You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/
The VMware Web site also provides the latest product updates.
If you have comments about this documentation, submit your feedback to:
docfeedback@vmware.com
Updated Information 7

About This Book 9

1 Introduction to VMware vSphere 11

2 System Requirements 13
 ESX Hardware Requirements 13
 vCenter Server and vSphere Client Hardware Requirements 16
 vCenter Server Software Requirements 17
 vSphere Client Software Requirements 18
 Support for 64-Bit Guest Operating Systems 18
 Requirements for Creating Virtual Machines 18
 Required Ports 18
 DNS Requirements for vSphere 19
 Supported Remote Management Firmware Versions 20

3 Introduction to Installing ESX 21
 Prerequisites for Installing ESX 21
 About the esxconsole.vmdk 22
 Options for Accessing the Installation Media, Booting the Installer, and Running the Installer 22
 About ESX Evaluation Mode 23
 ESX Installation Options 23

4 Location of the ESX Installation Media 27
 Download the ESX ISO Image and Burn the Installation DVD 27
 Creating a Media Depot 27

5 Booting the ESX Installer 29
 Bootstrap Commands 29
 Boot the ESX Installer from the Installation DVD 30
 PXE Booting the ESX Installer 31

6 Installing VMware ESX 41
 Install ESX Using the Graphical Mode 41
 Install ESX Using the Text Mode 45
 Installing ESX Using Scripted Mode 47

7 ESX Partitioning 63
 Required Partitions 63
 Optional Partitions 64
8 Post-Installation Considerations for ESX 65
 Download the vSphere Client 65
 Licensing the Host 65
 Set an ESX/ESXi Host to Evaluation Mode 66

9 Installing, Removing, and Updating Third-Party Extensions 67
 About Patching Hosts with vSphere Host Update Utility 67
 About the vihostupdate Command-Line Utility 68
 Update an ESX/ESXi Host Using Offline Bundles with the vihostupdate Utility 68
 Update an ESX/ESXi Host Using a Depot with the vihostupdate Utility 69
 Remove Custom Packages on ESX Using the Service Console 70
 Remove Selected Custom Packages on ESX/ESXi Using the vSphere Command Line 70

10 Preparing the vCenter Server Databases 73
 vCenter Server Database Patch and Configuration Requirements 74
 Create a 32-Bit DSN on a 64-Bit Operating System 75
 Configure vCenter Server to Communicate with the Local Database After Shortening the Computer Name to 15 Characters or Fewer 76
 About the Bundled Microsoft SQL Server 2005 Express Database Package 76
 Maintaining a vCenter Server Database 76
 Configure DB2 Databases 77
 Configure Microsoft SQL Server Databases 84
 Configure Oracle Databases 89

11 Introduction to Installing vCenter Server 95
 vCenter Server Prerequisites 95
 Using a User Account for Running vCenter Server with SQL Server 96
 About Installing vCenter Server on IPv6 Machines 97
 Configure the URLs on a Standalone vCenter Server System 97
 Running the vCenter Server and vSphere Client Installers from a Network Drive 97
 vCenter Server Components 98
 Required Data for Installing vCenter Server 98

12 Installing vCenter Server 101
 Download the vCenter Server Installer 101
 Install vCenter Server in a Virtual Machine 101
 Install vCenter Server 102

13 Postinstallation Considerations for vCenter Server 105
 Install the vSphere Client 106
 Install the vSphere Host Update Utility 107
 Uninstall VMware vSphere Components 108

14 Creating vCenter Server Linked Mode Groups 109
 Linked Mode Prerequisites 109
 Linked Mode Considerations 110
 Configure the URLs on a Linked Mode vCenter Server System 110
Joining to a Linked Mode Group During and After Installation 111
Join a Linked Mode Group After Installation 111
Isolate a vCenter Server Instance from a Linked Mode Group 112
Linked Mode Troubleshooting 113

15 Install Additional Modules 115
 Install VMware vCenter Guided Consolidation 115
 Install VMware vCenter Update Manager 116
 Install VMware vCenter Converter 117

16 Managing ESX/ESXi and vCenter Server Licenses 119
 About License Key Capacity 120
 About vSphere and vCenter Server License Keys 121
 About Using a License Server to Manage ESX 3.x/ESXi 3.5 Hosts 121
 About the License Portal 121
 About License Inventories 122
 Controlling License Permissions 123
 View License Information 124
 Add a License Key to the License Inventory and Assign It to an Asset 125
 Add Multiple License Keys to the License Inventory 125
 Assign a License Key to Multiple Assets 126
 Export Report Data 127
 License a Host Without vCenter Server 127
 License a Host When Adding It to the vCenter Server Inventory 128
 View Which Features Are Licensed on a Host 128
 Set an ESX/ESXi Host to Evaluation Mode 128
 Troubleshooting Licensing 129

Index 133
Updated Information

This **ESX and vCenter Server Installation Guide** is updated with each release of the product or when necessary.

This table provides the update history of the **ESX and vCenter Server Installation Guide**.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN-000258-04</td>
<td>- Included a topic, “DNS Requirements for vSphere,” on page 19.</td>
</tr>
<tr>
<td></td>
<td>- Modified the component values of Virtual Processor in “Requirements for Creating Virtual Machines,” on page 18.</td>
</tr>
<tr>
<td></td>
<td>- Modified a point in ESXi Hardware Requirements.</td>
</tr>
<tr>
<td></td>
<td>- Modified a point in “ESX Hardware Requirements,” on page 13.</td>
</tr>
<tr>
<td></td>
<td>- Minor change in “vCenter Server Prerequisites,” on page 95.</td>
</tr>
<tr>
<td></td>
<td>- Removed a sentence from “vCenter Server Database Patch and Configuration Requirements,” on page 74.</td>
</tr>
<tr>
<td>EN-000258-03</td>
<td>- In the topic “vCenter Server Software Requirements,” on page 17, added a link to the vSphere Compatibility Matrixes guide.</td>
</tr>
<tr>
<td></td>
<td>- In the topic “vSphere Client Software Requirements,” on page 18, added a link to the vSphere Compatibility Matrixes guide.</td>
</tr>
<tr>
<td></td>
<td>- In the introduction to Chapter 10, “Preparing the vCenter Server Databases,” on page 73, added a link to the vSphere Compatibility Matrixes guide.</td>
</tr>
<tr>
<td>EN-000258-02</td>
<td>- In “vCenter Server Database Patch and Configuration Requirements,” on page 74, Table 10-1 now contains information that the patch version is updated to 10.2.0.4 for Oracle 10g database.</td>
</tr>
<tr>
<td></td>
<td>- “vCenter Server Prerequisites,” on page 95 now contains information that to use vCenter Linked Mode, multiple vCenter Server systems should be added to a domain.</td>
</tr>
<tr>
<td>EN-000258-01</td>
<td>- Added a command to Step 1 in the topic “Use a Script to Create a DB2 Database,” on page 79.</td>
</tr>
<tr>
<td></td>
<td>- Added commands to Step 3 in the topic “Use a Script to Create the DB2 Database Schema (Optional),” on page 81.</td>
</tr>
<tr>
<td></td>
<td>- Added commands to Step 4 in the topic “Use a Script to Create the Microsoft SQL Server Database Schema (Optional),” on page 86.</td>
</tr>
<tr>
<td></td>
<td>- Added commands to Step 3 in the topic “Use a Script to Create the Oracle Database Schema (Optional),” on page 90.</td>
</tr>
<tr>
<td>EN-000258-00</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
About This Book

The *Installation Guide* describes how to install new configurations of VMware® vCenter Server and ESX. It does not include setup or installation information for ESXi.

Intended Audience

This book is intended for anyone who needs to install vCenter Server and install ESX 4.0.

The information is written for experienced Windows or Linux system administrators who are familiar with virtual machine technology and datacenter operations.

Document Feedback

VMware welcomes your suggestions for improving our documentation. If you have comments, send your feedback to docfeedback@vmware.com.

VMware vSphere Documentation

The vSphere documentation consists of the combined VMware vCenter Server and ESX/ESXi documentation set.

Technical Support and Education Resources

The following technical support resources are available to you. To access the current version of this book and other books, go to http://www.vmware.com/support/pubs.

Online and Telephone Support

To use online support to submit technical support requests, view your product and contract information, and register your products, go to http://www.vmware.com/support.

Customers with appropriate support contracts should use telephone support for the fastest response on priority 1 issues. Go to http://www.vmware.com/support/phone_support.html.

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials designed to be used as on-the-job reference tools. Courses are available onsite, in the classroom, and live online. For onsite pilot programs and implementation best practices, VMware Consulting...
Services provides offerings to help you assess, plan, build, and manage your virtual environment. To access information about education classes, certification programs, and consulting services, go to http://www.vmware.com/services.
These topics describe VMware vSphere.

The following figure illustrates the basic components of VMware vSphere.

Figure 1-1. VMware vSphere Components

Each vCenter Server system manages multiple ESX hosts. You can run the vSphere Client and vSphere Web Access on multiple workstations.

The major VMware vSphere components are:

VMware ESX

Provides a virtualization layer that abstracts the processor, memory, storage, and networking resources of the physical host into multiple virtual machines.

vCenter Server

A service that acts as a central administrator for ESX/ESXi hosts connected on a network. This service directs actions on the virtual machines and the hosts. The vCenter Server is the working core of vCenter. You can have multiple vCenter Server systems joined to a Linked Mode group. This allows you to log in to any single instance of vCenter Server and view and manage the inventories of all the vCenter Server systems in the group.
vCenter Server

Additional Modules

Provide additional capabilities and features to vCenter Server. Generally, additional modules (sometimes called plug-ins) are released separately, install on top of vCenter Server, and can be upgraded independently. You can install additional modules on the same computer as the vCenter Server system or on a separate one. After the additional module is installed, you can activate the module’s client component, which enhances the vSphere Client with user interface (UI) options. Additional modules include vCenter Update Manager, vCenter Converter, and vCenter Guided Consolidation Service.

vSphere Client

Installs on a Windows machine and is the primary method of interaction with VMware vSphere. The vSphere Client acts as a console to operate virtual machines and as an administration interface into the vCenter Server systems and ESX hosts.

The vSphere Client is downloadable from the vCenter Server system and ESX hosts. The vSphere Client includes documentation for administrators and console users.

VMware vSphere Web Access

A browser-based interface for system administrators who need to access virtual machines remotely or without a vSphere Client. vSphere Web Access is also for people who use virtual machines as remote desktops.

Databases

Organize all the configuration data for the VMware vSphere environment. For small deployments, the bundled Microsoft SQL Server 2005 Express database lets you set up to 5 hosts and 50 virtual machines. vCenter Server supports other database products for larger deployments. vCenter Update Manager also requires a database. VMware recommends that you use separate databases for vCenter Server and vCenter Update Manager.
System Requirements

Hosts running vCenter Server and ESX must meet specific hardware and operating system requirements.

This chapter includes the following topics:

- “ESX Hardware Requirements,” on page 13
- “vCenter Server and vSphere Client Hardware Requirements,” on page 16
- “vCenter Server Software Requirements,” on page 17
- “vSphere Client Software Requirements,” on page 18
- “Support for 64-Bit Guest Operating Systems,” on page 18
- “Requirements for Creating Virtual Machines,” on page 18
- “Required Ports,” on page 18
- “DNS Requirements for vSphere,” on page 19
- “Supported Remote Management Firmware Versions,” on page 20

ESX Hardware Requirements

Using ESX requires specific hardware and system resources.

64-Bit Processor

- VMware ESX 4.0 will only install and run on servers with 64-bit x86 CPUs.
- Known 64-bit processors:
 - All AMD Opterons support 64 bit.
 - All Intel Xeon 3000/3200, 3100/3300, 5100/5300, 5200/5400, 7100/7300, and 7200/7400 support 64 bit.
 - All Intel Nehalem (no Xeon brand number assigned yet) support 64 bit.

RAM

2GB RAM minimum

Network Adapters

One or more network adapters. Supported network adapters include:

- Broadcom NetXtreme 570x gigabit controllers
- Intel PRO 1000 adapters
SCSI Adapter, Fibre Channel Adapter, or Internal RAID Controller

One or more of the following controllers (any combination can be used):

- Basic SCSI controllers are Adaptec Ultra-160 and Ultra-320, LSI Logic Fusion-MPT, and most NCR/Symbios SCSI controllers.
- RAID adapters supported are HP Smart Array, Dell Perc (Adaptec RAID and LSI MegaRAID), and IBM (Adaptec) ServeRAID controllers.

Installation and Storage

- SCSI disk, Fibre Channel LUN, or RAID LUN with unpartitioned space. In a minimum configuration, this disk or RAID is shared between the service console and the virtual machines.
- For hardware iSCSI, a disk attached to an iSCSI controller, such as the QLogic qla405x. Software iSCSI is not supported for booting or installing ESX.
- Serial attached SCSI (SAS).
- For Serial ATA (SATA), a disk connected through supported SAS controllers or supported on-board SATA controllers. SATA disk drives connected behind supported SAS controllers or supported on-board SATA controllers.
- Supported SAS controllers include:
 - LSI1068E (LSISAS3442E)
 - LSI1068 (SAS 5)
 - IBM ServeRAID 8K SAS controller
 - Smart Array P400/256 controller
 - Dell PERC 5.0.1 controller
- Supported on-board SATA controllers include:
 - Intel ICH9
 - Nvidia MCP55
 - ServerWorks HT1000

When installing ESX on SATA drives, consider the following:

- Ensure that your SATA drives are connected through supported SAS controllers or supported onboard SATA controllers.
- ESX does not support using local, internal SATA drives on the host server to create VMFS datastores that are shared across multiple ESX hosts.

ATA and IDE disk drives – ESX supports installing and booting on either an ATA drive or ATA RAID is supported, but ensure that your specific drive controller is included in the supported hardware. IDE drives are supported for ESX installation and VMFS creation.
Recommendations for Enhanced ESX Performance

There are several things you can do to enhance ESX performance, including using multiple physical disks, such as SCSI disks, Fibre Channel LUNs, and RAID LUNs.

Following are some recommendations for enhanced performance:

- **RAM** – The ESX host might require more RAM for the service console if you are running third-party management applications or backup agents.
- **Network adapters for virtual machines** – Dedicated Gigabit Ethernet cards for virtual machines, such as Intel PRO 1000 adapters, improve throughput to virtual machines with high network traffic.
- **Disk location** – For best performance, store all data used by your virtual machines on physical disks allocated to virtual machines. These physical disks should be large enough to hold disk images used by all the virtual machines.
- **Processors** – Faster processors improve ESX performance. For certain workloads, larger caches improve ESX performance.
- **Hardware compatibility** – Use devices in your server that are supported by ESX 4.0 drivers. See the Hardware Compatibility Guide at http://www.vmware.com/resources/compatibility.

Tested Software and Firmware for Creating ESX Installation Media

Before you install ESX, you might need to burn the ESX installation ISO image onto DVD or USB media. Review the firmware and software that VMware has tested and has confirmed works.

VMware has tested these combinations, however, other combinations might work as well.

Table 2-1 lists the tested combinations for burning the ESX installation ISO image onto DVD media.

Table 2-1. Tested Combinations for DVD

<table>
<thead>
<tr>
<th>DVD Drive (Make, Model, and BIOS)</th>
<th>Software to Burn DVD</th>
<th>DVD Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips + RW DVD8801</td>
<td>Roxio Creator Classic version: 6.1.1.48</td>
<td>SONY DVD+RW 120min / 4.7 GB</td>
</tr>
<tr>
<td>Philips PLDS DVD + RW DH-16A6S</td>
<td>Roxio Creator version: 3.3.0</td>
<td>SONY DVD+RW</td>
</tr>
<tr>
<td>Philips PLDS DVD + RW DH-16W1S</td>
<td>Roxio Creator version: 3.3.0</td>
<td>SONY DVD+RW</td>
</tr>
<tr>
<td>Philips BenQ PBDS + RW DH-16W1S</td>
<td>Roxio Creator version: 3.3.0</td>
<td>SONY DVD+RW</td>
</tr>
<tr>
<td>HL-DT-ST DVD+-RW GSA-H53N</td>
<td>Burn4Free V.4.6.0.0</td>
<td>SONY DVD+RW</td>
</tr>
<tr>
<td>Dell/_NEC DVD +RW ND-3530A</td>
<td>Roxio Creator Classic version: 6.1.1.48</td>
<td>Memorex DVD-R</td>
</tr>
<tr>
<td>Dell/_NEC DVD +RW ND-3530A</td>
<td>Roxio Creator Classic version: 6.1.1.48</td>
<td>Office Depot DVD+RW</td>
</tr>
<tr>
<td>Dell/_NEC DVD +RW ND-3530A</td>
<td>Roxio Creator Classic version: 6.1.1.48</td>
<td>Ativa DVD-RW</td>
</tr>
<tr>
<td>Dell/_NEC DVD +RW ND-3530A</td>
<td>Roxio Creator Classic version: 6.1.1.48</td>
<td>TDK DVD+R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Verbatim DVD+R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SONY DVD-R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maxell DVD+R</td>
</tr>
</tbody>
</table>

Table 2-2 lists the tested combinations for burning the ESX installation ISO image onto USB media.

Table 2-2. Tested Combinations for USB

<table>
<thead>
<tr>
<th>External USB DVD Drive</th>
<th>Firmware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iomega</td>
<td>Rev: XY13</td>
</tr>
<tr>
<td>LaCie</td>
<td>Rev: LA00</td>
</tr>
</tbody>
</table>
Table 2-2. Tested Combinations for USB (Continued)

<table>
<thead>
<tr>
<th>External USB DVD Drive</th>
<th>Firmware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG 8x portable DVD Rewriter</td>
<td>Rev: KE01</td>
</tr>
<tr>
<td>SONY DVD+- R 20X</td>
<td>Rev: SS01</td>
</tr>
</tbody>
</table>

vCenter Server and vSphere Client Hardware Requirements

The vCenter Server system is a physical machine or virtual machine with access to a supported database. The vCenter Server system and the vSphere Client machines must meet specific requirements.

Minimum Requirements for vCenter Server

- CPU – 2 CPUs
- Processor – 2.0GHz or faster Intel or AMD processor. Processor requirements might be higher if the database runs on the same machine.
- Memory – 3GB RAM. Memory requirements might be higher if the database runs on the same machine.
 - vCenter Server includes a service called VMware VirtualCenter Management Webservices. This service requires 128MB to 1.5GB of additional memory. The VirtualCenter Management Webservices process allocates the required memory at startup.
- Disk storage – 2GB. Disk requirements might be higher if the database runs on the same machine.
- Microsoft SQL Server 2005 Express disk requirements – Up to 2GB free disk space to decompress the installation archive. Approximately 1.5GB of these files are deleted after the installation is complete.
- Networking – Gigabit connection recommended.

See your database documentation for the hardware requirements of your database. The database requirements are in addition to the vCenter Server requirements if the database and vCenter Server run on the same machine.

Minimum Requirements for the vSphere Client

- CPU – 1 CPU
- Processor – 266MHz or faster Intel or AMD processor (500MHz recommended).
- Memory – 200MB RAM
- Disk Storage – 1GB free disk space for a complete installation, which includes the following components:
 - Microsoft .NET 2.0
 - Microsoft .NET 3.0 SP1
 - Microsoft Visual J#
 - vSphere Client 4.0
 - vSphere Host Update Utility 4.0

You must also have 400MB free on the drive that has your `%temp%` directory.

If all of the prerequisites are already installed, 300MB of free space is required on the drive that has your `%temp%` directory, and 450MB is required for the vSphere Client 4.0.

- Networking – Gigabit connection recommended.
32-Bit or 64-Bit Operating System for vCenter Server

When you have up to 200 hosts, you can use a 32-bit Windows operating system, but a 64-bit Windows operating system is preferred. When you have 200–300 hosts, a 64-bit Windows operating system is required.

Recommendations for Optimal Performance

Depending on the number of ESX hosts and virtual machines in your environment, the following system requirements should be used as guidelines for optimal performance.

IMPORTANT The recommended disk sizes assume default log levels. If you configure more granular log levels, more disk space is required.

Table 2-3 summarizes the requirements for a medium deployment.

<table>
<thead>
<tr>
<th>Product</th>
<th>CPU</th>
<th>Memory</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server</td>
<td>2</td>
<td>4GB</td>
<td>3GB</td>
</tr>
<tr>
<td>vSphere Client</td>
<td>1</td>
<td>200MB</td>
<td>1GB</td>
</tr>
</tbody>
</table>

Table 2-4 summarizes the requirements for a large deployment.

<table>
<thead>
<tr>
<th>Product</th>
<th>CPU</th>
<th>Memory</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server</td>
<td>4</td>
<td>4GB</td>
<td>3GB</td>
</tr>
<tr>
<td>vSphere Client</td>
<td>1</td>
<td>500MB</td>
<td>1GB</td>
</tr>
</tbody>
</table>

Table 2-5 summarizes the requirements for an extra-large deployment.

vCenter Server must be hosted on a 64-bit Windows operating system for this configuration.

<table>
<thead>
<tr>
<th>Product</th>
<th>CPU</th>
<th>Memory</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server</td>
<td>4</td>
<td>8GB</td>
<td>3GB</td>
</tr>
<tr>
<td>vSphere Client</td>
<td>1</td>
<td>500MB</td>
<td>1GB</td>
</tr>
</tbody>
</table>

Requirements for Installing vCenter Server on a Custom Drive

If you install vCenter Server on the E:\ drive or on any custom drive, note the following space requirements.

