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1) Motivations

There are several high level goals which must be balanced in designing
an API for paravirtualization. The most general concerns are:

Portability - it should be easy to port a guest OS to use the API
High performance - the API must not obstruct a high performance

hypervisor implementation
Maintainability - it should be easy to maintain and upgrade the guest

OS
Extensibility - it should be possible for future expansion of the

API

Portability.

The general approach to paravirtualization rather than full
virtualization is to modify the guest operating system. This means
there is implicitly some code cost to port a guest OS to run in a
paravirtual environment. The closer the API resembles a native
platform which the OS supports, the lower the cost of porting.
Rather than provide an alternative, high level interface for this
API, the approach is to provide a low level interface which
encapsulates the sensitive and performance critical parts of the
system. Thus, we have direct parallels to most privileged
instructions, and the process of converting a guest OS to use these
instructions is in many cases a simple replacement of one function
for another. Although this is sufficient for CPU virtualization,
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performance concerns have forced us to add additional calls for
memory management, and notifications about updates to certain CPU
data structures. Support for this in the Linux operating system has
proved to be very minimal in cost because of the already somewhat
portable and modular design of the memory management layer.

High Performance.

Providing a low level API that closely resembles hardware does not
provide any support for compound operations; indeed, typical
compound operations on hardware can be updating of many page table
entries, flushing system TLBs, or providing floating point safety.
Since these operations may require several privileged or sensitive
operations, it becomes important to defer some of these operations
until explicit flushes are issued, or to provide higher level
operations around some of these functions. In order to keep with
the goal of portability, this has been done only when deemed
necessary for performance reasons, and we have tried to package
these compound operations into methods that are typically used in
guest operating systems. In the future, we envision that additional
higher level abstractions will be added as an adjunct to the
low-level API. These higher level abstractions will target large
bulk operations such as creation, and destruction of address spaces,
context switches, thread creation and control.

Maintainability.

In the course of development with a virtualized environment, it is
not uncommon for support of new features or higher performance to
require radical changes to the operation of the system. If these
changes are visible to the guest OS in a paravirtualized system,
this will require updates to the guest kernel, which presents a
maintenance problem. In the Linux world, the rapid pace of
development on the kernel means new kernel versions are produced
every few months. This rapid pace is not always appropriate for end
users, so it is not uncommon to have dozens of different versions of
the Linux kernel in use that must be actively supported. To keep
this many versions in sync with potentially radical changes in the
paravirtualized system is not a scalable solution. To reduce the
maintenance burden as much as possible, while still allowing the
implementation to accommodate changes, the design provides a stable
ABI with semantic invariants. The underlying implementation of the
ABI and details of what data or how it communicates with the
hypervisor are not visible to the guest OS. As a result, in most
cases, the guest OS need not even be recompiled to work with a newer
hypervisor. This allows performance optimizations, bug fixes,
debugging, or statistical instrumentation to be added to the API
implementation without any impact on the guest kernel. This is
achieved by publishing a block of code from the hypervisor in the
form of a ROM. The guest OS makes calls into this ROM to perform
privileged or sensitive actions in the system.

Extensibility.

In order to provide a vehicle for new features, new device support,
and general evolution, the API uses feature compartmentalization
with controlled versioning. The API is split into sections, with
each section having independent versions. Each section has a top
level version which is incremented for each major revision, with a
minor version indicating incremental level. Version compatibility
is based on matching the major version field, and changes of the
major version are assumed to break compatibility. This allows
accurate matching of compatibility. In the event of incompatible
API changes, multiple APIs may be advertised by the hypervisor if it
wishes to support older versions of guest kernels. This provides
the most general forward / backward compatibility possible.
Currently, the API has a core section for CPU / MMU virtualization
support, with additional sections provided for each supported device
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class.

2) Overview

Initialization.

Initialization is done with a bootstrap loader that creates
the "start of day" state. This is a known state, running 32-bit
protected mode code with paging enabled. The guest has all the
standard structures in memory that are provided by a native ROM
boot environment, including a memory map and ACPI tables. For
the native hardware, this bootstrap loader can be run before
the kernel code proper, and this environment can be created
readily from within the hypervisor for the virtual case. At
some point, the bootstrap loader or the kernel itself invokes
the initialization call to enter paravirtualized mode.

Privilege Model.

The guest kernel must be modified to run at a dynamic privilege
level, since if entry to paravirtual mode is successful, the kernel
is no longer allowed to run at the highest hardware privilege level.
On the IA-32 architecture, this means the kernel will be running at
CPL 1-2, and with the hypervisor running at CPL0, and user code at
CPL3. The IOPL will be lowered as well to avoid giving the guest
direct access to hardware ports and control of the interrupt flag.

This change causes certain IA-32 instructions to become "sensitive",
so additional support for clearing and setting the hardware
interrupt flag are present. Since the switch into paravirtual mode
may happen dynamically, the guest OS must not rely on testing for a
specific privilege level by checking the RPL field of segment
selectors, but should check for privileged execution by performing
an (RPL != 3 && !EFLAGS_VM) comparison. This means the DPL of kernel
ring descriptors in the GDT or LDT may be raised to match the CPL of
the kernel. This change is visible by inspecting the segments
registers while running in privileged code, and by using the LAR
instruction.

The system also cannot be allowed to write directly to the hardware
GDT, LDT, IDT, or TSS, so these data structures are maintained by the
hypervisor, and may be shadowed or guest visible structures. These
structures are required to be page aligned to support non-shadowed
operation.

Currently, the system only provides for two guest security domains,
kernel (which runs at the equivalent of virtual CPL-0), and user
(which runs at the equivalent of virtual CPL-3, with no hardware
access). Typically, this is not a problem, but if a guest OS relies
on using multiple hardware rings for privilege isolation, this
interface would need to be expanded to support that.

Memory Management.

Since a virtual machine typically does not have access to all the
physical memory on the machine, there is a need to redefine the
physical address space layout for the virtual machine. The
spectrum of possibilities ranges from presenting the guest with
a view of a physically contiguous memory of a boot-time determined
size, exactly what the guest would see when running on hardware, to
the opposite, which presents the guest with the actual machine pages
which the hypervisor has allocated for it. Using this approach
requires the guest to obtain information about the pages it has
from the hypervisor; this can be done by using the memory map which
would normally be passed to the guest by the BIOS.

The interface is designed to support either mode of operation.
This allows the implementation to use either direct page tables
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or shadow page tables, or some combination of both. All writes to
page table entries are done through calls to the hypervisor
interface layer. The guest notifies the hypervisor about page
tables updates, flushes, and invalidations through API calls.

The guest OS is also responsible for notifying the hypervisor about
which pages in its physical memory are going to be used to hold page
tables or page directories. Both PAE and non-PAE paging modes are
supported. When the guest is finished using pages as page tables, it
should release them promptly to allow the hypervisor to free the
page table shadows. Using a page as both a page table and a page
directory for linear page table access is possible, but currently
not supported by our implementation.

The hypervisor lives concurrently in the same address space as the
guest operating system. Although this is not strictly necessary on
IA-32 hardware, performance would be severely degraded if that were
not the case. The hypervisor must therefore reserve some portion of
linear address space for its own use. The implementation currently
reserves the top 64 megabytes of linear space for the hypervisor.
This requires the guest to relocate any data in high linear space
down by 64 megabytes. For non-paging mode guests, this means the
high 64 megabytes of physical memory should be reserved. Because
page tables are not sensitive to CPL, only to user/supervisor level,
the hypervisor must combine segment protection to ensure that the
guest can not access this 64 megabyte region.

An experimental patch is available to enable boot-time sizing of
the hypervisor hole.

Segmentation.

The IA-32 architecture provides segmented virtual memory, which can
be used as another form of privilege separation. Each segment
contains a base, limit, and properties. The base is added to the
virtual address to form a linear address. The limit determines the
length of linear space which is addressable through the segment.
The properties determine read/write, code and data size of the
region, as well as the direction in which segments grow. Segments
are loaded from descriptors in one of two system tables, the GDT or
the LDT, and the values loaded are cached until the next load of the
segment. This property, known as segment caching, allows the
machine to be put into a non-reversible state by writing over the
descriptor table entry from which a segment was loaded. There is no
efficient way to extract the base field of the segment after it is
loaded, as it is hidden by the processor. In a hypervisor
environment, the guest OS can be interrupted at any point in time by
interrupts and NMIs which must be serviced by the hypervisor. The
hypervisor must be able to recreate the original guest state when it
is done servicing the external event.

To avoid creating non-reversible segments, the hypervisor will
forcibly reload any live segment registers that are updated by
writes to the descriptor tables. *N.B - in the event that a segment
is put into an invalid or not present state by an update to the
descriptor table, the segment register must be forced to NULL so
that reloading it will not cause a general protection fault (#GP)
when restoring the guest state. This may require the guest to save
the segment register value before issuing a hypervisor API call
which will update the descriptor table.*

Because the hypervisor must protect its own memory space from
privileged code running in the guest at CPL1-2, descriptors may not
provide access to the 64 megabyte region of high linear space. To
achieve this, the hypervisor will truncate descriptors in the
descriptor tables. This means that attempts by the guest to access
through negative offsets to the segment base will fault, so this is
highly discouraged (some TLS implementations on Linux do this).
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In addition, this causes the truncated length of the segment to
become visible to the guest through the LSL instruction.

Interrupt and I/O Subsystem.

For security reasons, the guest operating system is not given
control over the hardware interrupt flag. We provide a virtual
interrupt flag that is under guest control. The virtual operating
system always runs with hardware interrupts enabled, but hardware
interrupts are transparent to the guest. The API provides calls for
all instructions which modify the interrupt flag.

The paravirtualization environment provides a legacy programmable
interrupt controller (PIC) to the virtual machine. Future releases
will provide a virtual interrupt controller (VIC) that provides
more advanced features.

