Advanced > Advanced Settings](#)).
- Verify that the Managed IP setting in the Virtual Infrastructure Client is the same IP address used for the vCenter Server Heartbeat Principal (Public) IP address.
Server Architecture Options

The selected server architecture affects the requirements for hardware and the technique used to clone the Primary server.

Virtual to Virtual (V2V)

V2V is the supported architecture if vCenter Server is already installed on the production (Primary) server running on a virtual machine. Benefits to this architecture include reduced hardware cost, shorter installation time, and use of the Pre-Clone technique for installation.

The Secondary virtual machine must meet the minimum requirements.

- The specifications of the Secondary virtual machine must match the specifications of the Primary virtual machine as follows:
 - Similar CPU (including resource management settings)
 - Memory configuration (including resource management settings)
 - Appropriate resource pool priorities
- Each virtual machine used in the V2V pair must be on a separate ESX host to guard against failure at the host level.
- Each virtual NIC must use a separate virtual switch.

Physical to Virtual (P2V)

P2V architecture is used when the environment requires a mix of physical and virtual machines, such as when vCenter Server is installed on a physical server in an environment where available hardware is limited. This architecture is appropriate if you must avoid adding more physical servers or if you plan to migrate to virtual technologies over a period of time. With P2V architecture, you can test vCenter Server running in a virtual environment or migrate from Physical to Virtual without any downtime. The Secondary virtual machine must meet the minimum requirements.

- The specifications of the Secondary virtual machine must match the Primary physical server as follows:
 - Similar CPU
 - Identical Memory
- The Secondary virtual machine must have sufficient priority in resource management settings so that other virtual machines do not impact its performance.
- Each virtual NIC must use a separate virtual switch.

Physical to Physical (P2P)

P2P architecture is used in environments where both the Primary and Secondary servers are physical servers. Use of P2P limits installation options as it requires use of the Install Clone technique. This architecture requires attention to detail when preparing for installation as both hardware and software must meet specific prerequisites.

Primary Server

The Primary server must meet the following requirements:

- Hardware as specified in “Common Requirements” on page 26.
- Software as specified in “Common Requirements” on page 26.

Secondary Server

The Secondary server operates as a near clone of the Primary server and must meet the following requirements.
Hardware

Hardware should be equivalent to the Primary server to ensure adequate performance when the server is in the active role:

- Similar CPU.
- Similar memory.
- Identical number of NICs to the Primary server.
- Drive letters must match the Primary server.
- Available disk space must be greater than or equal to the Primary server.
- Advanced Configuration and Power Interface (ACPI) compliance must match the Primary server. The vCenter Server Heartbeat Standard implementation process assumes identical ACPI compliance on both machines. If not, contact VMware Support at www.vmware.com/support for further information.

Software

Software on the Secondary server must meet the following requirements.

- OS version and Service Pack version must match the Primary server.
- OS must be installed to the same driver letter and directory as on the Primary server.
- Machine name must be different from the Primary server prior to installing vCenter Server Heartbeat.
- Set up in a workgroup prior to installing vCenter Server Heartbeat.
- System date, time, and time zone settings must be consistent with the Primary server.

Cloning Technology Options

Cloning the Primary server to create a nearly identical Secondary server involves different techniques depending on the selected server architecture.

Supported Pre-Clone Technologies

The following cloning technologies are supported for creating Pre-Cloned images for use as a Secondary server:

- VMware vCenter Converter for “Physical to Virtual (P2V)” on page 27.
- VMware vCenter virtual machine cloning for “Virtual to Virtual (V2V)” on page 27.

Supported Install Clone Technologies

Installation of vCenter Server Heartbeat provides support for NTBackup on Windows 2003 and Wbadmin on Windows Server 2008 for automated Install Cloning. This process is automated but requires meeting all prerequisites for the Secondary server specified in “Physical to Physical (P2P)” on page 27.
Chapter 2 vCenter Server Heartbeat Implementation

Application Component Options

vCenter Server Heartbeat can accommodate any of the supported vCenter Server configurations and protects the following components:

- VirtualCenter Server Version 2.5
 - VMware VirtualCenter Server
 - VMware Capacity Planner
 - VMware Converter Enterprise
 - VMware Update Manager
 - VMware License Server
 - VMware Virtual Infrastructure Client

- vCenter Server Version 4.0
 - VMware vCenter Server
 - VMware Guided Consolidation Service
 - VMware License Server
 - VMware ADAM
 - VMware vCenter Management Web Server
 - VMware vCenter Update Manager
 - VMware vCenter Converter
 - VMware vCenter Orchestrator
 - VMware vSphere Host Update Utility
 - VMware vSphere Client

- vCenter Server Version 4.1
 - VMware vCenter Server
 - VMware Guided Consolidation Service
 - VMware License Server
 - VMware ADAM
 - VMware vCenter Management Web Server
 - VMware vCenter Update Manager
 - VMware vCenter Converter
 - VMware vCenter Orchestrator
 - VMware vSphere Host Update Utility
 - VMware vSphere Client

- View Composer 1.1 and 2.0
 - VMware View Composer
 - VMware Universal File Access

- SQL Server 2005 SP1-SP3

- SQL Server 2008 including SP1

NOTE Ensure that all VMware components are bound to the Principal (Public) IP address on the Principal (Public) network adapter and that the Principal (Public) network adapter is listed first in the bind order of the Network Connections > Advanced > Advanced Settings page.

vCenter Server with SQL Server on the Same Host

To ensure adequate performance in 20+ host or 200+ virtual machine environments, VMware recommends that SQL Server and vCenter Server be installed on separate physical disk drives. VMDKs must be on separate datastores to avoid potential disk bottlenecks.
vCenter Server with SQL Server on a Separate Host

When installing vCenter Server Heartbeat in an environment where SQL Server is on a separate host from vCenter Server, repeat the installation process for the Primary and Secondary server specifically for the SQL Server.

To ensure proper failover, increase the default Heartbeat interval for the vCenter Server from 20 to 30 seconds.

vCenter Server Only

The *vCenter Server Only* option requires a single iteration of the installation process because the database is not protected.

Network Options

Networking requirements are contingent upon how vCenter Server Heartbeat is deployed. To deploy as a High Availability (HA) solution, a LAN configuration is required. To deploy vCenter Server Heartbeat for Disaster Recovery (DR), a WAN configuration is required. Each network configuration has specific configuration requirements to ensure proper operation.

NOTE vCenter Server Heartbeat does NOT out-of-the-box support teams of NICs but can be configured to support teamed NICs with additional configuration steps when installing with teamed NICs present. See Knowledge Base article 1027288 for more information about teamed NICs.

LAN

When deployed in a LAN environment, vCenter Server Heartbeat requires that both servers use the same Principal (Public) IP address. Each server also requires a separate VMware Channel IP address on a separate dedicated subnet.

Primary Server

Three NICs (1 x Public and 2 x Channel) are recommended for redundancy in the event one channel fails. A minimum of two NICs (one for the Channel, and one for the Public) are required in this configuration. Split-brain Avoidance should be configured.

- Principal (Public) network connection configured with the following:
 - Static IP address
 - Correct network mask
 - Correct Gateway address
 - Correct preferred and secondary (if applicable) DNS server address
 - NetBIOS enabled

- Channel Network connection(s) configured with the following:
 - Static IP address in a different subnet than the Principal (Public) network with a different IP address than the Secondary server channel NIC
 - Correct network mask
 - No Gateway IP address
 - No DNS server address
 - NetBIOS enabled (disabled during the installation process)

Secondary Server

Networking components on the Secondary server must be configured as follows:

- Same number of NICs as the Primary server
- Principal (Public) network connection configured with temporary network settings
- Channel network connection(s) configured with the following:
 - Static IP address in a different subnet than the Principal (Public) network with a different IP address than the Primary server channel NIC
 - Correct network mask
 - No Gateway IP address
 - No DNS IP address
 - NetBIOS enabled (setup will disable this during the installation process)
 - File and print sharing enabled

WAN

Deploying vCenter Server Heartbeat in a WAN environment requires additional considerations. Each server within the vCenter Server Heartbeat pair requires its own separate Principal (Public) IP address and a VMware Channel IP address in a separate dedicated subnet.

WAN Requirements

WAN deployments require the following:
- Persistent static routing configured for the channel connection(s) where routing is required
- Two NICs (1 x Public and 1 x Channel) are recommended
- At least one Domain Controller at the Disaster Recovery (DR) site
- If the Primary and DR site use the same subnet:
 - During install, follow the steps for a LAN or VLAN on the same subnet
 - Both servers in the vCenter Server Heartbeat pair use the same Public IP address
- If the Primary and DR site use different subnets:
 - During install, follow the steps for a WAN
 - Both servers in the vCenter Server Heartbeat pair require a separate Principal (Public) IP address and a VMware Channel IP address in a separate dedicated subnet
 - Provide a user account with rights to update DNS using the DNSUpdate utility provided as a component of vCenter Server Heartbeat through vCenter Server Heartbeat Console **Applications > Tasks > User Accounts**
 - VMware recommends integrating Microsoft DNS into AD so that DNSUpdate can identify all DNS Servers that require updating
 - At least one Domain Controller at the DR site
 - Refer to the following articles in the VMware Knowledge Base:
 - KB 1008571 – Configuring DNS with VMware vCenter Server Heartbeat in a WAN Environment
 - KB 1008605 – Configuring vCenter Server Heartbeat to Update BIND9 DNS Servers Deployed in a WAN

Bandwidth

Determine the available bandwidth and estimate the required volume of data throughput to determine acceptable latency for the throughput. Additionally, the bandwidth can affect the required queue size to accommodate the estimated volume of data. VMware recommends making a minimum of 1Mbit of spare bandwidth available to vCenter Server Heartbeat.
vCenter Server Heartbeat includes automatic bandwidth optimization in WAN environments. This feature compresses data transferred over the VMware Channel, optimizing the traffic for low bandwidth connections causing some additional CPU load on the active server.

Latency
Latency has a direct effect on data throughput. Latency on the link should not fall below the standard defined for a T1 connection.

Heartbeat Diagnostics can assist in determining the available bandwidth, required bandwidth, and server workload. For more information about Heartbeat Diagnostics, contact VMware Professional Services.

Antivirus Recommendations
Consult with and implement the advice of your antivirus (AV) provider, as VMware guidelines often follow these recommendations. Consult the VMware knowledge base for up to date information on specific AV products.

Do not use file level AV to protect application server databases, such as MS SQL Server databases. The nature of database contents can cause false positives in virus detection, leading to failed database applications, data integrity errors, and performance degradation.

VMware recommends that when implementing vCenter Server Heartbeat, you do not replicate file level AV temp files using vCenter Server Heartbeat.

The file level AV software running on the Primary server must be the same as the software that runs on the Secondary server. In addition, the same file level AV must run during both active and passive roles.

Configure file level AV to use the management IP address on the passive server for virus definition updates. If this is not possible, manually update virus definitions on the passive server.

Exclude the following VMware directories from file level AV scans (C:\Program Files\VMware\VMware vCenter Server Heartbeat\ is the default installation directory):

- C:\Program Files\VMware\VMware vCenter Server Heartbeat\r2\logs
- C:\Program Files\VMware\VMware vCenter Server Heartbeat\r2\log

Any configuration changes made to a file level AV product on one server (such as exclusions) must be made on the other server as well. vCenter Server Heartbeat does not replicate this information.

Deployment Options Summary
Table 2-1 provides all possible deployment options described in this section.

<table>
<thead>
<tr>
<th>Network</th>
<th>Clone Technique</th>
<th>vCenter Server w/SQL</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAN</td>
<td>WAN</td>
<td>Pre-Clone</td>
</tr>
<tr>
<td>V2V</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P2V</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P2P</td>
<td>X</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>
Installation Options Checklist

Verify the prerequisites:

Server architecture:
___ P2P
___ P2V
___ V2V

Cloning technology option:
___ Pre-Clone Install
___ Install Clone

Application components to protect:
___ vCenter Server with SQL Server on same host
___ vCenter Server with SQL Server on separate host
___ vCenter Server only

Network environment type:
___ LAN
___ WAN

Is the subnet the same at the Secondary site?
- If Yes, an IP address is required for this subnet

Active Directory Integrated DNS?
- If Yes, a Domain Account with rights to update DNS is required.
- If No, refer to the knowledge base articles in “Network Options” on page 30.
This chapter includes the following topics:
- “Overview” on page 35
- “Installation Process” on page 35
- “Primary Server” on page 36
- “Secondary Server” on page 55
- “vCenter Server Heartbeat Console” on page 64
- “Post Installation Configuration” on page 65

Overview

This chapter discusses the installation process used to implement vCenter Server Heartbeat on Windows Server 2003. During the installation process, vCenter Server Heartbeat performs a variety of checks to ensure the server meets the minimum requirements for a successful installation. Should the server fail one of the checks, a critical stop or warning message appears. Refer to the Appendix – Setup Error Messages in this guide for a list of the checks and an explanation of the message. You must resolve critical stops before you can proceed with setup.

Prior to installing vCenter Server Heartbeat, you must identify the deployment options you want. The installation process requires you to select options throughout the procedure to achieve your configuration goals.

Installation Process

After selecting implementation options, begin the installation process. The installation process for all scenarios follows the same basic procedure. Links to specific installation scenarios describing differences are identified by the blue hyperlinked text.
Primary Server

Installation of vCenter Server Heartbeat begins on the Primary server.

NOTE vCenter Server Heartbeat prompts you to enter a valid production serial number during the installation process. If you do not enter a valid production serial number during the installation process, vCenter Server Heartbeat installs in the evaluation mode.

1. Having verified all of the environmental prerequisites are met, download the vCenter Server Heartbeat WinZip self-extracting file to an appropriate location on the Primary server (either Physical or Virtual).

 You have the following options:

 - For P2P, go to Step 2 to continue the installation.
 - For V2V or P2V installations with the Pre-Clone technique selected, begin with Step a below to configure the network settings on the Secondary server.

 a. Clone the Primary server using either the VMware vCenter Converter for P2V, vCenter virtual machine cloning for V2V, or another third-party utility to create a cloned image of the Primary server. The clone must be completely identical with no changes to the Name, SID, or domain membership.

 b. After creating the cloned image, but before powering on the cloned image, edit the image settings.
c. Select the Public virtual network adapter and clear the Connected and Connect at power on check boxes.

d. Repeat the process on the Channel virtual network adapter.

e. Power on the Secondary (previously cloned) server image.

f. After the Secondary starts, open Network Connections, right-click the VMware Channel network connection and select Properties. Select Internet Protocol (TCP/IP) and click Properties.
g Configure the appropriate VMware Channel IP address and subnet mask. Click **Advanced**

![Advanced TCP/IP Settings](image)

h Click the **DNS** tab, clear the **Register this connection's addresses in DNS** check box.

![Advanced TCP/IP Settings](image)

i Click the **WINS** tab, select **Disable NetBIOS over TCP/IP** and click **OK** twice.

j Select the Principal (Public) network connection, right-click and select **Properties**. Select **Internet Protocol (TCP/IP)** and click **Properties**. Set the appropriate IP address (same as the Primary server for LAN installations), Subnet Mask, and Default Gateway, and click **OK**.

k In Network Connections, click **Advanced** and select **Advanced Settings**. Verify that the Principal (Public) NIC IP address is listed first in the Bind Order, and click **OK**.

l Right-click the Secondary (cloned) server image and select **Edit Settings**.

m Select the VMware Channel virtual network adapter and select the **Connected** and **Connect at power on** check boxes. IP communications with the Secondary server go through the VMware Channel.
NOTE Do not connect the Principal (Public) virtual network adapter at this time to prevent an IP address conflict on the network.

2 Double-click the WinZip Self Extracting file to initiate the installation process. The Setup Introduction dialog appears. Review the information and click OK.

NOTE If you click Exit after Setup has started, you are prompted to save your settings. When you run Setup.exe later, you will be asked if you want to use the previously saved configuration.

3 The WinZip Self-Extractor dialog appears. Click Setup to continue.

4 The Setup Type page appears. Because this is a new installation of vCenter Server Heartbeat, select Install vCenter Server Heartbeat and click Next.

NOTE The left pane of each page in the setup wizard provides information about the setup process.
5 Select the identity of the server on the Physical Hardware Identity page. Select Primary as the server identity and click Next.

![Physical Hardware Identity](image)

NOTE If .Net 2.0 is not currently installed on the server, vCenter Server Heartbeat Setup installs this required component, taking some additional time during the installation process.

6 Read the license agreement carefully and select I accept terms of the License Agreement. Click Next.

![License Agreement](image)
7 Click **Add** to enter a valid production serial number for production mode or click **Next** to install in the evaluation mode.

8 Select the intended topology of the installation. Select either LAN (if the Primary and Secondary server will use the same Principal (Public) IP address) or WAN (if the Primary and Secondary server will use different Principal (Public) IP addresses. Click **Next**.

9 Select the cloning options.

You have the following options:

- For installation using the Install Clone technique, continue with **Step 10**.
- For installation using the Pre-Clone technique, continue with **Step 11**.
10 Select **Not a clone of the Primary server**, click **Next**, and go to **Step 12**.

11 If a virtual Secondary server was created using vCenter Converter, the cloning option in the Virtual Infrastructure Client, or a third-party utility, select **Pre-cloned** and click **Next**.
12 Configure the installation paths. The default installation location is C:\Program Files\VMware\VMware vCenter Server Heartbeat, but you can change it by manually typing a path to another install location.

![Installation Paths](image)

NOTE The path of the VMware installation folder cannot contain Unicode characters. If vCenter Server Heartbeat is installed in a folder that has a path containing Unicode characters, this causes the Neverfail Server R2 service to fail to start. The path of the VMware installation folder can only contain lower and upper case letters A to Z, digits from 0 to 9, and the following special characters: space \ _ - () :

Alternatively, click **Browse** to select one of these locations. Select **Create icons on Desktop** and click **Next**.

13 Identify the network adapter(s) for use in the VMware Channel on the **Channel Adapter Identification** page. Select the network adapters (NICs) for the VMware Channel from the list. Click the adapter name to display the selected NIC properties in the lower pane. You must select at least one NIC to proceed with the installation.

![Channel Adapter Identification](image)
If no NICs are available, click **Open Network Connections** to review the network configuration of your machine and verify that you have the correct number of NICs installed. After selecting the appropriate NIC, click **Next**.

NOTE Only one channel can be configured for each NIC. To configure more than one channel you must identify more than one NIC. A disabled NIC does not appear in this list. Enable the NIC to display it. If a NIC is disconnected, its IP addresses do not appear in the lower pane.

14 The **VMware Channel IP Configuration** page prompts you to configure the VMware Channel(s) IP network addresses. Click **Add** for each available channel connection. For the Primary server, select from a drop-down menu that lists all local IP addresses. Type the reciprocal IP address on the Secondary server into the **IP Address On Secondary** text box. You must specify all VMware Channel IP addresses in subnets outside of the normal Principal (Public) IP addressing schema so that VMware Channel traffic routing uses the VMware Channel network card rather than the Principal (Public) network card. Click **OK**. Repeat this step for additional NICs.

15 Review and adjust, if necessary, the default channel port. Click **Next**.

NOTE When the implementation spans multiple sites with firewalls between the servers, configure the firewalls to allow traffic to pass through the default channel port or the manually configured channel port. Consult the VMware knowledge base for additional information.
16 Select the Principal (Public) NIC(s). The IP address information is displayed for each NIC.

vCenter Server Heartbeat software can be deployed in a configuration where both servers have the same Principal (Public) IP address, for instance, in a standard Local Area Network (LAN) deployment where both machines are in the same subnet.

Alternatively, vCenter Server Heartbeat can be deployed where the Principal (Public) IP addresses differ, for instance, in a Wide Area Network (WAN) deployment where the Primary and Secondary servers are located in different sites and subnets where client access is therefore bound by the standard network routing to allow the correct connectivity to the server according to its locale.