- 601MB on the custom drive for vCenter Server
- 1.13GB on the C:\ drive for Microsoft .NET 3.0 SP1, Microsoft ADAM, Microsoft SQL Server 2005 Express (optional), and Microsoft Visual C++ 2005 Redistributable
- 375MB for the custom drive %temp% directory

vCenter Server Software Requirements

Make sure that your operating system supports vCenter Server.

vSphere Client Software Requirements

Make sure that your operating system supports the vSphere Client.

The vSphere Client requires the Microsoft .NET 3.0 SP1 Framework. If your system does not have it installed, the vSphere Client installer installs it.

For a list of supported operating systems, see the vSphere Compatibility Matrixes at http://www.vmware.com/pdf/vsphere4/r40/vsp_compatibility_matrix.pdf on the VMware vSphere documentation Web site.

Support for 64-Bit Guest Operating Systems

ESX offers support for several 64-bit guest operating systems.

See the Guest Operating System Installation Guide for a complete list.

64-bit guest operating systems have specific hardware requirements:

- For AMD Opteron-based systems, the processors must be Opteron Rev E and later.
- For Intel Xeon-based systems, the processors must include support for Intel Virtualization Technology (VT). Many servers that include CPUs with VT support might ship with VT disabled by default, so you must enable VT manually. If your CPUs support VT but you do not see this option in the BIOS, contact your vendor to request a BIOS version that lets you enable VT support.

To determine whether your server has 64-bit VMware support, you can download the CPU Identification Utility at the VMware downloads page: http://www.vmware.com/download/shared_utilities.html.

Requirements for Creating Virtual Machines

To create a virtual machine, the ESX/ESXi host must be able to support a virtual process, a virtual chip set, and a virtual BIOS.

Each ESX/ESXi machine has the requirements shown in Table 2-6.

Table 2-6. Requirements for Creating Virtual Machines

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual processor</td>
<td>One, two, four, or eight processors per virtual machine</td>
</tr>
<tr>
<td></td>
<td>Note If you create a two-processor virtual machine, your ESXi machine must have at least two physical core in processor.</td>
</tr>
<tr>
<td>Virtual chip set</td>
<td>Intel 440BX-based motherboard with NS338 SIO chip</td>
</tr>
<tr>
<td>Virtual BIOS</td>
<td>PhoenixBIOS 4.0 Release 6</td>
</tr>
</tbody>
</table>

Required Ports

vCenter Server requires certain ports to send and receive data.

The vCenter Server system must be able to send data to every managed host and receive data from every vSphere Client. To enable migration and provisioning activities between managed hosts, the source and destination hosts must be able to receive data from each other.
VMware uses designated ports for communication. Additionally, the managed hosts are listening for data from the vCenter Server system on designated ports. If a firewall exists between any of these elements and Windows firewall service is in use, the installer opens the ports during the installation. For custom firewalls, you must manually open the required ports. If you have a firewall between two managed hosts and you want to perform source or target activities, such as migration or cloning, you must configure a means for the managed hosts to receive data.

Note In Microsoft Windows 2008, a firewall is enabled by default.

Table 2-7 lists the default ports that are required for communication between components.

Table 2-7. Required Ports

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>vCenter Server requires port 80 for direct HTTP connections. Port 80 redirects requests to HTTPS port 443. This is useful if you accidentally use http://server instead of https://server.</td>
</tr>
<tr>
<td>389</td>
<td>This port must be open on the local and all remote instances of vCenter Server. This is the LDAP port number for the Directory Services for the vCenter Server group. The vCenter Server system needs to bind to port 389, even if you are not joining this vCenter Server instance to a Linked Mode group. If another service is running on this port, it might be preferable to remove it or change its port to a different port. If needed, you can run the LDAP service on any port from 1025 through 65535. If this instance is serving as the Microsoft Windows Active Directory, change the port number from 389 to an available port from 1025 through 65535.</td>
</tr>
<tr>
<td>443</td>
<td>The default port that the vCenter Server system uses to listen for connections from the vSphere Client. To enable the vCenter Server system to receive data from the vSphere Client, open port 443 in the firewall. The vCenter Server system also uses port 443 to listen for data transfer from the vSphere Web Access Client and other SDK clients. If you use another port number for HTTPS, you must use <ip-address>:<port> when you log in to the vCenter Server system.</td>
</tr>
<tr>
<td>636</td>
<td>For vCenter Linked Mode, this is the SSL port of the local instance. If another service is running on this port, it might be preferable to remove it or change its port to a different port. If needed, you can run the SSL service on any port from 1025 through 65535.</td>
</tr>
<tr>
<td>902</td>
<td>The default port that the vCenter Server system uses to send data to managed hosts. Managed hosts also send a regular heartbeat over UDP port 902 to the vCenter Server system. This port must not be blocked by firewalls between the server and the hosts, or between hosts.</td>
</tr>
<tr>
<td>902/903</td>
<td>Ports 902 and 903 must not be blocked between the vSphere Client and the hosts. These ports are used by the vSphere Client to display virtual machine consoles.</td>
</tr>
<tr>
<td>8080</td>
<td>Web Services HTTP. Used for the VMware VirtualCenter Management Webservices.</td>
</tr>
<tr>
<td>8443</td>
<td>Web Services HTTPS. Used for the VMware VirtualCenter Management Webservices.</td>
</tr>
</tbody>
</table>

If you want the vCenter Server system to use a different port to receive vSphere Client data, see Basic System Administration.

To tunnel the vSphere Client data through the firewall to the receiving port on the vCenter Server system, see Basic System Administration. VMware does not recommend this method because it disables the vCenter Server console function.

For a discussion of firewall configuration, see the Server Configuration Guide.

DNS Requirements for vSphere

You can install vCenter Server, like any other network server, on a machine with a fixed IP address and well-known DNS name, so that clients can access the service.

Assign a static IP address and host name to the Windows server that will host the vCenter Server system. This IP address must have a valid (internal) domain name system (DNS) registration.
Ensure that the ESXi host management interface has a valid DNS resolution from the vCenter Server and all vSphere Clients and vSphere Web Clients. Ensure that the vCenter Server has a valid DNS resolution from all ESXi hosts and all vSphere Clients and vSphere Web Clients. Ensure that the vCenter Server is installed on a machine that has a resolvable fully qualified domain name (FQDN).

If you use DHCP instead of a static IP address for vCenter Server, make sure that the vCenter Server computer name is updated in the domain name service (DNS). Ping the computer name to test the connection. For example, if the computer name is host-1.company.com, you can ping the name by running the following command in the Windows command prompt:

```plaintext
ping host-1.company.com
```

If you can ping the computer name, the name is updated in DNS.

Supported Remote Management Firmware Versions

You can use remote management applications for installing ESX or for remote management of ESX/ESXi. Table 2-8 lists the remote management firmware versions that are supported for installing ESX 4.0 remotely.

Table 2-8. Supported Remote Management Server Models and Firmware Versions

<table>
<thead>
<tr>
<th>Remote Controller Make and Model</th>
<th>Firmware Version</th>
<th>Java</th>
<th>ActiveX</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAC 5</td>
<td>1.4</td>
<td>Not applicable</td>
<td>1.4.2_19</td>
</tr>
<tr>
<td></td>
<td>1.45 (08.10.06)</td>
<td>2.1,0,14</td>
<td>1.6.0.50</td>
</tr>
<tr>
<td></td>
<td>1.40 (08.08.22)</td>
<td>2.1,0,14</td>
<td>1.6.0.11</td>
</tr>
<tr>
<td></td>
<td>1.20 (07.03.02)</td>
<td>1.4.2_06</td>
<td>2.1,0,13</td>
</tr>
<tr>
<td></td>
<td>1.33</td>
<td>1.6.0_07</td>
<td>2.1,0,14</td>
</tr>
<tr>
<td></td>
<td>1.32 (07.12.22)</td>
<td>1.4.2_13</td>
<td>2.1,0,13</td>
</tr>
<tr>
<td></td>
<td>1.0 (06.05.12)</td>
<td>1.4.2_13</td>
<td>2.1,0,13</td>
</tr>
<tr>
<td></td>
<td>1.32</td>
<td>1.6.0_11</td>
<td>2.1,0,14</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>1.6.0_11</td>
<td>2.1,0,14</td>
</tr>
<tr>
<td></td>
<td>1.45 (09.01.16)</td>
<td>1.6.0_11</td>
<td>2.1,0,14</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1.6.0_11</td>
<td>2.1,0,14</td>
</tr>
<tr>
<td></td>
<td>1.33</td>
<td>1.6.0_11</td>
<td>2.1,0,13</td>
</tr>
<tr>
<td>DRAC 4</td>
<td>1.7</td>
<td>1.4.2_06</td>
<td>2.1,0,14</td>
</tr>
<tr>
<td>ILO</td>
<td>26</td>
<td>1.6.0_11</td>
<td>2.1,0,14</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>1.4.2_19</td>
<td>Not applicable</td>
</tr>
<tr>
<td>ILO2</td>
<td>1.91 (07/26/2009)</td>
<td>1.6.0_07</td>
<td>2.1,0,14</td>
</tr>
<tr>
<td></td>
<td>1.29 (2/28/2007)</td>
<td>1.4.2_13</td>
<td>Not applicable</td>
</tr>
<tr>
<td>RSA</td>
<td>1.09</td>
<td>1.6.0_11</td>
<td>2.1,0,14</td>
</tr>
<tr>
<td></td>
<td>1.06</td>
<td>1.6.0_11</td>
<td>2.1,0,14</td>
</tr>
</tbody>
</table>
These topics discuss the prerequisites and options for installing ESX.

The ESX installation includes the following components:

- ESX
- vSphere Web Access

This chapter includes the following topics:

- “Prerequisites for Installing ESX,” on page 21
- “About the esxconsole.vmdk,” on page 22
- “Options for Accessing the Installation Media, Booting the Installer, and Running the Installer,” on page 22
- “About ESX Evaluation Mode,” on page 23
- “ESX Installation Options,” on page 23

Prerequisites for Installing ESX

Before you begin the installation procedure, ensure that the host meets the prerequisites.

The prerequisites are as follows:

- Make sure the host has a supported network adapter.
- If your installation will require a network connection or if you want to test out the network settings, verify that the network cable is plugged into the Ethernet adapter that you are using for the service console. The ESX installer needs a live network connection to properly detect certain network settings, such as the host name under DHCP. IPv6 is not supported for ESX installation. Installation options that require a network connection include PXE booting the installer, accessing a remote ESX installation script, and accessing remote installation media.
About the esxconsole.vmdk

A virtual machine disk file (.vmdk file) stores the contents of a virtual machine's hard disk drive. A .vmdk file can be accessed in the same way as a physical hard disk.

In ESX 4.0, the service console's partitions are stored in a .vmdk file. These partitions include /, swap, /var/log, and all the optional partitions. The name of this file is esxconsole-<system-uuid>/esxconsole.vmdk. All .vmdk files, including the esxconsole.vmdk, are stored in VMFS volumes.

CAUTION Do not change the name or directory path of the esxconsole.vmdk file. If you rename the esxconsole folder or the VMDK file, the ESX host cannot reboot. VMware recommends that you allow only administrators to modify datastores and make certain that users who have permission to modify datastores are aware of the problems that occur when the esxconsole-<system-uuid> folder or the esxconsole.vmdk file is renamed.

The esxconsole-<system-uuid> folder contains the following files and subdirectories:

- esxconsole-flat.vmdk
- esxconsole.vmdk
- core-dumps
- logs
- logs/sysboot-vmkernel-boot.log
- logs/sysboot-dmesg-boot.log
- logs/sysboot-vmkernel-late.log
- logs/sysboot-dmesg-late.log
- logs/sysboot.log

IMPORTANT The service console must be installed on a VMFS datastore that is resident on a host’s local disk or on a SAN disk that is masked and zoned to that particular host only. The datastore cannot be shared between hosts.

Options for Accessing the Installation Media, Booting the Installer, and Running the Installer

When you install ESX, you have several options that allow you to customize the process to meet the needs of your environment.

These options include how to store and access the installation media, how to boot the installer, and which mode to use when you run the installer.

By default, when you boot the ESX installer from a DVD, the DVD uses the interactive graphical mode and uses itself as the source of the installation media. You can modify the default installation process in the following ways:

- Storing and accessing the ESX installation media:
 - DVD (default)
 - FTP
 - HTTP/HTTPS (HTTPS with a proxy server is not supported.)
 - NFS
 - USB flash drive
Booting the installer:
- DVD (default)
- PXE

Running the installer:
- Interactive graphical (default)
- Interactive text
- Scripted

For scripted installation, storing and accessing the installation script:
- Default installation script
- FTP
- HTTP/HTTPS
- NFS
- USB flash drive
- Local disk

About ESX Evaluation Mode
Evaluation mode gives you access to all features of ESX.
The evaluation period is 60 days and begins as soon as you power on the ESX machine, even if you start in license mode initially. To make full use of the evaluation period, make an early decision on whether to use evaluation mode.

If you do not enter a vSphere license key during installation, ESX is installed in evaluation mode.

ESX Installation Options
This topic describes the methods for installing ESX and the information required for installation.
The following methods are available for installing VMware ESX software:
- Graphical mode – This is the recommended method for interactive installations.
- Text mode – Use this method if your video controller does not function properly using graphical mode.
- Scripted – An efficient way to deploy multiple hosts. See “Installing ESX Using Scripted Mode,” on page 47.

Note: The installer for ESX 4.0 is quite different from the installer for ESX 3.x, particularly in the text and scripted installations.

Table 3-1 lists the information that you are prompted for during the installation. For future use, note the values entered. Notes are useful if you ever need to reinstall ESX and reenter the values that you originally chose.
Table 3-1. Data for ESX Installation

<table>
<thead>
<tr>
<th>Data</th>
<th>Required or Optional</th>
<th>Default</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard layout</td>
<td>Required</td>
<td>U.S. English</td>
<td>If you have network or storage devices that integrate with ESX software and you need to install custom drivers, you can do so during the ESX installation. Post-install, you can use vCenter Update Manager or the vSphere CLI to install custom drivers. If you PXE boot the installer, you cannot install custom drivers during the installation.</td>
</tr>
<tr>
<td>Custom drivers</td>
<td>Optional</td>
<td>No</td>
<td>Virtual machine network traffic shares this network adapter until you configure a virtual switch for another network adapter.</td>
</tr>
<tr>
<td>vSphere license key</td>
<td>Optional</td>
<td>None</td>
<td>If you do not enter a vSphere license key, ESX is installed in evaluation mode.</td>
</tr>
<tr>
<td>Network adapter for the service console</td>
<td>Required</td>
<td>A network adapter that is available and connected</td>
<td></td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Optional</td>
<td>None</td>
<td>Range: 0 through 4095</td>
</tr>
<tr>
<td>IP address</td>
<td>Optional</td>
<td>DHCP</td>
<td>You can allow DHCP to configure the network during installation. After installation, you can change the network settings.</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>Optional</td>
<td>Calculated based on the IP address</td>
<td></td>
</tr>
<tr>
<td>Gateway</td>
<td>Optional</td>
<td>Based on the configured IP address and subnet mask</td>
<td></td>
</tr>
<tr>
<td>Primary DNS</td>
<td>Optional</td>
<td>Based on the configured IP address and subnet mask</td>
<td></td>
</tr>
<tr>
<td>Secondary DNS</td>
<td>Optional</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Host name</td>
<td>Required for static IP settings</td>
<td>None</td>
<td>vSphere Clients can use either the host name or the IP address to access the ESX host.</td>
</tr>
<tr>
<td>Install location</td>
<td>Required</td>
<td>None</td>
<td>Must be at least 10GB if you install the components on a single disk.</td>
</tr>
<tr>
<td>Datastore</td>
<td>Required in advanced setup</td>
<td>In the basic setup, the installer creates the /vmfs partition for the datastore.</td>
<td>A datastore is a partition that ESX uses to store virtual machines. This datastore is used for the service console (esxconsole.vmdk). The service console must be installed on a VMFS datastore that is resident on a host's local disk or on a SAN disk that is masked and zoned to that particular host only. The datastore cannot be shared between hosts.</td>
</tr>
<tr>
<td>Time zone</td>
<td>Required</td>
<td>Pacific time</td>
<td></td>
</tr>
<tr>
<td>Root password</td>
<td>Required</td>
<td>None</td>
<td>The root password must be between 6 and 64 characters.</td>
</tr>
<tr>
<td>Additional user accounts</td>
<td>Optional</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Virtual disk partitions</td>
<td>Required in advanced setup</td>
<td>The installer creates three basic partitions: /boot, vmkcore, and VMFS. The service console VMDK file resides on the VMFS partition. The service console VMDK file contains /swap, and /var/log, by default, and any other partitions that you specify.</td>
<td>In the advanced setup, you can edit the location of the boot loader, edit the / (root), swap, and /var/log default partition sizes, and create additional partitions. The disk that you install the /boot partition onto must be the disk that the BIOS chooses to boot from.</td>
</tr>
<tr>
<td>Data</td>
<td>Required or Optional</td>
<td>Default</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Bootloader kernel options</td>
<td>Optional</td>
<td>None</td>
<td>In the advanced setup, you can specify kernel arguments to be written to the <code>grub.conf</code> file and passed to the kernel every time ESX boots.</td>
</tr>
<tr>
<td>Bootloader password</td>
<td>Optional</td>
<td>None</td>
<td>In the advanced setup, you can specify a bootloader password up to 30 characters.</td>
</tr>
<tr>
<td>NTP server</td>
<td>Optional</td>
<td>None</td>
<td>ESX uses the hardware battery-backed clock to keep time while the system is powered off. ESX always maintains the battery-backed clock in UTC, even if you have set the service console to display time in your local time zone. Therefore, if you install ESX on a machine whose battery-backed clock was not previously set to UTC, ESX initializes the system time to an incorrect value when it first boots. Once you correct the system time, however, ESX saves it to the battery-backed clock, and the time will be correct on subsequent boots. For best accuracy, VMware recommends using NTP to correct and maintain the system time. For text-mode and graphical-mode installations, you can enter an NTP server name at installation time. This feature is not available in scripted installation (unless you script it in a <code>%post</code> section). After installation, you can use the vSphere Client to configure the host to use an NTP server.</td>
</tr>
</tbody>
</table>
Before you install ESX, you must select a location for the installation media.

The following locations are supported:

- Local DVD
- Local USB
- USB DVD drive. This is useful if you cannot burn a DVD image or the host does not have a DVD drive.
- Remote media (See “Using Remote Management Applications,” on page 39).
- Remote location (media depot), accessible via HTTP/HTTPS, FTP, or NFS

This chapter includes the following topics:

- “Download the ESX ISO Image and Burn the Installation DVD,” on page 27
- “Creating a Media Depot,” on page 27

Download the ESX ISO Image and Burn the Installation DVD

If you do not have an ESX installation DVD, you can create one.

Procedure

1. If you are not already logged into VMware Communities, log on using your VMware store account.
2. Download the ISO image for ESX from the VMware download page at http://www.vmware.com/download/.
3. Burn the ISO image onto DVD media.

Creating a Media Depot

The media depot is a network-accessible location that contains the ESX installation media. You can use HTTP/HTTPS, FTP, or NFS to access the depot. The depot must be populated with the entire contents of the ESX installation DVD, preserving directory structure.

If you are performing a scripted installation, you must point to the media depot in the script by including the `install` command with the `nfs` or `url` option.

The following code snippet from an ESX installation script demonstrates how to format the pointer to the media depot if you are using NFS:

```
install nfs --server=example.com --dir=/nfs3/VMware/ESX/40
```

If you are performing an interactive installation instead of a scripted installation, include the `askmedia` boot option, which causes the installer to prompt you for the location of the media.
You can type the `askmedia` option at the end of the boot options list. For example:

```
Boot Options initrd=initrd.img vmkopts=debugLogToSerial:1 mem=512M askmedia
```

The boot options list appears when you boot the installer and press F2.
Booting the ESX Installer

You can boot the installer from the DVD using the local DVD-ROM drive, or you can PXE boot the installer. This chapter includes the following topics:

- “Bootstrap Commands,” on page 29
- “Boot the ESX Installer from the Installation DVD,” on page 30
- “PXE Booting the ESX Installer,” on page 31

Bootstrap Commands

Before the ESX installer Welcome screen appears, the installer displays a boot prompt where you can enter bootstrap commands to pass arguments to the installer.

When the mode selection screen appears, quickly type F2 to stop the timeout counter. If the mode selection screen times out, the default graphical mode is launched.