In addition to a virtual interrupt flag, there is also a virtual
IOPL field which the guest can use to enable access to port I/O
from userspace for privileged applications.

Generic PCI based device probing is available to detect virtual
devices. The use of PCI is pragmatic, since it allows a vendor
ID, class ID, and device ID to identify the appropriate driver
for each virtual device.

IDT Management.

The paravirtual operating environment provides the traditional x86
interrupt descriptor table for handling external interrupts,
software interrupts, and exceptions. The interrupt descriptor table
provides the destination code selector and EIP for interruptions.
The current task state structure (TSS) provides the new stack
address to use for interruptions that result in a privilege level
change. The guest OS is responsible for notifying the hypervisor
when it updates the stack address in the TSS.

Two types of indirect control flow are of critical importance to the
performance of an operating system. These are system calls and page
faults. The guest is also responsible for calling out to the
hypervisor when it updates gates in the IDT. Making IDT and TSS
updates known to the hypervisor in this fashion allows efficient
delivery through these performance critical gates.

Transparent Paravirtualization.

The guest operating system may provide an alternative implementation
of the VMI option rom compiled in. This implementation should
provide implementations of the VMI calls that are suitable for
running on native x86 hardware. This code may be used by the guest
operating system while it is being loaded, and may also be used if
the operating system is loaded on hardware that does not support
paravirtualization.

When the guest detects that the VMI option rom is available, it
replaces the compiled-in version of the rom with the rom provided by
the platform. This can be accomplished by copying the rom contents,
or by remapping the virtual address containing the compiled-in rom
to point to the platform's ROM. When booting on a platform that
does not provide a VMI rom, the operating system can continue to use
the compiled-in version to run in a non-paravirtualized fashion.

3rd Party Extensions.

If desired, it should be possible for 3rd party virtual machine
monitors to implement a paravirtualization environment that can run
guests written to this specification.
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The general mechanism for providing customized features and
capabilities is to provide notification of these feature through
the CPUID call, and allowing configuration of CPU features
through RDMSR / WRMSR instructions. This allows a hypervisor vendor
ID to be published, and the kernel may enable or disable specific
features based on this id. This has the advantage of following
closely the boot time logic of many operating systems that enables
certain performance enhancements or bugfixes based on processor
revision, using exactly the same mechanism.

An exact formal specification of the new CPUID functions and which
functions are vendor specific is still needed.

AP Startup.

Application Processor startup in paravirtual SMP systems works a bit
differently than in a traditional x86 system.

APs will launch directly in paravirtual mode with initial state
provided by the BSP. Rather than the traditional init/startup
IPI sequence, the BSP must issue the init IPI, a set application
processor state call, followed by the startup IPI.

The initial state contains the AP's control registers, general
purpose registers and segment registers, as well as the IDTR,
GDTR, LDTR and EFER. Any processor state not included in the initial
AP state (including x87 FPRs, SSE register states, and MSRs other than
EFER), are left in the poweron state.

The BSP must construct the initial GDT used by each AP. The segment
register hidden state will be loaded from the GDT specified in the
initial AP state. The IDT and (if used) LDT may either be constructed by
the BSP or by the AP.

Similarly, the initial page tables used by each AP must also be
constructed by the BSP.

If an AP's initial state is invalid, or no initial state is provided
before a start IPI is received by that AP, then the AP will fail to start.
It is therefore advisable to have a timeout for waiting for AP's to start,
as is recommended for traditional x86 systems.

See VMI_SetInitialAPState in Appendix A for a description of the
VMI_SetInitialAPState call and the associated APState data structure.

State Synchronization In SMP Systems.

Some in-memory data structures that may require no special synchronization
on a traditional x86 systems need special handling when run on a
hypervisor. Two of particular note are the descriptor tables and page
tables.

Each processor in an SMP system should have its own GDT and LDT. Changes
to each processor's descriptor tables must be made on that processor
via the appropriate VMI calls. There is no VMI interface for updating
another CPU's descriptor tables (aside from VMI_SetInitialAPState),
and the result of memory writes to other processors' descriptor tables
are undefined.

Page tables have slightly different semantics than in a traditional x86
system. As in traditional x86 systems, page table writes may not be
respected by the current CPU until a TLB flush or invlpg is issued.
In a paravirtual system, the hypervisor implementation is free to
provide either shared or private caches of the guest's page tables.
Page table updates must therefore be propagated to the other CPUs
before they are guaranteed to be noticed.

In particular, when doing TLB shootdown, the initiating processor
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must ensure that all deferred page table updates are flushed to the
hypervisor, to ensure that the receiving processor has the most up-to-date
mapping when it performs its invlpg.

Local APIC Support.

A traditional x86 local APIC is provided by the hypervisor. The local
APIC is enabled and its address is set via the IA32_APIC_BASE MSR, as
usual. APIC registers may be read and written via ordinary memory
operations.

For performance reasons, higher performance APIC read and write interfaces
are provided. If possible, these interfaces should be used to access
the local APIC.

The IO-APIC is not included in this spec, as it is typically not
performance critical, and used mainly for initial wiring of IRQ pins.
Currently, we implement a fully functional IO-APIC with all the
capabilities of real hardware. This may seem like an unnecessary burden,
but if the goal is transparent paravirtualization, the kernel must
provide fallback support for an IO-APIC anyway. In addition, the
hypervisor must support an IO-APIC for SMP non-paravirtualized guests.
The net result is less code on both sides, and an already well defined
interface between the two. This avoids the complexity burden of having
to support two different interfaces to achieve the same task.

One shortcut we have found most helpful is to simply disable NMI delivery
to the paravirtualized kernel. There is no reason NMIs can't be
supported, but typical uses for them are not as productive in a
virtualized environment. Watchdog NMIs are of limited use if the OS is
already correct and running on stable hardware; profiling NMIs are
similarly of less use, since this task is accomplished with more accuracy
in the VMM itself; and NMIs for machine check errors should be handled
outside of the VM. The addition of NMI support does create additional
complexity for the trap handling code in the VM, and although the task is
surmountable, the value proposition is debatable. Here, again, feedback
is desired.

Time Interface.

In a virtualized environment, virtual machines (VM) will time share
the system with each other and with other processes running on the
host system. Therefore, a VM's virtual CPUs (VCPUs) will be
executing on the host's physical CPUs (PCPUs) for only some portion
of time. This section of the VMI exposes a paravirtual view of
time to the guest operating systems so that they may operate more
effectively in a virtual environment. The interface also provides
a way for the VCPUs to set alarms in this paravirtual view of time.

Time Domains:

a) Wallclock Time:

Wallclock time exposed to the VM through this interface indicates
the number of nanoseconds since epoch, 1970-01-01T00:00:00Z (ISO
8601 date format). If the host's wallclock time changes (say, when
an error in the host's clock is corrected), so does the wallclock
time as viewed through this interface.

b) Real Time:

Another view of time accessible through this interface is real
time. Real time always progresses except for when the VM is
stopped or suspended. Real time is presented to the guest as a
counter which increments at a constant rate defined (and presented)
by the hypervisor. All the VCPUs of a VM share the same real time
counter.
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The unit of the counter is called "cycles". The unit and initial
value (corresponding to the time the VM enters para-virtual mode)
are chosen by the hypervisor so that the real time counter will not
rollover in any practical length of time. It is expected that the
frequency (cycles per second) is chosen such that this clock
provides a "high-resolution" view of time. The unit can only
change when the VM (re)enters paravirtual mode.

c) Stolen time and Available time:

A VCPU is always in one of three states: running, halted, or ready.
The VCPU is in the 'running' state if it is executing. When the
VCPU executes the HLT interface, the VCPU enters the 'halted' state
and remains halted until there is some work pending for the VCPU
(e.g. an alarm expires, host I/O completes on behalf of virtual
I/O). At this point, the VCPU enters the 'ready' state (waiting
for the hypervisor to reschedule it). Finally, at any time when
the VCPU is not in the 'running' state nor the 'halted' state, it
is in the 'ready' state.

For example, consider the following sequence of events, with times
given in real time:

(Example 1)

At 0 ms, VCPU executing guest code.
At 1 ms, VCPU requests virtual I/O.
At 2 ms, Host performs I/O for virtual I/0.
At 3 ms, VCPU executes VMI_Halt.
At 4 ms, Host completes I/O for virtual I/O request.
At 5 ms, VCPU begins executing guest code, vectoring to the interrupt

handler for the device initiating the virtual I/O.
At 6 ms, VCPU preempted by hypervisor.
At 9 ms, VCPU begins executing guest code.

From 0 ms to 3 ms, VCPU is in the 'running' state. At 3 ms, VCPU
enters the 'halted' state and remains in this state until the 4 ms
mark. From 4 ms to 5 ms, the VCPU is in the 'ready' state. At 5
ms, the VCPU re-enters the 'running' state until it is preempted by
the hypervisor at the 6 ms mark. From 6 ms to 9 ms, VCPU is again
in the 'ready' state, and finally 'running' again after 9 ms.

Stolen time is defined per VCPU to progress at the rate of real
time when the VCPU is in the 'ready' state, and does not progress
otherwise. Available time is defined per VCPU to progress at the
rate of real time when the VCPU is in the 'running' and 'halted'
states, and does not progress when the VCPU is in the 'ready'
state.

So, for the above example, the following table indicates these time
values for the VCPU at each ms boundary:

Real time Stolen time Available time
0 0 0
1 0 1
2 0 2
3 0 3
4 0 4
5 1 4
6 1 5
7 2 5
8 3 5
9 4 5
10 4 6

Notice that at any point:
real_time == stolen_time + available_time
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Stolen time and available time are also presented as counters in
"cycles" units. The initial value of the stolen time counter is 0.
This implies the initial value of the available time counter is the
same as the real time counter.