17 Select **Use same IP addresses for Secondary (Recommended for HA secondary)** or **Use different IP addresses for Secondary (Recommended for DR secondary)**.

You have the following options:

- For a WAN installation with different subnets, go to Step 19.
- For LAN installation or same subnet WAN installs, continue with Step 18.
18 For a LAN environment, click **Add** to specify the IP address.

19 For a WAN environment, specify IP addresses of the Secondary server and the Primary server.

20 Add each Principal (Public) network address until all addresses are present. Click **Next**.
21 When the Principal (Public) addresses on the Secondary server are different from those on the Primary server, vCenter Server Heartbeat must perform additional tasks during failover or switchover. These additional tasks require clients to change their resolution of the active server to a different IP address and requires that vCenter Server Heartbeat update the DNS entries for the active server across the enterprise. Such updates require credentials for domain administrators (or an account with equivalent rights). Type the Domain Name, a domain administrator Username and Password in the respective text boxes and click Next.

![User Details](image1.png)

The vCenter Server Heartbeat server pair can be administered remotely on client machines using the vCenter Server Heartbeat Console.

22 The vCenter Server Heartbeat Console connects to an IP address of the active server using the default client connection port of 52267. If this port is already in use, type an available client connection port in the text box. Click Next.

![Client Configuration](image2.png)

23 Select the applications to protect. All licensed vCenter Server Heartbeat features are listed.
If installing vCenter Server only, or vCenter Server locally and the SQL Server on a separate server, select **Protect Virtual Center only**.

If installing SQL Server remotely, upon completion of the vCenter Server installation locally, repeat the installation procedure at the remote SQL Server location and select **Protect SQL Server only**.

If installing both vCenter Server and SQL Server locally, select **Protect Virtual Center and SQL Server**.

If View Composer is installed, select the **View Composer** check box to provide protection for View Composer.

24 Configure Microsoft Windows Backup options. To facilitate the clone of the Primary server onto the Secondary server, you must back up pertinent components of the Primary server for restoration on to the Secondary server.

You have the following options:

- For installation using the Pre-Clone technique, go to Step 25 on page 50.
- For installation using the Install Clone technique, continue with Step a.

Continue with Step a.

a Configure Microsoft Windows Backup options. Depending on the network topology between the servers, backup files can include or exclude application data. Including application data in the backup file decreases the time to initially verify and synchronize the applications data on first start up of vCenter Server Heartbeat. This is useful where VMware Channel connections are slower than LAN speed, such as in a WAN implementation.
With Windows Server 2003, vCenter Server Heartbeat does not stop services and prevents downtime by using the Windows Volume Shadow Service to take the backup. Including the applications’ protected data greatly increases the backup file size and therefore increases the time of the backup operation. Due to the potential large size of the backup file, careful consideration is required when including application data and specifying the backup folder location.

b Where VMware Channel communications are fast and reliable, for instance in a LAN topology, you can directly create the backup files over the VMware Channel connections to a partition on the Secondary server. To perform this direct backup, click Map Network Drive and specify a network mapping to the Secondary server. Type in the path or Browse to the location to receive the backup file.

c Select an appropriate drive letter for the mapping and specify the required share on the Secondary server using the channel address of the Secondary server as the server name, for example: \10.0.0.6\Backup. Verify that the mapped partition has enough free space, a minimum of 2GB, to accommodate the backup file.
d Where the VMware Channel connection is slower than 10 Mbit/s or risks an interruption in connection, for example in a WAN topology, save the backup file locally and manually port the file to the Secondary server.

e In either scenario, specify the path to an appropriate location for storing the backup file by either manually typing the path into **Backup File Folder** or click **Browse** to locate the folder or network mapping.

25 When the Pre-Clone technique is selected, Setup backs up two small files, nfsetup.dat and primary.csv, from the Primary server and restores them to the Secondary server for proper configuration.

Continue with **Step a**.

a Where VMware Channel communications are fast and reliable, for instance in a LAN topology, you can directly create the backup files over the VMware Channel connections to a partition on the Secondary server. To perform this direct backup, click **Map Network Drive** and specify a network mapping to the Secondary server. Type the path or **Browse** to the location to receive the backup file.

b Select an appropriate drive letter for the mapping and specify the required share on the Secondary server using the channel address of the Secondary server as the server name, for example: \10.0.0.6\Backup.

c Where the VMware Channel connection is slower than 10 Mbit/s or risks an interruption in connection, for example in a WAN topology, save the backup file locally and manually port the file to the Secondary server.

d In either scenario, specify the path to an appropriate location for storing the backup file by either manually typing the path into **Backup File Folder** or click **Browse** to locate the folder or network mapping.

With Windows 2003, vCenter Server Heartbeat takes the backup using the Windows Volume Shadow Service and does not stop services, thereby preventing downtime. Click **Next**.
26 Review the summary of options and configuration information for the installation. Click **Next**.

27 Pre-install checks run to ensure that the installation can continue. Setup checks the available disk space, system memory, operating system compatibility, and dependencies between modules. The Report pane displays the results of the pre-install checks.

28 If some pre-install checks are unsuccessful, go back through the wizard, make the necessary changes, and run the pre-install checks again. If the pre-install checks are successful, click **Next**.

NOTE The Progress pane on the **Pre-Install Checks** page displays the progress of these checks. When finished, the Report pane displays the results.
The next page displays the progress of the installation. During this process, Setup installs the necessary files and folders onto your system and applies the configuration you specified. Setup also installs Heartbeat Diagnostics and configures it with the default settings.

NOTE If a previous version of Heartbeat Diagnostics is detected, vCenter Server Heartbeat Setup updates it to the current version. To learn more about Heartbeat Diagnostics, see *Getting Started with Heartbeat Diagnostics* on the VMware Web site.

Click **Next** after vCenter Server Heartbeat components are complete.

You have the following options:

- If using the Pre-Clone installation technique, go to Step 33.
- If using the Install Clone installation technique, continue to Step 31.
31 The next page displays the Microsoft Windows Backup pane. Click **Proceed**. The automated backup is saved in the previously defined location.

32 A summary page displays the results of the backup operation. Review the backup report and click **Next**.
The vCenter Server Heartbeat Packet Filter driver installs on each network card of the production server. If you see warnings that the driver is unsigned or did not complete the Windows Logo tests, click Continue Anyway. If Windows is configured to display Signed Driver warnings, you can see multiple warnings. The Report pane displays the results. Click Next.

By default, the vCenter Server Heartbeat Packet Filter driver is applied to all Principal (Public) network cards present on the machine. The vCenter Server Heartbeat Packet Filter is not applied to the network cards forming VMware Channel connections as these cards maintain unique IP addresses irrespective of the role of the server. vCenter Server Heartbeat also disables NetBIOS on the Channel NIC(s) to prevent domain name conflicts on the subnet.

When the setup wizard confirms the successful completion of the installation, click Finish.
Secondary Server

The process of installing vCenter Server Heartbeat on the Secondary server is similar to installing vCenter Server Heartbeat on the Primary server.

To install the Secondary server

1. To install the vCenter Server Heartbeat on the Secondary server, download vCenter Server Heartbeat to the Secondary server (either Physical or Virtual) to a suitable location. Execute the WinZip self extracting file to start the installation process. The Setup Introduction dialog appears. Review the information and click OK.

 ![Setup Introduction dialog](image)

 NOTE If you click Exit after Setup has started, you are prompted to save your settings. When you run the self extracting WinZip file again later, you will be asked if you want to use the previously saved configuration.

2. The WinZip Self-Extractor dialog appears. Click Setup to continue.

 ![WinZip Self-Extractor dialog](image)

3. The Setup Type page appears. As with the installation on the Primary server, select Install VMware vCenter Server Heartbeat and click Next.

 ![Setup Type dialog](image)

 NOTE The left pane of each page in the setup wizard provides information about the setup process.
4. Select the identity of the server on the Physical Hardware Identity page. Select Secondary as the server identity and click Next.

5. Identify the location of the folder containing the backup file from the Primary server. Manually type the location path in the text box or click Browse and locate the folder. Click Next.

NOTE If .Net 2.0 is not currently installed on the server, vCenter Server Heartbeat Setup installs this required component, taking some additional time during the installation process.
6 The pre-install checks run. Click **Next**.

If some pre-install checks are unsuccessful, go back through the wizard, make the necessary changes, and run the pre-install checks again.

7 The next page displays the progress of the installation. During this process, Setup installs the necessary files and folders onto your system and applies the configuration you specified. Setup also installs Heartbeat Diagnostics and configures it with the default settings. To learn more about Heartbeat Diagnostics see *Getting Started with Heartbeat Diagnostics*.

8 The Report pane displays the results of the installation. Click **Next**.
9 The progress of the VMware vCenter Server Heartbeat Packet Filter installation is displayed. Click Next.

You have the following options:

- If the Secondary server is physical, such as in P2P, go to Step 10.
- If the Secondary server is virtual, such as in P2V or V2V, continue with Step a.

a The Packet Filter is installed on the Principal (Public) NIC and the Principal (Public) network adapter can be reconnected. Right-click the Secondary server image name and select Edit Settings.

b Select the Principal (Public) virtual network adapter, select the Connected and Connect at power on check boxes, and click OK.
10 In the **Channel Adapter Identification** page, select the appropriate adapter and review the IP address configuration in the lower pane. Click **Next**.

![Channel Adapter Identification](image1)

You have the following options:

- If using the Install Clone installation technique, continue to Step 11.
- If using the Pre-Clone installation technique, go to Step 14.

11 Configure the Principal (Public) adapter on the Secondary server through the **Public Adapter Identification** page. When you select the Principal (Public) adapter, a caution message notifies you that the IP address on the Principal (Public) adapter does not match the IP address on the Primary server (LAN configuration only). Click **OK**.

![Public Adapter Identification](image2)
12 Click **Open Network Connections** to change the static IP address of the Principal (Public) adapter to match that of the Primary server (LAN configuration only).

13 If in a WAN environment, verify the Secondary Principal (Public) adapter IP address configuration. Click **Next**.

You have the following options:

- If using the Install Clone installation technique, go to **Step 15**.
- If using the Pre-Clone installation technique, go to **Step 28**.

14 When using the Pre-Clone installation technique, although you previously configured the IP address of the Principal (Public) network connections, you can make any last minute changes on the Secondary server through vCenter Server Heartbeat. Click **Next**.
15 The **Microsoft Windows Backup Restore** page shows the process of unbinding the vCenter Server Heartbeat Packet Filter and disabling NetBIOS from the VMware Channel NIC(s). A caution message appears, advising you that the restore process is initiating and upon completion, the server must be restarted. After restarting, Plug and Play (PnP) can require you to restart the machine again. Click **Next**.

16 The NTBackup wizard launches. If NTBackup has never run before, the software searches for backup devices. Close any open wizards and click **Restore Wizard** on the **Welcome** page.

17 Click **Next** in the Restore Wizard. Click **Browse** to locate the previously generated backup file.
18 Navigate to the partition and select the folder in which the backup file was created, select the backup file, click Open and then click OK.

19 Expand the file tree structure to see the System State file in the left pane. Click OK to build indexes where required. Select all items listed under the media created tree and click Next.

20 With Where to restore at the default Original location, click Next. Click Finish.
21 A warning message alerts you that the restore process is going to overwrite the existing System State files. Click OK.

22 When the restoration process completes, click Close.

23 To apply the newly restored system state, you must restart the machine. Click Yes to restart the server.

24 Following the restart of the server, log in to the Secondary server using a domain administrator account.

25 PnP can require multiple restarts of the server as it reidentifies the actual hardware makeup of the Secondary server as opposed to that restored from the backup file of the Primary server.

NOTE vCenter Server Heartbeat starts each time the Secondary server restarts. Manually shut down vCenter Server Heartbeat before initiating a restart.

26 Click Yes at each restart prompt to allow each PnP cycle to complete.

27 When all PnP cycles complete, the vCenter Server Heartbeat Setup is complete, and vCenter Server Heartbeat starts on the Secondary server.

28 Select Start VMware vCenter Server Heartbeat after clicking Finish and click Finish.

29 Before starting vCenter Server Heartbeat, verify the time synchronization between the Primary and Secondary servers. When a difference exists, synchronize the Secondary (passive) server to the Primary (active) server across the VMware Channel. Type the following command at the command prompt:
net time \\
<Primary_Channel_IP_address> /set

Start vCenter Server Heartbeat on the Primary server. Right-click the vCenter Server Heartbeat System Tray icon and select Start VMware vCenter Server Heartbeat. The icons change from a double dash to a P indicating the server is the Primary server, and an A indicating the server is acting in an active role.

30 The Primary and Secondary servers establish a handshake and commence replication.

NOTE The installation is complete if vCenter Server was installed with a local SQL Server or only vCenter Server was installed with no separate SQL Server.

If vCenter Server only was installed and you want to install a separate SQL Server, repeat the installation process for the Primary and Secondary server at the remote site and selecting SQL Server only.

To install the SQL Server on a separate host from the vCenter Server, go to “Primary Server” on page 36.

vCenter Server Heartbeat Console

To administer a pair of servers you must connect to them through the vCenter Server Heartbeat Console. vCenter Server Heartbeat Console does not connect until vCenter Server Heartbeat initializes.

You can start vCenter Server Heartbeat Console from any server in the vCenter Server Heartbeat Pair.

To start vCenter Server Heartbeat Console

1 Right-click the VMware vCenter Server Heartbeat interactive status icon on the Windows tool tray (located on the right side of the Windows tool bar). The vCenter Server Heartbeat quick access menu opens.

2 Select Manage Server The vCenter Server Heartbeat Console opens in a window and shows the Heartbeat Servers (overview) pane.

Alternatively you can start vCenter Server Heartbeat Console from the VMware program group on the Windows Start menu. This is the only method supported if vCenter Server Heartbeat Console has been installed on a workstation that is not part of the Pair.

Navigate vCenter Server Heartbeat Console

After vCenter Server Heartbeat Console is running, use the navigation panel on the left of the vCenter Server Heartbeat Console window to view and select Groups and Pair connections you can manage with vCenter Server Heartbeat Console.

NOTE A Group is an arbitrary collection of vCenter Server Heartbeat Pairs used for organization.

A Connection, or Pair Connection allows vCenter Server Heartbeat Console to communicate with a vCenter Server Heartbeat Pair either on the same machine or remotely.

See “Add or Remove a vCenter Server Group” on page 132 and “Add, Edit, Move, and Remove Pairs in VCenter Server Heartbeat Groups” on page 133 for information on how to add Groups and Pair Connections to vCenter Server Heartbeat Console.

The selection of Group or Pair you make in the navigation panel “points” the vCenter Server Heartbeat Console to that Group or Pair and vCenter Server Heartbeat Console provides information related to only the selected Group or Pair. To avoid confusion, pay particular attention to the selection in the navigation panel when you are managing more than one Group or Pair.

NOTE Groups and Pairs are not automatically detected by vCenter Server Heartbeat Console. Each Group or Pair you want to manage must be added to vCenter Server Heartbeat Console before you can use it to view status or change settings for that Group or Pair Connection.

Select a Pair in the navigation panel of vCenter Server Heartbeat to show a set of tabs and sub-tabs that offer detailed status and control of the associated vCenter Server Heartbeat servers in the Pair.
Add a vCenter Server Group

The Add Group feature in vCenter Server Heartbeat Console allows you to add new vCenter Server Heartbeat Groups to manage.

To add a vCenter Server Heartbeat Group

1. Open vCenter Server Heartbeat Console and click Add Group in the tool bar, select Add Group from the File menu, or right-click an existing group in the navigation panel and select Add Group form the menu.
2. Type the name for the new group into the text box and click OK. The newly created group appears in the navigation panel on the left of the vCenter Server Heartbeat window.

Add a New Connection

The Add Connection feature in the vCenter Server Heartbeat Console allows you to add a new Pair Connection to an existing vCenter Server Heartbeat Group.

To Add a new connection

1. In the navigation panel, select the vCenter Server Heartbeat Group to receive the new connection. Click Add Connection in the tool bar, select Add Connection from the File menu, or right-click an existing group in the navigation panel and select Add Connection to invoke the Add Connection dialog.
2. Type the Host Name or IP address for the new connection into the text box, select the Port Number (if different from the default value of 52267), and select a group from the Add to Group drop-down list (to add the connection to a Group other than the one currently selected).

 NOTE You may be prompted to login. If so, login using a valid administrator-level Username and Password for the server for which you are adding a connection, and click OK.

3. Click OK. The newly created connection appears in the navigation panel on the left of the vCenter Server Heartbeat Console window, and the Server: Summary page updates to represent any existing network relationships of the added server.
4. Enter the remaining connections necessary to define the new vCenter Server Heartbeat Group.

Post Installation Configuration

Upon completion of installation, a series of tasks must be performed to ensure that vCenter Server Heartbeat is properly configured.

Configuring VirtualCenter Plug-in with the Correct Credentials

After installation is complete, you must enter the credentials for an account with rights to the Virtual Infrastructure.

To add the Virtual Infrastructure credentials

1. Navigate to the Applications: Plugins page.
2. Select the VirtualCenter Plug-in.
3. Click Edit.
4. Type the Username and Password for an account with rights to the Virtual Infrastructure.
5. Click OK.
When Deployed in a WAN Environment

When deployed in a WAN environment with VMware Orchestrator and the Primary and Secondary servers in different subnets, you must configure an Exclusion File Filter following the steps below:

1. Launch vCenter Server Heartbeat Console.
2. Click Data and click the File Filters tab.
3. Click Add Exclusion Filter and type the following path:

 $INSTALL_PATH_TO_ORCHESTRATOR/app-server/bin/boot.properties

4. Click OK.
5. Perform a switchover so that the Secondary server becomes active.
6. Launch the vCenter Orchestrator Web Configuration wizard and select Network. In the IP address field select the Principal (Public) IP address of the Secondary server. Click Apply changes.
7. Launch the vCenter Orchestrator Web Configuration wizard and type the Principal (Public) IP address of the Secondary server (Network > IP address).
8. Launch the vCenter Orchestrator Web Configuration wizard, select Startup Options, and click Restart service.
9. From vCenter Server Heartbeat Console, select Applications and then Services. Verify that VMware vCenter Orchestrator Server service is included in the protected services. If not, manually run the Protected Service Discovery task from VMware vCenter Heartbeat Console > Applications > Tasks > VMware VirtualCenter - Protected Service Discovery

vCenter Server 2.5

The post installation configuration tasks are determined by the type of network environment.

LAN

For LAN deployments, perform the following:

1. If a Management IP address is configured, no additional tasks are required.
2. If a Management IP address is not configured, configure a VMware Managed IP address using the Virtual Infrastructure Client.
 a. Launch the Virtual Infrastructure Client.
 b. In the Virtual Infrastructure Client, navigate to Administration > VirtualCenter Management Server Configuration > Runtime Settings.
 c. In the Managed IP field, type the Principal (Public) IP address.
 d. Click OK.

WAN

For WAN deployments, regardless of whether a Management IP address exists, vCenter Server Heartbeat provides a task that can be configured to update the ESX hosts with the new Managed IP address during a switchover or failover. The task requires setting the Managed IP in either the vpxd.cfg file or in the registry.

To configure the Managed IP in the Vpxd file

1. The vpxd.cfg file is located at C:\Documents and Settings\All Users\Application Data\VMware\VMware VirtualCenter.
2. On the active server, locate the <vpxd> element in the vpxd.cfg file and add a new element <managedIP> that contains the Principal (Public) IP address of the vCenter server.
To configure the Managed IP in the registry

At HKEY_LOCAL_MACHINE\SOFTWARE\VMware, Inc.\VMware VirtualCenter, create a new string value called `<managedIP>` and set it with the Public (Principal) IP address of the currently active server.