The supported bootstrap commands and subcommands are listed in Table 5-1.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>askmedia</td>
<td>Allows you to interactively select the location of the ESX installation media. This option is required if the image is hosted at an HTTP, FTP, or NFS location.</td>
</tr>
<tr>
<td>BOOTIF</td>
<td>Accepts the format for the boot network adapter as supplied by PXELINUX.</td>
</tr>
<tr>
<td>gateway=<ip address></td>
<td>Sets this network gateway as the default gateway during the install.</td>
</tr>
<tr>
<td>ip=<ip address></td>
<td>Specifies a static IP address to be used for downloading the script and the installation media. The IPAPPEND option is also supported if you PXE boot the installer.</td>
</tr>
<tr>
<td>ks=cdrom:/<path></td>
<td>Performs a scripted installation with the script at <path>, which resides on the DVD in the DVD-ROM drive.</td>
</tr>
<tr>
<td>ks=file://<path></td>
<td>Performs a scripted installation with the script at <path>, which resides inside the initial ramdisk image.</td>
</tr>
<tr>
<td>ks=ftp://<server>/<path>/</td>
<td>Performs a scripted installation with a script located at the given URL.</td>
</tr>
<tr>
<td>ks=http://<server>/<path></td>
<td>Performs a scripted installation with a script located at the given URL.</td>
</tr>
</tbody>
</table>
Table 5-1. Bootstrap Commands for ESX Installation (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ks=https://<server>/<path></td>
<td>Performs a scripted installation with a script located at the given URL.</td>
</tr>
<tr>
<td>ks=nfs://<server>/<path></td>
<td>Performs a scripted installation with the script located at <path> on a given NFS server.</td>
</tr>
<tr>
<td>ks=usb</td>
<td>Performs a scripted installation with the ks.cfg script in the root directory of the USB flash drive attached to the host. If multiple flash drives are attached, the installer cycles through each one, mounting and unmounting them until the file named ks.cfg is found.</td>
</tr>
<tr>
<td>ks=UUID:<partition-UUID>:/<path></td>
<td>Performs a scripted installation with a script located on the ext partition with the given UUID.</td>
</tr>
<tr>
<td>ksdevice=<device></td>
<td>Same as netdevice</td>
</tr>
<tr>
<td>mediacheck</td>
<td>Checks the MD5 sum of the DVD media to make sure the information is not corrupt. The media check operation adds several minutes to the installation process.</td>
</tr>
<tr>
<td>mem= (required)</td>
<td>Reserves a minimum amount of memory for the ESX service console. The value must be at least 512M.</td>
</tr>
<tr>
<td>nameserver=<ip address></td>
<td>Specifies a domain name server as the nameserver during the install.</td>
</tr>
<tr>
<td>netdevice=<device></td>
<td>Tries to use a network adapter <device> when looking for an installation script and installation media. Specify as a MAC address (for example, 00:50:56:C0:00:01). If not specified and files need to be retrieved over the network, the installer defaults to the first discovered network adapter. The IPAPPEND option is also supported if you PXE boot the installer.</td>
</tr>
<tr>
<td>netmask=<subnet mask></td>
<td>Specifies subnet mask for the network interface that downloads the installation media.</td>
</tr>
<tr>
<td>noapic</td>
<td>Flags the kernel to use the XTPIC instead of the APIC.</td>
</tr>
<tr>
<td>text</td>
<td>Starts the ESX installer in text mode.</td>
</tr>
<tr>
<td>url=<url></td>
<td>Looks for the installation media at the specified URL. When you are PXE booting the installer, the url= command only works with earlier versions of SYSLINUX. The command does not work with SYSLINUX/PXELINUX version 3.70 and higher.</td>
</tr>
<tr>
<td>vlanid=<vlanid></td>
<td>Configures the VLAN for the network card.</td>
</tr>
</tbody>
</table>

Boot the ESX Installer from the Installation DVD

When you boot the installer from a DVD, you use the local DVD-ROM drive or remote media, such as iLO or DRAC.

Prerequisites

You must have an ESX installation DVD. See “Download the ESX ISO Image and Burn the Installation DVD,” on page 27.

Procedure

1. Insert the DVD in the DVD-ROM drive.
2 Use the BIOS to set the host to boot from the CD-ROM drive:
 a Reboot the machine.
 b Press a function key or Delete to enter the BIOS setup or boot menu for your machine.
 c Set the CD-ROM drive as the first boot device.
3 (Optional) When the mode selection page appears, press F2 to enter boot options.

What to do next
Continue with the installation. If you are performing a scripted installation, allow the script to run.

PXE Booting the ESX Installer

The preboot execution environment (PXE) is an environment to boot computers using a network interface independently of available data storage devices or installed operating systems. These topics discuss the PXELINUX and gPXE methods of PXE booting the ESX installer.

PXE uses DHCP and Trivial File Transfer Protocol (TFTP) to bootstrap an operating system (OS) over a network.

Network booting with PXE is quite similar to booting with a DVD, but requires some network infrastructure and a machine with a PXE-capable network adapter. Most machines that are capable of running ESX have network adapters that are able to PXE boot. Once the ESX installer is booted, it works like a DVD-based installation, except that the location of the ESX installation media (the contents of the ESX DVD) must be specified.

A host first makes a DHCP request to configure its network adapter and then downloads and executes a kernel and support files. PXE booting the installer provides only the first step to installing ESX. To complete the installation, you must provide the contents of the ESX DVD either locally or on a networked server through HTTP/HTTPS, FTP, or NFS. (See Chapter 4, “Location of the ESX Installation Media,” on page 27.)

About the TFTP Server, PXELINUX, and gPXE

TFTP is a light-weight version of the FTP service, and is typically used only for network booting systems or loading firmware on network devices such as routers.

Most Linux distributions come with a copy of the tftp-hpa server. You can alternatively obtain one at http://www.kernel.org/pub/software/network/tftp/.

If your TFTP server is going to run on a Microsoft Windows host, you can use tftpd32 version 2.11 or later. See http://tftpd32.jounin.net/. Previous versions of tftpd32 were incompatible with PXELINUX and gPXE.

The PXELINUX and gPXE environments allow your target machine to boot the ESX Installer. PXELINUX is part of the SYSLINUX package which can be found at http://www.kernel.org/pub/linux/utils/boot/syslinux/, although many Linux distributions include it. Many versions of PXELINUX also include gPXE. Some distributions, such as Red Hat Enterprise Linux version 5.3, include older versions of PXELINUX that do not include gPXE.

If you do not use gPXE, you might experience issues while booting the ESX installer on a heavily loaded network. This is because TFTP is not a robust protocol and is sometimes unreliable for transferring large amounts of data. If you use gPXE, only the gpxelinux.0 binary and configuration file are transferred via TFTP. gPXE enables you to use a Web server for transferring the kernel and ramdisk required to boot the ESX installer. If you use PXELINUX without gPXE, the pxelinux.0 binary, the configuration file, and the kernel and ramdisk are transferred via TFTP.

Note VMware tests PXE booting with PXELINUX version 3.63. This is not a statement of limited support.
Conceptual Overview for PXE Booting the ESX Installer

This topic provides an overview of how all the pieces fit together when you PXE boot the ESX installer. The network infrastructure for PXE booting the installer includes the following services.

- DHCP server
- TFTP server
- PXELINUX/gPXE (SYSLINUX)
- Network Server (NFS, HTTP or FTP)

Figure 5-1 shows the flow of the interaction between the components if you are using PXELINUX with gPXE. The scripts depot and the media depot are optional. You do not need them if you are performing an interactive installation with installation media that is stored locally on a DVD or USB.

Figure 5-1. Overview for PXE Booting the ESX Installer Using PXELINUX with gPXE
Figure 5-2 shows the flow of the interaction between the components if you are using PXELINUX without gPXE. The scripts depot and the media depot are optional. You do not need them if you are performing an interactive installation with installation media that is stored locally on a DVD or USB.

Figure 5-2. Overview for PXE Booting the ESX Installer Using PXELINUX without gPXE

In the case presented in this document, PXE works as follows:

1. The target ESX host (the PXE client) is booted.
2. The target ESX host makes a DHCP request.
3. The DHCP server responds with the IP information and provides information about the location of a TFTP server.
4. When the client receives the information, it contacts the TFTP server asking for the file the DHCP server told it to ask for (in this case, the network boot loader).
5. The TFTP server sends the network boot loader, and the client executes it.
6 PXELINUX or gPXE searches for a configuration file on the TFTP server, and boots a kernel according to that configuration file. In our case, the configuration file instructs PXE to load the kernel (vmlinuz) and a ramdisk (initrd.img).

7 The client downloads the files it needs and then loads them.

8 The system boots the ESX installer.

9 The installer runs interactively or scripted, as directed by the PXE configuration file.

10 The installer uses the installation media, either from a media depot stored on the network, or locally via DVD or USB.

11 ESX is installed.

PXE Boot the ESX Installer

This procedure describes how to use a TFTP server to PXE boot the ESX installer.

Prerequisites

Your environment must have the following components:

- TFTP server that supports PXE boot
- PXELINUX
- (Optional) gPXE, which is part of the SYSLINUX package. If you have a newer version of SYSLINUX, gPXE is already built. If you are building gPXE from source, you can unpack it on most Linux machines and run the `make` command.
- For gPXE, a Web server that is accessible by your target ESX hosts
- DHCP server configured for PXE booting
- (Optional) ESX installation script
- Network adapter with PXE support on the target ESX host
- IPv4 networking (IPv6 is not supported for PXE booting.)

Procedure

1. On a Linux machine, install TFTP server software that supports PXE booting.

 If your environment does not have a TFTP server, you can use one of the packaged appliances on the VMware Marketplace. If you do this, note that certain functions, such as correct operation of the text menu system, are operating system dependent.

2. Put the `menu.c32` file in an accessible place in a supported location.

 - For gPXE, put the `menu.c32` file on a Web server. For example, you can use the httpd package in RHEL5, which contains Apache. The HTML documents are placed in `/var/www/html`, which is where you can copy `menu.c32`.
 - For PXELINUX without gPXE, put the `menu.c32` file on a TFTP server.

3. On the Linux machine, install PXELINUX.

 PXELINUX is included in the SYSLINUX package. Extract the files, locate the file `pxelinux.0` or `gpxelinux.0`, and copy it to the `/tftpboot` directory on your TFTP server.

4. Configure the DHCP server.

 The DHCP server must send the following information to your client hosts:

 - The name or IP address of your TFTP server.
The name of your initial boot file. This is pxelinux.0 gpxelinux.0.

For more information and an example, see “Sample DHCP Configuration,” on page 35.

5 Create the kernel image and ramdisk directory by copying the vmlinuz and initrd.img files from the /isolinux directory on the ESX installation DVD to a supported location.

- Web server, if you are using gPXE.
- /tftpboot directory on the TFTP server, if you are using PXELINUX without gPXE.

For more information and an example, see “Kernel Image and Ramdisk Directory,” on page 39.

6 Create the /tftpboot/pxelinux.cfg directory on your TFTP server.

7 Create a PXE configuration file.

This file defines how the host boots when no operating system is present.

The PXE configuration file references the location of the vmlinuz and initrd.img files in the kernel image and ramdisk directory.

For more information and an example, see “Creating a PXE Configuration File,” on page 36.

8 Save the PXE configuration file in /tftpboot/pxelinux.cfg on the TFTP server.

You now have an environment that you can using for PXE booting the ESX installer.

Sample DHCP Configuration

To PXE boot the ESX installer, the DHCP server must send the address of the TFTP server and a pointer to the pxelinux.0 or gpxelinux.0 directory.

The DHCP server is used by the target machine to obtain an IP address. The DHCP server needs to know if the target machine is allowed to boot and the location is of PXELINUX binary (which usually resides on a TFTP server). When the target machine first boots, it broadcasts a packet across the network requesting this information to boot itself, and the DHCP server responds.

CAUTION Setting up a new DHCP server is not recommended if your network already has one. If multiple DHCP servers respond to DHCP requests, machines can obtain incorrect or conflicting IP addresses, or can fail to receive the proper boot information. Seek the guidance of a network administrator in your organization before setting up a DHCP server.

Many DHCP servers are capable of PXE booting hosts. The following samples are for ISC DHCP version 3.0, which is included with many Linux distributions. If you are using a version of DHCP for Microsoft Windows, refer to the DHCP server documentation to determine how to pass the next-server and filename arguments to the target machine.

gPXE Example

This sample shows how to configure the ISC DHCP server to enable gPXE.

```
allow booting;
allow bootp;
# gPXE options
option space gpxe;
option gpxe-encap-opts code 175 = encapsulate gpxe;
option gpxe.bus-id code 177 = string
class "pxeclients" {
    match if substring(option vendor-class-identifier, 0, 9) = "PXEClient";
    next-server <TFTP server address>;
    if not exists gpxe.bus-id {
        filename "/gpxelinux.0";
    }
```
subnet <Network address> netmask <Subnet Mask> {
 range <Starting IP Address> <Ending IP Address>;
}

When a machine attempts to PXE boot, the DHCP server provides an IP address and the location of the pxelinux.0 binary on the TFTP server. The IP address assigned will be in the range defined in the subnet section of the configuration file.

PXELINUX (Without gPXE) Example

This sample shows how to configure the ISC DHCP server to enable PXELINUX.

```
# DHCP Server Configuration file.
#   see /usr/share/doc/dhcp*/dhcpd.conf.sample
#
ddns-update-style ad-hoc;
allow booting;
allow bootp;
class "pxeclients" {
   match if substring(option vendor-class-identifier, 0, 9) = "PXEClient";
   next-server 192.168.48.10;
   filename = "pxelinux.0";
}
subnet 192.168.48.0 netmask 255.255.255.0 {
   range 192.168.48.100 192.168.48.250;
}
```

When a machine attempts to PXE boot, the DHCP server provides an IP address and the location of the pxelinux.0 binary on the TFTP server. The IP address assigned will be in the range defined in the subnet section of the configuration file.

Creating a PXE Configuration File

The PXE configuration file defines the menu displayed to the target ESX host as it boots up and contacts the TFTP server.

The TFTP server is always listening for PXE clients on the network. When it detects that a PXE client is asking for PXE services, it sends the client a network package that contains this boot menu.

Each PXE boot menu selection points to the location of the kernel and ramdisk files for ESX. You can create one PXE configuration file for each target ESX host, or create one PXE configuration file and name it `default`.

Example: PXELINUX with gPXE

Following is an example of a PXE configuration file that you might use for PXELINUX with gPXE. The important difference between this example and a PXE configuration file without gPXE is the HTTP path to the required files. See also the `/isolinux/isolinux.cfg` file on the ESX installation DVD.

```
default menu.c32
menu title ESX Boot Menu
timeout 30

##PXE boot the installer and perform an interactive installation
##with local media (RPM files)

label local
```
menu label Interactive Local Installation
kernel http://<server>/vmlinuz
append initrd=http://<server>/initrd.img vmkopts=debugLogToSerial:1 mem=512M quiet

##PXE boot the installer and perform a scripted installation with
##local or remote media (RPM files), as specified in the installation script

label scripted
menu label Scripted Installation
kernel http://<server>/vmlinuz
append initrd=http://<server>/initrd.img vmkopts=debugLogToSerial:1 mem=512M
ks=nfs://10.20.118.55/ks.cfg

##PXE boot the installer and perform an interactive installation
##with the media (RPM files) at a remote location

label network_rpm
menu label Interactive Installation with RPM files on the network
kernel http://<server>/vmlinuz
append initrd=http://<server>/initrd.img vmkopts=debugLogToSerial:1 mem=512M askmedia

Example: PXELINUX Without gPXE

Following is an example of a PXE configuration file that you might use for PXELINUX without gPXE. See also
the /isolinux/isolinux.cfg file on the ESX installation DVD.

In this example, the path to the required files test/ is relative to /tftpboot. The actual path
is /tftpboot/test/ on the TFTP server.

default menu.c32
menu title ESX Boot Menu
timeout 30

##PXE boot the installer and perform an interactive installation
##with local media (RPM files)

label local
menu label Interactive Local Installation
kernel test/vmlinuz
append initrd=test/initrd.img vmkopts=debugLogToSerial:1 mem=512M quiet

##PXE boot the installer and perform a scripted installation with
##local or remote media (RPM files), as specified in the installation script

label scripted
menu label Scripted Installation
kernel test/vmlinuz
append initrd=test/initrd.img vmkopts=debugLogToSerial:1 mem=512M ks=nfs://10.20.118.55/ks.cfg

##PXE boot the installer and perform an interactive installation
##with the media (RPM files) at a remote location

label network_rpm
menu label Interactive Installation with RPM files on the network
kernel test/vmlinuz
append initrd=test/initrd.img vmkopts=debugLogToSerial:1 mem=512M askmedia
Required Files

In the PXE configuration file, you must include paths to the following files:

- `vmlinuz` is the boot loader kernel code.
- `initrd.img` is the boot ramdisk.

Installation Mode

`ks=nfs://10.20.118.55/ks.cfg` is the path to the ESX installation script. In a scripted installation, your script includes all the necessary responses to fill in the blanks, including the location of the installation media.

In an interactive installation, omit the `ks=` option. If you are performing an interactive installation with the installation media at a remote location, include the `askmedia` boot option, which causes the installer to prompt you for the location of the installation media.

ESX 3.x supported a hybrid installation. In this mode, you could supply an incomplete ESX installation script, and the installer prompts you for the missing parts. ESX 4.0 does not support this. You either have all responses in your ESX installation script or you have no script.

IPAPPEND

For scripted installations, the `IPAPPEND` option specifies that the same network adapter the machine boots from is also used for connecting to the network. When you include the `IPAPPEND` option in the PXE configuration file, omit the `—device` option to the installation script `network` command. The `IPAPPEND` option has no impact on interactive installations. The following snippet shows how to include the `IPAPPEND` option in the PXE configuration file:

```
label Installer
menu default
kernel http://<server>/vmlinuz
append initrd=http://<server>/initrd.img mem=512M vmkopts=debugLogToSerial:1
ks=nfs://10.20.118.55/ks.cfg
IPAPPEND 2
```

For the `IPAPPEND flag_val`, use `IPAPPEND 2`. `IPAPPEND 1` is not required.

If you omit the `—device` option from the installation script, the `IPAPPEND` option from the PXE configuration file, and the `netdevice` bootstrap command, the installer uses the first plugged in network adapter.

Filename for the PXE Configuration File

For the filename of the PXE configuration file, choose one of the following:

- `01-<mac_address_of_target_ESX_host>`. For example, `01-23-45-67-89-0a-bc`
- The target ESX host IP address in hexadecimal notation.
- `default`

The initial boot file, `pxelinux.0` (or `gpxelinux.0`) tries to load a PXE configuration file. First it tries with the MAC address of the target ESX host, prefixed with its ARP type code (01 for Ethernet). If that fails, it tries with the hexadecimal notation of target ESX system IP address. Ultimately, it tries to load a file named `default`.

File Location for the PXE Configuration File

Save the file in `/tftpboot/pxelinux.cfg/` on the TFTP server.

For example, you might save the file on the TFTP server at `/tftpboot/pxelinux.cfg/01-00-21-5a-ce-40-f6`. The MAC address of the network adapter on the target ESX host is `00-21-5a-ce-40-f6`.
Kernel Image and Ramdisk Directory

The kernel image and ramdisk directory contains files that must be loaded across the network to enable PXE booting of the ESX installer. `vmlinuz` is a Linux kernel used for booting. The kernel is located in the `initrd.img` file.

The kernel image and ramdisk directory is located on a Web server (for gPXE) or on the TFTP server in the `/tftpboot` directory (for PXELINUX without gPXE). For example, the directory might be at `/tftpboot/esx/` and contain the following files:

```
-r--r--r-- 1 root root 1922578 Nov 12 05:51 initrd.img
-r--r--r-- 1 root root 966633 Nov 12 05:51 vmlinuz
```

These files come from the ESX installation DVD, under the `/isolinux` directory.

You reference the `vmlinuz` and `initrd.img` files from the PXE configuration file. The following code snippet shows how you reference `vmlinuz` and `initrd.img` in the PXE configuration script:

```
kernel esx/vmlinuz
append initrd=esx/initrd.img ...
```

Using Remote Management Applications

Remote management applications allow you to install ESX on server machines that are in remote locations.

Remote management applications supported for installation include Integrated Lights-Out (iLO), Dell Remote Access Card (DRAC), IBM management module (MM), and Remote Supervisor Adapter II (RSA II). For a list of currently supported server models and remote management firmware versions, see “Supported Remote Management Firmware Versions,” on page 20.

Generally, administrators use remote management applications to perform GUI-based, remote installations of ESX. However, you can use a remote management application for scripted installations as well.

If you use remote management applications to install ESX, be careful using the virtual CD feature. The virtual CD might encounter corruption problems with systems or networks under load. If you must use this method, run the media test provided by the ESX installer. If a remote installation from an ISO image fails, complete the installation from the physical DVD media.

VMware recommends that instead of using the virtual CD media for the entire installation, you boot from the virtual CD, enter the `askmedia` option in the ESX installer boot screen, and then complete the installation with NFS, HTTP/HTTPS, or FTP. The ESX ISO must be mounted in a place that is accessible by one of these network installation methods. This approach is much more reliable than attempting the entire installation via virtual media.

If you PXE boot the installer, you cannot install custom drivers during the ESX installation. If you choose to boot the installer from the DVD and install custom drivers during the ESX installation, the drive that you use for the ESX DVD is the drive that you must use for the custom driver CD/DVD. If the drive is a USB drive (including an emulated USB drive), you must not detach the drive during the installation procedure. If the ESX DVD is an ISO image, the custom driver CD/DVD must be an ISO image as well.
You have multiple options for installing ESX. You can install ESX interactively or by using a script. For an interactive installation, you can use graphical mode or text mode.