Alarms:

Alarms can be set (armed) against the real time counter or the
available time counter. Alarms can be programmed to expire once
(one-shot) or on a regular period (periodic). They are armed by
indicating an absolute counter value expiry, and in the case of a
periodic alarm, a non-zero relative period counter value. [TBD:
The method of wiring the alarms to an interrupt vector is dependent
upon the virtual interrupt controller portion of the interface.
Currently, the alarms may be wired as if they are attached to IRQ0
or the vector in the local APIC LVTT. This way, the alarms can be
used as drop in replacements for the PIT or local APIC timer.]

Alarms are per-vcpu mechanisms. An alarm set by vcpu0 will fire
only on vcpu0, while an alarm set by vcpu1 will only fire on vcpu1.
If an alarm is set relative to available time, its expiry is a
value relative to the available time counter of the vcpu that set
it.

The interface includes a method to cancel (disarm) an alarm. On
each vcpu, one alarm can be set against each of the two counters
(real time and available time). A vcpu in the 'halted' state
becomes 'ready' when any of its alarm's counters reaches the
expiry.

An alarm "fires" by signaling the virtual interrupt controller. An
alarm will fire as soon as possible after the counter value is
greater than or equal to the alarm's current expiry. However, an
alarm can fire only when its vcpu is in the 'running' state.

If the alarm is periodic, a sequence of expiry values,

E(i) = e0 + p * i , i = 0, 1, 2, 3, ...

where 'e0' is the expiry specified when setting the alarm and 'p'
is the period of the alarm, is used to arm the alarm. Initially,
E(0) is used as the expiry. When the alarm fires, the next expiry
value in the sequence that is greater than the current value of the
counter is used as the alarm's new expiry.

One-shot alarms have only one expiry. When a one-shot alarm fires,
it is automatically disarmed.

Suppose an alarm is set relative to real time with expiry at the 3
ms mark and a period of 2 ms. It will expire on these real time
marks: 3, 5, 7, 9. Note that even if the alarm does not fire
during the 5 ms to 7 ms interval, the alarm can fire at most once
during the 7 ms to 9 ms interval (unless, of course, it is
reprogrammed).

If an alarm is set relative to available time with expiry at the 1
ms mark (in available time) and with a period of 2 ms, then it will
expire on these available time marks: 1, 3, 5. In the scenario
described in example 1, those available time values correspond to
these values in real time: 1, 3, 6.

3) Architectural Differences from Native Hardware.

For the sake of performance, some requirements are imposed on kernel
fault handlers which are not present on real hardware. Most modern
operating systems should have no trouble meeting these requirements.
Failure to meet these requirements may prevent the kernel from
working properly.
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1) The hardware flags on entry to a fault handler may not match
the EFLAGS image on the fault handler stack. The stack image
is correct, and will have the correct state of the interrupt
and arithmetic flags.

2) The stack used for kernel traps must be flat - that is, zero base,
segment limit determined by the hypervisor.

3) On entry to any fault handler, the stack must have sufficient space
to hold 32 bytes of data, or the guest may be terminated.

4) When calling VMI functions, the kernel must be running on a
flat 32-bit stack and code segment.

5) Most VMI functions require flat data and extra segment (DS and ES)
segments as well; notable exceptions are IRET and SYSEXIT.

6) Interrupts must always be enabled when running code in userspace.

7) IOPL semantics for userspace are changed; although userspace may be
granted port access, it can not affect the interrupt flag.

8) EIPs from faults which occur during VMI calls may not match the
original native instruction EIP.

9) On entry to V8086 mode, MSR_SYSENTER_CS is cleared to zero.

10) Only two code privilege levels are supported, one supervisor and one
user privilege level.

4) ROM Implementation

Modularization

Originally, we envisioned modularizing the ROM API into several
subsections, but the close coupling between the initial layers
and the requirement to support native PCI bus devices has made
ROM components for network or block devices unnecessary to this
point in time.

VMI - the virtual machine interface. This is the core CPU, I/O
and MMU virtualization layer. I/O is currently limited
to port access to emulated devices.

Detection

The presence of hypervisor ROMs can be recognized by scanning the
upper region of the first megabyte of physical memory. Multiple
ROMs may be provided to support older API versions for legacy guest
OS support. ROM detection is done in the traditional manner, by
scanning the memory region from C8000h - DFFFFh in 2 kilobyte
increments. The romSignature bytes must be '0x55, 0xAA', and the
checksum of the region indicated by the romLength field must be zero.
The checksum is a simple 8-bit addition of all bytes in the ROM region.

Data layout

typedef struct HyperRomHeader {
uint16_t romSignature;
int8_t romLength;
unsigned char romEntry[4];
uint8_t romPad0;
uint32_t hyperSignature;
uint8_t APIVersionMinor;
uint8_t APIVersionMajor;
uint8_t reserved0;
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uint8_t reserved1;
uint32_t reserved2;
uint32_t reserved3;
uint16_t pciHeaderOffset;
uint16_t pnpHeaderOffset;
uint32_t romPad3;
char reserved[32];
char elfHeader[64];

} HyperRomHeader;

The first set of fields is defined by the BIOS:

romSignature - fixed 0xAA55, BIOS ROM signature
romLength - the length of the ROM, in 512 byte chunks.

Determines the area to be checksummed.
romEntry - 16-bit initialization code stub used by BIOS.
romPad0 - reserved

The next set of fields is defined by this API:

hyperSignature - a 4 byte signature providing recognition of the
device class represented by this ROM. Each
device class defines its own unique signature.

APIVersionMinor - the revision level of this device class' API.
This indicates incremental changes to the API.

APIVersionMajor - the major version. Used to indicates large
revisions or additions to the API which break
compatibility with the previous version.

reserved0,1,2,3 - for future expansion

The next set of fields is defined by the PCI / PnP BIOS spec:

pciHeaderOffset - relative offset to the PCI device header from
the start of this ROM.

pnpHeaderOffset - relative offset to the PnP boot header from the
start of this ROM.

romPad3 - reserved by PCI spec.

Finally, there is space for future header fields, and an area
reserved for an ELF header to point to symbol information.

Appendix A - VMI ROM Low Level ABI

OS writers intending to port their OS to the paravirtualizable x86
processor being modeled by this hypervisor need to access the
hypervisor through the VMI layer. It is possible although it is
currently unimplemented to add or replace the functionality of
individual hypervisor calls by providing your own ROM images. This is
intended to allow third party customizations.

VMI compatible ROMs user the signature "cVmi" in the hyperSignature
field of the ROM header.

Many of these calls are compatible with the SVR4 C call ABI, using up
to three register arguments. Some calls are not, due to restrictions
of the native instruction set. Calls which diverge from this ABI are
noted. In GNU terms, this means most of the calls are compatible with
regparm(3) argument passing.

Most of these calls behave as standard C functions, and as such, may
clobber registers EAX, EDX, ECX, flags. Memory clobbers are noted
explicitly, since many of them may be inlined without a memory clobber.

Most of these calls require well defined segment conventions - that is,
flat full size 32-bit segments for all the general segments, CS, SS, DS,
ES. Exceptions in some cases are noted.

The net result of these choices is that most of the calls are very
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easy to make from C-code, and calls that are likely to be required in
low level trap handling code are easy to call from assembler. Most
of these calls are also very easily implemented by the hypervisor
vendor in C code, and only the performance critical calls from
assembler paths require custom assembly implementations.

CORE INTERFACE CALLS

This set of calls provides the base functionality to establish running
the kernel in VMI mode.

The interface will be expanded to include feature negotiation, more
explicit control over call bundling and flushing, and hypervisor
notifications to allow inline code patching.

VMI_Init

VMICALL void VMI_Init(void);

Initializes the hypervisor environment. Returns zero on success,
or -1 if the hypervisor could not be initialized. Note that this
is a recoverable error if the guest provides the requisite native
code to support transparent paravirtualization.

Inputs: None
Outputs: EAX = result
Clobbers: Standard
Segments: Standard

VMI_GetRelocationInfo

VMICALL VMI_UINT64 VMI_GetRelocationInfo(unsigned call);

Gives the relocated address for a requested VMI call. This call
must be used to obtain the address for every VMI call except for
these two core interface calls. The returned 64-bit value is
interpreted as representing the following structure.

struct vmi_relocation_info {
unsigned long eip;
unsigned char type;
unsigned char reserved[3];

};

Where EIP gives the address of the call, and type indicates the
type of the relocation. Currently, three relocation types are
provided.

#define VMI_RELOCATION_NONE 0
No relocation is provided. Caller must use the native instruction
sequence, as the VMI layer does not require any special emulation
of this instruction.

#define VMI_RELOCATION_CALL_REL 1
Caller must use a call to the returned EIP to reach this function.

#define VMI_RELOCATION_JUMP_REL 2
Caller must use a jump to the returned EIP to reach this function.

Inputs: EAX = VMI call number
Outputs: EAX = EIP

EDX = type / reserved
Clobbers: Standard
Segments: Standard

PROCESSOR STATE CALLS
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This set of calls controls the online status of the processor. It
include interrupt control, reboot, halt, and shutdown functionality.
Future expansions may include deep sleep and hotplug CPU capabilities.

VMI_DisableInterrupts

VMICALL void VMI_DisableInterrupts(void);

Disable maskable interrupts on the processor.

Inputs: None
Outputs: None
Clobbers: Flags only
Segments: As this is both performance critical and likely to

be called from low level interrupt code, this call does not
require flat DS/ES segments, but uses the stack segment for
data access. Therefore only CS/SS must be well defined.

VMI_EnableInterrupts

VMICALL void VMI_EnableInterrupts(void);

Enable maskable interrupts on the processor. Note that the
current implementation always will deliver any pending interrupts
on a call which enables interrupts, for compatibility with kernel
code which expects this behavior. Whether this should be required
is open for debate.

Inputs: None
Outputs: None
Clobbers: Flags only
Segments: CS/SS only

VMI_GetInterruptMask

VMICALL VMI_UINT VMI_GetInterruptMask(void);

Returns the current interrupt state mask of the processor. The
mask is defined to be 0x200 (matching processor flag IF) to indicate
interrupts are enabled.