IMPORTANT Do not configure the VMware Managed IP address using the Virtual Infrastructure Client. The Managed IP field from Administration > VirtualCenter Management Server Configuration > Runtime Settings must be clear.
This chapter includes the following topics:

- “Overview” on page 69
- “Installation Process” on page 69
- “Primary Server” on page 70
- “Secondary Server” on page 88
- “Post Installation Configuration” on page 101

Overview

This chapter discusses the installation process used to implement vCenter Server Heartbeat on Windows Server 2008. During the installation process, vCenter Server Heartbeat performs a variety of checks to ensure the server meets the minimum requirements for a successful installation. Should the server fail one of the checks, a critical stop or warning message is displayed. Refer to the Appendix – Setup Error Messages of this guide for a list of the checks and explanations of the messages. You must resolve critical stops before you can proceed with setup.

Prior to installing vCenter Server Heartbeat, you must identify the deployment options you want. The installation process requires you to select options throughout the procedure to achieve your configuration goals.

Installation Process

After selecting implementation options, begin the installation process. The installation process for all scenarios follows the same basic procedure. Links to specific installation scenarios describing differences are identified by the blue hyperlinked text.
Primary Server

Installation of vCenter Server Heartbeat begins on the Primary Server.

NOTE vCenter Server Heartbeat prompts you to enter a valid production serial number during the installation process. If you do not enter a valid production serial number during the installation process, vCenter Server Heartbeat installs in the evaluation mode.

1. Having verified all of the environmental prerequisites are met, download the vCenter Server Heartbeat WinZip self extracting file to an appropriate location on the Primary server (either Physical or Virtual).

 You have the following options:
 - For P2P, go to Step 2 to continue the installation.
 - For V2V or P2V Installations with the Pre-Clone technique selected, begin with Step a below to configure the network settings on the Secondary server.

 a. Clone the Primary server using either the VMware vCenter Converter for P2V, vCenter virtual machine cloning for V2V, or another third-party utility to create a cloned image of the Primary server. The clone must be completely identical with no changes to the Name, SID, or domain membership.

 b. After the cloned image is created, but before powering on the cloned image, edit the image settings.
c Select the Public virtual network adapter and clear the **Connected** and **Connect at power on** check boxes.

d Repeat the process on the Channel virtual network Adapter.

e Power on the Secondary (previously cloned) server image.

f After the Secondary server starts, open Network Connections, right-click the VMware Channel network connection and select **Properties**. Select **Internet Protocol (TCP/IP)** and click **Properties**.
g Configure the appropriate VMware Channel IP address and Subnet mask. Click Advanced.

![Advanced TCP/IP Settings](image)

h Click the DNS tab, clear the Register this connection's addresses in DNS check box.

![Advanced TCP/IP Settings](image)

i Click the WINS tab, select Disable NetBIOS over TCP/IP and click OK twice.

![Advanced TCP/IP Settings](image)

j Select the Principal (Public) network connection, right-click and select Properties. Select Internet Protocol (TCP/IP) and click Properties. Set the appropriate IP address (same as the Primary server for LAN installations), Subnet Mask, and Default Gateway, and click OK.

k In Network Connections, click Advanced and select Advanced Settings. Verify that the Principal (Public) NIC IP address is listed first in the Bind Order, and click OK.

l Right-click the Secondary (cloned) server image and select Edit Settings.

m Select the VMware Channel virtual network adapter and select the Connected and Connect at power on check boxes. IP communications with the Secondary server go through the VMware Channel.
Double-click the WinZip Self Extracting file to initiate the installation process. The **Setup Introduction** dialog is displayed. Review the information and click **OK**.

![Setup Introduction](image)

NOTE If you click Exit after Setup has started, you are prompted to save your settings. When you run the self extracting WinZip file again later, you will be asked if you want to use the previously saved configuration.

3 The **WinZip Self-Extractor** dialog is displayed. Click **Setup** to continue.

![WinZip Self-Extractor](image)

4 The **Setup Type** page is displayed. Because this is a new installation of vCenter Server Heartbeat, select **Install vCenter Server Heartbeat** and click **Next**.

![Setup Type](image)

NOTE The left pane of each page in the setup wizard provides information about the setup process.

NOTE Do not connect the Principal (Public) virtual network adapter at this time to avoid an IP address conflict on the network.
5 Select the identity of the server through the **Physical Hardware Identity** page. Select **Primary** as the server identity and click **Next**.

![Physical Hardware Identity](image1.png)

NOTE If .Net 2.0 is not currently installed on the server, vCenter Server Heartbeat Setup installs this required component, taking some additional time during the installation process.

6 Read the license agreement carefully, select **I accept terms of the License Agreement**, and click **Next**.

![License Agreement](image2.png)
7 Click **Add** to enter a valid production serial number for production mode or click **Next** to install in the evaluation mode.

8 Select the intended topology of the installation. Select either LAN (if the Primary and Secondary server will use the same Principal (Public) IP address) or WAN (if the Primary and Secondary server will use different Principal (Public) IP addresses. Click **Next**.

9 Select the cloning options.

You have the following options:

- For installation using the Install Clone technique, continue with **Step 10**.
- For installation using the Pre-Clone technique, continue with **Step 11**.
10 Select **Not a clone of the Primary server** and click **Next** and go to Step 12.

11 If a virtual Secondary server was created using the VMware vCenter Converter, the cloning option in the Virtual Infrastructure Client, or a third-party utility, select **Pre-cloned** and click **Next**.
12 Configure the installation paths. The default installation location is C:\Program Files\VMware\VMware vCenter Server Heartbeat, but you can change it by manually typing a path to another install location.

13 The Channel Adapter Identification page lets you identify the network adapter(s) for use in the VMware Channel. Select the network adapters (NICs) for the VMware Channel from the list. Click the adapter name to display the selected NIC properties in the lower pane. You must select at least one NIC to proceed with the installation. Click Next.
14 If no NICs are available, click **Open Network Connections** to review the network configuration of your machine and verify that you have the correct number of NICs installed.

NOTE Only one channel can be configured for each NIC. To configure more than one channel you must identify more than one NIC. A disabled NIC does not appear in this list. Enable the NIC to display it. If a NIC is disconnected, its IP addresses do not display in the lower pane.

15 The **VMware Channel IP Configuration** page prompts you to configure the VMware Channel(s) IP network addresses. Click **Add** for each available channel connection. Type the VMware Channel IP addresses for both the Primary and Secondary servers. For the Primary server, select from a drop-down menu that lists all local IP addresses. Type the corresponding IP address on the Secondary server into the **IP Address On Secondary** text box. You must specify all VMware Channel IP addresses in subnets outside of the normal Principal (Public) IP addressing schema so that VMware Channel traffic routing uses the VMware Channel network card rather than the Principal (Public) network card. Click **OK**. Repeat this step for additional NICs.

16 Review and adjust, if necessary, the default channel port. Click **Next**.

NOTE When the implementation spans multiple sites with firewalls between the servers, configure the firewalls to allow traffic to pass through the default channel port or the manually configured channel port. Consult the VMware knowledge base for additional information.
17 Select the Principal (Public) NIC(s). The IP address information is displayed for each NIC.

![Network Adapters](image)

vCenter Server Heartbeat software can be deployed in a configuration where both servers have the same Principal (Public) IP address, for instance, in a standard Local Area Network (LAN) deployment where both machines are in the same subnet.

Alternatively vCenter Server Heartbeat can be deployed where the Principal (Public) IP addresses differ, for instance, in a Wide Area Network (WAN) deployment where the Primary and Secondary servers are located in different sites and subnets where client access is therefore bound by the standard network routing to allow the correct connectivity to the server according to its locale.

18 Select **LAN: Configure Primary and Secondary servers with the same Public IP addresses** or **WAN: Configure Primary and Secondary servers with different Public IP addresses**.

You have the following options:

- For a WAN installation with different subnets, go to Step 20.
- For LAN installation or same subnet WAN installs, continue with Step 19.
19 For a LAN environment, click **Add** to specify the IP address.

If installing in a LAN or when the WAN uses the same subnet, go to **Step 23**.

20 For a WAN environment, specify IP addresses for both Primary and Secondary servers.

21 Add each Principal (Public) network address until all addresses are present. Click **Next**.
22 When the Principal (Public) addresses on the Secondary server are different from those on the Primary server, vCenter Server Heartbeat must perform additional tasks during failover or switchover. These additional tasks require clients to change their resolution of the active server to a different IP address and requires that vCenter Server Heartbeat update the DNS entries for the active server across the enterprise. Such updates require credentials for domain administrators (or an account with equivalent rights). Type the Domain Name, a domain administrator Username and Password into the respective text boxes and click Next.

The vCenter Server Heartbeat server pair can be administered remotely on client machines using the vCenter Server Heartbeat Console.

23 The vCenter Server Heartbeat Console connects to an IP address of the active server using the default client connection port of 52267. If this port is already in use, type an available client connection port. Click Next.

24 Select the applications to protect. All licensed vCenter Server Heartbeat features are listed.
If installing vCenter Server only, or vCenter Server locally and the SQL Server on a separate server, select **Protect Virtual Center only**.

If installing SQL Server remotely, upon completion of the vCenter Server installation locally, repeat the installation procedure at the remote SQL Server location and select **Protect SQL Server only**.

If installing both vCenter Server and SQL Server locally, select **Protect Virtual Center and SQL Server**.

If View Composer is installed, select the **View Composer** check box to provide protection for View Composer.

To facilitate the clone of the Primary server onto the Secondary server, you must back up pertinent components of the Primary server for restoration on to the Secondary server. Where VMware Channel communications are fast and reliable, for instance in a LAN topology, you can directly create the backup files over the VMware Channel connections to a partition on the Secondary server.

Where the VMware Channel connection is slower than 10 Mbit/s or risks an interruption in connection, for example in a WAN topology, save the backup file locally and manually port the file to the Secondary server.

You have the following options:

- For installation using the Pre-Clone technique, go to Step a of Step 26 on page 83.
- For installation using the Install Clone technique, continue with Step a of Step 25.

Continue with Step a.

a Configure Microsoft Windows Backup options. Depending on the network topology between the servers, backup files can include or exclude application data. Including application data in the backup file decreases the time to initially verify and synchronize the applications data on first start up of vCenter Server Heartbeat. This is useful where VMware Channel connections are slower than LAN speed, such as in a WAN implementation.

With Windows Server 2008, vCenter Server Heartbeat does not stop services and prevents downtime by using the Windows Volume Shadow Service to take the backup. Including the applications’ protected data vastly increases the backup file size and therefore increases the time of the backup operation. Due to the potential large size of the backup file, careful consideration is required when including application data and specifying the backup folder location.
To estimate the maximum size of the backup file, add together the size of each volume that contains system data and application data. Although the actual size of the backup file can be smaller, using this rule of thumb helps ensure a successful installation.

Select a location to place the backup files through the Microsoft Windows Backup Configuration page. When installing into a Windows Server 2008 environment, you must specify a UNC path to the backup file location. Type a UNC path to a location using the machine name or IP address and shared folder into the Folder text box. Type a User and Password that grants access to the shared folder. Click Next.

26 When selecting the Pre-Clone technique, Setup backs up two small files, nfsetup.dat and primary.csv, from the Primary server and restores them to the Secondary server for proper configuration.

a Where VMware Channel communications are fast and reliable, for instance in a LAN topology, you can directly create the backup files over the VMware Channel connections to a partition on the Secondary server. Type the machine name or IP address and the path to the shared folder to receive the backup files, for example: \\10.0.0.16\Backup.
b Where the VMware Channel connection is slower than 10 Mbit/s or risks an interruption in connection, for example in a WAN topology, save the backup file locally and manually port the file to the Secondary server.

27 Review the summary of options and configuration information for the installation. Click Next.

28 Pre-install checks run to ensure that the installation can continue. Setup checks the available disk space, system memory, operating system compatibility, and dependencies between modules. The Report pane displays the results of the pre-install checks.

29 If some pre-install checks are unsuccessful, go back through the wizard and make the necessary changes, and run the pre-install checks again. If the pre-install checks are successful, click Next.

NOTE The Progress pane on the **Pre-Install Checks** page displays the progress of these checks. When finished, the Report pane displays the results.
30 The next page displays the progress of the installation. During this process, Setup installs the necessary files and folders onto your system and applies the configuration you specified. Setup also installs Heartbeat Diagnostics and configures it with the default settings.

NOTE If a previous version of Heartbeat Diagnostics is detected, vCenter Server Heartbeat Setup updates it to the current version. To learn more about Heartbeat Diagnostics, see *Getting Started with Heartbeat Diagnostics* on the VMware Web site.

31 Click **Next** after vCenter Server Heartbeat components are complete.

You have the following options:

- If using the Pre-Clone installation technique, go to Step 34.
- If using the Install Clone installation technique, continue to Step 32.

32 The next page displays the status of the Microsoft Windows Backup process. The automated backup is saved in the previously defined location.

NOTE When installing into a Windows Server 2008 environment, vCenter Server Heartbeat verifies that the Windows Server Backup Feature and Command Line Tools are installed. If they are not installed, you must install them now. You are not required to exit the installation to install the Windows Server Backup Feature. Navigate to the Server Manager and under Features, add the Windows Backup Feature and Command Line Tools. When installing Windows Server Backup Feature, Windows PowerShell is also necessary.
If required, install Windows Backup Feature – Command Line Tools. Click **Proceed**. The automated backup is saved in the previously defined location and the progress of the backup operation is displayed in the Progress pane. When finished, a report on the backup is displayed in the Report pane. Review the backup report to verify successful completion. Click **OK** on the dialog and click **Next** on the page.
The vCenter Server Heartbeat Packet Filter driver installs on each network card of the production server. If you see warnings that the driver is unsigned or did not complete the Windows Logo tests, click Install. If Windows is configured to display Signed Driver warnings, multiple warnings can appear. The lower pane displays the results of the process. Click Next.

By default, the vCenter Server Heartbeat Packet Filter driver is applied to all Principal (Public) network cards present on the machine. The vCenter Server Heartbeat Packet Filter is not applied to the network cards forming VMware Channel connections as these cards maintain unique IP addresses irrespective of the role of the server. vCenter Server Heartbeat also disables NetBIOS on the Channel NIC(s) to prevent domain name conflicts on the subnet.

When the setup wizard confirms the successful completion of the installation, click Finish.
Secondary Server

The process of installing vCenter Server Heartbeat on the Secondary server is similar to installing vCenter Server Heartbeat on the Primary server.

To install the Secondary server

1. To install the vCenter Server Heartbeat on the Secondary server, download the vCenter Server Heartbeat installer to a suitable location on the Secondary server. Execute the WinZip Self Extracting file to start the installation process. The Setup Introduction dialog is displayed. Review the information and click OK.

![Heartbeat Installer VI-3-4166](image)

NOTE If you click Exit after Setup has started, you are prompted to save your settings. When you run the self extracting WinZip file again later, you will be asked if you want to use the previously saved configuration.

2. The WinZip Self-Extractor dialog is displayed. Click Setup to continue.

![WinZip Self-Extractor VI-3-4166-VCSEL.txt](image)

3. The Setup Type page is displayed. As with the installation on the Primary server, select Install VMware vCenter Server Heartbeat and click Next.

![Setup Type](image)

NOTE The left pane of each page in the setup wizard provides information about the setup process.
4 Select the identity of the server through the **Physical Hardware Identity** page. Select **Secondary** as the server identity and click **Next**.

5 Identify the location of the folder containing the backup file from the Primary server. Manually type the location path in the text box as a UNC path. Click **Next**.

6 The Pre-Install checks run. Click **Next**.

NOTE If .Net 2.0 is not currently installed on the server, vCenter Server Heartbeat Setup installs this required component, taking some additional time during the installation process.
If some pre-install checks are unsuccessful, go back through the wizard, make the necessary changes, and run the pre-install checks again.

You have the following options:

- For installation using the Pre-Clone technique, go to Step 17 on page 95.
- For installation using the Install Clone technique, continue with Step 7.

7 The Microsoft Windows Backup Restore page is displayed. The Microsoft Windows Backup Restore page shows the progress of unbinding the packet filter and disabling NetBIOS from the channel NIC(s). After this process completes, a caution message advises you that the restore process is initiating and upon completion of the restore process, the server requires a restart. After restarting, Plug-and-Play (PnP) can require you to restart the machine more than once. Click OK.
8 The progress of the backup restore is displayed in the Progress pane. When finished, a report on the restore is displayed in the Report pane. Review the backup restore report to verify successful completion. Click Next.

9 The Disconnect Network Cables page is displayed. To disable the NICs is NOT sufficient. You must physically disconnect the network cables from the NICs. After disconnecting the network cables from the NICs, click Finish. A confirmation dialog is displayed. You must restart the machine to apply the newly restored System State. Click Yes to restart the server.

NOTE If this server is running in a virtual environment, disconnect the NICs from the virtual environment.
10 Following the restart of the server, log in to the Secondary server using the domain administrator account. A DOS window is presented stating that the restore of the System State was successful. Press Enter. Click Yes at each restart prompt to allow each PnP cycle to complete.

![DOS window showing successful System State restore](image)

NOTE PnP can require multiple restarts of the server as it identifies the actual hardware makeup of the Secondary server as opposed to that restored from the backup file of the Primary server.

vCenter Server Heartbeat starts each time the Secondary server restarts. Manually shut down vCenter Server Heartbeat before initiating a restart.

11 After all PnP cycles complete, log in to the server and double-click the newly created **vCenter Server Heartbeat Setup Completion** icon created on the Desktop to continue the setup process.
12 The **Post-Reboot Configuration** page is displayed. vCenter Server Heartbeat Setup installs the packet filter. When complete, click **Next**.

![Post-Reboot Configuration page](image1.png)

NOTE If you receive warnings that the driver is unsigned or did not complete the Windows Logo tests, click **Install**. If Windows is configured to display Signed Driver warnings, you can receive multiple warnings.

13 The **Reconnect Network Cables** page is displayed. Follow the instructions on this page to reconnect all of the previously disconnected network cables. After all network cables are connected, click **Next**.

![Reconnect Network Cables page](image2.png)
14 The **Channel Adapter Identification** page is displayed. Use this opportunity to reconfigure the VMware Channel NICs. During the cloning process, the IP address for the channel adapter on the Secondary server is reset to the IP address for the Primary server. To prevent network conflicts and to properly configure the VMware Channel, click **Open Network Connections** to display the network connections. Configure the Secondary Channel connection to the appropriate IP address (different from the IP address for the Primary Channel connection). After completing this configuration, select the check boxes for all channel connections and click **Next**.

15 The **Public Adapter Identification** page is displayed. Select the Principal (Public) connection. Verify that the IP address configuration is correct.
16 The **Duplicate Installation Complete** page is displayed. Do not select the **Start vCenter Server Heartbeat** check box. Click **Finish**.

17 The next page displays the progress of the installation. During this process, Setup installs the necessary files and folders onto your system and applies the configuration you specified. Setup also installs Heartbeat Diagnostics and configures it with the default settings. To learn more about Heartbeat Diagnostics see *Getting Started with Heartbeat Diagnostics*.

18 The Report pane displays the results of the installation. Click **Next**.
The progress of the VMware vCenter Server Heartbeat Packet Filter installation is displayed. Click Next.
You have the following options:

- If the Secondary server is Physical such as in P2P, go to Step 23.
- If the Secondary server is Virtual such as in P2V or V2V, continue with Step a.

a. The Packet Filter is installed on the Principal (Public) NIC and the Principal (Public) network adapter can be reconnected. Right-click the Secondary server image name and select **Edit Settings**.

b. Select the Principal (Public) virtual network adapter, select the **Connected** and **Connect at power on** check boxes, and click **OK**.
20 In the Channel Adapter Identification page, select the appropriate adapter and review the IP address configuration in the lower pane. Click Next.

21 Configure the Principal (Public) adapter on the Secondary server through the Public Adapter Identification page. When you select the Principal (Public) adapter, a caution message notifies you that the IP address on the Principal (Public) adapter does not match the IP address on the Primary server (LAN configuration only).
The **Secondary Installation Complete** page is displayed. Do not select the **Start vCenter Server Heartbeat** check box. Click **Finish**.