This chapter includes the following topics:

- “Install ESX Using the Graphical Mode,” on page 41
- “Install ESX Using the Text Mode,” on page 45
- “Installing ESX Using Scripted Mode,” on page 47

Install ESX Using the Graphical Mode

The graphical mode is the recommended installation method if you are installing ESX for the first time. The graphical mode runs by default if you do not select an alternate installation method.

Prerequisites

See “Prerequisites for Installing ESX,” on page 21.

Procedure

1. Choose a method for booting the installer.
 - Boot from the DVD using the local CD-ROM drive.
 - PXE boot the installer.
2. Select Install ESX in graphical mode.
3. (Optional) Press F2 and type boot options for the installer.
 A series of installation messages scroll past until the Welcome page appears.
4. Click Next to continue.
5. Select I accept the terms of the license agreement and click Next.
 You cannot install this product unless you accept the license agreement.

 Note: If the alignment of the license agreement screen is skewed to the left, you might need to auto-adjust your host monitor.
6. Select your keyboard type from the list and click Next.
7 Select whether to install custom drivers with the ESX installation.

You might need custom drivers if your system is not listed in the *Hardware Compatibility Guide* and has a network or storage device that was not originally compatible with ESX 4.0.

If you PXE booted the ESX installer, you cannot install custom drivers during the installation process. You can install them after the ESX installation is complete.

- Select **Yes** and click **Add** to install custom drivers. The installer prompts you to insert the media containing the custom drivers. After you add the custom drivers to the list, the installer prompts you to reinsert the ESX installation DVD and continue with the installation. Click **Next** to continue.

- Select **No** if you do not need to install custom drivers. You can install custom drivers after the ESX installation is complete, using other command-line and GUI tools available to you, such as the vSphere CLI and vCenter Update Manager. Click **Next** to continue.

8 Click **Yes** to load the required ESX drivers.

9 Configure ESX licensing.

- Select **Enter a serial number now**, enter the vSphere license key, and click **Next**.

- Select **Enter a license key later** and click **Next**. This choice allows you to evaluate ESX (or enter a vSphere license key later using the vSphere Client).

10 Select the network adapter for the ESX service console.

Virtual machine network traffic shares this network adapter until you configure a virtual switch for another network adapter. You can configure other network adapters at a later time from the vSphere Client.

11 If the adapter is connected to a VLAN, select **This adapter requires a VLAN ID**, enter a VLAN ID number between 0 and 4095, and click **Next**.

12 Configure the network settings.

VMware recommends that you use a static IP address to simplify client access. If you want to use static settings but you do not have the required information, you can use DHCP for the installation and configure static settings after you consult with your network administrator.

For the host name, type the complete host name including the domain. This option is available only if you use a static IP address.

13 (Optional) Click **Test these settings** to test the network interface.

14 (Optional) Select the location of the unpacked ESX installation ISO image.

These options appear if you entered the `askmedia` bootstrap command at the mode selection screen. You can specify one of the following locations:

- DVD or USB (You can select a CD-ROM drive other than the one you might be using for booting the installer.)

- Network file system (NFS) server and a directory path.

- HTTP or HTTPS URL

- FTP URL
15 Select a setup option.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Setup</td>
<td>The installer configures the default partitions on a single hard drive or LUN where you install ESX. The default partitions are sized based on the capacity of the hard drive or LUN. If you have an existing ESX installation, you are prompted to retain it.</td>
</tr>
<tr>
<td>Advanced Setup</td>
<td>Allows you to specify esxconsole.vmdk partition settings, kernel options, and a bootloader location and password. If you leave the Configure boot loader automatically option selected, the installer places the boot loader in the master boot record (MBR). If you have an existing ESX installation, you are prompted to retain it.</td>
</tr>
</tbody>
</table>

16 Select a location to install ESX and click **Next**.

NOTE With ESX 4.0 Update 1 and later if you have ESX installation and VMFS partition on the same disk or LUN you have an option to retain the VMFS volume.

Installing ESX on a USB device is not supported.

17 In the dialog box that appears with an option to retain the existing VMFS volume, click **OK**.

If you are retaining a VMFS volume from ESX 4.0 and later, a dialog box appears with an option to retain the existing service console disk.

18 To preserve the service console virtual disk, select **Preserve the existing COS VMDK file** and click **OK**.

If you choose to retain the existing COS VMDK file but do not have enough space to retain it, the installation cannot continue.

NOTE The existing COS VMDK file can be accessed later to retrieve any files from the previous installation, but it is not reused for the installation.

19 Configure advanced options.

a Configure a location for the VMFS datastore to store the service console.

- **Create new datastore** – Select the same disk as ESX or select another disk. If you select another disk, the disk used for the ESX location contains only the `/boot` and `vmkcore` partitions, and the rest of the disk is unpartitioned. The second disk is formatted as a single VMFS partition that spans the entire disk.

 You can create additional partitions post-install, using the vSphere Client.

- **Use existing datastore** – Select an existing datastore available to the host.

 VMFS2 volumes are not recognized by ESX 4.0.

 The service console must be installed on a VMFS datastore that is resident on a host’s local disk or on a SAN disk that is masked and zoned to that particular host only. The datastore cannot be shared between hosts.

b Create new partitions and edit or delete the default partitions.

VMware recommends that you retain the `/var/log` partition of 2000MB.
20 Configure advanced bootloader options.

The Bootloader Options page appears if you deselected the **Configure boot loader automatically** check box.

- **a** Enter bootloader kernel arguments.
 The installer writes the arguments to the `grub.conf` file and passes them to the ESX kernel every time ESX boots.

- **b** Enter an optional bootloader password. It can be up to 30 characters.

- **c** Select where the GRUB bootloader is installed.
 By default, the GRUB bootloader is installed in the MBR. Use this option for most installations. For legacy hardware that stores BIOS information in the MBR, click **Install GRUB on the first partition of the disk, instead of the Master Boot Record**.

21 Configure the time zone.

22 Configure the date and time settings.

- **Select Automatically** and enter the IP address or host name of an NTP server.

- **Select Manually** to use the machine date and time detected by the installer or to set the date and time yourself. If you select **Manually** and you do not have a functioning mouse, you can change the calendar month and year by using Ctrl-left-arrow and Ctrl-right-arrow for the month, and Ctrl-up-arrow and Ctrl-down-arrow for the year.

23 Enter a root password.

- It must contain between 6 and 64 characters.

24 (Optional) Create additional users by clicking **Add**.

25 Confirm your installation configuration and click **Next**.

If an installation error occurs at this point, the ISO image might be invalid or there might be something wrong with the DVD media. To troubleshoot, try the ISO download process again, make sure the DVD is in working order, and make sure the DVD drive and DVD media type are compatible. When you retry the installation, perform the media check operation. Alternatively, use another media access option, such as HTTP.

26 Click **Next** and then click **Finish** to exit the installer and reboot the host.

27 During reboot, press the key required to enter your machine’s BIOS setup or boot menu

- This key is often a function key or Delete.

28 Set the first boot device to be the drive on which you installed ESX.

After installation, a `esxconsole-<system-uuid>/esxconsole.vmdk` file is created in a VMFS volume. The `/`, `swap`, `/var/log`, and any of the optional partitions are stored in the `esxconsole.vmdk` file.

After you install ESX and reboot the host, you can log in to the service console to read the installation log at `/var/log/esx_install.log`.

Note In previous releases of ESX, if the system did not boot up after installation, one troubleshooting approach was to mount the partitions for debugging. For ESX 4.0, mounting the partitions would not be helpful in resolving the issue. If after installation the system does not boot up, the most likely cause is that the BIOS is configured to boot from the wrong disk.
Install ESX Using the Text Mode

Use the text interface if your video controller does not function properly when you use graphical mode.

Prerequisites

See “Prerequisites for Installing ESX,” on page 21.

Procedure

1. Choose a method for booting the installer.
 - Boot from the DVD using the local DVD-ROM drive.
 - PXE boot the installer.
2. Select **Install ESX in text mode**.
3. (Optional) Press F2 and type boot options for the installer.

 A series of installation messages scroll past until the Welcome page appears.
4. To continue, enter **1**.
5. Select a keyboard model.
 - To accept the default US English, enter **1**.
 - To configure the keyboard, enter **2** and enter the number that corresponds to your keyboard model.
6. Accept the VMware license agreement.
 You cannot install this product unless you accept the license agreement.
7. Select whether to install custom drivers with the ESX installation.

 You might need custom drivers if your system is not listed in the *Hardware Compatibility Guide* and has a network or storage device that was not originally compatible with ESX 4.0.

 If you PXE booted the ESX installer, you cannot install custom drivers during the installation process. You can install them after the ESX installation is complete.
 - To install custom drivers with the ESX installation, enter **1**. The installer prompts you to insert the media containing the custom drivers. After you add the custom drivers, you are prompted to reinsert the ESX installation DVD and continue with the installation.
 - If you do not need to install custom drivers, enter **2**.

 You can install custom drivers after the ESX installation is complete using other command-line and GUI tools available to you, such as the vSphere CLI and vCenter Update Manager.
8. To load the ESX drivers and continue, enter **1**.
9. Configure ESX licensing.
 - To enter the vSphere license key now, enter **1**.
 - To evaluate ESX and enter a vSphere license key later using the vSphere Client, enter **2**.
10. Select the network adapter for the ESX service console.

 Virtual machine network traffic shares this network adapter until you configure a virtual switch for another network adapter. You can configure network adapters later from the vSphere Client.
 - To accept the default network adapter and leave the VLAN ID unassigned, enter **1**.
 - To select a network adapter and assign a VLAN ID, enter **2**.
11 Configure the network settings.

VMware recommends that you use a static IP address to simplify client access. If you want to use static settings but you do not have the required information, you can use DHCP for the installation and configure static settings after you consult with your network administrator.

- To keep the automatic DHCP settings, enter 1.
- To configure the IP settings, enter 2. For the host name, type the complete host name including the domain.

12 Select the location of the ESX installation ISO image.

These options appear if you entered the `askmedia` bootstrap command at the mode selection screen.

- To specify DVD or USB media, enter 1. You can select a DVD-ROM drive other than the one you might be using to boot the installer.
- To specify a network file system (NFS) server and a directory path, enter 2.
- To specify an HTTP or HTTPS URL, enter 3.
- To specify an FTP URL, enter 4.

13 Select a setup option.

- For a basic setup that configures the default partitions on a single hard drive or LUN, enter 1. The default partitions are sized based on the capacity of the hard drive or LUN.
- For an advanced setup that allows you to specify `esxconsole.vmdk` partition settings, kernel options, and a bootloader location and password, enter 2.

14 Select a location to install ESX.

The installer erases all content on the selected storage device. Installing ESX on a USB device is not supported.

15 (Optional) Configure a location for the VMFS datastore partition for the service console.

- To create a new datastore, enter 1. For the datastore location, enter 1 to select the same disk as ESX, or enter 2 to select another disk.

 If you select another disk for the VMFS partition, the ESX disk will contain only the `/boot` and `vmkcore` partitions, with the remainder of the disk unpartitioned. The VMFS disk will be formatted as a single partition that spans the entire disk.

 You can create additional partitions post-install, using the vSphere Client.

- To select an existing datastore available to the host, enter 2. VMFS2 volumes are not recognized by ESX 4.0.

 The service console must be installed on a VMFS datastore that is resident on a host’s local disk or on a SAN disk that is masked and zoned to that particular host only. The datastore cannot be shared between hosts.

16 (Optional) Name the VMFS datastore.

- To keep the default name, `Storage1`, enter 1.
- To change the name, enter 2.

17 (Optional) Change the partition layout of the service console.

- To keep the default partition layout, enter 1. You can configure partitions later using the vSphere Client.
- To create, edit, and delete partitions, enter 2.
18 (Optional) To specify kernel arguments for the GRUB bootloader, enter 1, or to skip this option, enter 2.

The software writes the arguments to the grub.conf file and passes them to the ESX kernel every time ESX boots.

19 (Optional) To specify a bootloader password, enter 1, or to skip this option, enter 2.

The password can be up to 30 characters.

20 To keep the default time zone, enter 1, or enter 2 to configure the time zone.

21 Configure the date and time settings.

- To specify an NTP server, enter 1.
- To configure the date and time manually, enter 2. This option allows you to use the machine date and time detected by the installer or set the date and time yourself.

22 Enter a root password between 6 and 64 characters.

23 To confirm your installation configuration, enter 1.

If an installation error occurs at this point, the ISO image might be invalid or something might be wrong with the DVD media. To troubleshoot, try the ISO download process again, make sure that the DVD is in working order, and make sure that the DVD drive and DVD media type are compatible. When you retry the installation, perform the media check operation. Alternatively, use another media access option, such as HTTP.

24 To exit the installer and reboot the host, enter 1.

25 During reboot, press the key required to enter your machine’s BIOS setup or boot menu.

This key is often a function key or Delete.

26 Set the first boot device to be the drive on which you installed ESX.

After installation, an esxconsole-<system-uuid>/esxconsole.vmdk file is created in a VMFS volume. The /, swap, /var/log, and any of the optional partitions are stored in the esxconsole.vmdk file.

After you install ESX and reboot the host, you can log in to the service console to read the installation log at /var/log/esx_install.log.

Note In previous releases of ESX, if the system did not boot up after installation, one troubleshooting approach was to mount the partitions for debugging. For ESX 4.0, mounting the partitions does not resolve this issue. If the system does not boot up, the most likely cause is that the BIOS is configured to boot from another disk.

Installing ESX Using Scripted Mode

You can quickly deploy ESX hosts using scripted, unattended installations. Scripted installations provide an efficient way to deploy multiple hosts.

The installation script contains the installation settings for ESX. You can apply the script to all your hosts that will have a similar configuration.

Scripted installations include the following steps:

1. Create a script using the supported commands.
2. Edit the installation script as needed to change settings that are unique for each host.
3. Run the scripted installation.

The installation script can reside in one of the following locations:

- Default installation script
FTP
HTTP/HTTPS
NFS
USB flash drive
Local disk

Approaches for Scripted Installation

You can install onto multiple machines using a single script for all of them or using a separate script for each machine.

One of the settings that you can configure in a script is the IP setting, which can be static IP or DHCP for the host on which you are installing ESX. Choose one of the following approaches:

- Create multiple scripts, each containing unique network identification information. The unique network information includes the static IP address and host name of each ESX host.
- Create one script (or use a default script) that uses DHCP to set up multiple ESX hosts. After you complete a scripted installation, you can then configure each ESX host separately to assign a unique host name and IP address. VMware recommends that you use static IP addresses.

The IPAPPEND PXE configuration option specifies that the same network adapter the machine boots from is also used for connecting to the network. See “IPAPPEND,” on page 38.

About Installation Scripts

The installation script is a text file, for example ks.cfg, that contains supported commands.

The command section of the script contains the options specified for the ESX installation. This section is required and must appear first in the script.

About Default Installation Scripts

Default installation scripts simplify the task of using scripted mode to perform ESX installations.

Instead of writing a script, you can use the following default scripts:

- After your first interactive installation of ESX, the installer creates a /root/ks.cfg script in the ESX filesystem. This script reflects the choices you made in the interactive installation. If you perform a second interactive installation on the same host with choices that differ from the first, /root/ks.cfg is overwritten with a new version.
- The installation media contains the following default installation scripts:

 ks-first-safe.cfg Installs ESX on the first detected disk and preserves the VMFS datastores on the disk.
 ks-first.cfg Installs ESX on the first detected disk.

When you install ESX using ks-first-safe.cfg or ks-first.cfg, the default root password is mypassword.

Default ks-first.cfg Script

The ESX installer comes with a default installation script that performs a standard installation to the first hard drive. The default ks-first.cfg script reformats the /dev/sda disk and sets up default partitioning.

This default script runs if you select the ESX Scripted Install to first disk (overwrite VMFS) option in the boot options menu.
You cannot modify the default script on the installation media. If you run the default script, the root password is mypassword. After the installation, you can log in to the ESX host and modify the default settings using the vSphere Client.

The default script contains the following commands:

```
#root Password
deploy --iscrypted $1$MpéRëÈíÌ$n9sgFQ3weS1PeSBpqRRu..
# Authconfig
authconfig --enableshadow --enablemd5
# Bootloader (Use grub by default.)
bootloader --location=mbr
# Timezone
timezone America/Los_Angeles --utc
# Install
install cdrom
# Network install type
network --device=MAC_address --bootproto=dhcp
# Keyboard
keyboard us
# Reboot after install?
reboot
# Clear partitions
clearpart --firstdisk
# Partitioning
part /boot --fstype=ext3 --size= --onfirstdisk
part storage1 --fstype=vmfs3 --size=10000 --grow --onfirstdisk
part None --fstype=vmkcore --size=100 --onfirstdisk
# Create the vmdk on the cos vmfs partition.
virtualdisk cos --size=5000 --onvmfs=storage1
# Partition the virtual disk.
part / --fstype=ext3 --size=0 --grow --onvirtualdisk=cos
part swap --fstype=swap --size=256 --onvirtualdisk=cos
# VMware Specific Commands
accepteula
serialnum --esx=XXXXX-XXXXX-XXXXX-XXXXX-XXXXX
```

Perform a Scripted Installation

You can use a custom or default script to install ESX.

Prerequisites

See “ESX Hardware Requirements,” on page 13.

Procedure

1. Choose a method for booting the installer.
 - Boot from the DVD using the local DVD-ROM drive.
 - PXE boot the installer.
2. When the mode selection page appears, press F2.
3 From the boot options list, select a scripted install option.

<table>
<thead>
<tr>
<th>Scripted Install Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| ESX Scripted Install using USB ks.cfg and customize the ks= option in the boot options list. | To specify a custom script that is not located on the USB:
 a Select the USB option as a template.
 b Customize the ks= option to specify the actual name and location of the custom script.
 The script must be located at one of the supported locations. See Step 4. |
| ESX Scripted Install using USB ks.cfg | Custom installation script located on a USB device attached to the machine.
 For this option, the script filename must be ks.cfg. |
| ESX Scripted Install to first disk | Default installation script included with the ESX media. You cannot customize this script. The default root password is mypassword. |
| ESX Scripted Install to first disk (overwrite VMFS) | Default installation script included with the ESX media. You cannot customize this script. The default root password is mypassword. |

4 (Optional) At the end of the boot options list, enter a ks= command.

<table>
<thead>
<tr>
<th>ks= Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ks=cdrom:/ks.cfg</td>
<td>Installation script is located on the DVD-ROM drive attached to the machine.</td>
</tr>
<tr>
<td>ks=file://<path>/ks.cfg</td>
<td>Installation script is at <path> which resides inside the initial ramdisk image.</td>
</tr>
<tr>
<td>ks=ftp://<server>/<path>/ks.cfg</td>
<td>Installation script is located at the given URL.</td>
</tr>
<tr>
<td>ks=http://<server>/<path>/ks.cfg</td>
<td>Installation script is located at the given URL.</td>
</tr>
<tr>
<td>ks=nfs://<server>/<path>/ks.cfg</td>
<td>Installation script is located at <path> on a given NFS server.</td>
</tr>
</tbody>
</table>

5 Press Enter.

The ESX installation proceeds, using the options that you specified.

Installation Script Commands

Review the commands that are supported in ESX installation scripts.

accepteula or vmaccepteula (required)

Accepts the ESX license agreement.

autopart (optional)

Compared to kickstart, the behavior of the ESX 4.0 autopart command is significantly different. Carefully edit the autopart command in your existing scripts.

Creates the default partitions on the disk. Not required if you include the part or partition command.

--disk= or --drive=

Specifies the disk to partition. For the accepted disk name formats, see “Disk Device Names,” on page 58.

--firstdisk=

Partitions the first non-USB disk found. This is the same disk as found by the clearpart --firstdisk command.

<disk-type1>, [<disk-type2>,...]

You can add an optional string argument to the --firstdisk flag to select the disk types. The strings that you can use are as follows:

- local
- remote
- Device driver name in the vmkernel
You can combine multiple values in a comma-separated list to concatenate other matches onto the list of matches. For example,---firstdisk=local,remote selects the first detected local disk or, if none are available, the first remote disk. This is the default behavior. To prefer a disk with the device driver named mptspi over any other local disks, use---firstdisk=mptspi,local.

---onvmfs= Partitions only the service console VMDK and not the physical disk. The argument is the VMFS volume name where the VMDK should be placed. The service console must be installed on a VMFS datastore that is resident on a host's local disk or on a SAN disk that is masked and zoned to that particular host only. The datastore cannot be shared between hosts.

---extraspace= Specifies the amount of extra space to add to the / (root) partition. The size is given in megabytes (MB). Must be greater than 0.

---vmdkpath= Species the path for the VMDK file. Takes the same value format as the virtualdisk--path= option.

auth or authconfig (optional)

Sets up authentication for the system. Hesiod arguments are not supported.

If you omit this command, MD5-based and shadow passwords are enabled by default.

---disablemd5 Disables MD5-based passwords.

---disableshadow Disables shadow passwords.

---enablemd5 (default) Enables MD5-based passwords.

---enablenis Enables NIS support. Requires nisdomain and nisserver.

---nisdomain=<domain> Sets the NIS domain. Requires --enablenis.

---nisserver=<server> Sets the NIS server (broadcasts by default). Requires --enablenis.

---usesshadow or --enableshadow (default) Enables shadow password file.