Inputs: None
Outputs: EAX = mask
Clobbers: Flags only
Segments: CS/SS only

VMI_SetInterruptMask

VMICALL void VMI_SetInterruptMask(VMI_UINT mask);

Set the current interrupt state mask of the processor. Also
delivers any pending interrupts if the mask is set to allow
them.

Inputs: EAX = mask
Outputs: None
Clobbers: Flags only
Segments: CS/SS only

VMI_Halt

VMICALL void VMI_Halt(void);

Put the processor into interruptible halt mode. This is defined
to be a non-running mode where maskable interrupts are enabled,
not a deep low power sleep mode.

Inputs: None
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Outputs: None
Clobbers: Standard
Segments: Standard

VMI_Shutdown

VMICALL void VMI_Shutdown(void);

Put the processor into non-interruptible halt mode. This is defined
to be a non-running mode where maskable interrupts are disabled,
indicates a power-off event for this CPU.

Inputs: None
Outputs: None
Clobbers: Standard
Segments: Standard

VMI_Reboot

VMICALL void VMI_Reboot(VMI_INT how);

Reboot the virtual machine, using a hard or soft reboot. A soft
reboot corresponds to the effects of an INIT IPI, and preserves
some APIC and CR state. A hard reboot corresponds to a hardware
reset.

Inputs: EAX = reboot mode
#define VMI_REBOOT_SOFT 0x0
#define VMI_REBOOT_HARD 0x1

Outputs: None
Clobbers: Standard
Segments: Standard

VMI_SetInitialAPState

void VMI_SetInitialAPState(APState *apState, VMI_UINT32 apicID);

Sets the initial state of the application processor with local APIC ID
"apicID" to the state in apState. apState must be the page-aligned
linear address of the APState structure describing the initial state of
the specified application processor.

Control register CR0 must have both PE and PG set; the result of
either of these bits being cleared is undefined. It is recommended
that for best performance, all processors in the system have the same
setting of the CR4 PAE bit. LME and LMA in EFER are both currently
unsupported. The result of setting either of these bits is undefined.

Inputs: EAX = pointer to APState structure for new co-processor
EDX = APIC ID of processor to initialize

Outputs: None
Clobbers: Standard
Segments: Standard

FLUSHING DEFERRED STATE

Some state updates are explicitly deferred until a flush point. These
include MMU updates and updates to LDT and GDT descriptors. When
page table updates and descriptor tables updates must be reflected
by the hypervisor, they must explicitly be flushed.

Note that this mechanism has already been replaced in the latest
version of VMI to provide better documented and finer-grained
control on precisely what calls are deferred.

VMI_FlushDeferredCalls

void VMI_FlushDeferredCalls(void);
Page 14



vmi_spec.txt

Flush all asynchronous state updates which may be queued.

DESCRIPTOR RELATED CALLS

This set of calls encapsulates management of the various descriptor
tables, the GDT, LDT, and IDT.

VMI_SetGDT

VMICALL void VMI_SetGDT(VMI_DTR *gdtr);

Load the global descriptor table limit and base registers. In
addition to the straightforward load of the hardware registers, this
has the additional side effect of reloading all segment registers in a
virtual machine. The reason is that otherwise, the hidden part of
segment registers (the base field) may be put into a non-reversible
state. Non-reversible segments are problematic because they can not be
reloaded - any subsequent loads of the segment will load the new
descriptor state. In general, is not possible to resume direct
execution of the virtual machine if certain segments become
non-reversible.

A load of the GDTR may cause the guest visible memory image of the GDT
to be changed. This allows the hypervisor to share the GDT pages with
the guest, but also continue to maintain appropriate protections on the
GDT page by transparently adjusting the DPL and RPL of descriptors in
the GDT.

Inputs: EAX = pointer to descriptor limit / base
Outputs: None
Clobbers: Standard, Memory
Segments: Standard

VMI_SetIDT

VMICALL void VMI_SetIDT(VMI_DTR *idtr);

Load the interrupt descriptor table limit and base registers. The IDT
format is defined to be the same as native hardware.

A load of the IDTR may cause the guest visible memory image of the IDT
to be changed. This allows the hypervisor to rewrite the IDT pages in
a format more suitable to the hypervisor, which may include adjusting
the DPL and RPL of descriptors in the guest IDT.

Inputs: EAX = pointer to descriptor limit / base
Outputs: None
Clobbers: Standard, Memory
Segments: Standard

VMI_SetLDT

VMICALL void VMI_SetLDT(VMI_SELECTOR ldtSel);

Load the local descriptor table. This has the additional side effect
of of reloading all segment registers. See VMI_SetGDT for an
explanation of why this is required. A load of the LDT may cause the
guest visible memory image of the LDT to be changed, just as GDT and
IDT loads.

Inputs: EAX = GDT selector of LDT descriptor
Outputs: None
Clobbers: Standard, Memory
Segments: Standard

VMI_SetTR
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VMICALL void VMI_SetTR(VMI_SELECTOR trSel);

Load the task register. Functionally equivalent to the LTR
instruction.

Inputs: EAX = GDT selector of TR descriptor
Outputs: None
Clobbers: Standard, Memory
Segments: Standard

VMI_GetGDT

VMICALL void VMI_GetGDT(VMI_DTR *gdtr);

Copy the GDT limit and base fields into the provided pointer. This is
equivalent to the SGDT instruction, which is non-virtualizable.

Inputs: EAX = pointer to descriptor limit / base
Outputs: None
Clobbers: Standard, Memory
Segments: Standard

VMI_GetIDT

VMICALL void VMI_GetIDT(VMI_DTR *idtr);

Copy the IDT limit and base fields into the provided pointer. This is
equivalent to the SIDT instruction, which is non-virtualizable.

Inputs: EAX = pointer to descriptor limit / base
Outputs: None
Clobbers: Standard, Memory
Segments: Standard

VMI_GetLDT

VMICALL VMI_SELECTOR VMI_GetLDT(void);

Load the task register. Functionally equivalent to the SLDT
instruction, which is non-virtualizable.

Inputs: None
Outputs: EAX = selector of LDT descriptor
Clobbers: Standard, Memory
Segments: Standard

VMI_GetTR

VMICALL VMI_SELECTOR VMI_GetTR(void);

Load the task register. Functionally equivalent to the STR
instruction, which is non-virtualizable.

Inputs: None
Outputs: EAX = selector of TR descriptor
Clobbers: Standard, Memory
Segments: Standard

VMI_WriteGDTEntry

VMICALL void VMI_WriteGDTEntry(void *gdt, VMI_UINT entry,
VMI_UINT32 descLo,
VMI_UINT32 descHi);

Write a descriptor to a GDT entry. Note that writes to the GDT itself
may be disallowed by the hypervisor, in which case this call must be
converted into a hypercall. In addition, since the descriptor may need
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to be modified to change limits and / or permissions, the guest kernel
should not assume the update will be binary identical to the passed
input.

Inputs: EAX = pointer to GDT base
EDX = GDT entry number
ECX = descriptor low word
ST(0) = descriptor high word

Outputs: None
Clobbers: Standard, Memory
Segments: Standard

VMI_WriteLDTEntry

VMICALL void VMI_WriteLDTEntry(void *gdt, VMI_UINT entry,
VMI_UINT32 descLo,
VMI_UINT32 descHi);

Write a descriptor to a LDT entry. Note that writes to the LDT itself
may be disallowed by the hypervisor, in which case this call must be
converted into a hypercall. In addition, since the descriptor may need
to be modified to change limits and / or permissions, the guest kernel
should not assume the update will be binary identical to the passed
input.

Inputs: EAX = pointer to LDT base
EDX = LDT entry number
ECX = descriptor low word
ST(0) = descriptor high word

Outputs: None
Clobbers: Standard, Memory
Segments: Standard

VMI_WriteIDTEntry

VMICALL void VMI_WriteIDTEntry(void *gdt, VMI_UINT entry,
VMI_UINT32 descLo,
VMI_UINT32 descHi);

Write a descriptor to a IDT entry. Since the descriptor may need to be
modified to change limits and / or permissions, the guest kernel should
not assume the update will be binary identical to the passed input.

Inputs: EAX = pointer to IDT base
EDX = IDT entry number
ECX = descriptor low word
ST(0) = descriptor high word

Outputs: None
Clobbers: Standard, Memory
Segments: Standard

CPU CONTROL CALLS

These calls encapsulate the set of privileged instructions used to
manipulate the CPU control state. These instructions are all properly
virtualizable using trap and emulate, but for performance reasons, a
direct call may be more efficient. With hardware virtualization
capabilities, many of these calls can be left as IDENT translations, that
is, inline implementations of the native instructions, which are not
rewritten by the hypervisor. Some of these calls are performance critical
during context switch paths, and some are not, but they are all included
for completeness, with the exceptions of the obsoleted LMSW and SMSW
instructions.

VMI_WRMSR

VMICALL void VMI_WRMSR(VMI_UINT64 val, VMI_UINT32 reg);
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Write to a model specific register. This functions identically to the
hardware WRMSR instruction. Note that a hypervisor may not implement
the full set of MSRs supported by native hardware, since many of them
are not useful in the context of a virtual machine.

Inputs: ECX = model specific register index
EAX = low word of register
EDX = high word of register

Outputs: None
Clobbers: Standard, Memory
Segments: Standard

VMI_RDMSR

VMICALL VMI_UINT64 VMI_RDMSR(VMI_UINT64 dummy, VMI_UINT32 reg);

Read from a model specific register. This functions identically to the
hardware RDMSR instruction. Note that a hypervisor may not implement
the full set of MSRs supported by native hardware, since many of them
are not useful in the context of a virtual machine.