![Secondary Installation Complete](image)

Before starting vCenter Server Heartbeat, verify the time synchronization between the Primary and Secondary servers. When a difference exists, synchronize the Secondary (passive) server to the Primary (active) server across the VMware Channel. Type the following command at the command prompt:

```
net time \<Primary_Channel_IP_address> /set
```

Start vCenter Server Heartbeat on the Primary server. Right-click the vCenter Server Heartbeat System Tray icon and select **Start VMware vCenter Server Heartbeat**. The icons change from a double dash to a P, indicating the server is the Primary server, and an A indicating the server is acting in an active role.

Start vCenter Server Heartbeat on the Secondary server. Right-click the vCenter Server Heartbeat System Tray icon and select **Start VMware vCenter Server Heartbeat**. The icon changes from a double dash to an S, indicating that the server is the Secondary server, and a dash (–), indicating that the server is in a passive role.

The Primary and Secondary servers establish a handshake and commence replication.

NOTE The installation is complete if vCenter Server was installed with a local SQL Server or only vCenter Server was installed with no separate SQL Server.

If vCenter Server only was installed and you want to install a separate SQL Server, repeat the installation process for the Primary and Secondary servers at the remote site and select **SQL Server only**.

To install SQL Server on a separate host from the vCenter Server, go to “**Primary Server**” on page 70.

vCenter Server Heartbeat Console

To administer a pair of servers you must connect to them through the vCenter Server Heartbeat Console. vCenter Server Heartbeat Console does not connect until vCenter Server Heartbeat initializes.

You can start vCenter Server Heartbeat Console from any server in the vCenter Server Heartbeat Pair.
To start vCenter Server Heartbeat Console

1. Right-click the VMware vCenter Server Heartbeat interactive status icon on the Windows tool tray (located on the right side of the Windows taskbar). The vCenter Server Heartbeat quick access menu opens.
2. Select Manage Server. The vCenter Server Heartbeat Console opens in a window and shows the Heartbeat Servers (overview) pane.

Alternatively you can start vCenter Server Heartbeat Console from the VMware program group on the Windows Start menu. This is the only method supported if vCenter Server Heartbeat Console has been installed on a workstation that is not part of the Pair.

Navigate vCenter Server Heartbeat Console

After vCenter Server Heartbeat Console is running, use the navigation panel on the left of the vCenter Server Heartbeat Console window to view and select Groups and Pair connections you can manage with vCenter Server Heartbeat Console.

NOTE A Group is an arbitrary collection of vCenter Server Heartbeat Pairs used for organization.
A Connection, or Pair Connection allows vCenter Server Heartbeat Console to communicate with a vCenter Server Heartbeat Pair either on the same machine or remotely.

See “Add or Remove a vCenter Server Group” on page 132 and “Add, Edit, Move, and Remove Pairs in vCenter Server Heartbeat Groups” on page 133 for information on how to add Groups and Pair Connections to vCenter Server Heartbeat Console.

The selection of Group or Pair you make in the navigation panel “points” the vCenter Server Heartbeat Console to that Group or Pair and vCenter Server Heartbeat Console provides information related to only the selected Group or Pair. To avoid confusion, pay particular attention to the selection in the navigation panel when you are managing more than one Group or Pair.

NOTE Groups and Pairs are not automatically detected by vCenter Server Heartbeat Console. Each Group or Pair you want to manage must be added to vCenter Server Heartbeat Console before you can use it to view status or change settings for that Group or Pair Connection.

Select a Pair in the navigation panel of vCenter Server Heartbeat to show a set of tabs and sub-tabs that offer detailed status and control of the associated vCenter Server Heartbeat servers in the Pair.

Add a vCenter Server Group

The Add Group feature in vCenter Server Heartbeat Console allows you to add new vCenter Server Heartbeat Groups to manage.

To add a vCenter Server Heartbeat Group

1. Open vCenter Server Heartbeat Console and click Add Group in the tool bar, select Add Group from the File menu, or right-click an existing group in the navigation panel and select Add Group from the menu.
2. Type the name for the new group into the text box and click OK. The newly created group appears in the navigation panel on the left of the vCenter Server Heartbeat window.

Add a New Connection

The Add Connection feature in the vCenter Server Heartbeat Console allows you to add a new Pair Connection to an existing vCenter Server Heartbeat Group.
To Add a new connection

1. In the navigation panel, select the vCenter Server Heartbeat Group to receive the new connection. Click Add Connection in the tool bar, select Add Connection from the File menu, or right-click an existing group in the navigation panel and select Add Connection to invoke the Add Connection dialog.

2. Type the Host Name or IP address for the new connection into the text box, select the Port Number (if different from the default value of 52267), and select a group from the Add to Group drop-down list (to add the connection to a Group other than the one currently selected).

 NOTE You may be prompted to login. If so, login using a valid administrator-level Username and Password for the server for which you are adding a connection, and click OK.

3. Click OK. The newly created connection appears in the navigation panel on the left of the vCenter Server Heartbeat Console window, and the Server: Summary page updates to represent any existing network relationships of the added server.

4. Enter the remaining connections necessary to define the new vCenter Server Heartbeat Group.

Post Installation Configuration

Upon completion of installation, a series of tasks must be performed to ensure that vCenter Server Heartbeat is properly configured.

Configuring VirtualCenter Plug-in with the Correct Credentials

After installation is complete, you must enter the credentials for an account with rights to the Virtual Infrastructure.

To add the Virtual Infrastructure credentials

1. Navigate to the Applications: Plugins page.
2. Select the VirtualCenter Plug-in.
3. Click Edit.
4. Type the Username and Password for an account with rights to the Virtual Infrastructure.
5. Click OK.

When Deployed in a WAN Environment

When deployed in a WAN environment with VMware Orchestrator and the Primary and Secondary servers in different subnets, you must configure an Exclusion File Filter following the steps below:

1. Launch vCenter Server Heartbeat Console.
2. Click Data and select the File Filters tab.
3. Click Add Exclusion Filter and type the following path:
   ```
   $INSTALL_PATH_TO_ORCHESTRATOR/app-server/bin/boot.properties
   ```
4. Click OK.
5. Perform a switchover so that the Secondary server becomes active.
6. Launch the vCenter Orchestrator Web Configuration wizard and select Network. In the IP address field select the Principal (Public) IP address of the Secondary server. Click Apply changes.
7. Start the vCenter Orchestrator Web Configuration Wizard from the Start menu: Start > Programs > VMware > Startup Options, click Install vCO server as service, and click Start service.
8. Launch the vCenter Orchestrator Web Configuration wizard, select Startup Options, and click Restart service.
From vCenter Server Heartbeat Console, select Applications and then Services. Verify that VMware vCenter Orchestrator Server service is included in the protected services. If not, manually run the Protected Service Discovery task from VMware vCenter Heartbeat Console > Applications > Tasks > VMware VirtualCenter - Protected Service Discovery.
This chapter includes the following topics:
- “Server Configuration Wizard” on page 104
- “Configuring the Machine Identity” on page 104
- “Configuring the Server Role” on page 105
- “Configuring the Client Connection Port” on page 105
- “Configuring Channel Routing” on page 105
- “Configuring the Default Channel Port” on page 106
- “Configuring Low Bandwidth Module” on page 106
- “Configuring Public IP Addressing” on page 106
- “Managing vCenter Server Heartbeat License Keys” on page 107
- “Configuring Message Queue Logs” on page 108
- “Configuring the Maximum Disk Usage” on page 109
Server Configuration Wizard

The VMware vCenter Server Heartbeat – Server Configuration Wizard (Configure Server wizard) sets up and maintains communications between the vCenter Server Heartbeat servers. Configuration information includes the IP address for the VMware Channel(s) and Principal (Public) addresses on both servers.

After the system is set up and is functioning correctly, you do not need to reconfigure the system. The Configure Server wizard becomes redundant during daily operations of the software.

1. Before launching the Configure Server wizard to change the vCenter Server Heartbeat configuration, you must stop vCenter Server Heartbeat.

2. Click the Configure Server icon on the desktop or Start > All Programs > VMware > VMware vCenter Server Heartbeat > Configure Server to launch the Configure Server wizard.

Configuring the Machine Identity

CAUTION The machine Identity should only be changed when directed to do so by VMware Support or when instructed to by a knowledge base article. vCenter Server Heartbeat is designed not to allow two passive or two active servers to connect.
To change the machine identity

1. Click the Machine tab and select a Physical Hardware Identity for the local machine.
2. Click Next or Finish.

Configuring the Server Role

To change the server role, click the Machine tab, select the Current Role of the local machine, and click Next or Finish.

NOTE Before changing the role of the local server, verify that the other (remote) server in the pair is not already performing the same role.

Configuring the Client Connection Port

Clients such as the vCenter Server Heartbeat Console use the Client Connection Port to connect to vCenter Server Heartbeat. Do not change this port unless another application is using it. To change the Client Connection Port, click the Machine tab, edit the default entry (52267) and click Next or Finish.

Configuring Channel Routing

Channel IP routing defines the IP addresses used to communicate between the Primary and Secondary servers. Each link has a pair of addresses, one for the Primary, and one for the Secondary.

To add an additional VMware Channel after installing the NICs and configuring them

1. Click the Channel tab. Click Add Row to add the new IP addresses for both the Primary and Secondary server to the VMware Channel IP Routing table.
2. Use the drop-down menu to view a list of available IP addresses on the local server.
3 Type the remote server IP address.

4 To change the VMware Channel IP addresses, select and edit the entry in the table.

5 Click Next or Finish.

Configuring the Default Channel Port

VMware Channel uses the Default Channel Port to communicate between the Primary and Secondary server. Do not change this port unless another application is using it. To change the Default Channel Port, click the Channel tab, edit the default entry (57348), and click Next or Finish.

Configuring Low Bandwidth Module

This feature is automatically enabled during installation when configured for a WAN. To disable this feature, click the Channel tab and clear the Low Bandwidth Optimization check box. When enabled, the VMware Channel optimizes communications for low bandwidth connections. Low Bandwidth Optimization (LBO) stores data on disk rather than in memory and is essential for WAN installations or when bandwidth is limited. This setting should not be changed unless directed to do so by VMware Support.

NOTE This feature is designed for implementations where the available throughput on the VMware Channel is slower than 10 Mbit/s. Do not enable the Low Bandwidth Module in a LAN, this feature is not designed to work in a LAN where the throughput is much faster.

Configuring Public IP Addressing

vCenter Server Heartbeat servers are configured with one or more Principal (Public) IP addresses. These are the addresses used by clients of the protected application to connect to the application. Typically, there is one Principal (Public) IP address.

You must configure all of the Principal (Public) IP addresses on both Primary and Secondary servers. On the passive server, all traffic to and from these Principal (Public) IP addresses is blocked. On the active server, all traffic passes through. When the server roles switch, the IP filtering mode also switches, so client systems always connect to the Principal (Public) IP addresses on the server that is currently active. When the vCenter Server Heartbeat service shuts down, the filtering remains in place so no IP address conflicts occur between the two servers.
To configure Principal (Public) IP address

1. Click the Public tab and list all the addresses used as Principal (Public) IP addresses.

 An address must not appear more than once. The Principal (Public) IP addresses listed cannot be the same as any of the IP addresses listed in the Channel tab.

2. To add an address, double-click a row and type in the address or select it from a list of currently defined addresses.

3. Click Next or Finish.

Managing vCenter Server Heartbeat License Keys

To manage vCenter Server Heartbeat license keys, select the License tab of the Configure Server wizard.

To add an entry to the License Keys table

1. Click the Add Row icon and enter your VMware vCenter Server Heartbeat serial number.

2. Manually type or paste (using Ctrl-V) your license key into the table.
Configuring Message Queue Logs

The server temporarily stores replication data received in the passive server’s receive queue and the replication data waiting in the active server’s send queue in message queue logs.

This configuration only affects the local server. Logs can be in different locations on the Primary and Secondary servers.

To configure the location of the message queue logs

1. Click the Logs tab.
2. Click Browse to navigate to the folder to store the message queue logs.
3. Select the folder and click Next or Finish.
Configuring the Maximum Disk Usage

You can configure the maximum disk space allocated for logging. Log files increase in size on the active server under the following conditions:

- If the active server cannot communicate with the passive server
- Certain operations on the passive server
- If the server is under heavy load

When the disk reaches quota, replication stops and the system is no longer protected.

If using a dedicated disk for log files, consider disabling the quota. To do this, set the quota to zero. If vCenter Server Heartbeat runs out of physical disk space, it must be shut down before it can resume replication. Set the quota with sufficient overflow space so vCenter Server Heartbeat can stop replicating gracefully.

To configure Maximum Disk Usage, click the Logs tab, type the maximum dedicated disk space allocated for message queue log files, and click Finish.
System Administration and Management
This chapter includes the following topics:

- “Server Protection Overview” on page 113
- “Checking the Server Pair Status” on page 113
- “Monitoring the Status of Servers” on page 115
- “Configuring Heartbeat Settings” on page 115
- “Common Administrative Tasks in vCenter Server Heartbeat” on page 116
- “Configuring Split-Brain Avoidance” on page 118

Server Protection Overview

Protection against operating system or hardware failure affecting the active server is facilitated by two instances of the vCenter Server Heartbeat that monitor one another by sending “I'm alive” messages and reciprocating with acknowledgments over the VMware Channel. If the passive server detects that this process (the heartbeat) has failed, an automatic switchover is initiated.

Additionally, vCenter Server Heartbeat proactively monitors the capability of the active server to communicate with the rest of the network by polling defined nodes around the network, including by default, the default gateway, the primary DNS server, and the Global Catalog server at regular intervals. If all three nodes fail to respond, for example, due to network card failure or a local switch failure, vCenter Server Heartbeat can initiate an automatic switchover, allowing the passive server to assume an identical network identity as the active server.

Checking the Server Pair Status

The Server Summary page is the default page that opens when administering a pair of servers. The Server Summary page allows you to view the roles that the servers are performing (active or passive), the actions that the servers are currently performing, and summary information of the status of communications and data replication between servers. The lower pane displays status information for each server in the pair.

NOTE To change the currently displayed server, click the server in the graphical representation in the upper pane, or select the server Identity tab (Primary or Secondary Server) in the bottom pane.

The following table lists the possible system statuses and their meanings.
When viewing the status of the passive server, the status of the file system and registry are displayed graphically. The following tables list possible synchronization statuses and their meanings.

Table 6-1. System Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartbeat service shutdown</td>
<td></td>
<td>The Heartbeat service is shut down</td>
</tr>
<tr>
<td>Initializing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replicating</td>
<td></td>
<td>(Normal status.) File and registry changes on the active server are intercepted and replicated to the passive server. The protected applications are monitored.</td>
</tr>
<tr>
<td>Not replicating</td>
<td></td>
<td>File and registry replication is in the process of stopping and all protected applications may be closing down.</td>
</tr>
<tr>
<td>Switching active server</td>
<td></td>
<td>The system is in the process of performing a switchover.</td>
</tr>
<tr>
<td>Connecting to peer server</td>
<td></td>
<td>VMware Channel connections have been established between the two servers.</td>
</tr>
<tr>
<td>Disconnecting from peer server</td>
<td></td>
<td>VMware Channel connections have been lost between the two servers.</td>
</tr>
<tr>
<td>Stopping replication</td>
<td></td>
<td>File replication is in the process of being stopped and, optionally, all protected applications may be closing down.</td>
</tr>
<tr>
<td>Starting replication</td>
<td></td>
<td>The replication process is starting and protected applications are optionally starting.</td>
</tr>
<tr>
<td>Starting as active server</td>
<td></td>
<td>The Heartbeat service is initializing on the active server and starting protected applications.</td>
</tr>
<tr>
<td>Heartbeat service shutting down</td>
<td></td>
<td>The Heartbeat service is stopping. The Heartbeat service is shutting down, and will no longer participate in replication. Optionally, protected applications may be stopped.</td>
</tr>
<tr>
<td>Lost active server</td>
<td></td>
<td>The passive server has lost connection to the active server. If this condition persists for the failover timeout, and failover is permitted between the pair of servers, then a failover will occur.</td>
</tr>
<tr>
<td>Active following failover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not participating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server not responding</td>
<td></td>
<td>The Heartbeat service cannot be contacted on the server.</td>
</tr>
</tbody>
</table>

Table 6-2. File Synchronization Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronized</td>
<td></td>
<td>Fully synchronized</td>
</tr>
<tr>
<td>Unchecked</td>
<td></td>
<td>There are files that are currently unchecked. A full system check did not complete</td>
</tr>
<tr>
<td>Out of Sync</td>
<td></td>
<td>Not synchronized</td>
</tr>
<tr>
<td>Uninitialized</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
When the vCenter Server Heartbeat pair establishes a connection, it triggers a file synchronization and verification process to ensure all protected files on both server are identical. The process checks each 64K block of each protected file and performs a checksum to determine whether the blocks differ. If the blocks are the same, the block is marked as synchronized. If the blocks differ, then the block is replicated to the passive server and then marked as synchronized. The file verification and synchronization process is finished after all blocks of all stipulated files are marked as synchronized.

Monitoring the Status of Servers

The [Server: Monitoring](#) page provides additional information about the status of communications between the servers within the pair. The graphical representation provides an overview of the status of communications between the servers. A green channel icon indicates that the channel is connected and healthy while a yellow dashed channel icon indicates that communications are not operational between the indicated servers. In addition to the heartbeat sent between the servers, VMware vCenter Server Heartbeat also sends a ping to ensure that the servers remain visible to one another.

Configuring Heartbeat Settings

The [Server: Monitoring](#) page provides three configuration features: [Configure Pings](#), [Configure Failover](#), and [Configure Response Times](#).

Configure Pings

IP addresses of all NICs used for the VMware Channel are identical during installation. vCenter Server Heartbeat, by default, adds those IP addresses to the [Server: Monitoring Ping Configuration](#) dialog. You can add additional targets to the list for each server’s channel connection in the event of redundant NICs. The settings in the [Server: Monitoring Ping Configuration](#) dialog allow vCenter Server Heartbeat to send pings across the VMware Channel in addition to the heartbeat (“I’m alive” messages) to confirm that the server is still operational and providing service.

To configure pings

1. Click [Configure Pings](#) to open the [Server Monitoring: Ping Configuration](#) dialog.
2. Click on the [Ping Settings](#) tab to configure the Ping Interval.
3. Click on the [Ping Routing](#) tab to add additional IP address for redundant NICs.

Configure Failover

The [Failover timeout](#) dictates how long vCenter Server Heartbeat waits for a missed heartbeat before it takes a pre-configured action. This value is set to 60 seconds by default.
To configure failover

1 Click Configure Failover to open the Server Monitoring: Failover Configuration dialog.
2 Type a new numeric value (seconds) in the Failover timeout text box or use the arrow buttons to set a new value.
3 Mark or clear the check boxes to select the actions to take if the specified Failover timeout is exceeded.
4 Click OK.

Configuring Response Times

vCenter Server Heartbeat also allows you to configure the following timeouts:

- Time to wait following channel connection before starting replication
- Time to wait following channel disconnection before stopping replication

To configure response times

1 Click Configure Response Times to open the Server Monitoring: Response Times dialog.
2 Type new numeric values (seconds) into the text boxes or use the arrow buttons to select new values.
3 Click OK.

Common Administrative Tasks in vCenter Server Heartbeat

The Server Summary page provides the following buttons that allow you to quickly perform common administrative tasks:

- Make Active — Prompts to verify that you want to make the passive server in the pair active. Click Yes.
- Shutdown — Prompts you to select the server(s) to shut down. If you select the active server, additional options to stop or not stop protected applications appear in the dialog. Click OK.
- Start Replication — Opens the Start Replication Options dialog. Select to start or not start the protected applications and click OK. By default, all protection modes start when vCenter Server Heartbeat starts and a manual start is not required unless the system stopped in response to an automated stop.
- Stop Replication — Opens the Stop Replication Options dialog. Use this method to stop replication, such as to contain a virus infection or to upgrade a protected application. Select whether to stop or not stop protected applications and click OK. Replication of data files stops and, if selected, protected applications also stop.