---enablekrb5 Enables Kerberos 5 to authenticate users.

---krb5realm= Specifies the Kerberos 5 realm to which your system belongs.

---krb5kdc= Specifies the KDCs that serve requests for the realm. Separate the names of multiple KDCs with commas.

---krb5adminserver= Specifies the KDC in your realm that is also running the KADM5 administration server.

---enableldap Enables LDAP.

---enableldapauth Enables LDAP as an authentication method. Requires --enableldap.

---ldapserver= Specifies the name of the LDAP server. Requires --enableldap.

---ldapbasedn= Specifies the distinguished name in your LDAP directory tree under which user information is stored. Requires --enableldap.

---enableldaps Enables transport layer security lookups. Requires --enableldap.

---enablead Enables active directory authentication. Requires --addomain and --advc.
--addomain
Active directory domain name. Requires --enablead.

--addc
Active directory domain controller. Requires --enablead.

bootloader (optional)
Sets up the GRUB boot loader.

--append=
Specifies extra kernel parameters for when the system is booting.

--driveorder=
Specifies which drive is first in the BIOS boot order.

--location=[mbr|partition|none]
Specifies where the boot loader is installed. The values are: mbr for the master boot record, partition for the first sector of the partition with the VMnx kernel, or none to not install the boot loader. If you omit the location option, the default location is the MBR.

--md5pass=
Sets the GRUB bootloader password with the md5 encrypted password.

--password=
Sets the GRUB boot loader password.

--upgrade
Upgrades the existing boot loader configuration and preserves existing entries.

clearpart (optional)
Compared to kickstart, the behavior of the ESX 4.0 clearpart command is significantly different. Carefully edit the clearpart command in your existing scripts.

Removes partitions from the system before creating new partitions.

--all
Removes all partitions from the system.

--drives= Specifies which drives to clear partitions from. For the accepted drives, see Table 6-1.

--alldrives
Ignores the --drives= requirement and allows clearing of partitions on every drive.

--ignoredrives= Removes partitions on all drives except those specified. Required unless the --drives= or --alldrives flag is specified.

--overwritevmfs
Overwrites VMFS partitions on the specified drives. Required if the disk contains a VMFS partition.

--initlabel
Initializes the disk label to the default for your architecture.

--firstdisk= <disk-type1>,
[<disk-type2>,...]
Clears partitions on the first non-USB disk found. This is the same disk as found by autopart --firstdisk command.

You can add an optional string argument to the --firstdisk flag to select the disk types. The strings that you can use are as follows:

- local
- remote
- Device driver name in the vmkernel
You can combine multiple values in a comma-separated list to concatenate other matches onto the list of matches. For example,
```--firstdisk=local,remote```
selects the first detected local disk or, if none are available, the first remote disk. This is the default behavior. To prefer a disk with the device driver named mptspi over any other local disks, use
```--firstdisk=mptspi,local```

dryrun (optional)

Parses and checks the installation script. Does not perform the installation.

esxlocation (optional)

Specifies an existing Linux partition to use as the `/boot` partition. The partition must be formatted with an ext2 or ext3 file system, be at least 1100MB, and be a primary partition.

```--disk= or --drive=```
Specifies the disk to search for an existing Linux partition that can be used as `/boot`. See Table 6-1 for the accepted disk name formats.

```--firstdisk=```
```<disk-type1>,```
```[<disk-type2>, ...]```
Uses the first disk that has a partition suitable to be the `/boot` partition. Supports the same argument format as the `autopart` command.

```--uuid=<UUID>```
Specifies a particular partition using the partition's ext2 UUID.

```--clearcontents```
Removes any files on the partition.

firewall (optional)

Compared to kickstart, the behavior of the ESX 4.0 firewall command is significantly different. Carefully edit the firewall command in your existing scripts.

Configures firewall options. All nonessential ports are blocked by default.

```--allowIncoming```
Opens all incoming ports on the system.

```--allowOutgoing```
Opens all outgoing ports on the system.

firewallport (optional)

Specifies firewall ports to allow or disallow connections.

```--open```
Allows the specified port to pass through the firewall.

```--close```
Disallows the specified port to pass through the firewall.

```--port=<port>```
Specifies ports allowed or disallowed through the firewall.

```--proto=[tcp|udp]```
Specifies transmission protocols allowed or disallowed through the firewall.

```--dir=[in|out]```
Specifies the direction of traffic to be allowed or disallowed through the firewall.

```--name=<name>```
Assigns a descriptive name to the firewall rule. The name must be specified for inbound ports.

```--enableService=<service>```
Allows services specified in `services.xml` to pass through the firewall.

```--disableService=<service>```
Disables services specified in `services.xml` from passing through the firewall.
install (optional)
Specifies that this is a fresh installation. (All scripted installations are fresh installations.)

<cdrom|usb|nfs|url> Specifies the type of installation. The values are:
 - cdrom installs from the DVD-ROM drive. For example:
 install cdrom
 - nfs.
 Installs from the specified NFS server. For example:
 install nfs --server=example.com --dir=/nfs3/VMware/ESX/40
 - url downloads across the network. For example:
 install url http://example.com
 - usb
 Installs from the first USB media found to contain the installation image. For example:
 install usb

--server= Specifies which NFS server to connect to. Use with nfs.
--dir= Specifies which directory on the NFS server to mount. Use with nfs.
<url> Defines the location of the runtime environment. Use with url (http/https/ftp/nfs).

keyboard (optional)
Sets the keyboard type for the system.

<keyboardType> Specifies the keyboard map for the selected keyboard type.

serialnum or vmserialnum (optional)
Configures licensing. If not included, ESX installs in evaluation mode.

--esx=<license-key> Specifies the vSphere license key to use. The format is 5 five-character tuples (XXXXX-XXXXX-XXXXX-XXXXX-XXXXX).

network (optional)
Configures network information for the system.

--bootproto=[dhcp|static] Specifies network settings.
--device= Specifies either the MAC address of the network card or the device name, as in vmnic0. This option refers to the uplink device for the virtual switch created for the service console. If you omit this option, the installer uses the network adapter specified with the IPAPPEND PXE configuration option or the netdevice bootstrap command. If you omit this option, the IPAPPEND option, and the netdevice bootstrap command, the installer uses the first plugged in network adapter. See “IPAPPEND,” on page 38 and “Bootstrap Commands,” on page 29.
--ip=
Sets an IP address for the machine to be installed. Required with the
--bootproto=static option.

--gateway=
Designates the default gateway as an IP address. Required with the
--bootproto=static option.

--nameserver=
Designates the primary name server as an IP address. Used with the
--bootproto=static option. Omit this option if you do not intend to use
DNS.

The --nameserver option can accept two IP addresses. For example:
--nameserver="10.126.87.104,10.126.87.120"

--netmask=
Specifies the subnet mask for the installed system. Used with the
--bootproto=static option. If you omit this option, the default is the
standard netmask for the given IP address.

--hostname=
Specifies the host name for the installed system. Only works with
--bootproto=static.

--vlanid=<vlanid>
Specifies a VLAN to use for networking. Set to an integer between 0 and 4095.

--addvmportgroup=(0|1)
Specifies whether to add the VM Network port group, which is used by virtual
machines. The default value is 1.

paranoid
Causes any warning messages to interrupt the installation. If you omit this command, warning messages are
just logged.

part or partition (optional)
Compared to kickstart, the behavior of the ESX 4.0 part or partition command is significantly different.
Carefully edit the part or partition command in your existing scripts.

Create service console partitions (except /boot) on the virtual disk and not on the physical disk.

Creates a partition on the system. Not required if you include the autopart command.

<mntpoint> Specifies where to mount the partition.

--asprimary Specifies that the partition must be created as a primary partition and not a
logical partition in the extended partition table.

--size= Defines the minimum partition size in megabytes.

--grow Allows the partition to grow to fill any available space or up to the maximum
size setting.

--maxsize= Specifies the maximum size in megabytes for a partition to grow.

--ondisk= or --ondrive= Specifies the disk on which partitions are created. For the accepted disk
formats, see Table 6-1. Cannot be used with the --onvirtualdisk option.

--onfirstdisk= <disk-type1>, [<disk-type2>,...] Partitions the first non-USB disk found. This is the same disk as found by the
autopart --firstdisk command.

You can add an optional string argument to the --firstdisk flag to select the
disk types. The strings that you can use are as follows:

- local
- remote
Device driver name in the vmkernel

You can combine multiple values in a comma-separated list to concatenate other matches onto the list of matches. For example,

```
--firstdisk=local,remote
```

selects the first detected local disk or, if none are available, the first remote disk. This is the default behavior. To prefer a disk with the device driver named mptspi over any other local disks, use

```
--firstdisk=mptspi,local
```

---onvirtualdisk= Specifies the virtual disk on which partitions are created. Cannot be used with the `--ondisk` option.

---fstype= Sets the file system type for the partition. Usually of type vmfs3, ext3, swap, or vmkcore.

reboot (optional)

Reboots the system after scripted installation is finished.

---noeject Does not eject the DVD after installation.

rootpw (required)

Sets the root password for the system. Can be between 6 and 64 characters.

---iscrypted Specifies that the password is encrypted.

<password> Specifies the password value.

timezone (required)

Sets the time zone for the system.

---utc (required) Indicates that the BIOS clock is set to UTC (Greenwich Mean) time. Do not omit this option.

<timezone> (optional) Specifies the timezone value. See the Olson database for supported values.

virtualdisk (optional)

NOTE The service console must be installed on a VMFS datastore that is resident on a host’s local disk or on a SAN disk that is masked and zoned to that particular host only. The datastore cannot be shared between hosts.

Creates a new virtual disk.

```
<name>-<system-uuid>/default/<name>.vmdk
```

---size= Specifies the size of the virtual disk in megabytes.

---path= Specifies the location where the virtual disk is created. The path must include a directory and a filename ending in .vmdk. For example: cos/default-cos.vmdk.
--onvms=

--onfirstvmfs=
(<disk-type1>,
[<disk-type2>,...])

Specifies the name of the VMFS volume where the VMDK file is created.

Uses the first VMFS volume on a disk that matches the given description and has more free space than the requested size. Uses the same argument format as autopart.

%-include or include

Specifies an additional installation script to parse. You can add several include commands to your script. When you use the %include command, put the <filename> argument on the same line as the command.

<filename> For example: %include part.cfg

%-packages

Adds or removes a package from the installation ISO image.

packages.xml

%-packages

-<package_name> # The package will not be installed.

The requirement="optional" tag means that the package is not installed by default. To override the default setting in the script, include:

%-packages

-<package_name> # The package will be installed.

--resolvedeps

Installs the listed packages and automatically resolves package dependencies.

--ignoredeps

Ignores the unresolved dependencies and installs the listed packages without the dependencies.

%-pre (optional)

Specifies a script to be executed before the kickstart configuration is evaluated. For example, a %pre script can generate include files, as shown here:

Partitioning
%include part.cfg

...

%pre

cat > /tmp/part.cfg <<EOF
part /boot --fstype=ext3 --size= --onfirstdisk
part storage1 --fstype=vmfs3 --size=10000 --grow --onfirstdisk
part None --fstype=vmkcore --size=100 --onfirstdisk
EOF

--interpreter

Specifies an interpreter to use. The default is bash.

=[python|bash]
%post (optional)

Executes the specified script after package installation has been completed. If you specify multiple %post sections, they are executed in the order they appear in the installation script. For example:

%post
MY_MAC=`esxcfg-nics -l | tail -1 | awk '{print $7}'` CONF_URL="http://example.com/$MY_MAC"
esxcfg-firewall --allowOutgoing
 --interpreter python --c "import urllib; urllib.urlretrieve('$CONF_URL', '/tmp/myconfig.sh')"
esxcfg-firewall --blockOutgoing
sh /tmp/myconfig.sh

--interpreter [perl|python|bash]

Specifies an interpreter to use. The default is bash.

--nochroot

Indicates whether the script is executed after you chroot into the service console file system.

--timeout=secs

Specifies a timeout for executing the script. If the script has not finished when the timeout expires, the script is forcefully terminated.

--ignorefailure [true|false]

If true, the installation is considered a success even if the %pre script terminated with an error.

Disk Device Names

Installation script commands such as autopart and clearpart require the use of disk device names.

Table 6-1 lists the supported disk device names.

<table>
<thead>
<tr>
<th>Format</th>
<th>Examples</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VML</td>
<td>mpx.vmhba0:C0:T0:L0</td>
<td>The vmkernel device name.</td>
</tr>
<tr>
<td>/dev/+</td>
<td>/dev/sda, /dev/cciss/c0d0</td>
<td>Full device path in the service console.</td>
</tr>
<tr>
<td>sdX, cciss/cNdN</td>
<td>sda, cciss/c0d0</td>
<td>Shortened device path from the service console.</td>
</tr>
</tbody>
</table>

Differences Between Kickstart and ESX Commands

ESX scripted installation is similar to, but incompatible with Red Hat's kickstart.

In general, kickstart and ESX scripts differ as follows:

- ESX scripts use the UUID format for specifying disks.
- ESX scripts use MAC addresses to specify network adapters.
- ESX scripts generally allow file and NFS URLs.
- ESX command options and their values require an equal sign (=) instead of a space. For example:

 --location=mbr # Correct
 --location mbr # Incorrect

Specific command differences are noted in the following summary.

accepteula or vmaccepteula

Only in ESX.
autopart
Compared to kickstart, the behavior of the ESX 4.0 autopart command is significantly different. Carefully edit the autopart command in your existing scripts.

auth or authconfig
--enablead Only in ESX.
--adddomain Only in ESX.
--addc Only in ESX.
--enablehesiod Only in kickstart.
--hesiodlhs Only in kickstart.
--hesiodrhs Only in kickstart.
--enablesmbauth Only in kickstart.
--smbservers Only in kickstart.
--smbworkgroup Only in kickstart.
--enablecache Only in kickstart.

bootloader
--driveorder= Only in ESX.
--upgrade Only in ESX.
--useLilo Only in kickstart.
--lba32 Only in kickstart.
--linear Only in kickstart.
--nolinear Only in kickstart.

clearpart
Compared to kickstart, the behavior of the ESX 4.0 clearpart command is significantly different. Carefully edit the clearpart command in your existing scripts.

device
Only in kickstart.

devicemerge
Only in kickstart.

driverdisk
Only in kickstart.

dryrun
Only in ESX.
esxlocation
Only in ESX.

firewall
Compared to kickstart, the behavior of the ESX 4.0 `firewall` command is significantly different. Carefully edit the `firewall` command in your existing scripts.

firewallport
Only in ESX.

%include or include
In ESX, the `include` command can be specified without the leading `%`.

install

```plaintext
url nfs
usb
harddrive
```
Only in ESX.

interactive
Only in kickstart.

keyboard
Optional in ESX. Mandatory in kickstart.

lang
Only in kickstart.

langsupport
Only in kickstart.

lilocheck
Only in kickstart.

logvol
Only in kickstart.

mouse
Only in kickstart.

network

```plaintext
--bootproto=bootp
--vlanid=<vlanid>
--addvmportgroup=(0|1)
```
Only in ESX.
--device= ethX identifiers are only in kickstart.
--nodns Only in kickstart.

paranoid
Only in ESX.

part or partition
Compared to kickstart, the behavior of the ESX 4.0 part or partition command is significantly different. Carefully edit the part or partition command in your existing scripts.

raid
Only in kickstart.

reboot
--noeject Only in ESX.

skipx
Only in kickstart.

text
Only in kickstart.

virtualdisk
Only in ESX.

volgroup
Only in kickstart.

xconfig
Only in kickstart.
ESX Partitioning

ESX hosts have required and optional partitions.

/boot and vmkcore are physical partitions. /, swap, /var/log, and all the optional partitions are stored on a virtual disk called esxconsole-<system-uuid>/esxconsole.vmdk. The virtual disk is stored in a VMFS volume.

This chapter includes the following topics:
- “Required Partitions,” on page 63
- “Optional Partitions,” on page 64

Required Partitions

ESX requires several partitions.

If you delete a required partition, be sure to create a new one of the same type. You cannot define the sizes of the /boot, vmkcore, and /vmfs partitions when you use the graphical or text installation modes. You can define these partition sizes when you do a scripted installation.

Table 7-1 describes the required partitions.

Table 7-1. ESX Required Partitions

<table>
<thead>
<tr>
<th>Mount Point</th>
<th>Type</th>
<th>Size</th>
<th>Location</th>
<th>Partition Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/boot</td>
<td>ext3</td>
<td>The ESX boot disk requires 1.25GB of free space and includes the /boot and vmkcore partitions. The /boot partition alone requires 1100MB.</td>
<td>Physical partition</td>
<td>Stores information required to boot the ESX host system. For example, this is where the grub boot loader resides.</td>
</tr>
<tr>
<td>swap</td>
<td>swap</td>
<td>600MB recommended minimum 1600MB maximum Use the default value applied during installation.</td>
<td>Virtual disk in a VMFS volume</td>
<td>Allows ESX to use disk space when more memory is needed than the physical RAM allows. Note Do not confuse the ESX swap partition with virtual machine swap space. See the Resource Management Guide.</td>
</tr>
<tr>
<td>/</td>
<td>ext3</td>
<td>Calculated dynamically based on the size of the /usr partition. By default, the minimum size is 5GB and no /usr partition is defined.</td>
<td>Virtual disk in a VMFS volume</td>
<td>Contains the ESX operating system and services, accessible through the service console. Also contains third-party add-on services or applications you install.</td>
</tr>
</tbody>
</table>
Table 7-1. ESX Required Partitions (Continued)

<table>
<thead>
<tr>
<th>Mount Point</th>
<th>Type</th>
<th>Size</th>
<th>Location</th>
<th>Partition Description</th>
</tr>
</thead>
</table>
| Not applicable | VMFS3 | esxconsole.vmdk: 1200MB | Physical partition located on one of the following:
- Local or boot drive
- Local SCSI volume
- Networked SCSI volume
- SAN
The service console must be installed on a VMFS datastore that is resident on a host's local disk or on a SAN disk that is masked and zoned to that particular host only. | Used to store virtual machines. You can create any number of VMFS volumes on each LUN if the space is available. VMFS2 is supported in read-only mode to import legacy virtual machines. |
| Not applicable | vmkcore | The ESX boot disk requires 1.25GB of free space and includes the /boot and vmkcore partitions. The /boot partition alone requires 1100MB. | Physical partition located on one of the following:
- Local SCSI volume
- Networked SCSI volume
- SAN
Cannot be located on a software iSCSI volume. | Used to store core dumps for debugging and technical support. If multiple ESX hosts share a SAN, configure a vmkcore partition with 100MB for each host. |

Optional Partitions

You can create optional partitions during or after the ESX installation procedure.

Table 7-2 describes the optional partitions.

Table 7-2. ESX Optional Partitions

<table>
<thead>
<tr>
<th>Mount Point</th>
<th>Type</th>
<th>Recommended Size</th>
<th>Location</th>
<th>Partition Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/home</td>
<td>ext3</td>
<td>512MB</td>
<td>Virtual disk in a VMFS volume</td>
<td>Used for storage by individual users.</td>
</tr>
<tr>
<td>/tmp</td>
<td>ext3</td>
<td>1024MB</td>
<td>Virtual disk in a VMFS volume</td>
<td>Used to store temporary files.</td>
</tr>
<tr>
<td>/usr</td>
<td>ext3</td>
<td></td>
<td>Virtual disk in a VMFS volume</td>
<td>Used for user programs and data.</td>
</tr>
<tr>
<td>/var/log</td>
<td>ext3</td>
<td>2000MB</td>
<td>Virtual disk in a VMFS volume</td>
<td>Used to store log files. The graphical and text installers create this 2000MB partition by default.</td>
</tr>
</tbody>
</table>
After you install ESX, you must consider host management through the vSphere Client, licensing, and adding and removing custom extensions.

This chapter includes the following topics:

- “Download the vSphere Client,” on page 65
- “Licensing the Host,” on page 65
- “Set an ESX/ESXi Host to Evaluation Mode,” on page 66

Download the vSphere Client

The vSphere Client is a Windows program that you can use to configure the host and to operate its virtual machines. You can download vSphere Client from any host.

Prerequisites

You must have the URL of the host. This is the IP address or host name.

Procedure

1. From a Windows machine, open a Web browser.
2. Enter the URL for the host.

 The welcome page appears.
3. Click **Download the vSphere Client** under Getting Started.
4. Click **Yes** in the security warning dialog box that appears.

What to do next

Install the vSphere Client.

Licensing the Host

After you purchase a host license, VMware provides a vSphere license key.

Set an ESX/ESXi Host to Evaluation Mode

If you entered a license for ESX, you can switch to evaluation mode to explore the full functionality of ESX.

Procedure

1. From the vSphere Client, select the host in the inventory.
2. Click the Configuration tab.
4. Click Edit next to ESX License Type.
5. Click Product Evaluation.
6. Click OK to save your changes.
A third-party extension is designed to be incorporated into ESX/ESXi in order to enhance, or extend, the functions of ESX/ESXi. For example, an extension might be a VMkernel module, a driver, or a CIM provider. VMware provides the following tools for installing, removing, and updating extensions to ESX/ESXi hosts:

- **vSphere Host Update Utility**: Graphical utility for ESXi only. See the Upgrade Guide.
- **vCenter Update Manager**: For ESX and ESXi, automates patching and updating of extensions. See the vCenter Update Manager Administration Guide.
- **vihostupdate**: Command-line utility for ESX and ESXi.
- **esxupdate**: Command-line utility for ESX only. See the Patch Management Guide.