Inputs: ECX = machine specific register index
Outputs: EAX = low word of register

EDX = high word of register
Clobbers: Standard
Segments: Standard

VMI_SetCR0

VMICALL void VMI_SetCR0(VMI_UINT val);

Write to control register zero. This can cause TLB flush and FPU
handling side effects. The set of features available to the kernel
depend on the completeness of the hypervisor. An explicit list of
supported functionality or required settings may need to be negotiated
by the hypervisor and kernel during bootstrapping. This is likely to
be implementation or vendor specific, and the precise restrictions are
not yet worked out. Our implementation in general supports turning on
additional functionality - enabling protected mode, paging, page write
protections; however, once those features have been enabled, they may
not be disabled on the virtual hardware.

Inputs: EAX = input to control register
Outputs: None
Clobbers: Standard
Segments: Standard

VMI_SetCR2

VMICALL void VMI_SetCR2(VMI_UINT val);

Write to control register two. This has no side effects other than
updating the CR2 register value.

Inputs: EAX = input to control register
Outputs: None
Clobbers: Standard
Segments: Standard

VMI_SetCR3

VMICALL void VMI_SetCR3(VMI_UINT val);

Write to control register three. This causes a TLB flush on the local
processor.

Inputs: EAX = input to control register
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Outputs: None
Clobbers: Standard
Segments: Standard

VMI_SetCR4

VMICALL void VMI_SetCR3(VMI_UINT val);

Write to control register four. This can cause TLB flush and many
other CPU side effects. The set of features available to the kernel
depend on the completeness of the hypervisor. An explicit list of
supported functionality or required settings may need to be negotiated
by the hypervisor and kernel during bootstrapping. This is likely to
be implementation or vendor specific, and the precise restrictions are
not yet worked out. Our implementation in general supports turning on
additional MMU functionality - enabling global pages, large pages, PAE
mode, and other features - however, once those features have been
enabled, they may not be disabled on the virtual hardware. The
remaining CPU control bits of CR4 remain active and behave identically
to real hardware.

Inputs: EAX = input to control register
Outputs: None
Clobbers: Standard
Segments: Standard

VMI_GetCR0
VMI_GetCR2
VMI_GetCR3
VMI_GetCR4

VMICALL VMI_UINT32 VMI_GetCR0(void);
VMICALL VMI_UINT32 VMI_GetCR2(void);
VMICALL VMI_UINT32 VMI_GetCR3(void);
VMICALL VMI_UINT32 VMI_GetCR4(void);

Read the value of a control register into EAX. The register contents
are identical to the native hardware control registers; CR0 contains
the control bits and task switched flag, CR2 contains the last page
fault address, CR3 contains the page directory base pointer, and CR4
contains various feature control bits.

Inputs: None
Outputs: EAX = value of control register
Clobbers: Standard
Segments: Standard

VMI_CLTS

VMICALL void VMI_CLTS(void);

Used to clear the task switched (TS) flag in control register zero. A
replacement for the CLTS instruction.

Inputs: None
Outputs: None
Clobbers: Standard
Segments: Standard

VMI_SetDR

VMICALL void VMI_SetDR(VMI_UINT32 num, VMI_UINT32 val);

Set the debug register to the given value. If a hypervisor
implementation supports debug registers, this functions equivalently to
native hardware move to DR instructions.

Inputs: EAX = debug register number
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EDX = debug register value

Outputs: None
Clobbers: Standard
Segments: Standard

VMI_GetDR

VMICALL VMI_UINT32 VMI_GetDR(VMI_UINT32 num);

Read a debug register. If debug registers are not supported, the
implementation is free to return zero values.

Inputs: EAX = debug register number
Outputs: EAX = debug register value
Clobbers: Standard
Segments: Standard

PROCESSOR INFORMATION CALLS

These calls provide access to processor identification, performance and
cycle data, which may be inaccurate due to the nature of running on
virtual hardware. This information may be visible in a non-virtualizable
way to applications running outside of the kernel. As such, both RDTSC
and RDPMC should be disabled by kernels or hypervisors where information
leakage is a concern, and the accuracy of data retrieved by these functions
is up to the individual hypervisor vendor.

VMI_CPUID

/* Not expressible as a C function */

The CPUID instruction provides processor feature identification in a
vendor specific manner. The instruction itself is non-virtualizable
without hardware support, requiring a hypervisor assisted CPUID call
that emulates the effect of the native instruction, while masking any
unsupported CPU feature bits.

Inputs: EAX = CPUID number
ECX = sub-level query

Outputs: EAX = CPUID dword 0
EBX = CPUID dword 1
ECX = CPUID dword 2
EDX = CPUID dword 3

Clobbers: Flags only
Segments: Standard

VMI_RDTSC

VMICALL VMI_UINT64 VMI_RDTSC(void);

The RDTSC instruction provides a cycles counter which may be made
visible to userspace. For better or worse, many applications have made
use of this feature to implement userspace timers, database indices, or
for micro-benchmarking of performance. This instruction is extremely
problematic for virtualization, because even though it is selectively
virtualizable using trap and emulate, it is much more expensive to
virtualize it in this fashion. On the other hand, if this instruction
is allowed to execute without trapping, the cycle counter provided
could be wrong in any number of circumstances due to hardware drift,
migration, suspend/resume, CPU hotplug, and other unforeseen
consequences of running inside of a virtual machine. There is no
standard specification for how this instruction operates when issued
from userspace programs, but the VMI call here provides a proper
interface for the kernel to read this cycle counter.

Inputs: None
Outputs: EAX = low word of TSC cycle counter
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EDX = high word of TSC cycle counter

Clobbers: Standard
Segments: Standard

VMI_RDPMC

VMICALL VMI_UINT64 VMI_RDPMC(VMI_UINT64 dummy, VMI_UINT32 counter);

Similar to RDTSC, this call provides the functionality of reading
processor performance counters. It also is selectively visible to
userspace, and maintaining accurate data for the performance counters
is an extremely difficult task due to the side effects introduced by
the hypervisor.

Inputs: ECX = performance counter index
Outputs: EAX = low word of counter

EDX = high word of counter
Clobbers: Standard
Segments: Standard

STACK / PRIVILEGE TRANSITION CALLS

This set of calls encapsulates mechanisms required to transfer between
higher privileged kernel tasks and userspace. The stack switching and
return mechanisms are also used to return from interrupt handlers into
the kernel, which may involve atomic interrupt state and stack
transitions.

VMI_UpdateKernelStack

VMICALL void VMI_UpdateKernelStack(void *tss, VMI_UINT32 esp0);

Inform the hypervisor that a new kernel stack pointer has been loaded
in the TSS structure. This new kernel stack pointer will be used for
entry into the kernel on interrupts from userspace.

Inputs: EAX = new kernel stack segment
EDX = new kernel stack top

Outputs: None
Clobbers: Standard
Segments: Standard

VMI_IRET

/* No C prototype provided */

Perform a near equivalent of the IRET instruction, which atomically
switches off the current stack and restore the interrupt mask. This
may return to userspace or back to the kernel from an interrupt or
exception handler. The VMI_IRET call does not restore IOPL from the
stack image, as the native hardware equivalent would. Instead, IOPL
must be explicitly restored using a VMI_SetIOPL call. The VMI_IRET
call does, however, restore the state of the EFLAGS_VM bit from the
stack image in the event that the hypervisor and kernel both support
V8086 execution mode. If the hypervisor does not support V8086 mode,
this can be silently ignored, generating an error that the guest must
deal with.

Note that returning to userspace with interrupts disabled is an invalid
operation in a paravirtualized kernel, and the results of an attempt to
do so are undefined.

Also note that when issuing the VMI_IRET call, the userspace data
segments may have already been restored, so only the stack and code
segments can be assumed valid.

There is currently no support for IRET calls from a 16-bit stack
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segment, which poses a problem for supporting certain userspace
applications which make use of high bits of ESP on a 16-bit stack. How
to best resolve this is an open question. One possibility is to
introduce a new VMI call which can operate on 16-bit segments, since it
is desirable to make the common case here as fast as possible.

Inputs: ST(0) = New EIP
ST(1) = New CS
ST(2) = New Flags (including interrupt mask)
ST(3) = New ESP (for userspace returns)
ST(4) = New SS (for userspace returns)
ST(5) = New ES (for v8086 returns)
ST(6) = New DS (for v8086 returns)
ST(7) = New FS (for v8086 returns)
ST(8) = New GS (for v8086 returns)

Outputs: None (does not return)
Clobbers: None (does not return)
Segments: CS / SS only

VMI_SYSEXIT

/* No C prototype provided */

For hypervisors and processors which support SYSENTER / SYSEXIT, the
VMI_SYSEXIT call is provided as a binary equivalent to the native
SYSENTER instruction. Since interrupts must always be enabled in
userspace, the VMI version of this function always combines atomically
enabling interrupts with the return to userspace.

Inputs: EDX = New EIP
ECX = New ESP

Outputs: None (does not return)
Clobbers: None (does not return)
Segments: CS / SS only

I/O CALLS

This set of calls incorporates I/O related calls - PIO, setting I/O
privilege level, and forcing memory writeback for device coherency.

VMI_INB
VMI_INW
VMI_INL

VMICALL VMI_UINT8 VMI_INB(VMI_UINT dummy, VMI_UINT port);
VMICALL VMI_UINT16 VMI_INW(VMI_UINT dummy, VMI_UINT port);
VMICALL VMI_UINT32 VMI_INL(VMI_UINT dummy, VMI_UINT port);

Input a byte, word, or doubleword from an I/O port. These
instructions have binary equivalent semantics to native instructions.

Inputs: EDX = port number
EDX, rather than EAX is used, because the native
encoding of the instruction may use this register
implicitly.

Outputs: EAX = port value
Clobbers: Memory only
Segments: Standard

VMI_OUTB
VMI_OUTW
VMI_OUTL

VMICALL void VMI_OUTB(VMI_UINT value, VMI_UINT port);
VMICALL void VMI_OUTW(VMI_UINT value, VMI_UINT port);
VMICALL void VMI_OUTL(VMI_UINT value, VMI_UINT port);
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Output a byte, word, or doubleword to an I/O port. These
instructions have binary equivalent semantics to native instructions.