NOTE The VMware vCenter Server Heartbeat service continues to run on the servers, providing heartbeats and protecting the system and network facets of the active server.

- Start Applications — Click to start the protected applications on the active server.
- Stop Applications — Click to stop the protected applications on the active server.
- Configure — Click to open the Configure dialog. Select the radio button corresponding to whether you want to stop or leave running the protected applications when vCenter Server Heartbeat is shut down. You can select whether to leave protected applications running upon shutdown when a net stop command is issued, and to start protected applications upon startup when a net start command is issued. Type a number (seconds) or use the arrow buttons to select an alert threshold value for time difference between servers, which is checked at handshake following startup. Click OK.

Forcing a Switchover

After configuring vCenter Server Heartbeat to protect all the required applications and data, the Secondary server can take over from the Primary server in a managed and seamless way called a managed switchover.
This is particularly useful when maintenance work performed on the Primary server requires rebooting the server.

Since a managed switchover cannot be performed during synchronization, it is important to review the queue information prior to attempting a managed switchover. If the queues are large, file operations on the active server are high and for this reason it may be prudent to delay a managed switchover due to the length of time required to completely clear the queue. Queue lengths can be viewed in the Data: Traffic/Queues page of the vCenter Server Heartbeat Console.

Prior to performing work on the Primary server, a managed switchover can be triggered by selecting the Secondary server and clicking Make Active on the Server: Summary page. This changes the server roles such that the active server becomes passive and the passive server becomes active. This means users are able to work continuously while the Primary server is off line.

When the Primary server is back up and running, the managed switchover can be triggered again so that the Primary server becomes active and the previously active server becomes passive.

IMPORTANT The managed switchover process may be performed at any time as long as the systems are fully synchronized with respect to data files and registry replication. *Switchovers cannot be performed if either server is in an unsynchronized or unknown state.*

Recovering From a Failover

A failover differs from a switchover. A switchover is a controlled switch (initiated manually from the vCenter Server Heartbeat Console, or initiated by vCenter Server Heartbeat when preconfigured) between the active and passive servers. A failover happens when any of the following fail on the active server: power, hardware, or VMware Channel communications. The passive server waits a preconfigured time after the first missed heartbeat before initiating a failover. When this period expires, the passive server automatically assumes the active role and starts the protected applications.

The following recovery scenario is based on vCenter Server Heartbeat configuration with the Primary server as active and the Secondary server as passive.

NOTE When failover conditions, such as a power failure, cause failures in both active and passive servers, a condition may result that causes both servers to restart in passive mode. In this situation, manual intervention is required. See Appendix 13, “Two Passive Servers,” on page 151.

A failover has occurred and the Secondary server is now running as the active server.

1. Review event logs on both servers to determine the cause of the failover. For assistance, use the Log Collector tool to collect information and send the output to VMware Support.

2. If any of the following issues exist on the Primary server, performing a switchback to the Primary server may not be possible until other important actions are carried out. Do not restart vCenter Server Heartbeat until the following issues have been resolved:
 - **Hard Disk Failure** – Replace the defective hard disk.
 - **Power Failure** – Restore power to the Primary server.
 - **Virus** – Clean the server of all viruses.
 - **Communications** – Replace or repair the physical network hardware.
 - **Blue Screen** – Determine cause and resolve. As required, submit the dump file to VMware Support (www.vmware.com/support) for analysis.

3. Run the Configure Server wizard and verify the server identity is set to Primary and the role is set to passive. Click Finish to accept the changes.

4. Disconnect the VMware Channel network cables or disable the network card.

5. Resolve the list of possible failures.

6. Restart this server and reconnect or enable the network card again.
7 After restart, check that the **Taskbar** icon now reflects the changes by showing **P / –** (Primary and passive).

8 On the Secondary active server or from a remote client, launch vCenter Server Heartbeat Console and confirm that the Secondary server is reporting as active.

If the Secondary server is not displaying as active, perform the following steps:

1 If the vCenter Server Heartbeat Console is unable to connect remotely, try running it locally. If you are still unable to connect locally, use the Service Control Manager to verify that the service is running. If the service is not running, review the event logs for a cause.

2 Run the Configure Server wizard and confirm that the server is set to Secondary and active.

NOTE If vCenter Server Heartbeat is running, you can run the Configure Server wizard but any changes made will not be saved.

3 Verify that the protected application is accessible from clients. If accessible, start vCenter Server Heartbeat on the Secondary server. If the application is not accessible, review the application logs to determine why the application is not running.

4 Start vCenter Server Heartbeat on the Secondary active server.

NOTE At this point, the data on the Secondary (active) server should be the most up to date and this server should also be the live server on your network. When vCenter Server Heartbeat starts, it overwrites all the protected data (configured in the File Filter list) on the Primary passive server. If you are not sure that the data on the active server is the most current and up to date, contact VMware Support (www.vmware.com/support). Go on to the next step only if you are sure that you want to overwrite the protected data on the passive server.

5 Start vCenter Server Heartbeat on the Secondary active server and check that the **Taskbar** icon now reflects the correct status by showing **S / A** (Secondary and active).

Configuring Split-Brain Avoidance

Split-brain Avoidance ensures that only one server becomes active if the VMware Channel connection is lost, but both servers remain connected to the Principal (Public) network. Split-brain Avoidance works by pinging from the passive server to the active server across the Principal (Public) network. If the active server responds, the passive server does not failover, even if the VMware Channel connection is lost. WAN installations require different IP addresses on the Principal (Public) network cards of each server to allow the passive server to communicate, because unlike the Principal (Public) IP address, they are not filtered. This allows the passive server to send pings, and is also required to allow the passive server to send email alerts. To configure a Management IP address on the Principal (Public) network card, follow the procedure below.

To configure a Management IP address:

1 Open the network properties for the Principal (Public) network connection.

2 Double-click **TCP/IP** to display the properties.

3 Click **Advanced**.

4 Enter an additional (currently unused) IP address in the table.

5 Reposition the IP addresses in the list so that the additional (Management) IP address appears first, and the Principal (Public) network address (by which clients connect to the server) appears second.
6 Click **OK** on all three dialogs to accept the configuration changes to the network connection.

7 After completing all of the steps click **Next** or **Finish**.

The active server must respond within the time period value specified in the **Failover timeout** to prevent a failover from occurring. If the active server responds in a timely manner, the failover process ceases. If the active server does not respond, the failover proceeds.
This chapter includes the following topics:

- “Communication Status” on page 121
- “Reviewing the VMware Channel Status” on page 121
- “Configuring Public Network Connection Checks” on page 121
- “Setting Max Server Time Difference” on page 122

Communication Status

Use the Data: Traffic/Queues page to check the status of the VMware Channel, the active server’s send, and passive server’s receive queues.

Reviewing the VMware Channel Status

The Data: Traffic/Queues page displays the VMware Channel status as connected (Green solid icon) or not connected (red broken icon), the statistics of the connection with regards to the data sent by either server, and the size and age of the oldest entry in the active server’s send queue and passive server’s receive queue. The Channel Connection tab in the lower pane displays the IP addresses used by the VMware Channel for the Primary to Secondary connections and the port that the communications are using.

Configuring Public Network Connection Checks

The Network Monitoring page allows you to view the status of the network and make adjustments to the IP addresses used to ping multiple servers within the network.

The Principal (Public) network monitoring feature, previously discussed, is enabled by default during the installation of VMware vCenter Server Heartbeat. This feature integrates the polling of designated waypoints around the network through the active server’s Principal (Public) connection to ensure connectivity with the Principal (Public) network is operational. By default, the IP addresses of the default gateway, the primary DNS server, and the Global Catalog server are all selected. When one or more of the automatically discovered waypoints are co-located on a physical machine (leading to duplication of IP addresses), the ability to specify additional waypoints manually becomes an advantage. To specify a manual target for Principal (Public) network checking, click Configure Pings to invoke the Ping Configuration dialog. Select the Ping Routing tab to add to or modify the existing target IP addresses for each server to ping.

In a WAN environment, the target addresses for Principal (Public) network monitoring on the Secondary server may be different to those automatically selected on the Primary server. Again, the ability to override automatically discovered selections is provided by manually specifying the target address.

Principal (Public) Network Monitoring is carried out by the active server effectively pinging the target addresses at regular time intervals. The time interval is set by default to every 10 seconds but the frequency may be increased or decreased as required.
Each target is allowed 5 seconds (default) to respond. On slower networks where latency and network collisions are high, increase this interval by changing the Ping echo timeout value.

The failure of all three targets to respond is allowed up to the Auto-switchover if client network is lost for threshold value. If the failure count of all three targets exceeds this value, vCenter Server Heartbeat initiates an auto-switchover.

Setting Max Server Time Difference

vCenter Server Heartbeat generates a warning if the Primary and Secondary server system clocks are not synchronized.

To override the warning

1. Open the Server: Summary Configure dialog by clicking the Configure button.
2. Type a number (seconds) or use the arrow buttons to select an alert threshold value for time difference between servers, which is checked at handshake following startup.
3. Click OK.
This chapter includes the following topics:

- “Application Protection Overview” on page 123
- “Applications Tab” on page 123
- “Services Tab” on page 125
- “Applications: Tasks” on page 127
- “Applications: Plugins” on page 128

Application Protection Overview

vCenter Server Heartbeat incorporates an Application Management Framework (AMFx) to manage vCenter Server Heartbeat plug-ins.

The AMFx provides additional functions while maintaining the traditional stability of VMware software. Use the AMFx to install and remove plug-ins on the fly while vCenter Server Heartbeat continues to provide protection to currently installed applications.

The AMFx also employs sponsorship for protected application files and services. With sponsorship, multiple plug-ins can share files or services. When removing a plug-in, sponsorship prevents removal of a shared file or service that is still required by a remaining plug-in.

vCenter Server Heartbeat uses the **System** plug-in to monitor the server performance. With the **System** plug-in, you can configure a variety of counters and assign actions when associated rules are exceeded.

Applications Tab

The **Applications: Summary** page displays the identity of the active server, the application state and health, details of application types and their corresponding running status and health. From this page, you can start, stop, and configure all protected applications. The lower portion of the pane provides an Applications Log that allows viewing of application events as they occur. This page also provides controls to edit, remove, start, and stop applications, and to configure and edit the configuration of all protected applications.

Reset the Application Health Status

To **Clear** (reset) the Application Health status, click **Clear** in the Application Health pane of the **Applications: Summary** page.

If a problem occurs (for example, a failed service or rule), the Application Health status becomes **Degraded**. Even if vCenter Server Heartbeat corrects the problem (for example, restarts the failed service) or the user corrects the problem, the Degraded status remains until manually cleared. In this state, the Service Discovery Task will not run.
After acknowledging the problem and solving it, click **Clear** to reset the Application Health status. The status updates to provide the actual current Application Health status.

View Application Status

After an application starts and is running, you can view its status in the Applications pane of the **Applications: Summary** page.

Editing Individual Applications

Use vCenter Server Heartbeat to configure the amount of time to wait for an application to start or stop before taking action or reporting the failure.

To configure the timeout settings

1. Right-click on the application and select **Edit** from the menu or select the application and click **Edit** at the top of the pane to invoke the **Edit Application** dialog.
2. Enter new values into the **Stop Timeout** and **Start Timeout** text boxes or use the arrow buttons to adjust the values (seconds). Click **OK**.

Remove an Application

To remove an application, select the application (in the Applications pane) and do one of the following:

- Right-click on the application and select **Remove** from the menu.
- Alternatively, click **Remove** at the top of the pane.

Manually Start and Stop Applications

To stop all protected applications, click **Stop Applications** (at the top of the **Applications: Summary** page). The protected applications set stops. You can view the progress of the stopping in the Applications Log pane.

To start the stopped applications, click **Start Applications** (at the top of the **Applications: Summary** page). The applications start. You can view the progress of the starting in the Applications Log pane.

Configuring Applications

Use the **Applications** page to configure protected applications, enable and disable protection and monitoring. You can maintain applications without stopping vCenter Server Heartbeat or taking the full server offline. During installation, vCenter Server Heartbeat sets default settings for application configurations but accepts modifications to the configurations settings.

To configure applications

1. Click **Configure** on the **Applications** page.

 You can protect services and start monitoring applications or unprotect services and stop monitoring applications. You can also enable **Verbose Plugin logging**, **Discover protected data at startup**, **Discover protected services at startup**, and set the rule trigger count.

2. After making modifications to the configuration, click **OK**.

Application Maintenance Mode

Use the Applications page to disable application protection, service monitoring, and recover for maintenance purposes.

To perform manual maintenance

1. On the **Applications** page, select the **Summary** tab.
2. Click **Configure**.
Reviewing the State of an Application

After an application successfully starts and is running, you can view the application state in the Applications: Summary page. If an application fails, right-click the event in the Applications Log and click on Properties to invoke the Event Properties dialog and investigate the failure.

Reviewing the Applications Log

The Applications Log helps troubleshoot the protected application environment. The Applications Log provides information about the behavior of all protected applications and includes events such as task status changes, rule triggering, task outputs, and application warnings. Use this log to troubleshoot application errors. The order that entries are displayed can be sorted either ascending or descending by clicking the column title.

Filtering Application Log Entries

vCenter Server Heartbeat can filter Applications Log files to limit the events displayed. By default, all events display in the Applications Log file.

To filter the events to display

1. Right-click an event in the Applications Log and click Filter in the Applications Log pane on the Applications page.
2. In the upper section, clear the event types you do not want to view.
3. To limit the date and time range, select Only show events from and edit the date or time range.
4. Click OK.

Services Tab

The Applications: Services page displays both services that you or plug-ins specify and the services related to them by dependency (either as dependents or depends-on). The target states of protected services for the Primary and Secondary server can be specified and are typically Running on the active and Stopped on the passive. Services are protected if they are Running or Automatic, and are otherwise logged as unprotected. vCenter Server Heartbeat manages services that depend on protected services (started and stopped) but not monitored (not restarted if stopped by some external agency). vCenter Server Heartbeat monitors protected services (restarted if stopped) but not managed (not stopped if protected applications are stopped).

Adding a Service

To protect a service

1. Right-click on a service and select Add from the menu or click Add on Applications: Services page to invoke the Add Service dialog. The Name drop-down list contains a list of all currently running services.
2. Select the service and set the values for Target State on Active and Target State on Passive. Normally the Target State on Active is set to Running and the Target State on Passive is set to Stopped.
If vCenter Server Heartbeat is to manage the start and stop of the service, select Manage Starting and Stopping. If vCenter Server Heartbeat is to monitor the state of the service, select Monitor State.

vCenter Server Heartbeat also assigns three sequential tasks to perform in the event of failure. Task options include Recover Service, Application Restart, Log Warning, Switchover, and any additional user-defined tasks previously created.

Assign a task to each of the three failure options and click OK.

NOTE If an application with the failure option set to Application Restart fails, only the services that have failed are restarted. Dependent services do not stop and restart as a result of the failure.

Editing a Service

To change the options of a protected service

1 Select the service and click Edit.

The Edit Service dialog opens to provide a subset of same options available when adding a new service.

2 Make the modifications and click OK.

Checking the Status of Services

The Applications: Services page displays the status of all protected services. The status shows both the target and actual state for both the Primary and Secondary servers and the Failure Counts for both servers.

Unprotecting User Defined Services and Stopping Monitoring

To unprotect and stop monitoring user defined services

1 Click Applications: Services, select the user defined service, and click Edit.

2 Clear Manage Starting and Stopping and Monitor State. Click OK.

Change the Order of Services

The order of services can be modified using Up and Down arrows. The exact order in which services start and stop is influenced by a number of key factors:

- The order of applications specified by plug-ins determines which services are started first.
- Services can have dependencies, and these must be respected. For example, if service B is listed after service A under the User-Defined group, and service A depends on Service B, Service B starts first.
- Multiple applications can use the same service (the same service can appear under more than one sponsor). The service starts when the first application to reference it starts.
- The order of stopping services is the reverse for starting services.

Removing a Service

To remove a service

1 Select the service in the Applications: Services page.

2 Click Remove.

The service is removed from the protected list.

NOTE Setting the target state for both the active and passive server to Running can cause the service to place a lock on some files preventing synchronization from completing.

NOTE If an application with the failure option set to Application Restart fails, only the services that have failed are restarted. Dependent services do not stop and restart as a result of the failure.
Applications: Tasks

Tasks are a generalization and extension of start, stop, and monitor scripts. Task types are determined by when the tasks run, and include the following:

- **Network Configuration** – This is the first type of task that runs when applications start and is intended to launch `dnscmd` or `DNSUpdate`. The task can launch a batch script containing multiple `dnscmd` commands. Network Configuration tasks are the only types of task that can vary between Primary and Secondary servers.

- **Periodic** – These tasks are run a specific configurable intervals.

- **Pre/Post Start** – These tasks run before and after services start on the active server.

- **Pre/Post Stop** – These tasks run before and after services stop on the active server.

- **Pre/Post Shadow** – These tasks run before and after Data Rollback Module creates a shadow copy on the active server (Not available in this release).

- **Rule Action** – Configure these tasks to run in response to a triggered rule or when a service fails its check.

You can define and implement tasks at the command line, such as launching a batch-script. Examples of built-in tasks include monitoring a protected service state on the active and passive servers.

vCenter Server Heartbeat can use plug-ins to define and implement tasks. An example of a plug-in-defined task is the discovery of protected data and services for a particular application.

Click **Applications: Tasks** to open the Tasks page.

Adding a Task

To add a task

1. Click **Add** to invoke the **Add Task** dialog. Assign a name to the task.
2. Select the task type from the drop-down list.
3. Select the identity of the server the task runs on (Primary or Secondary).
4. In the **Command** text box, type in the path or browse to the script, `.bat` file, or command for the task to perform.

NOTE When the **Command** entry requires specific user credentials, you must select that user from the **Run As** drop-down list. To add a user account, click **User Accounts** (near the top of the pane). See “View, Add, and Remove User Accounts” on page 128.

5. Click **OK**.

Editing a Task

You can edit the interval of a task or disable a task.

To edit a task

1. Right-click on an existing task and select **Edit** from the menu or select the task and click **Edit** at the top of the pane to invoke the **Edit Task** dialog.
2. Edit the parameters of the task.
3. Click **OK**.

Remove a Task

To remove a task, select the task in the **Applications: Task** page and click **Remove**.
Change the Order of Tasks

To change the order of tasks, use the Up and Down arrows (near the top of the pane) or on the right-click menu to change the order in which the tasks appear in the tasks list.

Starting a Task Manually

vCenter Server Heartbeat provides options to launch a task immediately, or to launch a task after a designated time period elapses, or following the occurrence of a specified event.

To launch the task immediately
1. Select the task from the task list.
2. Right-click on the existing task and select Run Now from the menu or click Run Now at the top of the pane.
 vCenter Server Heartbeat immediately launches the task.

View, Add, and Remove User Accounts

vCenter Server Heartbeat Console allows you to view, add, and remove user accounts used to run tasks.

Add a User Account

To add a user account, click User Accounts to invoke the User Accounts dialog.
1. Click Add to invoke the Add User dialog.
2. Type the name of the User, the associated Domain, and a Password into the corresponding text boxes.
3. Click OK.

Remove a User Account

1. To remove a user, select the user account from the list in the User Accounts dialog and click Remove. A confirmation message appears.
2. Click Yes.

Applications: Plugins

Plug-ins support specific applications and contain all of the components to protect the designated application. Plug-ins start and stop the application, monitor the application, and provide all rules necessary to ensure that application is available in the event of a failure by initiating a auto-switchover when configured.

Install a Plug-In

vCenter Server Heartbeat allows you to install and upgrade plug-ins as needed to support applications.

To install a new plug-in
1. Click Applications: Plugin to open the Plugins page.
2. Right-click an existing plug-in and select Install from the menu or click Install at the top of the pane to invoke the Install Plugins dialog.
3. Type a path to the plug-in location or click Browse to navigate to the plug-in location. The path statement is case-sensitive.
4. Click OK.