This chapter includes the following topics:

- “About Patching Hosts with vSphere Host Update Utility,” on page 67
- “About the vihostupdate Command-Line Utility,” on page 68
- “Update an ESX/ESXi Host Using Offline Bundles with the vihostupdate Utility,” on page 68
- “Update an ESX/ESXi Host Using a Depot with the vihostupdate Utility,” on page 69
- “Remove Custom Packages on ESX Using the Service Console,” on page 70
- “Remove Selected Custom Packages on ESX/ESXi Using the vSphere Command Line,” on page 70

About Patching Hosts with vSphere Host Update Utility

With vSphere Host Update Utility, you can download and install maintenance and patch releases, which provide security, stability, and feature enhancements for ESXi 4.0 hosts.

You can use vSphere Host Update Utility to check for new release updates and patches that are applicable to the ESXi hosts registered in the vSphere Host Update Utility. vSphere Host Update Utility builds the host list by tracking the hosts that you connect to directly through the vSphere Client. You can also add hosts to the list manually.
About the vihostupdate Command-Line Utility

The `vihostupdate` command applies software updates to ESX/ESXi hosts and installs and updates ESX/ESXi extensions such as VMkernel modules, drivers, and CIM providers.

IMPORTANT Run `vihostupdate` on ESX 4.0/ESXi 4.0 hosts. Run `vihostupdate35` on ESX 3.5/ESXi 3.5 hosts.

NOTE The `esxupdate` utility is supported as well. It is for ESX only. See the Patch Management Guide.

The `vihostupdate` command works with bulletins. Each bulletin consists of one or more vSphere bundles and addresses one or more issues. Towards the end of a release, bulletins include a large number of other bulletins. Bulletins are available in offline bundles and in a depot with associated `metadata.zip` files.

- If you use offline bundles, all patches and corresponding metadata are available as one ZIP file.
- If you use a depot, the `metadata.zip` file points to metadata, which describes the location of the files.

The command supports querying installed software on a host, listing software in a patch, scanning for bulletins that apply to a host, and installing all or some bullets in the patch. You can specify a patch by using a bundle ZIP file or a depot’s metadata ZIP file.

`vihostupdate` supports `https://`, `http://`, and `ftp://` downloads. You can specify the protocols in the download URL for the bundle or metadata file. `vihostupdate` also supports local paths. See “Update an ESX/ESXi Host Using Offline Bundles with the vihostupdate Utility,” on page 68. To search a local depot where the vSphere CLI is installed, use `/local/depot/metadata.zip` without of the `file://` parameter.

Update an ESX/ESXi Host Using Offline Bundles with the vihostupdate Utility

You can use the `vihostupdate` utility in conjunction with offline bundles or with a depot. This topic describes the procedure using offline bundles.

Prerequisites

Before you can update or patch an ESX/ESXi host from the command line, you must have access to a machine on which you can run the VMware vSphere Command-Line Interface (vSphere CLI). You can install the vSphere CLI on your Microsoft Windows or Linux system or import the VMware vSphere Management Assistant (vMA) virtual appliance onto your ESX/ESXi host. For information about importing or installing the vSphere CLI, see the VMware vSphere Command-Line Interface Installation and Reference Guide.

Procedure

1. Power off any virtual machines that are running on the host and place the host into maintenance mode.
2. Find out which bulletins are applicable to the ESX/ESXi host.
 - Search an offline HTTP server:
     ```bash
     vihostupdate.pl --server <server> --scan --bundle http://<webserver>/rollup.zip
     ```
 - Search the local machine:
     ```bash
     vihostupdate.pl --server <server> --scan --bundle <local_path>/rollup.zip
     ```
 The `--server` argument is the ESX/ESXi host name or IP address.

You can specify more than one bundle at the command line each time you run the command. For multiple bundles, use a comma to separate the path and file name of the bundle. Do not include a space after the comma.
(Optional) List all the bulletins that are available in the bundle.

- Search an offline HTTP server:

 \texttt{vihostupdate.pl --server <server> --list --bundle http://<webserver>/rollup.zip}

- Search the local machine:

 \texttt{vihostupdate.pl --server <server> --list --bundle <local_path>/rollup.zip}

This command lists all the bulletins contained in the bundle, even those that do not apply to the host.

Install bulletins from one or more bundles on the ESX/ESXi host.

- Install from an offline HTTP server. The following example installs both VMware bulletins and bulletins made available by a partner.

- Install from the local machine. The following example installs both VMware bulletins and bulletins made available by a partner.

 \texttt{vihostupdate.pl --server <server> --install --bundle <local_path>/rollup.zip,<local_path>/rollupPartner1.zip --bulletin bulletin1,bulletin2}

 If you omit the \texttt{--bulletin} argument, this command installs all the bulletins in the bundle.

Verify that the bulletins are installed on your ESX/ESXi host.

\texttt{vihostupdate.pl --server <server> --query}

(Optional) Remove individual bulletins.

\texttt{vihostupdate.pl --server <server> --remove --bulletin bulletin1}

Use this option only for removing bulletins that are third-party or VMware extensions. Do not remove bulletins that are VMware patches or updates. \texttt{vihostupdate} can remove only one bulletin at a time.

Update an ESX/ESXi Host Using a Depot with the vihostupdate Utility

You can use the vihostupdate utility in conjunction with bundles or with a depot. This topic describe the procedure using depots.

Prerequisites

Before you can update or patch an ESX/ESXi host from the command line, you must have access to a machine on which you can run the VMware vSphere Command-Line Interface (vSphere CLI). You can install the vSphere CLI on your Microsoft Windows or Linux system or import the VMware vSphere Management Assistant (vMA) virtual appliance onto your ESX/ESXi host. For information about importing or installing the vSphere CLI, see the VMware vSphere Command-Line Interface Installation and Reference Guide.

Procedure

1. Power off any virtual machines that are running on the host and place the host into maintenance mode.

2. Scan the depot for bulletins that are applicable to the host:

 \texttt{vihostupdate.pl --server <server> --scan --metadata http://<webserver>/depot/metadata.zip}

 The \texttt{--server} argument is the ESX/ESXi host name or IP address.

 Do not specify more than one ZIP file at the command line each time you run the command. If you specify \texttt{--metadata} more than once, the command processes only the last file that was specified.
3 (Optional) List all bulletins in the depot at the metadata.zip file location:
 vihostupdate.pl --list --metadata http://<webserver>/depot/metadata.zip

 This command lists all the bulletins in the depot, even those that do not apply to the host.

4 Install bulletins in the depot on the host:
 vihostupdate.pl --install --metadata http://<webserver>/depot/metadata.zip --bulletin bulletin1,bulletin2

 If you omit the --bulletin argument, this command installs all the bulletins in the bundle.

5 Verify that the bulletins are installed on your ESX/ESXi host.
 vihostupdate.pl --server <server> --query

6 (Optional) Remove individual bulletins.
 vihostupdate.pl --server <server> --remove --bulletin bulletin1

 Use this option only for removing bulletins that are third-party or VMware extensions. Do not remove
 bulletins that are VMware patches or updates. vihostupdate can remove only one bulletin at a time.

Remove Custom Packages on ESX Using the Service Console

After adding custom packages, you might decide to remove them. One way to remove custom packages is to
use the service console and the esxupdate command.

Do not remove bulletins that are VMware patches or updates.

For detailed information about the esxupdate command, see the Patch Management Guide.

Prerequisites

Before you remove a custom package, shut down or migrate running virtual machines off of the ESX host.

Procedure

1 Open the ESX service console.

2 Run the esxupdate query command to display a list of the installed bulletins.

3 Run esxupdate -b <bulletinID> remove command, where <bulletinID> is the bulletin for the extension to
 remove.

 The specified custom package is removed.

Remove Selected Custom Packages on ESX/ESXi Using the vSphere Command Line

After adding custom packages, you might decide to remove them. One way to remove custom packages is to
use the vSphere CLI and the vihostupdate command.

Do not remove bulletins that are VMware patches or updates.

For detailed information about the vihostupdate command, see the VMware vSphere Command-Line Interface
Installation and Reference Guide.

Prerequisites

Before you remove a custom package, shut down or migrate running virtual machines off of the ESX/ESXi
host.
Procedure

1. Determine which bulletins are installed on your ESX/ESXi host.

 \texttt{vhostupdate.pl --server \textless server\textgreater --query}

 Note the bundle ID for the bundle to uninstall.

2. Run the \texttt{vhostupdate} command.

 \texttt{vhostupdate --server \textless server\textgreater --remove --bulletin \textless bulletin\ ID\textgreater}

 \texttt{vhostupdate} can remove only one bulletin at a time.

The specified custom package is removed.
Preparing the vCenter Server Databases

vCenter Server and vCenter Update Manager require databases to store and organize server data.

You do not need to install a new database for the vCenter Server installation to work. During installation, you can point the vCenter Server system to any existing supported database. vCenter Server supports IBM DB2, Oracle, and Microsoft SQL Server databases. vCenter Update Manager supports Oracle and Microsoft SQL Server databases. For a list of supported database server versions, see the vSphere Compatibility Matrixes at http://www.vmware.com/pdf/vsphere/r40/vsp_compatibility_matrix.pdf on the VMware vSphere documentation Web site.

CAUTION If you have a VirtualCenter database that you want to preserve, do not perform a fresh installation of vCenter Server. See the Upgrade Guide.

VMware recommends using separate databases for vCenter Server and vCenter Update Manager. However, for a small deployments, a separate database for vCenter Update Manager might not be necessary.

Each vCenter Server instance must have its own database. vCenter Server instances cannot share the same database schema. Multiple vCenter Server databases can reside on the same database server, or they can be separated across multiple database servers. For Oracle, which has the concept of schema objects, you can run multiple vCenter Server instances in a single database server if you have a different schema owner for each vCenter Server instance, or use a dedicated Oracle database server for each vCenter Server instance.

This chapter includes the following topics:

- “vCenter Server Database Patch and Configuration Requirements,” on page 74
- “Create a 32-Bit DSN on a 64-Bit Operating System,” on page 75
- “Configure vCenter Server to Communicate with the Local Database After Shortening the Computer Name to 15 Characters or Fewer,” on page 76
- “About the Bundled Microsoft SQL Server 2005 Express Database Package,” on page 76
- “Maintaining a vCenter Server Database,” on page 76
- “Configure DB2 Databases,” on page 77
- “Configure Microsoft SQL Server Databases,” on page 84
- “Configure Oracle Databases,” on page 89
vCenter Server Database Patch and Configuration Requirements

After you choose a database type, make sure you understand the configuration and patch requirements for the database.

Table 10-1 lists the configuration and patch requirements for the databases that are supported with vCenter Server.

Contact your DBA for the appropriate database credentials, or install the bundled Microsoft SQL Server 2005 Express database.

For a complete list of database versions supported with vCenter Server, see the Compatibility Matrixes on the VMware vSphere documentation Web site.

Table 10-1. Configuration and Patch Requirements

<table>
<thead>
<tr>
<th>Database Type</th>
<th>Patch and Configuration Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM DB2 9.5</td>
<td>If the database is not local to the vCenter Server system, install the IBM Data Server Runtime Client.</td>
</tr>
<tr>
<td></td>
<td>Install the IBM DB2 native client according to the IBM instructions for your DB2 version.</td>
</tr>
<tr>
<td></td>
<td>Ensure that C:\Program Files\IBM\SQLLIB\BIN is in the system path. DB2 might be installed at a different location.</td>
</tr>
<tr>
<td></td>
<td>You might need to restart the Microsoft Windows machine for the service to recognize the change in the environment variable.</td>
</tr>
<tr>
<td></td>
<td>Ensure that the machine has a valid ODBC data source name (DSN) entry.</td>
</tr>
<tr>
<td>Microsoft SQL Server 2005 Express</td>
<td>Bundled database that you can use for small deployments of up to 5 hosts and 50 virtual machines.</td>
</tr>
<tr>
<td></td>
<td>If the machine has Microsoft SQL Native Client installed, remove it before installing vCenter Server with the bundled database.</td>
</tr>
<tr>
<td></td>
<td>If the machine has MSXML Core Services 6.0 installed, remove it before installing vCenter Server with the bundled database. If you cannot remove it using the Add or Remove Programs utility, use the Windows Installer CleanUp utility. See http://support.microsoft.com/kb/968749.</td>
</tr>
<tr>
<td>Microsoft SQL Server 2005</td>
<td>For Microsoft Windows XP, apply MDAC 2.8 SP1 to the client. Use the SQL Native Client driver (version 9.x) for the client. Ensure that the machine has a valid ODBC DSN entry.</td>
</tr>
<tr>
<td></td>
<td>If Microsoft SQL Server 2005 is not already installed and the machine has MSXML Core Services 6.0 installed, remove MSXML Core Services 6.0 before installing Microsoft SQL Server 2005. If you cannot remove it using the Add or Remove Programs utility, use the Windows Installer CleanUp utility. See http://support.microsoft.com/kb/968749.</td>
</tr>
<tr>
<td>Microsoft SQL Server 2008</td>
<td>For Microsoft Windows XP, apply MDAC 2.8 SP1 to the client. Use the SQL Native Client driver (version 10.x) for the client. Ensure that the machine has a valid ODBC DSN entry.</td>
</tr>
</tbody>
</table>
Table 10-1. Configuration and Patch Requirements (Continued)

<table>
<thead>
<tr>
<th>Database Type</th>
<th>Patch and Configuration Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle 10g</td>
<td>If necessary, first apply patch 10.2.0.4 (or later) to the client and server. Ensure that the machine has a valid ODBC DSN entry. For the Oracle Instant client, copy ojdbc14.jar to the vCenter Server tomcat directory (<vCenter install location>\Infrastructure\tomcat\lib). The Oracle 10g client comes with ojdbc14.jar (<Oracle client install location>\oracle\product\10.2.0<instance_name>\jdbc\lib). The vCenter Server installer copies the file from the Oracle client install location to the vCenter Server tomcat directory (<vCenter install location>\Infrastructure\tomcat\lib). If the ojdbc14.jar file is not found in the Oracle 10g client location, the vCenter Server installer prompts you to copy the file manually. You can download the file from http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc101040.html.</td>
</tr>
<tr>
<td>Oracle 11g</td>
<td>Ensure that the machine has a valid ODBC DSN entry. For the Oracle Instant client, copy ojdbc14.jar to the vCenter Server tomcat directory (<vCenter install location>\Infrastructure\tomcat\lib). The Oracle 11g client comes with ojdbc14.jar (<Oracle client install location>\app\Administrator\product\11.1.0<instancename>\sqldeveloper\jdbc\lib). The vCenter Server installer copies the file from the Oracle client install location to the vCenter Server tomcat directory (<vCenter install location>\Infrastructure\tomcat\lib). If the ojdbc14.jar file is not found in the Oracle 11g client location, the vCenter Server installer prompts you to copy the file manually. You can download the file from http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc101040.html.</td>
</tr>
</tbody>
</table>

Create a 32-Bit DSN on a 64-Bit Operating System

You can install or upgrade to vCenter Server on both 32-bit and 64-bit operating systems. Even though vCenter Server is supported on 64-bit operating systems, the vCenter Server system must have a 32-bit DSN. This requirement applies to all supported databases. By default, any DSN created on a 64-bit system is 64 bit.

Procedure

1. Install the ODBC drivers.
 - For Microsoft SQL Server and DB2 database servers, install the 64-bit database ODBC drivers on your Microsoft Windows system. When you install the 64-bit drivers, the 32-bit drivers are installed automatically.
 - For Oracle database servers, install the 32-bit database ODBC drivers on your Microsoft Windows system.

 Note: The default install location on 64-bit operating systems is C:\VMware.

2. Run the 32-bit ODBC Administrator application, located at [WindowsDir]\SysWOW64\odbcad32.exe.
3. Use the application to create your DSN.

You now have a DSN that is compatible with vCenter Server. When the vCenter Server installer prompts you for a DSN, select the 32-bit DSN.
Configure vCenter Server to Communicate with the Local Database After Shortening the Computer Name to 15 Characters or Fewer

The machine on which you install or upgrade to vCenter Server must have a computer name that is 15 characters or fewer. If your database is located on the same machine that vCenter Server will be installed on and you have recently changed the name of this machine to comply with the name-length requirement, make sure the vCenter Server DSN is configured to communicate with the new name of the machine.

Changing the vCenter Server computer name impacts database communication if the database server is on the same computer with vCenter Server. If you have changed the machine name, verify that communication remains intact by completing the following procedure.

The name change has no impact on communication with remote databases. You can skip this procedure if your database is remote.

Note The name-length limitation applies to the vCenter Server system. The data source name (DSN) and remote database systems can have names with more than 15 characters.

Check with your database administrator or the database vendor to make sure all components of the database are working after you rename the server.

Procedure

1. Make sure the database server is running.
2. Make sure that the vCenter Server computer name is updated in the domain name service (DNS).
 One way to test this is by pinging the computer name. For example, if the computer name is `host-1.company.com`, run the following command in the Windows command prompt:
   ```
   ping host-1.company.com
   ```
 If you can ping the computer name, the name is updated in DNS.
3. Update the data source information, as needed.
4. Verify the data source connectivity.

About the Bundled Microsoft SQL Server 2005 Express Database Package

The bundled Microsoft SQL Server 2005 Express database package is installed and configured when you select Microsoft SQL Server 2005 Express as your database during vCenter Server installation or upgrade.

If the machine has Microsoft SQL Native Client installed, remove it before installing vCenter Server with the bundled database.

Maintaining a vCenter Server Database

After your vCenter Server database instance and vCenter Server are installed and operational, perform standard database maintenance processes.

These include:

- Monitoring the growth of the log file and compacting the database log file, as needed. See the documentation for the database type you are using.
- Scheduling regular backups of the database.
- Backing up the database before any vCenter Server upgrade. See your database documentation for information on backing up your database.
Configure DB2 Databases

If you use a DB2 database for your vCenter Server repository, you must configure your database to work with vCenter Server.

Procedure

1. **Configure an IBM DB2 Database User and Group** on page 77
 If you plan to use an IBM DB2 database when you install vCenter Server, you must configure the database user and group.

2. **Add the Database Instance Registry Variables** on page 78
 After connecting to the server as DB2 instance owner, you can configure the DB2 registry variables on the database server.

3. **Add the Client Instance Registry Variable** on page 79
 After connecting to the server as DB2 instance owner, you can configure the DB2 registry variables on the vCenter Server.

4. **Use a Script to Create a DB2 Database** on page 79
 When you use a DB2 database with vCenter Server, the database must have certain buffer pools, table spaces, and privileges. To simplify the process of creating the database, you can run a DB2 script.

5. **(Optional) Use a Script to Create the DB2 Database Schema (Optional)** on page 81
 The vCenter Server installer creates the schema automatically during installation. Experienced database administrators who need more control over schema creation due to environmental constraints can optionally use a script to create their database schema.

6. **Configure a Connection to a Local DB2 Database on Microsoft Windows** on page 82
 You can configure a DB2 database for vCenter Server locally on the same Microsoft Windows machine as vCenter Server.

7. **Configure a Connection to a Remote DB2 Database on Linux, UNIX, or Microsoft Windows** on page 83
 You can configure a DB2 database for vCenter Server remotely on a network-connected Microsoft Windows, Linux, or UNIX host.

Configure an IBM DB2 Database User and Group

If you plan to use an IBM DB2 database when you install vCenter Server, you must configure the database user and group.

You can configure a DB2 database for vCenter Server either locally on the same Microsoft Windows machine as vCenter Server or remotely on a network-connected Linux, UNIX, or Windows host.

Prerequisites

Before you configure your DB2 user and group, do the following tasks:

- Review the software requirements for vCenter Server with DB2.
- Make sure that a DB2 instance is created and configured for incoming TCP connections. For more information, see the DB2 documentation Web site.

Procedure

1. Create an initial user on the operating system.
 You must create a user on the operating system. By default, DB2 uses the operating system authentication for all its database users. This procedure assumes that you have created a user called vcx.
2 If the database is hosted on a Microsoft Windows machine, add the user vcx as a member of the group
DB2USERS.

Ignore this step if you are running the database on a remote UNIX or Linux system.

3 Create a user group called DBSYSMON and add the user vcx as a member.

4 Open a DB2 command window or Command Line Processor (CLP) as the DB2 instance owner.
 - On Microsoft Windows, select Start > IBM DB2 > DB2Copy1 > Command Line Tools > Command
 Window.
 - On Linux or UNIX, open a terminal and switch your user to the DB2 instance owner.

5 In the DB2 command window, run the following command to add the group DBSYSMON to the group
of users capable of database system monitoring:

 db2 update dbm cfg using sysmon_group dbsysmon

 This command affects all databases in this instance.

You now have a DB2 database user that you can reference in the vCenter Server installer.

What to do next

Add the database instance registry variables.

Add the Database Instance Registry Variables

After connecting to the server as DB2 instance owner, you can configure the DB2 registry variables on the
database server.

Prerequisites

Before you add the registry variables, configure an IBM DB2 database user and group.