Inputs: EAX = port value
EDX = port number

Outputs: None
Clobbers: None
Segments: Standard

VMI_INSB
VMI_INSW
VMI_INSL

/* Not expressible as C functions */

Input a string of bytes, words, or doublewords from an I/O port. These
instructions have binary equivalent semantics to native instructions.
They do not follow a C calling convention, and clobber only the same
registers as native instructions.

Inputs: EDI = destination address
EDX = port number
ECX = count

Outputs: None
Clobbers: ESI, ECX, Memory
Segments: Standard

VMI_OUTSB
VMI_OUTSW
VMI_OUTSL

/* Not expressible as C functions */

Output a string of bytes, words, or doublewords to an I/O port. These
instructions have binary equivalent semantics to native instructions.
They do not follow a C calling convention, and clobber only the same
registers as native instructions.

Inputs: ESI = source address
EDX = port number
ECX = count

Outputs: None
Clobbers: ESI, ECX
Segments: Standard

VMI_IODelay

VMICALL void VMI_IODelay(void);

Delay the processor by time required to access a bus register. This is
easily implemented on native hardware by an access to a bus scratch
register, but is typically not useful in a virtual machine. It is
paravirtualized to remove the overhead implied by executing the native
delay.

Inputs: None
Outputs: None
Clobbers: Standard
Segments: Standard

VMI_SetIOPLMask

VMICALL void VMI_SetIOPLMask(VMI_UINT32 mask);

Set the IOPL mask of the processor to allow userspace to access I/O
ports. Note the mask is pre-shifted, so an IOPL of 3 would be
expressed as (3 << 12). If the guest chooses to use IOPL to allow
CPL-3 access to I/O ports, it must explicitly set and restore IOPL
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using these calls; attempting to set the IOPL flags with popf or iret
may produce no result.

Inputs: EAX = Mask
Outputs: None
Clobbers: Standard
Segments: Standard

VMI_WBINVD

VMICALL void VMI_WBINVD(void);

Write back and invalidate the data cache. This is used to synchronize
I/O memory.

Inputs: None
Outputs: None
Clobbers: Standard
Segments: Standard

APIC CALLS

APIC virtualization is currently quite simple. These calls support the
functionality of the hardware APIC in a form that allows for more
efficient implementation in a hypervisor, by avoiding trapping access to
APIC memory. The calls are kept simple to make the implementation
compatible with native hardware. The APIC must be mapped at a page
boundary in the processor virtual address space.

VMI_APICWrite

VMICALL void VMI_APICWrite(void *reg, VMI_UINT32 value);

Write to a local APIC register. Side effects are the same as native
hardware APICs. Exceptional note - writes to ICR_HI may be delayed
in taking effect until the corresponding write to ICR_LO is issued.

Inputs: EAX = APIC register address
EDX = value to write

Outputs: None
Clobbers: Standard
Segments: Standard

VMI_APICRead

VMICALL VMI_UINT32 VMI_APICRead(void *reg);

Read from a local APIC register. Side effects are the same as native
hardware APICs.

Inputs: EAX = APIC register address
Outputs: EAX = APIC register value
Clobbers: Standard
Segments: Standard

TIMER CALLS

The VMI interfaces define a highly accurate and efficient timer interface
that is available when running inside of a hypervisor. This is an
optional but highly recommended feature which avoids many of the problems
presented by classical timer virtualization. It provides notions of
stolen time, counters, and wall clock time which allows the VM to
get the most accurate information in a way which is free of races and
legacy hardware dependence.

VMI_GetWallclockTime
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VMI_NANOSECS VMICALL VMI_GetWallclockTime(void);

VMI_GetWallclockTime returns the current wallclock time as the number
of nanoseconds since the epoch. Nanosecond resolution along with the
64-bit unsigned type provide over 580 years from epoch until rollover.
The wallclock time is relative to the host's wallclock time.

Inputs: None
Outputs: EAX = low word, wallclock time in nanoseconds

EDX = high word, wallclock time in nanoseconds
Clobbers: Standard
Segments: Standard

VMI_WallclockUpdated

VMI_BOOL VMICALL VMI_WallclockUpdated(void);

VMI_WallclockUpdated returns TRUE if the wallclock time has changed
relative to the real cycle counter since the previous time that
VMI_WallclockUpdated was polled. For example, while a VM is suspended,
the real cycle counter will halt, but wallclock time will continue to
advance. Upon resuming the VM, the first call to VMI_WallclockUpdated
will return TRUE.

Inputs: None
Outputs: EAX = 0 for FALSE, 1 for TRUE
Clobbers: Standard
Segments: Standard

VMI_GetCycleFrequency

VMICALL VMI_CYCLES VMI_GetCycleFrequency(void);

VMI_GetCycleFrequency returns the number of cycles in one second. This
value can be used by the guest to convert between cycles and other time
units.

Inputs: None
Outputs: EAX = low word, cycle frequency

EDX = high word, cycle frequency
Clobbers: Standard
Segments: Standard

VMI_GetCycleCounter

VMICALL VMI_CYCLES VMI_GetCycleCounter(VMI_UINT32 whichCounter);

VMI_GetCycleCounter returns the current value, in cycles units, of the
counter corresponding to 'whichCounter' if it is one of
VMI_CYCLES_REAL, VMI_CYCLES_AVAILABLE or VMI_CYCLES_STOLEN.
VMI_GetCycleCounter returns 0 for any other value of 'whichCounter'.

Inputs: EAX = counter index, one of
#define VMI_CYCLES_REAL 0
#define VMI_CYCLES_AVAILABLE 1
#define VMI_CYCLES_STOLEN 2

Outputs: EAX = low word, cycle counter
EDX = high word, cycle counter

Clobbers: Standard
Segments: Standard

VMI_SetAlarm

VMICALL void VMI_SetAlarm(VMI_UINT32 flags, VMI_CYCLES expiry,
VMI_CYCLES period);

VMI_SetAlarm is used to arm the vcpu's alarms. The 'flags' parameter
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is used to specify which counter's alarm is being set (VMI_CYCLES_REAL
or VMI_CYCLES_AVAILABLE), how to deliver the alarm to the vcpu
(VMI_ALARM_WIRED_IRQ0 or VMI_ALARM_WIRED_LVTT), and the mode
(VMI_ALARM_IS_ONESHOT or VMI_ALARM_IS_PERIODIC). If the alarm is set
against the VMI_ALARM_STOLEN counter or an undefined counter number,
the call is a nop. The 'expiry' parameter indicates the expiry of the
alarm, and for periodic alarms, the 'period' parameter indicates the
period of the alarm. If the value of 'period' is zero, the alarm is
armed as a one-shot alarm regardless of the mode specified by 'flags'.
Finally, a call to VMI_SetAlarm for an alarm that is already armed is
equivalent to first calling VMI_CancelAlarm and then calling
VMI_SetAlarm, except that the value returned by VMI_CancelAlarm is not
accessible.

/* The alarm interface 'flags' bits. [TBD: exact format of 'flags'] */

Inputs: EAX = flags value, cycle counter number or'ed with
#define VMI_ALARM_WIRED_IRQ0 0x00000000
#define VMI_ALARM_WIRED_LVTT 0x00010000
#define VMI_ALARM_IS_ONESHOT 0x00000000
#define VMI_ALARM_IS_PERIODIC 0x00000100

EDX = low word, alarm expiry
ECX = high word, alarm expiry
ST(0) = low word, alarm expiry
ST(1) = high word, alarm expiry

Outputs: None
Clobbers: Standard
Segments: Standard

VMI_CancelAlarm

VMICALL VMI_BOOL VMI_CancelAlarm(VMI_UINT32 flags);

VMI_CancelAlarm is used to disarm an alarm. The 'flags' parameter
indicates which alarm to cancel (VMI_CYCLES_REAL or
VMI_CYCLES_AVAILABLE). The return value indicates whether or not the
cancel succeeded. A return value of FALSE indicates that the alarm was
already disarmed either because a) the alarm was never set or b) it was
a one-shot alarm and has already fired (though perhaps not yet
delivered to the guest). TRUE indicates that the alarm was armed and
either a) the alarm was one-shot and has not yet fired (and will no
longer fire until it is rearmed) or b) the alarm was periodic.

Inputs: EAX = cycle counter number
Outputs: EAX = 0 for FALSE, 1 for TRUE
Clobbers: Standard
Segments: Standard

MMU CALLS

The MMU plays a large role in paravirtualization due to the large
performance opportunities realized by gaining insight into the guest
machine's use of page tables. These calls are designed to accommodate the
existing MMU functionality in the guest OS while providing the hypervisor
with hints that can be used to optimize performance to a large degree.

VMI_SetLinearMapping

VMICALL void VMI_SetLinearMapping(int slot, VMI_UINT32 va,
VMI_UINT32 pages, VMI_UINT32 ppn);

/* The number of VMI address translation slot */
#define VMI_LINEAR_MAP_SLOTS 4

Register a virtual to physical translation of virtual address range to
physical pages. This may be used to register single pages or to
register large ranges. There is an upper limit on the number of active
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mappings, which should be sufficient to allow the hypervisor and VMI
layer to perform page translation without requiring dynamic storage.
Translations are only required to be registered for addresses used to
access page table entries through the VMI page table access functions.
The guest is free to use the provided linear map slots in a manner that
it finds most convenient. Kernels which linearly map a large chunk of
physical memory and use page tables in this linear region will only
need to register one such region after initialization of the VMI.
Hypervisors which do not require linear to physical conversion hints
are free to leave these calls as NOPs, which is the default when
inlined into the native kernel.