Editing a Plug-in

vCenter Server Heartbeat allows you to edit the configuration of user installed plug-ins.
To edit the plug-in configuration

1. Right-click on an existing plug-in from the Plugins list and select Edit from the menu or select the plug-in and click Edit at the top of the pane to invoke the Edit Plugin dialog.

2. Review the configuration options before making modifications as they are specific to each plug-in.

3. Click OK.

Uninstalling a Plug-in

You can uninstall a plug-in when you upgrade or remove the application the plug-in protects, or when directed by VMware Support.

To uninstall a plug-in

1. Right-click an existing plug-in and select Uninstall or select the plug-in and click Uninstall at the top of the pane.

2. Click Yes.
This chapter includes the following topics:

- “vCenter Server Heartbeat Console” on page 131
- “About vCenter Server Heartbeat Console” on page 131
- “Navigate vCenter Server Heartbeat Console” on page 132
- “Change the Font for vCenter Server Heartbeat Console” on page 132
- “Work with Groups and Pairs” on page 132
- “Add or Remove a vCenter Server Group” on page 132
- “Add, Edit, Move, and Remove Pairs in VCenter Server Heartbeat Groups” on page 133

vCenter Server Heartbeat Console

vCenter Server Heartbeat operates over a Pair of vCenter Server Heartbeat servers and is administered in these Pairs.

The vCenter Server Heartbeat Console is used to carry out the day-to-day administration of one or more Pairs of servers.

The vCenter Server Heartbeat Console runs from either of the two servers in the Pair or remotely from another machine in the same subnet that has vCenter Server Heartbeat or the vCenter Server Heartbeat Client Tools installed.

NOTE You can install vCenter Server Heartbeat on a Windows XP and Windows Vista SP1 or later workstation to act as a client to the server Pair or Windows Server 2003. Run setup.exe from the setup CD folder on the workstation and select **Install Client Tools** under the installation set.

About vCenter Server Heartbeat Console

You can start vCenter Server Heartbeat Console from any server in the vCenter Server Heartbeat Pair.

To start vCenter Server Heartbeat Console

1. Right-click the VMware vCenter Server Heartbeat interactive status icon on the Windows tool bar. The vCenter Server Heartbeat quick access menu opens.

2. Select **Manage Server** The vCenter Server Heartbeat Console opens in a window and shows the Heartbeat Servers (overview) pane.

Alternatively you can start vCenter Server Heartbeat Console from the VMware program group on the Windows Start menu. This is the only method supported if vCenter Server Heartbeat Console has been installed on a workstation that is not part of the Pair.
Navigate vCenter Server Heartbeat Console

After vCenter Server Heartbeat Console is running, use the navigation panel on the left of the vCenter Server Heartbeat Console window to view and select Groups and Pair connections you can manage with vCenter Server Heartbeat Console.

NOTE A Group is an arbitrary collection of vCenter Server Heartbeat Pairs used for organization.

A Connection, or Pair Connection allows vCenter Server Heartbeat Console to communicate with a vCenter Server Heartbeat Pair either on the same machine or remotely.

See “Add or Remove a vCenter Server Group” on page 132 and “Add, Edit, Move, and Remove Pairs in VCenter Server Heartbeat Groups” on page 133 for information on how to add Groups and Pair Connections to vCenter Server Heartbeat Console.

The selection of Group or Pair you make in the navigation panel “points” the vCenter Server Heartbeat Console to that Group or Pair and vCenter Server Heartbeat Console provides information related to only the selected Group or Pair. To avoid confusion, pay particular attention to the selection in the navigation panel when you are managing more than one Group or Pair.

NOTE Groups and Pairs are not automatically detected by vCenter Server Heartbeat Console. Each Group or Pair you want to manage must be added to vCenter Server Heartbeat Console before you can use it to view status or change settings for that Group or Pair Connection.

Select a Pair in the navigation panel of vCenter Server Heartbeat to show a set of tabs and sub-tabs that offer detailed status and control of the associated vCenter Server Heartbeat server in the Pair.

Change the Font for vCenter Server Heartbeat Console

You can change the font used in the vCenter Server Heartbeat Console interface.

To change the font of the interface

1. Select **Font Selection** from the **Preferences** menu. The **Font Selection** dialog opens.
2. In the **Style** pane, scroll to and click to select a font.
3. In the **Size** text box, type a new numeric (point) size or use the arrow buttons to change the font size.
4. Click **OK**. A confirmation message appears.
5. Click **Yes** to confirm the changes and restart vCenter Server Heartbeat to apply the new font settings. Click **No** to restart later; the changes will be applied the next time vCenter Server Heartbeat Console is started.

Work with Groups and Pairs

This section describes how to use vCenter Server Heartbeat Console to work with Groups (add or remove) and Pairs (add, edit, move, or remove), and to manage the Username and Password settings on the servers in a vCenter Server Heartbeat Pair.

Add or Remove a vCenter Server Group

The Add Group feature in vCenter Server Heartbeat Console allows you to add new vCenter Server Heartbeat Groups to manage.
To add a vCenter Server Heartbeat Group

1. Open vCenter Server Heartbeat Console and click Add Group in the tool bar, select Add Group from the File menu, or right-click an existing group in the navigation panel and select Add Group from the menu.

2. Type the name for the new group into the text box and click OK. The newly created group appears in the navigation panel on the left of the vCenter Server Heartbeat window.

Remove a vCenter Server Heartbeat Group

The Remove Group feature in vCenter Server Heartbeat allows you to remove existing vCenter Server Heartbeat Groups from management.

To remove a vCenter Server Heartbeat Group

1. Select the Group to be removed in the navigation panel of vCenter Server Heartbeat Console. Click Remove Group in the tool bar or select Remove Group from the File menu.
2. A confirmation message appears. Click Yes.

Add, Edit, Move, and Remove Pairs in VCenter Server Heartbeat Groups

When you created a vCenter Server Heartbeat Group using the instructions in “Add or Remove a vCenter Server Group” on page 132, you created an empty container. Next you must add the connections to the Pair or Pairs that make up your new vCenter Server Heartbeat Group.

Add a New Connection

The Add Connection feature in the vCenter Server Heartbeat Console allows you to add a new Pair Connection to an existing vCenter Server Heartbeat Group.
To Add a new connection

1. In the navigation panel, select the vCenter Server Heartbeat Group to receive the new connection. Click Add Connection in the tool bar, select Add Connection from the File menu, or right-click an existing group in the navigation panel and select Add Connection to invoke the Add Connection dialog.

2. Type the Host Name or IP address for the new connection into the text box, select the Port Number (if different from the default value of 52267), and select a group from the Add to Group drop-down list (to add the connection to a Group other than the one currently selected).

 NOTE You may be prompted to login. If so, login using a valid administrator-level Username and Password for the server for which you are adding a connection, and click OK.

3. Click OK. The newly created connection appears in the navigation panel on the left of the vCenter Server Heartbeat Console window, and the Server Summary page updates to represent any existing network relationships of the added server.

4. Enter the remaining connections necessary to define the new vCenter Server Heartbeat Group.

Edit a Connection

The Edit Connection feature in the vCenter Server Heartbeat Console allows you to change the Port Number for existing connections.
To edit a connection

1. In the navigation panel, select the connection you want to change and select **Edit Connection** from the **File** menu, or right-click an existing connection in the navigation panel and select **Edit Connection** from the menu to display the **Edit Connection** dialog.

 NOTE When a configured connection is not found, an error message may be displayed. Click **Edit Connection** to reconfigure the connection.

2. Type the new value for the Port Number into the text box, or use the **Up** or **Down** arrow controls to the right of the text box to select a new value. Click **OK**.

Move a Connection

The Move Connection feature in vCenter Server Heartbeat Console allows you to reassign an existing Pair to a different Group.

To move a connection

1. Select the Pair in the navigation panel and click **Move Connection** in the tool bar, select **Move Connection** from the **File** menu, or right-click on the Connection in the navigation panel and select **Move Connection** from the menu to display the **Move Connection** dialog.
2 Select the destination Group to receive the Connection from the drop-down list and click **OK**.

Remove a Connection

The Remove Connection feature in vCenter Server Heartbeat allows you to remove an existing Connection.

To remove a connection

1 Select the Connection in the navigation panel and click **Remove Connection** in the tool bar, select **Remove Connection** from the **File** menu, or right-click on the connection in the navigation panel and select **Remove Connection** from the menu to.
2 A confirmation dialog appears. Click **Yes**.

Edit Username and Password Settings

The Edit Username and Password feature in vCenter Server Heartbeat Console allows you to change the Username and Password settings used to connect to a given Pair.

To edit Username and Password

1 Select a connection in the navigation panel and select **Edit UserName and Password** from the **File** menu or right-click on the Connection in the navigation panel and select **Edit User Name and Password** from the menu to display the **Edit User Name and Password** dialog.
2 Type new values for **User Name** and **Password** into the corresponding text boxes and click **OK**.

Review the Status of vCenter Server Heartbeat Groups and Pairs

Click on the top level of vCenter Server Heartbeat Console, Heartbeat Servers to view a list of all managed Pairs and a quick status of the protected applications, network, files system, and registry settings for each Group.

The status hyperlinks in this overview window links to pages that provide more specific related information and management controls.
Click:

- The Server connection name to view the Server: Summary page
- The Applications status to view the Applications: Summary page
- The Network status to view the Network Monitoring page
- The File System or Registry status to view the Data: Replication page

Exit vCenter Server Heartbeat Console

Click Exit on the File menu. The Confirm Exit message appears.

Click Yes.

Shut Down Windows Without Stopping vCenter Server Heartbeat

Always stop vCenter Server Heartbeat before attempting to shut down Microsoft Windows. If an attempt is made to shut down Windows without stopping vCenter Server Heartbeat, a confirmation message is displayed.

When the confirmation message is displayed, click Cancel and stop vCenter Server Heartbeat before attempting Windows shut down again.
This chapter covers the topic “Applications: Rules” on page 139.

Applications: Rules

Rules are implemented by plug-ins (there are no user-defined rules). Configure rule actions to trigger the rule that performs specific tasks. Rules have two trigger properties:

- **Timed** – They must evaluate as true continuously for the specified duration to trigger.
- **Latched** – They trigger as soon as they evaluate to true.

Rules

The Applications: Rules page provides a list of rules with their current status and two ways to edit and check rules.

Checking a Rule Condition

vCenter Server Heartbeat allows you to check the rule conditions of the current configuration against the attributes of the system or application.

To check a rule condition

Right-click on the rule and select Check Now from the menu or click Check Now at the top of the pane. The rule condition is displayed in the pane.

Edit a Rule

Rules are implemented by plug-ins and cannot be created by users. Each plug-in contains a default set of rules with options that may be modified by the user.

To edit a rule

1. Right-click on the rule and select Edit from the menu or click Edit at the top of the pane.
2. Edit the parameters of the rule and click OK.

Rules Installed by vCenter Server Heartbeat Plug-Ins

The following plug-ins implement the rules listed.

vCenter Server Plug-In

- Check health of Tomcat server
- Check vCenter License
- Check Connection to vCenter
vCenter SQL Server Plug-In

- Default Instance Buffer Cache Hit Ratio
- Default Free Pages
- Default Instance Free Pages
- Named Instance Working Set
- Named Instance Buffer Cache Hit Ratio
- Named Instance Free Pages
- Named Instance Total Server Memory

vCenter Server Heartbeat System Plug-In

- DiskAvgSecsPerRead
- DiskAvgSecsPerWrite
- DiskIO
- DiskQueueLength
- DiskReadsPerSec
- DiskWritesPerSec
- DiskWriteable
- FreeDiskSpace
- FreeDiskSpaceOnDrive
- MemoryCommittedBytes
- MemoryCommittedBytesPercent
- MemoryFreePTEs
- MemoryPageReadsPerSec
- MemoryPageWritesPerSec
- MemoryPagesPerSec
- MemoryPagingFileUsage
- PageFaultsPerSec
- ProcessorIntsPerSec
- ProcessorLoad
- ProcessorQueueLength
- RedirectorBytesTotalPerSec
- RedirectorNetworkErrorsPerSec
- ServerBytesTotalPerSec
- ServerWorkItemShortages >= 3 (if the rule for server work item shortages is triggered, consult Microsoft documentation on setting the registry values for InitWorkItems or MaxWorkItems accordingly).
- ServerWorkQueueLength
- SystemContextSwitches
This chapter includes the following topics:

- “Data Protection Overview” on page 142
- “Replication” on page 142
- “Registry and File Synchronization Status” on page 142
- “Initiate a Full Registry Check” on page 142
- “Initiate a Full System Check” on page 142
- “Initiate File Synchronization Manually” on page 143
- “Initiate Verify and Synchronize Manually” on page 143
- “File Filters” on page 143
- “Determine Effective Filters” on page 143
- “Add a User-Defined Inclusion Filter” on page 144
- “Add a User-Defined Exclusion Filter” on page 144
- “Edit User Defined Inclusion/Exclusion Filters” on page 144
- “Remove User-Defined Filters” on page 144
- “Automatic Filter Discovery” on page 144
Data Protection Overview

vCenter Server Heartbeat can protect many permutations or combinations of file structures on the active server by the use of custom inclusion and exclusion filters configured by the administrator. See “File Filters” on page 143 for more information.

The filter driver identifies files to protect and disk I/O operations to intercept and replicate to the passive server. Use this driver to filter files for inclusion in or exclusion from the replication process.

vCenter Server Heartbeat protects a folder called Protected on the system partition.

NOTE vCenter Server Heartbeat forbids replicating certain files and folders by using a veto. If an inclusion filter includes any of those files or folders, the entire filter is vetoed, even if an exclusion filter is used to prevent replication of those files and folders. Examples of folders are the vCenter Server Heartbeat installation directory or the system32 folder.

The VMware application folder contains the active server’s send and passive server’s receive queues on the active and passive servers. This folder must be explicitly excluded from file protection.

Replication

You can view replication status and manage data replication using the Data: Replication page.

Registry and File Synchronization Status

Two panes near the top of the Replication page in vCenter Server Heartbeat Console, File System Synchronization Status and Registry Synchronization Status, provide graphical status information.

The synchronization status for each file or folder can read three different values depending on the verification and synchronization states as described in Table 11-1.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The file is verified and successfully synchronized.</td>
</tr>
<tr>
<td></td>
<td>The file is not synchronized on the active and passive servers. This state often follows a failover and requires manual synchronization and verification.</td>
</tr>
<tr>
<td></td>
<td>The file or folder has not been checked because a full system check has not been performed or the system check has not yet reached the file or folder.</td>
</tr>
</tbody>
</table>

Table 11-1. Synchronization Status

Initiate a Full Registry Check

The registry check re-scans and synchronizes all registry keys specified in the built-in registry filters between the servers and the results are displayed in the Registry Synchronization Status pane.

To initiate a full registry check

Click Full Registry Check in the Registry Synchronization pane.

Initiate a Full System Check

You can verify and synchronize the entire protected file set with a Full System Check. A Full System Check performs the same block level check of all the files set by the file filters in the initial startup synchronization and verification.

When you click Full System Check, a dialog asks you to confirm the request and warns you that depending on the amount of data under protection, this task can take a long time to complete (for example, a number of hours). Click Yes to perform the check.
Switchover cannot occur until the full system check completes and the File System Status is **Synchronized**. The File System Status is **Unchecked** when you cancel the task. Depending on the amount of data, resynchronization can take substantial time to complete.

Initiate File Synchronization Manually

The **Data: Replication File Hierarchy** pane displays files that were detected as out of synchronization.

To initiate file synchronization manually
- To manually synchronize the specified files, click **Synchronize**.
- You can resynchronize files at any time. Select multiple files with the Shift or Ctrl keys and click **Synchronize**.
- Select a folder and select **Including Subdirectories** to synchronize files within folders.

A progress graphic displays the status of the verification or synchronization operation. When complete, the status displays a green **Synchronized** icon.

Initiate Verify and Synchronize Manually

A manual or scheduled synchronization and verification request is defined as a task that is queued for processing after the running task completes. Tasks display in the **Pending Tasks** pane. You can cancel individual tasks. If you cancel a scheduled task, you risk an unchecked system. Possible consequences of canceling tasks display in a warning message.

To verify and synchronize folders
1. Use **Verify & Synchronize** and select **Include Subdirectories** to ensure all underlying files and subfolders are included in the verification and synchronization operation.
2. Right-click a folder to access a popup menu to perform quick synchronization and verification of folders and subfolders.

File Filters

File filters dictate which files are protected and the disk I/O operations to intercept and replicate to the passive server. File filters also allow you to customize the inclusion and exclusion of files from the replication process.

The File Filters pane of the **Data** page allows you to set up and manage inclusion and exclusion filters.

The File Filters pane contains three columns: Filter, State, and Detail.
- The Filter column lists the pattern for protecting files and folders on the active server.
- The State of the filter identifies the filter as Effective, Subset (contained within another filter), or Not Effective (not contained within another filter). An Effective filter is properly configured and functions to protect (replicate) the stipulated files to the passive server.
- The Detail describes the file filter details based upon the state of the file filter.

Determine Effective Filters

An Effective Filter is the result of the remainder of the files and folders stipulated in the Inclusion Filter after removing the files and folders in the Exclusion Filter.

Filters are compared with each other, and if one filter is a superset of another, the superset filter is used. You can configure a single, general filter to replace file servers with 1000s of individual shares requested by a plug-in.
Add a User-Defined Inclusion Filter

Inclusion Filters create a subset of files to specify items to include for protection.

To define filters that include files and folders for protection and replication

1. In the Data: File Filters pane, click Add Inclusion Filter to open the Add Inclusion Filter dialog.
2. Type the complete path and pattern, specify a pattern containing wildcards, or use Browse to locate the file or folder.
3. Click OK.

 The two forms of wildcards available are *, which matches all files in the folder, and **, which matches all files, subfolders and the files in the subfolders of the folder.

 After defining the filter, you can add additional Inclusion Filters.

Add a User-Defined Exclusion Filter

Exclusion Filters create a subset of an Inclusion Filter to specify items to exclude from protection.

To define filters that exclude files and folders from protection and replication

1. In the Data: File Filters pane, click Add Exclusion Filter to open the Add Exclusion Filter dialog.
2. Type the complete path and pattern, specify a pattern containing wildcards, or use Browse to locate the file or folder.
3. Click OK.

 The two forms of wildcards available are *, which matches all files in the folder, and **, which matches all files, subfolders and the files in the subfolders of the folder.

Edit User Defined Inclusion/Exclusion Filters

Inclusion and exclusion filters can be edited by selecting the filter and clicking Edit at the top of the File Filters pane or right-clicking the filter and selecting Edit from the menu. Edit the value in the Pattern: text box by typing over the current file filter definition.

Remove User-Defined Filters

When necessary, user defined inclusion and exclusion filters can be removed.

To remove an Inclusion or Exclusion Filter

1. Select the filter in the File Filters list and click Remove, or right-click on the filter in the File Filters list and select Remove from the menu.
2. A confirmation message appears. Click Yes.

Automatic Filter Discovery

When Administrators make changes to the configuration, vCenter Server Heartbeat adjusts file filter protection for protected locations. Additionally, the SQL Server plug-in provides database protection including changes or additions to the database and log files.
This chapter includes the following topics:

- “Configure Alerts” on page 145
- “Configure Alert Reporting” on page 145
- “Test Alert Reporting” on page 146
- “Configure Event Log Files” on page 146
- “Review Event Logs” on page 147

Configure Alerts

vCenter Server Heartbeat can send predefined alerts to remote administrators by email using Logs > Configure Alerts.

You can configure alerts in by clicking Configure Alerts on the Logs page.

You can configure three alert states: Red alerts are critical, yellow alerts are not as serious, and green alerts are informational. These alerts are preconfigured with the recommended alerting levels.

To reconfigure each event to trigger red, yellow, green, or no alert, select the appropriate tab, select the check boxes, and click OK.