Procedure

1 Open a DB2 Command window or Command Line Processor (CLP) as the DB2 instance owner.
 - On Microsoft Windows, select Start > IBM DB2 > DB2Copy1 > Command Line Tools > Command
 Window.
 - On Linux or UNIX, open a terminal and switch your user to the DB2 instance owner.

2 Start the DB2 instance.

 db2start

3 Enable the DB2 administrative task scheduler.

 db2set DB2_ATS_ENABLE=YES

4 Enable the DB2 database system to ignore uncommitted insertions.

 db2set DB2_SKIPINSERTED=ON

5 Enable the table or index access scans to defer or avoid row locking until a data record is known to satisfy
predicate evaluation.

 db2set DB2_EVALUNCOMMITTED=ON

6 Enable the DB2 database system to skip deleted keys during index access and deleted rows during table
access.

 db2set DB2_SKIPDELETED=ON
7. Stop and restart the database instance.

   ```
   db2stop force
   db2start
   ```

 These commands affect all databases in this instance.

 All the required registry variables are now set up.

 What to do next

 Add the client instance registry variable.

 Add the Client Instance Registry Variable

 After connecting to the server as DB2 instance owner, you can configure the DB2 registry variables on the vCenter Server.

 Prerequisites

 Before you add the registry variables, perform the following tasks:

 - Configure an IBM DB2 database user and group.
 - Add the database instance registry variables.
 - Make sure that the DB2 runtime client is installed on the Windows machine that will host vCenter Server. If the database server and the vCenter Server are running on the same machine, you don't have to install the runtime client separately.

 Procedure

 1. Open a DB2 Command window or Command Line Processor (CLP) as the DB2 instance owner.

 - On Microsoft Windows, select **Start > IBM DB2 > DB2Copy1 > Command Line Tools > Command Window**.

 - On Linux or UNIX, open a terminal and switch your user to the DB2 instance owner.

 2. To configure the vSphere Client to behave as a Unicode application, set the `DB2CODEPAGE` registry variable to 1208.

      ```
      db2set DB2CODEPAGE=1208
      ```

 Note If you are configuring the DB2 database on the same machine as the one that is running vCenter Server, you need to run the `db2set` command after connecting to the database server (which is the same as the vCenter Server host).

 What to do next

 Create the DB2 database, including all necessary buffer pools, table spaces, and privileges.

 Use a Script to Create a DB2 Database

 When you use a DB2 database with vCenter Server, the database must have certain buffer pools, table spaces, and privileges. To simplify the process of creating the database, you can run a DB2 script.

 Prerequisites

 Before you create the database, perform the following tasks:

 - Configure an IBM DB2 database user and group.
 - Add the database instance registry variables.
Add the client instance registry variable.

Procedure

1. Copy the following DB2 script into a text editor and save it with a descriptive filename, such as `vcdbcreate.sql`.

 The script is located in the `/installation_directory/vpx/dbschema/db2_prereq_connection_configuration.txt` vCenter Server installation package file.

   ```sql
   CREATE DATABASE VCDB
   AUTOMATIC STORAGE YES ON 'C:\'
   DBPATH ON 'C:\' USING CODESET UTF-8
   TERRITORY US
   COLLATE USING SYSTEM PAGESIZE 4096;
   UPDATE DB CFG FOR VCDB USING AUTO_MAINT ON;
   UPDATE DB CFG FOR VCDB USING AUTO_TBL_MAINT ON;
   UPDATE DB CFG FOR VCDB USING AUTO_RUNSTATS ON;
   UPDATE DB CFG FOR VCDB USING logprimary 32 logsecond 6 logfilsiz 2048;
   UPDATE DB CFG FOR VCDB USING SELF_TUNING_MEM ON;
   UPDATE ALERT CFG FOR DATABASE ON VCDB USING db.db_backup_req SET THRESHOLDSCHECKED YES;
   UPDATE ALERT CFG FOR DATABASE ON VCDB USING db.tb_reorg_req SET THRESHOLDSCHECKED YES;
   UPDATE ALERT CFG FOR DATABASE ON VCDB USING db.tb_runstats_req SET THRESHOLDSCHECKED YES;

   CONNECT TO VCDB;
   grant select on sysibmadm.applications to user vcx;
   CREATE BUFFERPOOL VCBP_8K IMMEDIATE SIZE 250 AUTOMATIC PAGESIZE 8K;
   CREATE LARGE TABLESPACE VCTS_8k PAGESIZE 8K MANAGED BY AUTOMATIC STORAGE EXTENTSIZ 32
   OVERHEAD 12.67 PREFETCHSIZE 32 TRANSFERRATE 0.18 BUFFERPOOL VCBP_8K;
   CREATE BUFFERPOOL VCBP_16K IMMEDIATE SIZE 250 AUTOMATIC PAGESIZE 16K;
   CREATE LARGE TABLESPACE VCTS_16k PAGESIZE 16K MANAGED BY AUTOMATIC STORAGE EXTENTSIZ 32
   OVERHEAD 12.67 PREFETCHSIZE 32 TRANSFERRATE 0.18 BUFFERPOOL VCBP_16K;
   CREATE BUFFERPOOL VCBP_32K IMMEDIATE SIZE 250 AUTOMATIC PAGESIZE 32K;
   CREATE LARGE TABLESPACE VCTS_32k PAGESIZE 32K MANAGED BY AUTOMATIC STORAGE EXTENTSIZ 32
   OVERHEAD 12.67 PREFETCHSIZE 32 TRANSFERRATE 0.18 BUFFERPOOL VCBP_32K;
   CREATE TABLESPACE SYSTOOLSPACE IN IBMCATGROUP MANAGED BY AUTOMATIC STORAGE EXTENTSIZ 4;
   CREATE USER TEMPORARY TABLESPACE SYSTOOLSTMPSPACE IN IBMCATGROUP MANAGED BY AUTOMATIC STORAGE
   EXTENTSIZ 4;
   CREATE SYSTEM TEMPORARY TABLESPACE VCTEMPTS_8K PAGESIZE 8K MANAGED BY AUTOMATIC STORAGE
   BUFFERPOOL VCBP_8K;
   CREATE SYSTEM TEMPORARY TABLESPACE VCTEMPTS_16K PAGESIZE 16K MANAGED BY AUTOMATIC STORAGE
   BUFFERPOOL VCBP_16K;
   CREATE SYSTEM TEMPORARY TABLESPACE VCTEMPTS_32K PAGESIZE 32K MANAGED BY AUTOMATIC STORAGE
   BUFFERPOOL VCBP_32K;
   GRANT USE OF TABLESPACE VCTS_16K TO USER vcx WITH GRANT OPTION;
   GRANT USE OF TABLESPACE VCTS_32K TO USER vcx WITH GRANT OPTION;
   GRANT USE OF TABLESPACE VCTS_8K TO USER vcx WITH GRANT OPTION;

   commit work;
   connect reset;
   terminate;

2. Change the following values in the script, as needed.

   - Database name: VCDB. The same value must be used for the ODBC setup.
- Database path: C:\ for Microsoft Windows, or a UNIX path with sufficient permissions.
- User name: vcx. The same value must be used for the ODBC setup.

Do not modify the script in any other way. Changing the setup for table spaces or buffer pools might prevent successful installation of vCenter Server.

3 Run the script in a DB2 Command window.

   `db2 -svtf vcdbcreate.sql`

You now have a DB2 database that you can use with vCenter Server.

What to do next

Configure a connection to a local or remote database.

(Optional) Use a Script to Create the DB2 Database Schema (Optional)

The vCenter Server installer creates the schema automatically during installation. Experienced database administrators who need more control over schema creation due to environmental constraints can optionally use a script to create their database schema.

To have the vCenter Server installer create a schema for you, see “Configure a Connection to a Local DB2 Database on Microsoft Windows,” on page 82 or “Configure a Connection to a Remote DB2 Database on Linux, UNIX, or Microsoft Windows,” on page 83, depending on your environment.

Prerequisites

Create the DB2 database and user. You can create the DB2 database manually or by using scripts.

Procedure

1 Open a DB2 Command Editor window and log in as the user that you created on the vCenter Server database.
   a Open DB2 Control Center.
   b Select the database.
   c Right-click the database and select **Menu > Query**.

   The Command Editor window appears.

2 In the directory of the vCenter Server installation package `/<installation directory>/vpx/dbschema`, locate the dbschema scripts.

3 In the DB2 Command Editor window, run each SQL file query in the order shown here by opening the SQL files one at a time and pressing Ctrl+Enter.

   First, execute the `VCDB_db2.sql` file:

   `VCDB_db2.sql`

   For the following files, change the statement termination character from ; to @.

   - `purge_stat1_proc_db2.sql`
   - `purge_stat2_proc_db2.sql`
   - `purge_stat3_proc_db2.sql`
   - `purge_usage_stats_proc_db2.sql`
   - `stats_rollup1_proc_db2.sql`
   - `stats_rollup2_proc_db2.sql`
   - `stats_rollup3_proc_db2.sql`
   - `cleanup_events_db2.sql`
   - `delete_stats_proc_db2.sql`
You now have a database schema that is compatible with vCenter Server 4.0 Update 1.

What to do next

Perform the following tasks:

1. On the machine on which you intend to install vCenter Server, create a data source name (DSN) that points to the database server with the schema.
2. Run the vCenter Server installer.
   a. If a database reinitialization warning message appears in the vCenter Server installer, select **Do not overwrite, leave my existing database in place** and continue the installation.
      
      This message appears if you are using a database that has vCenter Server tables created by a previous installation. The message does not appear if the database is clean.
      
      If you leave your existing database in place, you cannot join the vCenter Server to a Linked Mode group during the installation. You can join after the installation is complete. (See “Join a Linked Mode Group After Installation,” on page 111.)
   b. When prompted, provide the database user login.

Configure a Connection to a Local DB2 Database on Microsoft Windows

You can configure a DB2 database for vCenter Server locally on the same Microsoft Windows machine as vCenter Server.

Prerequisites

Before you configure the database to work locally, perform the following tasks:

- Configure a user and group for the database.
- Add the database instance registry variables.
- Add the client instance registry variable.
- Create the database with the required buffer pools, table spaces, and privileges.
- On the vCenter Server machine, catalog the server node and the database.

   a. To catalog the server node to TCP/IP, run the following command in the command window:
      
      ```
 db2 catalog tcpip node <New_Node_Name> remote <IP_Address_of_vCenter_Server_Machine> server <Port_Number_Used>
      ```

   b. To catalog the database to the newly created TCP/IP node, run the following command in the command window:
      
      ```
 db2 catalog db <DBNAME> as <DBALIAS> at node <NEW_NODE_NAME> authentication SERVER
      ```
      
      Here <DBALIAS> is not the same as <DBNAME>. For example,
      
      ```
 db2 catalog db VCDB as VCDB1 at node DB2NODE authentication SERVER
      ```
      
   c. Ensure that the database directory entry type is Remote, and not Indirect.
You can verify this by running the following command in the command window:

```
db2 list db directory
```

If the database directory entry type is Indirect, repeat the previous step.

**Procedure**

1. On the Microsoft Windows machine that will host vCenter Server, open the Microsoft ODBC Administrator utility by clicking Start > Run and entering `odbcad32.exe`.
2. On the System DSN tab, click Add.
3. Select the driver that corresponds to your database (for example, IBM DB2 ODBC Driver - VCDB2Add) and click Finish.
4. Enter a name for the DSN (for example, VCDB2) and select your database from the menu.
5. To make sure that the database connection works, select the DSN and click Configure.
6. Enter the database user name (for example, vcx) and password, and click Connect.

You do not need to save the user name and password.

The DB2 database is configured.

**What to do next**

You can now install vCenter Server. When the vCenter Server installer prompts you for a DSN, point to the DSN that you created in this procedure.

**Configure a Connection to a Remote DB2 Database on Linux, UNIX, or Microsoft Windows**

You can configure a DB2 database for vCenter Server remotely on a network-connected Microsoft Windows, Linux, or UNIX host.

**Prerequisites**

Before you configure the database to work remotely, perform the following tasks:

- On the remote machine, configure a database user and group.
- On the remote machine, create the database with the required buffer pools, table spaces, and privileges.
- On the remote machine, add the database instance registry variables.
- On the machine where vCenter Server will be installed, add the client instance registry variable.
- On the machine where vCenter Server will be installed, make sure that the IBM Data Server Runtime Client is installed.
- On the machine where vCenter Server will be installed, catalog the server node and the database.
  a. In the command window, run the following command:
     ```
 db2 catalog tcpip node <NAME> remote <DB Server HOST NAME or IP Address> server <Port number used>
     ```
  b. In the command window, run the following command:
     ```
 db2 catalog db <DBNAME> at node <NAME> authentication SERVER
     ```
Procedure

1. On the Microsoft Windows machine that will host vCenter Server, open the Microsoft ODBC Administrator utility by selecting **Start > Run** and entering `odbcad32.exe`.

2. On the **System DSN** tab, click **Add**.

3. Select the driver that corresponds to your database (for example, IBM DB2 ODBC Driver - VCDB2_remote) and click **Finish**.

4. Enter a name for the DSN (for example, VCDB2_remote) and click **Add**.

5. On the **TCP/IP** tab of the CLI/ODBC settings dialog box, configure the database values.
   - Database name: The default value is vcdb.
   - Database alias: The database alias can be the same as the database name.
   - Host name: Enter the fully qualified domain name or IP address of your data server.
   - Port number: To determine the correct port number, look up the `dbm cfg SVCENAME` parameter and its associated port number in the file `C:\Microsoft Windows\system32\drivers\etc\services` on Windows, or in the `/etc/services` file on UNIX and Linux.

You have completed the DB2 database configuration.

What to do next

You can now install vCenter Server. When the vCenter Server installer prompts you for a DSN, point to the DSN that you created in this procedure.

Configure Microsoft SQL Server Databases

If you use a Microsoft SQL database for your vCenter Server repository, you must configure your database to work with vCenter Server.

Procedure

1. **Use a Script to Create a Local or Remote Microsoft SQL Server Database** on page 84
   To simplify the process of creating the SQL Server database, users, and privileges, you can run a script. If you do not use this script, you can create the database manually.

2. **(Optional) Use a Script to Create the Microsoft SQL Server Database Schema (Optional)** on page 86
   The vCenter Server installer creates the schema automatically during installation. Experienced database administrators who need more control over schema creation due to environmental constraints can optionally use a script to create a database schema.

3. **Configure a SQL Server ODBC Connection** on page 87
   When you install the vCenter Server system, you can establish a connection with a SQL Server database.

4. **Configure Microsoft SQL Server TCP/IP for JDBC** on page 88
   If the Microsoft SQL Server database has TCP/IP disabled and the dynamic ports are not set, the JDBC connection remains closed. This causes the vCenter Server statistics to malfunction. You can configure the server TCP/IP for JDBC.

Use a Script to Create a Local or Remote Microsoft SQL Server Database

To simplify the process of creating the SQL Server database, users, and privileges, you can run a script. If you do not use this script, you can create the database manually.

In the script, you can customize the location of the data and log files.
The user created by this script does not follow any security policy. The passwords are provided only for convenience. Change the passwords as appropriate.

To prepare a SQL Server database to work with vCenter Server, you generally need to create a SQL Server database user with database operator (DBO) rights. When you do this, make sure that the database user login has the `db_owner` fixed database role on the vCenter Server database and on the MSDB database. The `db_owner` role on the MSDB database is required for installation and upgrade only, and you can revoke it after installation.

If you run this script as well as the script to create the database schema, you do not have to grant DBO permissions on the vCenter Server database. For environments in which the vCenter Server database user cannot have DBO permissions, these scripts are especially useful. The user created by this script has DBO privileges on both VCDB and MSDB databases. To change this, remove the two occurrences of this line:

```
sp_addrolemember @rolename = 'db_owner', @membername = 'vpxuser'
```

**IMPORTANT** If you remove these lines, you must also run the script that creates the vCenter Server database schema, instead of allowing the vCenter Server installer to create the schema.

**Procedure**

1. Log in to a Query Analyzer session as the sysadmin (SA) or a user account with `sysadmin` privileges.
2. Run the following script.

   The script is located in the vCenter Server installation package `<installation directory>/vpx/dbschema/DB_and_schema_creation_scripts_MSSQL.txt` file.

   ```sql
 use [master]
 go
 CREATE DATABASE [VCDB] ON PRIMARY
 (NAME = N'vcdb', FILENAME = N'C:\VCDB.mdf', SIZE = 2000KB, FILEGROWTH = 10%)
 LOG ON
 (NAME = N'vcdb_log', FILENAME = N'C:\VCDB.ldf', SIZE = 1000KB, FILEGROWTH = 10%)
 COLLATE SQL_Latin1_General_CP1_CI_AS
 go
 use VCDB
 go
 sp_addlogin @loginame=[vpxuser], @passwd=N'vpxuser!0', @defdb='VCDB',
 @deflanguage='us_english'
 go
 ALTER LOGIN [vpxuser] WITH CHECK_POLICY = OFF
 go
 CREATE USER [vpxuser] for LOGIN [vpxuser]
 go
 sp_addrolemember @rolename = 'db_owner', @membername = 'vpxuser'
 go
 use MSDB
 go
 CREATE USER [vpxuser] for LOGIN [vpxuser]
 go
 sp_addrolemember @rolename = 'db_owner', @membername = 'vpxuser'
 go
   ```

You now have a Microsoft SQL Server database that you can use with vCenter Server.

**What to do next**

You can run the script to create the database schema.
(Optional) Use a Script to Create the Microsoft SQL Server Database Schema (Optional)

The vCenter Server installer creates the schema automatically during installation. Experienced database administrators who need more control over schema creation due to environmental constraints can optionally use a script to create a database schema.

To have the vCenter Server installer create your schema for you, see “Configure a SQL Server ODBC Connection,” on page 87.

Prerequisites

Before you use this script, create the SQL Server database. You can create the SQL Server database manually or by using a script.

Procedure

1. Create a vCenter Server database user with the db_datawriter and db_datareader permissions.
2. Open a query analyzer window with a user having DBO rights on the vCenter Server and MSDB databases.
3. Locate the dbschema scripts in the vCenter Server installation package /<installation directory>/vpx/dbschema directory.
4. Run the scripts in sequence on the database.
   The DBO user must own the objects created by these scripts. Open the scripts one at a time in the Query Analyzer window and press F5 to execute each script in the order shown here.
   VCDB_mssql.SQL
   purge_stat1_proc_mssql.sql
   purge_stat2_proc_mssql.sql
   purge_stat3_proc_mssql.sql
   purge_usage_stats_proc_mssql.sql
   stats_rollup1_proc_mssql.sql
   stats_rollup2_proc_mssql.sql
   stats_rollup3_proc_mssql.sql
   cleanup_events_mssql.sql
   delete_stats_proc_mssql.sql
   upsert_last_event_proc_mssql.sql
   load_usage_stats_proc_mssql.sql
   load_stats_proc_mssql.sql
5. For all supported editions of Microsoft SQL Server (except Microsoft SQL Server 2005 Express), ensure that the SQL Server Agent service is running by using these additional scripts to set up scheduled jobs on the database.
   job_schedule1_mssql.sql
   job_schedule2_mssql.sql
   job_schedule3_mssql.sql
   job_cleanup_events_mssql.sql

What to do next

1. On the machine on which you intend to install vCenter Server, create a DSN that points to the database server with the schema.
2. Run the vCenter Server installer.
   a. If a database reinitialization warning message appears in the vCenter Server installer, select Do not overwrite, leave my existing database in place and continue the installation.
This message appears if you are using a database that has vCenter Server tables created by a previous installation. The message does not appear if the database is clean.

If you leave your existing database in place, you cannot join a Linked Mode group during the installation. You can join after the installation is complete. (See “Join a Linked Mode Group After Installation,” on page 111.)

b When prompted, provide the database user login.

Configure a SQL Server ODBC Connection

When you install the vCenter Server system, you can establish a connection with a SQL Server database.

If you use SQL Server for vCenter Server, do not use the master database.

See your Microsoft SQL ODBC documentation for specific instructions regarding configuring the SQL Server ODBC connection.

Prerequisites

- Review the required database patches specified in “vCenter Server Database Patch and Configuration Requirements,” on page 74. If you do not prepare your database correctly, the vCenter Server installer displays error and warning messages.
- Create a database using SQL Server Management Studio on the SQL Server.
- Create a database user with database operator (DBO) rights.
  
  The default database for the DBO user is the one that you created using SQL Server Management Studio.
  
  Make sure that the database login has the db_owner fixed database role on the vCenter Server database and on the MSDB database. The db_owner role on the MSDB database is required for installation and upgrade only. You can revoke this role after installation.
- If you are using a named instance of Microsoft SQL Server 2008 Standard Edition with vCenter Server, do not name the instance MSSQLSERVER. If you do, the JDBC connection does not work, and certain features, such as Performance Charts, are not available.

Procedure

1. On your vCenter Server system, open the Microsoft Windows ODBC Data Source Administrator.
   - On a 32-bit system, select Settings > Control Panel > Administrative Tools > Data Sources (ODBC).
   - On a 64-bit system, open C:\WINDOWS\SYSTEM32\odbc32.exe.
2. On the System DSN tab modify or create a SQL Server ODBC connection.
   - To modify an existing SQL Server ODBC connection, select the connection from the System Data Source list and click Configure.
   - To create a new SQL Server ODBC connection, click Add, select SQL Native Client, and click Finish.
3. Type an ODBC datastore name (DSN) in the Name text box.
   
   For example, VMware vCenter Server.
4. (Optional) Type an ODBC DSN description in the Description text box.
5. Select the server name from the Server drop-down menu and click Next.
   
   Type the SQL Server host name in the text box if it is not in the drop-down menu.
6. Select one of the authentication methods.
7 If you selected SQL authentication, type your SQL Server login name and password and click Next.

8 Select the database created for the vCenter Server system from the Change the default database to menu and click Next.

9 Click Finish.

What to do next

To test the data source, from the ODBC Microsoft SQL Server Setup menu, select Test Data Source and click OK. Ensure that the SQL Agent is running on your database server.

This applies to SQL Server 2005 and SQL Server 2008 editions.

Configure Microsoft SQL Server TCP/IP for JDBC

If the Microsoft SQL Server database has TCP/IP disabled and the dynamic ports are not set, the JDBC connection remains closed. This causes the vCenter Server statistics to malfunction. You can configure the server TCP/IP for JDBC.

This procedure applies to remote Microsoft SQL Server database servers. You can skip this procedure if your database is local.

Procedure

1 Start the SQL Server Configuration Manager by selecting Start > All Programs > Microsoft SQL Server > Configuration Tools > SQL Server Configuration Manager.

2 Select SQL Server Network Configuration > Protocols for<Instance name>.

3 Enable TCP/IP.

4 Open TCP/IP Properties.

5 On the Protocol tab, make the selections.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Select Yes.</td>
</tr>
<tr>
<td>Listen All</td>
<td>Select Yes.</td>
</tr>
<tr>
<td>Keep Alive</td>
<td>Enter 30000</td>
</tr>
</tbody>
</table>

6 On the IP Addresses tab, make the following selections.

<table>
<thead>
<tr>
<th>Option</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Select Yes.</td>
</tr>
<tr>
<td>TCP Dynamic Ports</td>
<td>Select 0.</td>
</tr>
</tbody>
</table>

7 Restart the SQL Server service from SQL Server Configuration Manager > SQL Server Services.

8 Start the SQL Server Browser service from SQL Server Configuration Manager > SQL Server Services.
Configure Oracle Databases

If you use an Oracle database for your vCenter Server repository, you must configure your database to work with vCenter Server.

Procedure

1. **Use a Script to Create a Local or Remote Oracle Database** on page 89
   When you use an Oracle database with vCenter Server, the database must have certain table spaces and privileges. To simplify the process of creating the database, you can run a script. If you do not use this script, you can create the database manually.

2. **Configure an Oracle Database User** on page 90
   If you plan to use an Oracle database when you install vCenter Server, you must configure the database user.

3. **(Optional) Use a Script to Create the Oracle Database Schema (Optional)** on page 90
   The vCenter Server installer creates the schema automatically during installation. For experienced database administrators who need more control over schema creation due to environmental constraints, you can optionally use a script to create your database schema.

4. **Configure an Oracle Connection for Local Access** on page 91
   VMware recommends that the vCenter Server database be located on the same system as vCenter Server.

5. **Configure an Oracle Connection for Remote Access** on page 92
   A vCenter Server system can access the database remotely.

6. **Connect to an Oracle Database Locally** on page 93
   A vCenter Server system can access the database locally.

**Use a Script to Create a Local or Remote Oracle Database**

When you use an Oracle database with vCenter Server, the database must have certain table spaces and privileges. To simplify the process of creating the database, you can run a script. If you do not use this script, you can create the database manually.

When using the script, you can customize the location of the data and log files.

---

**Note**  The user created by this script does not follow any security policy. The passwords are provided only for convenience. Change the passwords as appropriate.

---

**Procedure**

1. Log in to a SQL*Plus session with the system account.

2. Run the following script.

   The script is located in the vCenter Server installation package `/<installation directory>/vpx/dbschema/DB_and_schema_creation_scripts_oracle.txt` file.

   ```sql
 CREATE SMALLFILE TABLESPACE "VPX" DATAFILE '/u01/app/oracle/oradata/vcdb/vpx01.dbf'
 SIZE 1G AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED LOGGING EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO;