Inputs: EAX = linear map slot
EDX = virtual address start of mapping
ECX = number of pages in mapping
ST(0) = physical frame number to which pages are mapped

Outputs: None
Clobbers: Standard
Segments: Standard

VMI_FlushTLB

VMICALL void VMI_FlushTLB(int how);

Flush all non-global mappings in the TLB, optionally flushing global
mappings as well. The VMI_FLUSH_TLB flag should always be specified,
optionally or'ed with the VMI_FLUSH_GLOBAL flag.

Inputs: EAX = flush type
#define VMI_FLUSH_TLB 0x01
#define VMI_FLUSH_GLOBAL 0x02

Outputs: None
Clobbers: Standard, memory (implied)
Segments: Standard

VMI_InvalPage

VMICALL void VMI_InvalPage(VMI_UINT32 va);

Invalidate the TLB mapping for a single page or large page at the
given virtual address.

Inputs: EAX = virtual address
Outputs: None
Clobbers: Standard, memory (implied)
Segments: Standard

VMI_AllocatePage

VMICALL void VMI_AllocatePage(VMI_UINT32 ppn, VMI_UINT32 flags,
VMI_UINT32 orig, VMI_UINT32 base,
VMI_UINT32 count);

Indicates that a physical page will be used as a page table. The
flags field indicates the new type of the page. For page tables
that are mapped at multiple levels, the proper bits are masked
together. Additionally, the VMI_PAGE_PAE bit is set in flags for
pages that will be used as PAE page tables.

/* Flags used by VMI_{Allocate|Release}Page call */
#define VMI_PAGE_PAE 0x10

/* Flags shared by Allocate|Release Page and PTE updates */
#define VMI_PAGE_PT 0x01
#define VMI_PAGE_PD 0x02
#define VMI_PAGE_PDP 0x04
#define VMI_PAGE_PML4 0x08
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#define VMI_ALLOCATE_PAGE_RESERVED_MBZ 0xFFFFFFE0 /* must be zero */

Optionally, by specifying a non-zero 'count', the guest may
provide a hint indicating that the page's contents partially
match another page table page's contents. In this case, the PTEs
of this page starting at index 'base' and ending at index
('base'+'count'-1) match the corresponding entries of the page
table page with PPN 'orig'.

Until VMI_ReleasePage is called for this page, all updates to the
page must be performed using one of the page update calls.

Inputs: EAX = physical page number
EDX = flags
ECX = physical page number of the other page table
ST(0) = index of first PDE/PTE that matches other page
ST(1) = number of entries that match other page

Outputs: None
Clobbers: Standard
Segments: Standard

VMI_ReleasePage

VMICALL void VMI_ReleasePage(VMI_UINT32 ppn, VMI_UINT32 flags);

Indicates that a page is no longer used as a page table. The
flags field follows the same format as the VMI_AllocatePage call.

Inputs: EAX = physical page number
EDX = flags

Outputs: None
Clobbers: Standard
Segments: Standard

VMI_SetPxE

VMICALL void VMI_SetPxE(VMI_PTE pteval, VMI_PTE *ptep, VMI_UINT32 flags);

Assigns a new value to a page table / directory entry. The value of
the PTE permission bits are exactly as they should appear on hardware,
but the frame number is different depending on whether the hypervisor
is running in shadow pagetable mode or direct mode. In shadow mode,
the guest should provide the physical page number as normal, whereas in
direct mode, the guest must translate the physical page to a machine
frame using the VMI_PhysicalToMachine call. The ptep pointer must
either be registered in a slot using the VMI_SetLinearMapping call, or
must be identity mapped.

The flags value provides hints to the VMI layer which can be useful
for optimization.

/* Flags shared by Allocate|Release Page and PTE updates */
#define VMI_PAGE_PT 0x01
#define VMI_PAGE_PD 0x02
#define VMI_PAGE_PDP 0x04
#define VMI_PAGE_PML4 0x08

The first group of flags indicate the type of page table which is
being updated. For page tables which are mapped at multiple levels,
the proper bits are masked together.

/* Flags used by PTE updates */
#define VMI_PAGE_CURRENT_AS 0x10 /* implies VMI_PAGE_VA_MASK is valid

*/
#define VMI_PAGE_VA_MASK 0xfffff000

#define VMI_SETPXE_RESERVED_MBZ 0x00000FC0 /* must be zero */
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The VMI_PAGE_CURRENT_AS flag is an advisory hint that the update has
an effect on mappings in the current address space, and also passes
the linear address of the affected page in the current address space
in the VMI_PAGE_VA_MASK bits. Note that this information is advisory
only, and must not be trusted for security purposes in direct pagetable
mode.

Inputs: EAX = pte value
EDX = pte pointer (virtual address)
ECX = flags

Outputs: None
Clobbers: Standard, memory (implied)
Segments: Standard

VMI_SetPxELong

VMICALL void VMI_SetPxELong(VMI_PAE_PTE pteval, VMI_PAE_PTE *ptep,
VMI_UINT32 flags);

This call follows the exact semantics as the SetPxE call, but is
provided so that the 32-bit paging calls do not need to pass full
64-bit PTE values.

Inputs: EAX = pte value low word
EDX = pte value high word
ECX = pte pointer (virtual address)
ST(0) = flags

Outputs: None
Clobbers: Standard, memory (implied)
Segments: Standard
Lazy mode: MMU

VMI_SwapPxE

VMI_PTE VMI_SwapPxE(VMI_PTE pte, VMI_PTE *ptep);

Write 'pte' into the page table entry pointed by 'ptep', and returns
the old value in 'ptep'. This function acts atomically on the PTE
to provide up to date A/D bit information in the returned value.

VMI_TestAndSetPxEBit

VMI_BOOL VMI_TestAndSetPxEBit(VMI_INT bit, VMI_PTE *ptep);

Atomically set a bit in a page table entry. Returns zero if the bit
was not set, and non-zero if the bit was set.

VMI_TestAndClearPxEBit

VMI_BOOL VMI_TestAndSetClearPxEBit(VMI_PTE *ptep, VMI_INT bit);

Atomically clear a bit in a page table entry. Returns zero if the bit
was not set, and non-zero if the bit was set.

VMI_SetPxELong
VMI_SwapPxELong
VMI_TestAndSetPxELongBit
VMI_TestAndClearPxELongBit

void VMI_SetPxELong(VMI_PAE_PTE pte, VMI_PAE_PTE *ptep);
VMI_PAE_PTE VMI_SwapPxELong(VMI_UINT64 pte, VMI_PAE_PTE *ptep);
VMI_BOOL VMI_TestAndSetPxELongBit(VMI_PAE_PTE *ptep, VMI_INT bit);
VMI_BOOL VMI_TestAndSetClearPxELongBit(VMI_PAE_PTE *ptep, VMI_INT bit);

These functions act identically to the 32-bit PTE update functions,
but provide support for PAE mode. The calls are guaranteed to never
create a temporarily invalid but present page mapping that could be
accidentally prefetched by another processor, and all returned bits
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are guaranteed to be atomically up to date.

One special exception is the VMI_SwapPteLong function only provides
synchronization against A/D bits from other processors, not against
other invocations of VMI_SwapPteLong.

Appendix B - VMI C prototypes

Most of the VMI calls are properly callable C functions. Note that for the
absolute best performance, assembly calls are preferable in some cases, as
they do not imply all of the side effects of a C function call, such as
register clobber and memory access. Nevertheless, these wrappers serve as
a useful interface definition for higher level languages.

In some cases, a dummy variable is passed as an unused input to force
proper alignment of the remaining register values.

The call convention for these is defined to be standard GCC convention with
register passing. The regparm call interface is documented at:

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

Types used by these calls:

VMI_UINT64 64 bit unsigned integer
VMI_UINT32 32 bit unsigned integer
VMI_UINT16 16 bit unsigned integer
VMI_UINT8 8 bit unsigned integer
VMI_INT 32 bit integer
VMI_UINT 32 bit unsigned integer
VMI_DTR 6 byte compressed descriptor table limit/base
VMI_PTE 4 byte page table entry (or page directory)
VMI_LONG_PTE 8 byte page table entry (or PDE or PDPE)
VMI_SELECTOR 16 bit segment selector
VMI_BOOL 32 bit unsigned integer
VMI_CYCLES 64 bit unsigned integer
VMI_NANOSECS 64 bit unsigned integer

#ifndef VMI_PROTOTYPES_H
#define VMI_PROTOTYPES_H

/* Insert local type definitions here */
typedef struct VMI_DTR {

uint16 limit;
uint32 offset __attribute__ ((packed));

} VMI_DTR;

typedef struct APState {
VMI_UINT32 cr0;
VMI_UINT32 cr2;
VMI_UINT32 cr3;
VMI_UINT32 cr4;

VMI_UINT64 efer;

VMI_UINT32 eip;
VMI_UINT32 eflags;
VMI_UINT32 eax;
VMI_UINT32 ebx;
VMI_UINT32 ecx;
VMI_UINT32 edx;
VMI_UINT32 esp;
VMI_UINT32 ebp;
VMI_UINT32 esi;
VMI_UINT32 edi;
VMI_UINT16 cs;
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VMI_UINT16 ss;

VMI_UINT16 ds;
VMI_UINT16 es;
VMI_UINT16 fs;
VMI_UINT16 gs;
VMI_UINT16 ldtr;

VMI_UINT16 gdtrLimit;
VMI_UINT32 gdtrBase;
VMI_UINT32 idtrBase;
VMI_UINT16 idtrLimit;

} APState;

#define VMICALL __attribute__((regparm(3)))

/* CORE INTERFACE CALLS */
VMICALL void VMI_Init(void);

/* PROCESSOR STATE CALLS */
VMICALL void VMI_DisableInterrupts(void);
VMICALL void VMI_EnableInterrupts(void);

VMICALL VMI_UINT VMI_GetInterruptMask(void);
VMICALL void VMI_SetInterruptMask(VMI_UINT mask);