Configure Alert Reporting

vCenter Server Heartbeat can alert the administrators or other personnel and route logs by email when an Alert condition exists.

To configure email alerts

1. Click Logs: Mail Settings to open the Mail Settings dialog.
2. Type the outgoing SMTP server of both the Primary server (when active) and the Secondary server (when active) in the appropriate fields.
3. Type the FQDN of the mail server. Type an email address that is authorized to send mail through the SMTP server.
4. If the SMTP servers require authentication to accept and forward SMTP messages, select Mail Server requires authentication and specify the credentials for an appropriate authenticated user account.
5. Click OK.

You can configure email recipients in the On Red Alert, On Yellow Alert, and On Green Alert tabs of the Configure Alerts dialog after configuring the trigger levels and the email server.
Red, Yellow, or Green alert triggers email to the same or different recipients. The process to add recipients is the same for all trigger levels.

1. Click the On Red Alert, On Yellow Alert, or On Green Alert tab and select Send mail.
2. Select the frequency for the email to be sent.
3. Click Add and type a fully qualified email address for each recipient for the respective trigger level alert.
4. To delete a recipient, select the recipient's email address in the Mail Recipients pane and click Remove.

Use the preconfigured subject and content of the alert emails for Red, Yellow, or Green alerts. You can add content as required. VMware recommends leaving the preconfigured subject and content and if necessary, add additional information.

Another method to send an alert notification is:

1. Select Run Command under the pertinent alert state.
2. Browse to the script to run or use a command line argument to run on the alert trigger.

The preconfigured WScript command creates an event in the Application Event Log and can be customized to include vCenter Server Heartbeat specific informational variables as detailed in Table 12-1.

Another method to send an alert notification is:

1. Select Run Command under the pertinent alert state.
2. Browse to the script to run or use a command line argument to run on the alert trigger.

The preconfigured WScript command creates an event in the Application Event Log and can be customized to include vCenter Server Heartbeat specific informational variables as detailed in Table 12-1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$EventId</td>
<td>Id of event as listed above</td>
</tr>
<tr>
<td>$EventName</td>
<td>Human-readable name of event</td>
</tr>
<tr>
<td>$EventDetail</td>
<td>Detail message for event</td>
</tr>
<tr>
<td>$EventTime</td>
<td>Time at which event occurred</td>
</tr>
</tbody>
</table>

The following command line argument creates an event in the Application Event Log listing the machine that caused the alert, the time the alert occurred, the name, and details of the alert:

```
WScript //T:10 $(installdir)\bin\alert.vbs "VMware vCenter Server Heartbeat alert on $EventHost at $EventTime because $EventName ($EventDetail). Event Id is $EventId"
```

3. Click OK.

Test Alert Reporting

Click Test Alert Reporting to run a test alert email. This way you can avoid triggering an actual alert during the operation of the active server.

Configure Event Log Files

vCenter Server Heartbeat allows you to configure Event Log files to direct where the log file is stored and the number of events to be recorded.

To configure default settings for log files

1. Click Logs: Configure and select the General tab to define the filename and path of the exported comma-separated variable (CSV) file.
2. Type a path and filename or use Browse and navigate the file.
3. Adjust the length of the event list to meet your needs by increasing or decreasing the value (the default is to record 300 events) in the Record at most field.
4. Click OK.

Configure Log File Email Recipients

Use vCenter Server Heartbeat to email the log to specified personnel at predetermined intervals.
To configure email log notifications

1. To configure vCenter Server Heartbeat to email a copy of the log file, click on the Mail Log File tab, select Mail Every, and configure the day and time to send the log file.

2. Specify the recipients. Click Add on the top left of the email recipient field and type the email address in the Add Mail Address dialog.

3. To remove a recipient, select the recipient’s email address in the Mail Log File pane and click Remove.

4. Click OK.

Review Event Logs

The Logs: Event Log pane lists events logged chronologically by default.

The Event log shows the time the event happened, the type, the source, its importance, and its detail. The display order for events can be sorted either descending or ascending by clicking on the column heading. Since the detail in the data grid is truncated, it may be necessary to review the log in more detail.

To review the details

1. Double-click the entry in the data grid.

 Event Properties displays the full detail and trace of the log that caused the event and the source of the error to aid in troubleshooting.

2. Use the Up and Down arrows in this window to review other logs. This feature is useful where many events have occurred simultaneously and helps to identify the source of the problem.

3. Click Close to close the Event Properties.

Table 12-2. Log Events

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Errors within the underlying operation of vCenter Server Heartbeat and can be considered critical to the operation of the system.</td>
</tr>
<tr>
<td></td>
<td>Warnings generated for discrepancies within the vCenter Server Heartbeat operational environment that are not deemed critical to the operation of the system.</td>
</tr>
<tr>
<td></td>
<td>System logs are generated following normal vCenter Server Heartbeat operations. You can use these logs to verify the success of processes such as file synchronization.</td>
</tr>
<tr>
<td></td>
<td>Information on operations within the graphical user interface rather than operations on vCenter Server Heartbeat service, such as Test Alert Reporting.</td>
</tr>
</tbody>
</table>

Event Log Filters

The list of logs that vCenter Server Heartbeat displays may be filtered to hide less important logs.

To filter log events by importance

1. Click Filters to invoke the Event Log Filters dialog.

2. Select Events of at Least.

3. Select the Show events of at least check box in the Importance group.

4. Select the importance level from the drop-down list and click OK.

Only logs equal to or above the select severity are displayed.

To filter log events by date and time range

1. Select the Only show events from check box and adjust the start date, end date, and time.

2. Click OK.
Table 12-3. Event Log Buttons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To export the list to a comma-separated variable file, click Export event log at the top left of the Log Details data grid. You can configure the filename and path to export the data in the Configuration tab.</td>
</tr>
<tr>
<td></td>
<td>To immediately email the list, click E-mail.</td>
</tr>
<tr>
<td></td>
<td>To clear the list, click Remove all Entries at the top left of the Log Details data grid.</td>
</tr>
</tbody>
</table>
Troubleshooting

This chapter includes the following topics:

- “Troubleshooting Unexpected Behaviors” on page 149
- “Two Active Servers” on page 149
- “Two Passive Servers” on page 151
- “Synchronization Failures” on page 152
- “Registry Status is Out of Sync” on page 154
- “Channel Drops” on page 154
- “Subnet or Routing Issues” on page 158
- “MaxDiskUsage Errors” on page 158
- “MaxDiskUsage Error Messages” on page 159

Troubleshooting Unexpected Behaviors

The following unexpected behaviors illustrate symptoms, causes and resolution for a given scenario.

Two Active Servers

When two identical active servers are live on the same network, vCenter Server Heartbeat refers to the condition as Split-brain syndrome. Two active servers do not occur by design and when detected, must be resolved immediately.

Symptoms

Split-brain syndrome is identified by the following symptoms:

- Both servers in the pair are running and in an active state. The task bar icons display P / A (Primary and active) and S / A (Secondary and active).
- An IP address conflict occurs on a server pair running vCenter Server Heartbeat on the Principal (Public) IP address.
- A name conflict occurs on a server pair running vCenter Server Heartbeat. In a WAN environment the Primary and Secondary servers connect to the network using different IP addresses. However, if the servers are running with the same name and are visible to each other across the WAN, a name conflict occurs.
- Clients (for example, VI Client, ESX, etc.) cannot connect to the server running vCenter Server Heartbeat.
Causes

The most common causes of two active servers (Split-brain syndrome) are as follows:

- Loss of the VMware Channel connection (most common in a WAN environment)
- The active server is too busy to respond to heartbeats
- Incorrect configuration of the vCenter Server Heartbeat software

You must determine the cause of the Split-brain syndrome and resolve the issue to prevent this condition from recurring.

Resolution

To resolve Split-brain syndrome, identify the server with the most up-to-date data. If you identify the wrong server you risk losing data. You must reinstate the correct server.

To identify the server with the most up-to-date data

1. Check the date and time of files on both servers. Make the most up-to-date server the active server.
2. From a client PC on a LAN, run `nbtstat -A 192.168.1.1` where the IP address is the Principal (Public) IP address of the server. This can help identify the MAC address of the server currently visible to client machines.

NOTE If both active servers were servicing clients, perhaps at different WAN locations, you can make only one server active. Both servers contain recent data that cannot be merged using vCenter Server Heartbeat. To restart replication, make one server active and one server passive. When replication restarts, the active server overwrites all data on the passive server. You can manually extract the up-to-date data from the passive server prior to restarting replication. Consult the Microsoft knowledge base for information on various tools for this purpose. For further information, contact your VMware support representative.

To resolve two active servers (Split-brain syndrome)

1. Identify the server with the most up-to-date data or the server to make active.
2. Shut down vCenter Server Heartbeat on both servers (if running).
3. On the server to make passive, right-click the Task bar icon, and select the Server Configuration wizard.
4. Click the Machine tab and set the server role to passive. Do not change the identity of the server (Primary or Secondary).
5. Click Finish.
6. Restart this server.
7. Start vCenter Server Heartbeat, if required, and check that the Task bar icon now reflects the changes by showing P / - (Primary and Passive) or S / - (Secondary and Passive).
8. On the active server, right-click the Task bar icon and select the Server Configuration wizard.
9. Click the Machine tab and verify that the server role is set to active. Do not change the identity of the server (Primary or Secondary).
10. Click Finish.
11. Restart this server. As the server restarts, it connects to the passive server and starts replication. The active server overwrites data on the passive server.
12. Start vCenter Server Heartbeat, if required, and check that the Task bar icon now reflects the changes by showing P / A (Primary and active) or S / A (Secondary and active).
14. Check that the servers have connected and replication has started.
Two Passive Servers

Primary and Secondary servers are both passive at the same time. This situation is serious and must be resolved immediately.

Symptom

You are unable to connect to protected applications, and if you configured alerts, you receive notification that replication is not functioning properly.

Causes

The condition of two passive servers results from a sudden failure on the active server. Examples:

- An unexpected termination of the Neverfail Server R2 service
- A transient power failure
- A server reset triggered from the Power or Reset button
- An unclean shutdown. Following an unclean shutdown, an active server assumes the passive role to isolate itself from the network until the failure is investigated.
- The active server fails before the handshake that establishes the VMware Channel connection. The passive server cannot detect that the active server is not responding when the failure occurs and cannot determine the condition of the active server. The active server suffers a transient failure and the passive server cannot respond by failing over into the active role, leaving both servers in the passive role.
- Both Primary and Secondary servers experience a power outage simultaneously, for example, they use the same power source and neither is attached to a UPS. A failover cannot occur and when the servers are restarted, each displays the following error message:

 Cannot start replication because previous run did not shutdown properly. Check configuration.

NOTE If you attempt to start vCenter Server Heartbeat without reconfiguring one server in the pair as active, vCenter Server Heartbeat responds with the following warning:

[U16] Serious configuration mismatch between the two servers. Please reconfigure so there is one and only one Primary, and one and only one Active.

Resolution

Two passive servers prevent users from accessing the protected application and should be resolved immediately.

To resolve two passive servers

1. Determine the active server.
2. Shut down vCenter Server Heartbeat on both servers. Leave any protected applications running on the server to make active.
3. On the server to make active, start the Server Configuration wizard, and select the active role. Do not change the identity (Primary or Secondary).
4. On the server to make passive, start the Server Configuration wizard, and confirm the passive server. Do not change the identity (Primary or Secondary).
5. Restart the passive server. All protected application services stop.
6. Start vCenter Server Heartbeat on both servers.
Synchronization Failures

When you start vCenter Server Heartbeat, a full system check occurs to verify the following:

- All protected registry keys and values from the active server are present on the passive server.
- All protected file and folder structures from the active server are present on the passive server.

After the full system check completes, the File System Status and the Registry Status display as Synchronized. However, the File System Status or the Registry Status can also display as Out of sync or Synchronized and busy processing. Some typical scenarios are described with possible causes and workarounds.

Services Running on the Passive Server

Services running on a passive server is not normal behavior and can prevent synchronization.

Symptom

File System Status is Out of sync or Synchronized and busy processing.

Cause

A service running on the passive server opens a protected file for exclusive access. If vCenter Server Heartbeat attempts to update this opened file, the Apply component logs the following error message:

[N29] The passive VMware vCenter Server Heartbeat server attempted to access the file: {filename}. This failed because the file was in use by another application. Please ensure that there are no applications which access protected files running on the passive.

NOTE This occurs if the vSphere Client is left running on the passive server.

Services that keep files locked on the passive server are:

- Protected application services
- File level antivirus tool services

NOTE vCenter Server Heartbeat periodically checks for and stops any services running on the passive server.

Resolution

Until the file is closed on the passive server, vCenter Server Heartbeat reports the file status and the File System Status as Out of sync.

To resolve the Out of sync status

1. Set Protected Application services to Manual on both servers and verify that they are not running on the passive server.
2. Set Recovery Actions to Take No Action. You can set this from the Service Control Manager (SCM) for the Protected Application services. Otherwise, the SCM restarts the Protected Application services.
3. Verify that file level antivirus is not part of the protected set as the file level antivirus and the corresponding services are running on both machines.

VMware Channel Incorrectly Configured

If the VMware Channel is not properly configured, it cannot initiate the handshake to establish communications through the VMware Channel connection.

Symptom

Failure to establish the VMware Channel connection prevents a full system check, thereby leaving the File System Status and Registry Status as Out of sync.
Causes
The most common VMware Channel configuration errors are as follows:

- VMware vCenter Server Heartbeat Packet Filter is enabled on one or more VMware Channel NICs
- VMware Channel IP addresses are configured in different subnets
- In a WAN implementation, no static routes exist between the VMware Channel NICs

Resolution
The VMware Channel configuration should be reviewed to verify proper configuration.

To resolve a VMware Channel configuration error
1. Disable the VMware vCenter Server Heartbeat Packet Filter on VMware Channel NICs.
2. Configure the VMware Channel IP addresses properly.
3. In a WAN implementation, configure static routes between VMware Channel NICs properly.
4. Disable NetBIOS on the VMware Channel NICs.

Incorrect or Mismatched Disk Configuration
When vCenter Server Heartbeat starts, it checks the complete set of file filters for consistency.

Symptom
If any of the entries points to a non-existent drive letter or to a non-NTFS partition, the list of file filters resets to the default value of C:\Protected**. This is a safety measure as vCenter Server Heartbeat requires the same drive letter configuration on the Primary and the Secondary servers, and only supports protection of NTFS partitions.

Cause
Different partition structures on Primary and Secondary servers, such that one or more file filters point to drives that cannot be protected on both servers. For example:

- The Primary server has drive G, a valid NTFS partition, but no corresponding drive exists on the Secondary server.
- The Primary server has drive G, a valid NTFS partition. The equivalent drive on the Secondary server is a CD or DVD drive, or a FAT or FAT32 partition that cannot be protected.

In either scenario, if you configure a file filter to protect a directory on drive G, the entire filter set is rejected and the filters are reset to the default value of <Windows drive>\Protected**.

Resolution
Follow the steps documented in knowledge base article 1008458 (vCSHB-Ref-500) Troubleshooting a set of File Filters that is reset to C:\Protected**.

Passive Server Has Less Available Space than Active Server
Inadequate available disk space on the passive server can cause replication to cease.

Symptom
Replication stops with the following error:

[N27] Failed to write information for the file: {filename} to the disk. Either the disk is full or the quota (for the SYSTEM account) was exceeded.
Cause
The passive server has less available disk space than the active server, preventing updates from being replicated to the passive server. The quantity of updates from the active server exceeds the passive server's available disk space.

Resolution
Free up some additional disk space on the passive server. Do not delete data from the protected set to prevent data loss in the event of a switchover. You could update the disk subsystem on the passive server. After allocating space, start replication.

Registry Status is Out of Sync
The Registry can be reported as Out of sync when one or more Registry keys fail to synchronize.

Resource Issues
Inadequate resources can cause poor performance and prevent the registry from synchronizing.

Symptom
vCenter Server Heartbeat logs the following error message:

Call to RegOpenKeyEx failed: on <Reg_Key>: Insufficient system resources exist to complete the requested service.

Cause
One or both of the servers are running low on virtual memory.

Resolution
Restart the server to free up virtual memory.

Registry Security Issues
Inability to access the registry prevents replication of the registry.

Symptom
vCenter Server Heartbeat is unable to read, sync, or replicate the registry.

Cause
If a protected registry key has permissions that deny Write access to the System account, this can prevent vCenter Server Heartbeat from synchronizing or replicating it.

Resolution
Change the permissions on the affected registry key to grant the System account Full Control.

Channel Drops
When the VMware Channel loses connection between the servers, the following scenarios can occur.

Performance Issues
Poor performance can be experienced as a result of a channel loss.
Symptom
The message java.io.IOException: An existing connection was forcibly closed by the remote host appears in the active server’s NFLog.txt file, and the VMware Channel connection between the servers is lost.

Causes
This unusual condition points to an application or Windows experiencing a fault on the passive server. A sudden restart of the passive server can occur due to the following causes:
- The server is configured for automatic software update management and some updates force the server to restart
- A software or Operating System issue that occasionally fails and requires a system restart
- The Neverfail Server R2 service experiences problems, does not respond, or terminates unexpectedly

Resolution
To resolve the issue, make the following checks.
- Determine the likely source by examining the Windows event logs.
- If the server does not display evidence of a system restart or unresponsive application, one or both of the VMware Channel NICs could be forcing a channel disconnection. See “Hardware or Driver Issues on VMware Channel NICs” on page 155 for more information on this topic.

Passive Server Does Not Meet Minimum Hardware Requirements
Inadequate hardware can cause channel drops and result in poor performance.

Symptom
The data rate between the servers is very fast during a Full System Check and the VMware Channel drops.

Cause
The passive server does not meet the recommended hardware requirements for vCenter Server Heartbeat or it meets the requirements, but is much less powerful than the active server. The underpowered server cannot apply the received replication data from the active server at the rate that the data is sent to the passive server.

Resolution
To avoid reinstalling vCenter Server Heartbeat, upgrade the hardware, such as memory or CPU, on the passive server. Establish the identity (Primary or Secondary) of the affected server before you perform the upgrade.

Hardware or Driver Issues on VMware Channel NICs
NIC malfunctions and old or incorrect drivers can cause channel drops resulting in poor performance.

Symptom
The VMware Channel intermittently drops or disconnects and reconnects.

Causes
The following are common causes of NIC problems.
- Old or incorrect VMware Channel NIC drivers
- Hardware failure of the hub or Ethernet switch used for the VMware Channel connection
- Defective Ethernet patch or crossover cables
Improper configuration of the NICs used for the VMware Channel connection

ISP problems in a WAN environment

Resolution

When a NIC problem is encountered, the following should be checked.

- Verify that VMware Channel NIC drivers are the correct and latest versions. Known issues are identified with HP/Compaq ProLiant NC67xx/NC77xx Gigabit Ethernet NICs. Check other NIC types. See knowledge base article 1008383 (vCSHB-Ref-116) – VMware vCenter Server Heartbeat and Gigabit Ethernet NIC drivers. (NC77XX).

- Verify hubs and Ethernet switches are operating properly. Identify and replace any defective components.

- Test for defective Ethernet patch or crossover cables and replace if defective.

- Correctly configure the NICs used for the VMware Channel connection.

- Check the physical link for ISP problems.

Firewall Connection

In a LAN or WAN deployment, the VMware Channel can be connected through one or more Internet firewalls. Because firewalls block unauthorized network traffic, configure firewalls on the route of the VMware Channel to allow channel traffic.

Symptoms

The VMware Channel cannot connect, or continuously connects and disconnects.

Causes

In a WAN deployment, port 57348 or any other port configured for the VMware Channel is closed on one or more firewalls on the route between the VMware Channel NIC on the Primary server and its counterpart on the Secondary server.

Resolution

Open port 57348 and any other port configured for the VMware Channel on all firewalls on the route between the VMware Channel NIC on the Primary server and its counterpart on the Secondary server.

Incorrect VMware Channel Configuration

An incorrectly configured channel connection can prevent proper communication and replication.

Symptoms

The following problems are experienced:

- IP conflicts occur on one of the VMware Channel IP addresses
- The VMware Channel does not connect, or connects and disconnects

Causes

The list below provides the most common misconfigurations.

- Identical IP addresses at each end of the VMware Channel
- IP addresses in different subnets without static routing at each end of the VMware Channel
- VMware Channel NIC configured for DHCP when a DHCP server is not available
During installation, vCenter Server Heartbeat configures the VMware Channel NICs with user-provided information. Incorrect information or incorrectly modifying the VMware Channel NIC configuration after installation causes the VMware Channel to fail communicating.

On rare occasions, if the Primary and Secondary servers have NICs of the same type in a different order, both the name and IP address of a VMware Channel NIC on the Primary server can transfer to the Principal (Public) NIC on the Secondary or the name and IP address of the Principal (Public) NIC can transfer to a VMware Channel NIC. Similarly, the names of the VMware Channel NICs can reverse on the Secondary server. You must reconcile the names of the NICs with their physical identities and assign the correct IP address to each NIC on the Secondary server.

Resolutions
The installation process manually assigns the correct IP addresses to each NIC on the Secondary server. If no VMware Channel connection occurs between the servers, verify the configuration of the IP addresses on the Secondary server’s channel NICs. Check the settings for the Principal (Public) NIC. The configuration error can remain unrecognized until you perform a switchover or a failover occurs.

To capture the identities of all of the NICs on the Secondary server prior to installing vCenter Server Heartbeat, open a Windows Command Prompt on that server and execute the following command:

```
ipconfig /all > ipconfig.txt
```

The output of this command saves the name, TCP/IP configuration, and MAC address of each NIC on the Secondary server to a file called ipconfig.txt, which is present on that server after the PnP phase of the vCenter Server Heartbeat install completes. Compare the pre-install and post-install state of each NIC by running `ipconfig /all` from a Windows command prompt and compare the output of this command with the content of ipconfig.txt.

The MAC address of each NIC is connected to the physical identity of each card and never changes. You can identify each NIC by its MAC address and determine its original name and network configuration, even if this was updated by the PnP process.

VMware vCenter Server Heartbeat Packet Filter Is Enabled on the Channel NIC(s)

Proper configuration requires that the packet filter be disabled on the VMware Channel NIC. When the packet filter is enabled on the channel NICs, the following symptoms are encountered.

Symptom
Interference with network traffic across the VMware Channel results in an intermittent channel connection or no channel connection at all.

Cause
During installation, the VMware vCenter Server Heartbeat Packet Filter is installed and enabled on all NICs on both the Primary and Secondary servers. The Packet Filter on the VMware Channel NICs on each server is disabled later in the installation of vCenter Server Heartbeat. If the vCenter Server Heartbeat Packet Filter is left enabled on one or more channel NICs after installation completes, it can interfere with network traffic across the VMware Channel.

Resolution
Click the Properties tab for each Channel NIC on both servers and verify that the check box for **vCenter Server Heartbeat Packet Filter** is cleared, so that the Packet Filter is disabled on that NIC.
Subnet or Routing Issues

In a LAN or WAN deployment, the following connection problems can occur.

LAN Deployment

Incorrectly configured subnets or routing can cause channel problems resulting in poor performance or failure to connect.

Symptom

The Channel disconnects or fails to connect in a LAN deployment.

Causes

The Channel disconnects or fails to connect due to the Principal (Public) NIC and/or one or more channels sharing the same subnet.

Resolution

If vCenter Server Heartbeat is deployed in a LAN environment, the Principal (Public) IP address and the VMware Channel IP address on a server must be in separate subnets. When multiple redundant channels are present, each must have its own subnet. Check the network configuration for each NIC on both servers in the pair and correct any issues.

WAN Deployment

Incorrect routing can prevent the active and passive servers from connecting in a WAN environment.

Symptom

The VMware Channel disconnects or fails to connect in a WAN deployment.

Cause

When the VMware Channel disconnects or fails to connect in a WAN deployment, the static route might not be configured or might be configured incorrectly.

When vCenter Server Heartbeat is deployed in a WAN, the Principal (Public) IP address and the VMware Channel IP addresses cannot be in different subnets, because there usually is a single network path between the two servers. Configure a static route between the endpoints to route traffic in the VMware Channel.

Resolution

Refer to knowledge base article 1008451 (vCSHB-Ref-466) - Creating a static route for the VMware Channel Connection in a WAN Environment for a detailed discussion about WAN channel routing issues, and for instructions on configuring a static route for the VMware Channel.

MaxDiskUsage Errors

vCenter Server Heartbeat uses queues to buffer the flow of replication data from the active server to the passive server. This configuration provides resilience in the event of user activity spikes, VMware Channel bandwidth restrictions, or VMware Channel drops across a WAN deployment. Some types of file write activity also require buffering as they can cause a sharp increase in the amount of channel traffic. The queues are called the send queue (on the active server) or the receive queue (on the passive server).
Send Queue

vCenter Server Heartbeat considers the active server’s send queue as unsafe because the data in this queue has not yet been replicated across the VMware Channel to the passive server and therefore could be lost in the event of a failover. As a result of failover, some data loss is inevitable, with the exact amount depending on the relationship between available VMware Channel bandwidth and the required data transmission rate. If the required data transmission rate exceeds available VMware Channel bandwidth, the send queue fills. If the available VMware Channel bandwidth exceeds the required data transmission rate, the send queue empties. This situation is most commonly seen in a WAN environment, where VMware Channel bandwidth is restricted. In a LAN that normally has high bandwidth on a dedicated channel, the size of the send queue is zero or near zero most of the time. On a server not protected with vCenter Server Heartbeat, all data is technically unsafe and subject to loss if the server fails.

Receive Queue

The passive server’s receive queue is considered safe because the data in this queue already was transmitted across the VMware Channel from the active server, and is not lost in the event of a failover, which applies all updates to the passive server as part of the process.

Both send and receive queues are stored on disk by default in the `<VMware vCenter Server Heartbeat Install Directory>\R2\log directory`, with a quota configured for the maximum permitted queue size (by default, 1GB on each server). You can configure both the queue location and the quota.

Two methods to set the queue size:

- Using vCenter Server Heartbeat Console
 a. Start vCenter Server Heartbeat
 b. Open the vCenter Server Heartbeat Console, and select Data: Traffic Queues.
 c. Click Configure.
 d. Set the Allow a maximum value and click OK.
 e. Shut down and restart vCenter Server Heartbeat for the change to take effect. You are not required to stop protected applications.

- Using the Server Configuration wizard
 a. Shut down vCenter Server Heartbeat.
 b. Open the Server Configuration wizard and click the Logs tab.
 c. Set the Maximum Disk Usage value and click Finish.
 d. Start vCenter Server Heartbeat.

NOTE vCenter Server Heartbeat is a symmetrical system and can operate with either server in the active role. For this reason, the queue size is always set to the same value for both servers.

MaxDiskUsage Error Messages

The following error messages display when available disk space on the servers is exceeded.

[L9] Exceeded the Maximum Disk Usage (VCChannelExceededMaxDiskUsageException)

This message indicates that you have exceeded the amount of allocated disk space reserved for the queue.

Symptom

vCenter Server Heartbeat exceeds its preconfigured queue size.
Causes
On the active server, the size of the active server queue has exceeded the disk quota allocated for it. On the passive server, the size of the passive server queue has exceeded the disk quota allocated for it.

Resolution
While neither condition is critical, determine the sequence of events that led to the condition.

[L9] Exceeded the Maximum Disk Usage on the ACTIVE Server
This message indicates that you have exceeded the amount of allocated disk space reserved for the active server’s send queue.

Symptom
Replication stops and the vCenter Server Heartbeat Event Log displays the error message originating from the active server.

Causes
A temporary interruption in the VMware Channel, or insufficient VMware Channel bandwidth to support the volume of replication traffic starts filling the active server queue. The size of the queue eventually exceeds the configured disk quota.

Resolution
Assuming no other channel connection issues exist (see knowledge base article 1008551 (vCSHB-Ref-992) - Troubleshooting VMware vCenter Server Channel Drops), you can increase the amount of disk space allotted to the queues. The default setting is 1GB, which can be insufficient on servers with a large volume of replication traffic and limited VMware Channel bandwidth. If you have sufficient disk space, set the queue size to zero (unlimited) so vCenter Server Heartbeat can use any free disk space to store the queues.

[L9] Exceeded the Maximum Disk Usage on the PASSIVE Server
This message indicates that you have exceeded the amount of allocated disk space reserved for the passive server’s receive queue.

Symptom
Replication stops and the vCenter Server Heartbeat Event Log displays the error message originating from the passive server.

Causes
Two of the most common causes are shown below:

- The bottleneck lies between the VMware Channel NIC and the disk subsystem on the passive server. Replication traffic passes across the VMware Channel faster than it can be written to disk on the passive server. The excess is buffered temporarily in the passive server’s receive queue. The size of the queue can eventually exceed the allotted disk quota.

- If the passive server is much less powerful than the active server in terms of processor speed, RAM, or disk performance, it can lag behind the active server during periods of high replication activity. Monitor one or more Windows performance counters to determine the component experiencing sustained high activity. Intensive page file use or persistently large disk queue length can indicate a problem. Upgrade one or more physical components of the server.

Either server can be active or passive. If the Secondary server is more powerful than the Primary server, hardware-related issues can only occur while the Secondary server is in the active role.
Resolution
To resolve this issue:

- If you have multiple physical disks on each server, locate the vCenter Server Heartbeat send and receive queues on a separate physical disk, away from the Windows directory, the Windows page file, and any protected files to help alleviate disk performance issues:
 a. Shut down vCenter Server Heartbeat.
 b. Open the Server Configuration wizard and click the Logs tab.
 c. Set the path for Message Queue Logs Location and click Finish.
 d. Start vCenter Server Heartbeat on both servers.

The selected path is applied to all vCenter Server Heartbeat queues on both servers.

- Increase the amount of disk space allotted to the queues. However, if a hardware issue is the root of the problem, correct that problem at the source.

- The size of the passive server’s receive queue can increase sharply in response to certain types of file write activity on the active server, such as when vCenter Server Heartbeat is replicating a large number of very small updates of a few bytes each. The volume of update traffic can be far greater than the physical size of the files on the disk, and the receive queue can become disproportionately large. You can see this pattern of disk activity during the population of Full-Text Catalogs in Microsoft SQL Server. Increase the amount of disk space available for the queues. Move the queues to their own physical disk, upgrade the memory or the disk subsystem.

- vCenter Server Heartbeat requires a certain amount of system resource for its own basic operations and requires some additional resources for processing replication traffic. This is in addition to the resources used by Windows and other applications running on the server, including critical applications protected by Heartbeat. Allocate sufficient resources for all the applications and services running on such a server to provide maximum performance, stability, and resilience for changing client, server, and network activity.

[L20] Out of Disk Space (VCChannelOutOfDiskSpaceException)

This message indicates that one of the servers in the pair has run out of disk space without reaching its preset quota.

Symptom
Replication stops and the vCenter Server Heartbeat Event Log displays the error message originating from either server in the pair.

Cause
One of the queues has exceeded the amount of physical disk space available for it without reaching its quota limit. For example, if the maximum queue size is set to 5GB, but only 3GB of physical disk space remains, this error message is reported if one of the queues exceeds 3GB in size.

Resolution
Free up more disk space or move the queues to a disk with sufficient free space to accommodate queue sizes up to the limit configured for Maximum Disk Usage.
Application Slowdown

Operations performed by the application can take longer to complete, and in turn, can affect the time required to log in to a remote client, or to open or save a file. This is true for both servers running vCenter Server Heartbeat and for servers running any other application. vCenter Server Heartbeat can monitor system performance counters and display warnings when predefined thresholds are exceeded, but it does not actively manage system resources for other applications. Like any other application, it also requires a finite amount of resources for its own operations in addition to the resources used by the operating system and the protected application.

The machines hosting vCenter Server Heartbeat must meet recommended hardware requirements and must be powerful enough to support the load, the protected applications, and any other critical applications running on the same server pair.

Poor Application Performance

When applications are competing for resources, one or more applications can perform poorly.

Symptom

Neither server in the pair can accommodate the load placed upon it during normal operation.

Cause

The Primary server’s resource usage in one or more areas reached close to the maximum before vCenter Server Heartbeat was installed.

Resolution

Heartbeat Diagnostics can report these conditions and issues warnings if CPU usage or memory usage exceed a certain percentage of the available resource. Information provided by Heartbeat Diagnostics can minimize the risk of application slowdown by identifying needed hardware upgrades on the Primary server.

Both Servers Can Accommodate the Initial Load but the Load Has Increased

Any software installed on a server or workstation consumes a finite amount of system resources when it runs and it must share the resources it uses with any other applications running at the same time. Increased demand caused by additional user activity can have an impact on the server performance.

Symptom

Increased user activity slows application response time.

Causes

The server pair operates normally when vCenter Server Heartbeat is first installed, but performance decreases due to increased user activity. For example, users on the SQL Server system increase or the typical usage pattern becomes more intense. This can be a gradual and sustained increase over time, or transient if a specific event triggers a temporary surge in user activity.

Resolution

If the situation is sporadic, it can correct itself when the load decreases. If the increase is sustained and permanent, upgrade the server hardware.

One Server Can Provide Adequate Resource Support, but the Other Cannot

If the total resource requirements of the applications exceed the available physical resources, the operating system attempts to provide resources, but leaves some applications under resourced. When this situation occurs, an application cannot obtain enough memory to operate normally, or a process must wait before accessing the hard disk.
Symptom
Applications operate normally when the Primary server is active but operate slowly when the Secondary server is active (or the reverse).

Cause
A large discrepancy occurs in the processing power between the Primary and Secondary servers. One server can handle the operational load while the other cannot. The load on a server is greater while in the active role when the protected application starts. Applications on the server pair run successfully when the Primary server is active, but experience performance issues when the Secondary is active (or the reverse). Problems can arise even when the more powerful server is active.

Resolution
Both servers must have approximately equivalent processing power, RAM and disk performance. Upgrade the hardware on one server in the pair so that the two servers have roughly the same performance.

Scheduled Resource Intensive Tasks
Scheduling multiple resource intensive tasks at the same time can adversely impact server performance and affect application performance.

Symptom
Resource-intense scheduled tasks impact performance at certain times.

Cause
Two or more resource-intensive processes run simultaneously or one process performs actions that increase the load on vCenter Server Heartbeat by triggering additional and sometimes unnecessary replication traffic. Examples: processes such as backups, database maintenance tasks, disk defragmentation, or scheduled virus scans.

Resolution
Schedule operations so that they do not overlap and schedule them outside regular working hours, when fewer users are accessing the protected application and consequently less load on the server.
Appendix – Setup Error Messages

Table A-1. Setup Error Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Pri</th>
<th>Sec</th>
<th>Level</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 – ‘The pre install check data file does not have the correct format. Setup cannot continue’.</td>
<td>No</td>
<td>Yes</td>
<td>Critical</td>
<td>Check that the file adheres to the correct formatting and structure for use in analysis on the Secondary.</td>
</tr>
<tr>
<td>Setup has detected incompatible versions of the collector version x and the analyzer version y dll. This would suggest different versions of Setup have been run on the Primary and Secondary servers.</td>
<td>No</td>
<td>Yes</td>
<td>Critical</td>
<td>Check that the analyzer and collector dlls are compatible.</td>
</tr>
<tr>
<td>File x cannot be analyzed it may be corrupt Setup is unable to continue. If the file has been opened check that it has not been saved with Word Wrap.</td>
<td>-</td>
<td>Yes</td>
<td>Critical</td>
<td>Check file format is correct.</td>
</tr>
<tr>
<td>190 – This server is a #1# domain controller. vCenter Server Heartbeat must not be installed on a domain controller.</td>
<td>Yes</td>
<td>Yes</td>
<td>Critical</td>
<td>Test whether the server is a domain controller.</td>
</tr>
<tr>
<td>175 – vCenter Server Heartbeat requires Windows 2003 Standard Edition SP1 or later if '/3GB' switch is on.</td>
<td>Yes</td>
<td>Yes</td>
<td>Critical</td>
<td></td>
</tr>
<tr>
<td>103 - vCenter Server Heartbeat does not support #1#. The following are supported Windows 2000 Server SP4 or greater; Windows Server 2003 SP1 or greater.</td>
<td>Yes</td>
<td>Yes</td>
<td>Warning</td>
<td></td>
</tr>
<tr>
<td>200 - Your #1# server uses the Intel ICH7 chipset and Windows 2000 has been detected. This combination is incompatible with vCenter Server Heartbeat.</td>
<td>Yes</td>
<td>Yes</td>
<td>Critical</td>
<td></td>
</tr>
<tr>
<td>217 - vCenter Server Heartbeat is not supported on Windows Storage Server Edition.</td>
<td>Yes</td>
<td>Yes</td>
<td>Warning</td>
<td></td>
</tr>
<tr>
<td>106 - Primary and Secondary OS versions are not identical, #1# vs. #2#: and require the same Service Pack level.</td>
<td>-</td>
<td>Yes</td>
<td>Critical</td>
<td>Compatibility check on secondary.</td>
</tr>
<tr>
<td>208 - You are running a 64-bit version of Windows on one of your servers and a 32-bit version of Windows on the other. This is not supported.</td>
<td>-</td>
<td>Yes</td>
<td>Critical</td>
<td>Compatibility check on secondary.</td>
</tr>
<tr>
<td>111 - The system folders on primary and secondary system must be the same. Setup has detected that the secondary system folder is #2# and the primary was #1#.</td>
<td>-</td>
<td>Yes</td>
<td>Critical</td>
<td>Compatibility check on secondary.</td>
</tr>
<tr>
<td>Message</td>
<td>Pri</td>
<td>Sec</td>
<td>Level</td>
<td>Test</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>113 - You do not have enough total memory to install vCenter Server Heartbeat on your server. You must have at least 1GB.</td>
<td>Yes</td>
<td>Yes</td>
<td>Critical Stop</td>
<td>VMware recommend a minimum of 2GB. Note actual memory requirements depend on the application load; and may require more memory.</td>
</tr>
<tr>
<td>117 - You do not have enough free disk space to install vCenter Server Heartbeat. You must have at least 2GB available.</td>
<td>Yes</td>
<td>Yes</td>
<td>Critical Stop</td>
<td></td>
</tr>
<tr>
<td>118 - For every volume on the primary system that contains protected data a corresponding volume must exist on the secondary server. In most cases this means that for every volume on the primary server a volume with the same drive letter (such as D:) must exist on the secondary server. If this is not the case, the secondary server must be modified to meet this requirement.</td>
<td>-</td>
<td>Yes</td>
<td>Warning</td>
<td>Compatibility check on secondary.</td>
</tr>
<tr>
<td>204 - Your operating system on your server is #2# and you are running with a Windows 2000 driver for your NC77xx NIC(s). In order to prevent system crashes you must upgrade to a Windows 2003 driver; the name for those drivers ends with '57XP32.sys' and not with '57W2K.sys'</td>
<td>Yes</td>
<td>Yes</td>
<td>Critical Stop</td>
<td></td>
</tr>
<tr>
<td>212 - The number of Free System Page Table Entries on this server has dropped to #1#. This is too low. You should have at least #2# Free System Page Table Entries available.</td>
<td>Yes</td>
<td>Yes</td>
<td>Critical Stop</td>
<td></td>
</tr>
<tr>
<td>201 - #1#: This service is incompatible with running vCenter Server Heartbeat and must be stopped before vCenter Server Heartbeat can be installed.</td>
<td>Yes</td>
<td>Yes</td>
<td>Warning</td>
<td></td>
</tr>
<tr>
<td>209 - Double-Take drivers have been detected on this server. To avoid compatibility problems please uninstall Double-Take before re-running setup.</td>
<td>Yes</td>
<td>Yes</td>
<td>Critical Stop</td>
<td></td>
</tr>
</tbody>
</table>