VMICALL void VMI_Pause(void);
VMICALL void VMI_Halt(void);
VMICALL void VMI_Shutdown(void);
VMICALL void VMI_Reboot(VMI_INT how);

#define VMI_REBOOT_SOFT 0x0
#define VMI_REBOOT_HARD 0x1

void VMI_SetInitialAPState(APState *apState, VMI_UINT32 apicID);

/* DESCRIPTOR RELATED CALLS */
VMICALL void VMI_SetGDT(VMI_DTR *gdtr);
VMICALL void VMI_SetIDT(VMI_DTR *idtr);
VMICALL void VMI_SetLDT(VMI_SELECTOR ldtSel);
VMICALL void VMI_SetTR(VMI_SELECTOR trSel);

VMICALL void VMI_GetGDT(VMI_DTR *gdtr);
VMICALL void VMI_GetIDT(VMI_DTR *idtr);
VMICALL VMI_SELECTOR VMI_GetLDT(void);
VMICALL VMI_SELECTOR VMI_GetTR(void);

VMICALL void VMI_WriteGDTEntry(void *gdt,
VMI_UINT entry,
VMI_UINT32 descLo,
VMI_UINT32 descHi);

VMICALL void VMI_WriteLDTEntry(void *gdt,
VMI_UINT entry,
VMI_UINT32 descLo,
VMI_UINT32 descHi);

VMICALL void VMI_WriteIDTEntry(void *gdt,
VMI_UINT entry,
VMI_UINT32 descLo,
VMI_UINT32 descHi);

/* CPU CONTROL CALLS */
VMICALL void VMI_WRMSR(VMI_UINT64 val, VMI_UINT32 reg);

/* Not truly a proper C function; use dummy to align reg in ECX */
VMICALL VMI_UINT64 VMI_RDMSR(VMI_UINT64 dummy, VMI_UINT32 reg);

VMICALL void VMI_SetCR0(VMI_UINT val);
VMICALL void VMI_SetCR2(VMI_UINT val);
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VMICALL void VMI_SetCR3(VMI_UINT val);
VMICALL void VMI_SetCR4(VMI_UINT val);

VMICALL VMI_UINT32 VMI_GetCR0(void);
VMICALL VMI_UINT32 VMI_GetCR2(void);
VMICALL VMI_UINT32 VMI_GetCR3(void);
VMICALL VMI_UINT32 VMI_GetCR4(void);

VMICALL void VMI_CLTS(void);

VMICALL void VMI_SetDR(VMI_UINT32 num, VMI_UINT32 val);
VMICALL VMI_UINT32 VMI_GetDR(VMI_UINT32 num);

/* PROCESSOR INFORMATION CALLS */

VMICALL VMI_UINT64 VMI_RDTSC(void);
VMICALL VMI_UINT64 VMI_RDPMC(VMI_UINT64 dummy, VMI_UINT32 counter);

/* STACK / PRIVILEGE TRANSITION CALLS */
VMICALL void VMI_UpdateKernelStack(void *tss, VMI_UINT32 esp0);

/* I/O CALLS */
/* Native port in EDX - use dummy */
VMICALL VMI_UINT8 VMI_INB(VMI_UINT dummy, VMI_UINT port);
VMICALL VMI_UINT16 VMI_INW(VMI_UINT dummy, VMI_UINT port);
VMICALL VMI_UINT32 VMI_INL(VMI_UINT dummy, VMI_UINT port);

VMICALL void VMI_OUTB(VMI_UINT value, VMI_UINT port);
VMICALL void VMI_OUTW(VMI_UINT value, VMI_UINT port);
VMICALL void VMI_OUTL(VMI_UINT value, VMI_UINT port);

VMICALL void VMI_IODelay(void);
VMICALL void VMI_WBINVD(void);
VMICALL void VMI_SetIOPLMask(VMI_UINT32 mask);

/* APIC CALLS */
VMICALL void VMI_APICWrite(void *reg, VMI_UINT32 value);
VMICALL VMI_UINT32 VMI_APICRead(void *reg);

/* TIMER CALLS */
VMICALL VMI_NANOSECS VMI_GetWallclockTime(void);
VMICALL VMI_BOOL VMI_WallclockUpdated(void);

/* Predefined rate of the wallclock. */
#define VMI_WALLCLOCK_HZ 1000000000

VMICALL VMI_CYCLES VMI_GetCycleFrequency(void);
VMICALL VMI_CYCLES VMI_GetCycleCounter(VMI_UINT32 whichCounter);

/* Defined cycle counters */
#define VMI_CYCLES_REAL 0
#define VMI_CYCLES_AVAILABLE 1
#define VMI_CYCLES_STOLEN 2

VMICALL void VMI_SetAlarm(VMI_UINT32 flags, VMI_CYCLES expiry,
VMI_CYCLES period);

VMICALL VMI_BOOL VMI_CancelAlarm(VMI_UINT32 flags);

/* The alarm interface 'flags' bits. [TBD: exact format of 'flags'] */
#define VMI_ALARM_COUNTER_MASK 0x000000ff

#define VMI_ALARM_WIRED_IRQ0 0x00000000
#define VMI_ALARM_WIRED_LVTT 0x00010000

#define VMI_ALARM_IS_ONESHOT 0x00000000
#define VMI_ALARM_IS_PERIODIC 0x00000100
#define VMI_ALARM_RESERVED_MBZ 0xFFFEFE00 /* Reserved, must be zero */
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/* MMU CALLS */
VMICALL void VMI_SetLinearMapping(int slot, VMI_UINT32 va,

VMI_UINT32 pages, VMI_UINT32 ppn);

/* The number of VMI address translation slot */
#define VMI_LINEAR_MAP_SLOTS 4

VMICALL void VMI_InvalPage(VMI_UINT32 va);
VMICALL void VMI_FlushTLB(int how);

/* Flags used by VMI_FlushTLB call */
#define VMI_FLUSH_TLB 0x01
#define VMI_FLUSH_GLOBAL 0x02

VMICALL void VMI_AllocatePage(VMI_UINT32 ppn, VMI_UINT32 flags,
VMI_UINT32 orig, VMI_UINT32 base,
VMI_UINT32 count);

VMICALL void VMI_ReleasePage(VMI_UINT32 ppn, VMI_UINT32 flags);

VMICALL void VMI_SetPxE(VMI_PTE pteval, VMI_PTE *ptep, VMI_UINT32 flags);
VMICALL VMI_PTE VMI_SwapPxE(VMI_PTE pte, VMI_PTE *ptep);
VMICALL VMI_BOOL VMI_TestAndSetPxEBit(VMI_PTE *ptep, VMI_INT bit);
VMICALL VMI_BOOL VMI_TestAndClearPxEBit(VMI_PTE *ptep, VMI_INT bit);
VMICALL void VMI_SetPxELong(VMI_PAE_PTE pteval, VMI_PAE_PTE *ptep,

VMI_UINT32 flags);
VMICALL VMI_PAE_PTE VMI_SwapPxELong(VMI_PAE_PTE pte, VMI_PAE_PTE *ptep);
VMICALL VMI_BOOL VMI_TestAndSetPxELongBit(VMI_PAE_PTE *ptep, VMI_INT bit);
VMICALL VMI_BOOL VMI_SetAndClearePxELongBit(VMI_PAE_PTE *ptep, VMI_INT bit);

/* Flags used by VMI_{Allocate|Release}Page call */
#define VMI_PAGE_PAE 0x10
#define VMI_ALLOCATE_PAGE_RESERVED_MBZ 0xFFFFFFE0 /* must be zero */

/* Flags shared by Allocate|Release Page and PTE updates */
#define VMI_PAGE_PT 0x01
#define VMI_PAGE_PD 0x02
#define VMI_PAGE_PDP 0x04
#define VMI_PAGE_PML4 0x08

/* Flags used by PTE updates */
#define VMI_PAGE_CURRENT_AS 0x10 /* implies VMI_PAGE_VA_MASK is valid */
#define VMI_PAGE_VA_MASK 0xfffff000
#define VMI_SETPXE_RESERVED_MBZ 0x00000FC0 /* must be zero */

#endif

Appendix C - Sensitive x86 instructions in the paravirtual environment

This is a list of x86 instructions which may operate in a different manner
when run inside of a paravirtual environment.

ARPL - continues to function as normal, but kernel segment registers
may be different, so parameters to this instruction may need
to be modified. (System)

IRET - the IRET instruction will be unable to change the IOPL, VM,
VIF, VIP, or IF fields. (System)

the IRET instruction may #GP if the return CS/SS RPL are
below the CPL, or are not equal. (System)

LAR - the LAR instruction will reveal changes to the DPL field of
descriptors in the GDT and LDT tables. (System, User)

LSL - the LSL instruction will reveal changes to the segment limit
of descriptors in the GDT and LDT tables. (System, User)
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LSS - the LSS instruction may #GP if the RPL is not set properly.

(System)

MOV - the mov %seg, %reg instruction may reveal a different RPL
on the segment register. (System)

The mov %reg, %ss instruction may #GP if the RPL is not set
to the current CPL. (System)

POP - the pop %ss instruction may #GP if the RPL is not set to
the appropriate CPL. (System)

POPF - the POPF instruction will be unable to set the hardware
interrupt flag. (System)

PUSH - the push %seg instruction may reveal a different RPL on the
segment register. (System)

PUSHF- the PUSHF instruction will reveal a possible different IOPL,
and the value of the hardware interrupt flag, which is always
set. (System, User)

SGDT - the SGDT instruction will reveal the location and length of
the GDT shadow instead of the guest GDT. (System, User)

SIDT - the SIDT instruction will reveal the location and length of
the IDT shadow instead of the guest IDT. (System, User)

SLDT - the SLDT instruction will reveal the selector used for
the shadow LDT rather than the selector loaded by the guest.
(System, User).

STR - the STR instruction will reveal the selector used for the
shadow TSS rather than the selector loaded by the guest.
(System, User).
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