 For a Windows installation, change the directory path to the vpx01.dbf file.
   ```

   You now have an Oracle database that you can use with vCenter Server.
What to do next

You can also run a script to create the database schema.

**Configure an Oracle Database User**

If you plan to use an Oracle database when you install vCenter Server, you must configure the database user.

You can configure an Oracle database for vCenter Server either locally on the same Microsoft Windows machine as vCenter Server or remotely on a network-connected Linux, UNIX or Microsoft Windows host.

**Prerequisites**

Review the software requirements for vCenter Server with Oracle.

**Procedure**

1. Log in to a SQL*Plus session with the system account.

2. Run the following SQL command to create a vCenter Server database user with the correct permissions.

   ```
 The script is located in the vCenter Server installation package /<installation directory>/vpx/dbschema/DB_and_schema_creation_scripts_oracle.txt file.
 In this example, the user name is VPXADMIN.

 CREATE USER "VPXADMIN" PROFILE "DEFAULT" IDENTIFIED BY "oracle" DEFAULT TABLESPACE "VPX" ACCOUNT UNLOCK;
 grant connect to VPXADMIN;
 grant resource to VPXADMIN;
 grant create view to VPXADMIN;
 grant create sequence to VPXADMIN;
 grant create table to VPXADMIN;
 grant execute on dbms_lock to VPXADMIN;
 grant unlimited tablespace to VPXADMIN;

 By default, the RESOURCE role has the CREATE PROCEDURE, CREATE TABLE, and CREATE SEQUENCE privileges assigned. If the RESOURCE role does not have these privileges, explicitly grant them to the vCenter Server database user.

 You now have an Oracle database user that you can reference in the vCenter Server installer.

 What to do next

 Create the Oracle database, including all necessary table spaces and privileges.

 (Optional) Use a Script to Create the Oracle Database Schema (Optional)

 The vCenter Server installer creates the schema automatically during installation. For experienced database administrators who need more control over schema creation due to environmental constraints, you can optionally use a script to create your database schema.

 To have the vCenter Server installer create your schema for you, see “Configure an Oracle Connection for Local Access,” on page 91 or “Configure an Oracle Connection for Remote Access,” on page 92, depending on your environment.

 Prerequisites

 Before you use this script, create the Oracle database and user. You can create the Oracle database and user manually or by using scripts.

 Procedure

 1. Open a SQL*Plus window with a user that has schema owner rights on the vCenter Server database.
2 Locate the dbschema scripts in the vCenter Server installation package `<installation directory>/vpx/dbschema` directory.

3 In SQL*Plus, run the scripts in sequence on the database.

`<path>` is the directory path to the `/<installation directory>/vpx/dbschema` folder.

- `@<path>/VCDB_oracle.SQL`
- `@<path>/purge_stat1_proc_oracle.sql`
- `@<path>/purge_stat2_proc_oracle.sql`
- `@<path>/purge_stat3_proc_oracle.sql`
- `@<path>/purge_usage_stats_proc_oracle.sql`
- `@<path>/stats_rollup1_proc_oracle.sql`
- `@<path>/stats_rollup2_proc_oracle.sql`
- `@<path>/stats_rollup3_proc_oracle.sql`
- `@<path>/cleanup_events_oracle.sql`
- `@<path>/delete_stats_proc_oracle.sql`
- `@<path>/load_usage_statsproc_oracle.sql`
- `@<path>/load_stats_proc_oracle.sql`

4 For all supported editions of Oracle Server, run these additional scripts to set up scheduled jobs on the database.

- `@<path>/job_schedule1_oracle.sql`
- `@<path>/job_schedule2_oracle.sql`
- `@<path>/job_schedule3_oracle.sql`
- `@<path>/job_cleanup_events_oracle.sql`

You now have a database schema that is compatible with vCenter Server 4.0.

What to do next

1 On the machine where you are installing vCenter Server, create a DSN that points to the database server with the schema.

2 Run the vCenter Server installer.

 a If a database reinitialization warning message appears in the vCenter Server installer, select **Do not overwrite, leave my existing database in place** and continue the installation.

 This message appears if you are using a database that has vCenter Server tables created by a previous installation. The message does not appear if the database is clean.

 If you leave your existing database in place, you cannot join a Linked Mode group during the installation. You can join after the installation is complete. (See “Join a Linked Mode Group After Installation,” on page 111.)

 b When prompted, provide the database user login.

Configure an Oracle Connection for Local Access

VMware recommends that the vCenter Server database be located on the same system as vCenter Server.

Prerequisites

Before configuring an Oracle connection, review the required database patches specified in “vCenter Server Database Patch and Configuration Requirements,” on page 74. If you do not prepare your database correctly, the vCenter Server installer displays error and warning messages.

Procedure

1 Download Oracle 10g or Oracle 11g from the Oracle Web site, install it, and create a database.
Configure the TNS Service Name option in the ODBC DSN.

The TNS Service Name is the net service name for the database to which you want to connect. You can find the net service name in the tnsnames.ora file located in the NETWORK\ADMIN folder in the Oracle database installation location.

Configure an Oracle Connection for Remote Access

A vCenter Server system can access the database remotely.

Prerequisites

Before configuring an Oracle connection, review the required database patches specified in “vCenter Server Database Patch and Configuration Requirements,” on page 74. If you do not prepare your database correctly, the vCenter Server installer displays error and warning messages.

Procedure

1. Install the Oracle client on the vCenter Server system machine.
2. Download and install the ODBC driver.
3. Create a new tablespace for a vCenter Server system using a SQL statement such as the following.

   ```sql
   CREATE TABLESPACE "VPX" DATAFILE 'C:\Oracle\ORADATA\VPX\VPX.dat' SIZE 1000M AUTOEXTEND ON NEXT 500K;
   ```
4. Create a user, such as vpxAdmin, for accessing the tablespace through ODBC.

   ```sql
   CREATE USER vpxAdmin IDENTIFIED BY vpxadmin DEFAULT TABLESPACE vpx;
   ```
5. Either grant dba permission to the user, or grant the following permissions to the user.

   ```sql
   grant connect to <user>
   grant resource to <user>
   grant create view to <user>
   grant unlimited tablespace to <user> # To ensure space is sufficient
   ```

 By default, the RESOURCE role has the CREATE PROCEDURE, CREATE TABLE, and CREATE SEQUENCE privileges assigned. If the RESOURCE role does not have these privileges, explicitly grant them to the vCenter Server database user.
6. Use a text editor or the Net8 Configuration Assistant to edit the tnsnames.ora file located in the directory C:\Oracle\Oraxx\NETWORK\ADMIN, where xx is either 10g or 11g.

 Add the following entry, where HOST is the managed host to which the client must connect.

   ```
   VPX =
   (DESCRIPTION =
   (ADDRESS_LIST =
   (ADDRESS=(PROTOCOL=TCP)(HOST=vpxd-Oracle)(PORT=1521))
   )
   (CONNECT_DATA =
   (SERVICE_NAME = VPX)
   )
   )
   ```
7. Configure the TNS Service Name option in the ODBC DSN.

The TNS Service Name is the net service name for the database to which you want to connect, in this case, VPX. You can find the net service name in the tnsnames.ora file.
Connect to an Oracle Database Locally

A vCenter Server system can access the database locally.

Procedure

1. Create a new tablespace for a vCenter Server system using a SQL statement such as the following.
   ```sql
   CREATE TABLESPACE "VPX" DATAFILE 'C:\Oracle\ORADATA\VPX\VPX.dat' SIZE 1000M AUTOEXTEND ON NEXT 500K;
   ```

2. Create a user, such as vpxAdmin, for accessing the tablespace through ODBC.
   ```sql
   CREATE USER vpxAdmin IDENTIFIED BY vpxadmin DEFAULT TABLESPACE vpx;
   ```

3. Either grant `dba` permission to the user, or grant the following permissions to the user.
   ```sql
   grant connect to <user>
   grant resource to <user>
   grant create view to <user>
   grant unlimited tablespace to <user> # To ensure space is sufficient
   ```

 By default, the `RESOURCE` role has the `CREATE PROCEDURE`, `CREATE TABLE`, and `CREATE SEQUENCE` privileges assigned. If the `RESOURCE` role does not have these privileges, explicitly grant them to the vCenter Server database user.

4. Create an ODBC connection to the database.

 These are example settings.
   ```
   Data Source Name: VMware vCenter Server  TNS Service Name: VPX  User Id: vpxAdmin
   ```

You now have a database that you can connect to locally.

What to do next

Install vCenter Server.
You can install vCenter Server on a physical system or on a virtual machine running on an ESX host.

This chapter includes the following topics:

- “vCenter Server Prerequisites,” on page 95
- “Using a User Account for Running vCenter Server with SQL Server,” on page 96
- “About Installing vCenter Server on IPv6 Machines,” on page 97
- “Configure the URLs on a Standalone vCenter Server System,” on page 97
- “Running the vCenter Server and vSphere Client Installers from a Network Drive,” on page 97
- “vCenter Server Components,” on page 98
- “Required Data for Installing vCenter Server,” on page 98

vCenter Server Prerequisites

Before installing vCenter Server, review the prerequisites.

- You must have the installation DVD or download the installation ISO image.
- Your hardware must meet the requirements listed in “vCenter Server and vSphere Client Hardware Requirements,” on page 16 and the required ports must be open, as discussed in “Required Ports,” on page 18.
- Your database must meet the database requirements. See “vCenter Server Database Patch and Configuration Requirements,” on page 74 and Chapter 10, “Preparing the vCenter Server Databases,” on page 73.
- If the machine on which you are installing vCenter Server has VirtualCenter installed, you might want to upgrade instead of performing a fresh installation of vCenter Server.

IMPORTANT If you want to keep your existing VirtualCenter configuration, see the Upgrade Guide.

- There must be no Network Address Translation (NAT) between the vCenter Server system and the hosts it will manage.
- Create a vCenter Server database, unless you plan to install the bundled SQL Server 2005 Express.
The system that you use for your vCenter Server installation will belong to a domain rather than a workgroup. If assigned to a workgroup, the vCenter Server system is not able to discover all domains and systems available on the network when using such features as vCenter Guided Consolidation Service. To use vCenter Linked Mode, multiple vCenter Server systems should be added to a domain. To determine whether the system belongs to a workgroup or a domain, right-click My Computer and click Properties and the Computer Name tab. The Computer Name tab displays either a Workgroup label or a Domain label.

During the installation, the connection between the machine and the domain controller must be working.

The computer name cannot be more than 15 characters.

The DNS name of the machine must match the actual computer name.

Make sure the system on which you are installing vCenter Server is not an Active Directory domain controller.

On each system that is running vCenter Server, make sure that the domain user account has the following permissions:

- Member of the Administrators group
- Act as part of the operating system
- Log on as a service

Assign a static IP address and host name to the Windows server that will host the vCenter Server system. This IP address must have a valid (internal) domain name system (DNS) registration that resolves properly from all managed ESX hosts.

If you install vCenter Server on Windows Server 2003 SP1, the disk for the installation directory must have the NTFS format, not the FAT32 format.

Consider whether the vCenter Server instance will be standalone or in a Linked Mode group. See Chapter 14, “Creating vCenter Server Linked Mode Groups,” on page 109.

vCenter Server, like any other network server, should be installed on a machine with a fixed IP address and well-known DNS name, so that clients can reliably access the service. If you use DHCP instead of a static IP address for vCenter Server, make sure that the vCenter Server computer name is updated in the domain name service (DNS). One way to test this is by pinging the computer name. For example, if the computer name is host-1.company.com, run the following command in the Windows command prompt:

```
ping host-1.company.com
```

If you can ping the computer name, the name is updated in DNS.

Using a User Account for Running vCenter Server with SQL Server

You can use the Microsoft Windows built-in system account or a user account to run vCenter Server. With a user account, you can enable Windows authentication for SQL Server, and it also provides more security.

The user account must be an administrator on the local machine. In the installation wizard, you specify the account name as DomainName\Username. You must configure the SQL Server database to allow the domain account access to SQL Server.

The Microsoft Windows built-in system account has more permissions and rights on the server than the vCenter Server system needs, which can contribute to security problems. Even if you do not plan to use Microsoft Windows authentication for SQL Server or you are using an Oracle database, you might want to set up a local user account for the vCenter Server system. In this case, the only requirement is that the user account is an administrator on the local machine.

For SQL Server DSNs configured with Windows authentication, use the same user account for the VMware VirtualCenter Management Webservices service and the DSN user.
If you install an instance of vCenter Server as a local system account on a local SQL Server database with Integrated Windows NT Authentication and you add an Integrated Windows NT Authentication user to the local database server with the same default database as vCenter Server, vCenter Server might not start. To resolve this issue, remove the Integrated Windows NT Authentication user from the local SQL database server, or change the default database for the local system user account to the vCenter Server database for the SQL Server user account setup.

About Installing vCenter Server on IPv6 Machines

If the system on which you install vCenter Server is configured to use IPv6, vCenter Server uses IPv6. When you connect to that vCenter Server system or install additional modules, you must specify the server address in IPv6 format, unless you use the fully qualified domain name.

Configure the URLs on a Standalone vCenter Server System

If you are joining a standalone vCenter Server system to a Linked Mode group, the domain name of the system must match the machine name. If you change either name to make them match, you must also configure the vCenter Server URLs to make them compatible with the new domain name and machine name.

If you do not update the URLs, remote instances of vCenter Server cannot reach the vCenter Server system, because the default vCenter Server URL entries are no longer accurate. The vCenter Server installer configures default URL entries as follows:

- For the VirtualCenter.VimApiUrl key, the default value is http(s)://<FQDN of VC machine>/sdk.
- For the Virtualcenter.VimWebServicesUrl key, the default value is https://<FQDN of VC machine>:<installed-webservices-port>/vws.

Procedure

1. From the vSphere Client, connect directly to the vCenter Server instance on which you have changed the domain or host name.
2. Select Administration > vCenter Server Settings and click Advanced Settings.
3. For the Virtualcenter.VimApiUrl key, change the value to point to the location where the vSphere Client and SDK clients can access the vCenter Server system.
 For example: http(s)://<machine-name/ip>:<vc-port>/sdk.
4. For the Virtualcenter.VimWebServicesUrl key, change the value to point to the location where vCenter Server Webservices is installed.
 For example: https://<machine-name/ip>:<webservices-port>/vws.
5. For the Virtualcenter.Instancename key, change the value so that the modified name appears in the vCenter Server inventory view.

Running the vCenter Server and vSphere Client Installers from a Network Drive

You can run the installers from a network drive, but you cannot install the software on a network drive.

In Windows, you can map a network drive, run the installers from the network drive, and install the software on the local machine.
vCenter Server Components

When you install vCenter Server, some additional components are also installed. In some cases, you can control which components are installed.

The vCenter Server installer installs the following components:

- **VMware vCenter Server**: Windows service to manage ESX hosts.
- **Microsoft .NET 3.0 SP1 Framework**: Software used by the Database Upgrade wizard and the vSphere Client. Also used by vCenter Server if you are using the bundled database.
- **VMware vCenter Orchestrator**: vCenter Server module that provides a comprehensive set of tools to efficiently manage your virtual IT environment. The vCenter Server performs a silent installation of vCenter Orchestrator. If you install vCenter Server on an IPv6 operating system, the vCenter Orchestrator module is not supported. If you install vCenter Server in a mixed environment (both IPv4 and IPv6 enabled), the vCenter Orchestrator module can only be configured using IPv4. See the vCenter Orchestrator Administration Guide.
- **Microsoft SQL Server 2005 Express (optional)**: Free, bundled version of the Microsoft SQL Server database for smaller scale applications. If you enter a path to an existing database, the installer does not install the bundled database.

The vCenter Server autorun.exe application includes links to install the following optional components:

- **vSphere Client**: Client application used to connect directly to an ESX host or indirectly to an ESX host through a vCenter Server.
- **vCenter Converter Enterprise for vCenter Server**: vCenter Server module that enables you to convert your physical machines to virtual machines.
- **vCenter Guided Consolidation Service**: vCenter Server module that discovers physical systems and analyzes them for preparation to be converted into virtual machines.
- **vCenter Update Manager**: vCenter Server module that provides security monitoring and patching support for ESX hosts and virtual machines.

Required Data for Installing vCenter Server

Prepare for the installation by recording the values that the vCenter Server system requires.

Table 11-1 lists the information that you are prompted for during the installation. Note the values entered in case you need to reinstall vCenter Server and want to use the same values. VMware Knowledge Base article 1010023 contains a linked worksheet that complements Table 11-1.

<table>
<thead>
<tr>
<th>Data</th>
<th>Default</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>User name and organization</td>
<td>Your organization’s name</td>
<td>Follow your organization’s policy.</td>
</tr>
<tr>
<td>vCenter Server license key</td>
<td>None</td>
<td>If you omit the license key, vCenter Server is installed in evaluation mode. After you install vCenter Server, you can enter the vCenter Server license in the vSphere Client.</td>
</tr>
<tr>
<td>vCenter Server install location</td>
<td>Depends on your operating system</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>Default</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Standalone or join group</td>
<td>Standalone</td>
<td>Join a Linked Mode group to enable the vSphere Client to view, search, and manage data across multiple vCenter Server systems.</td>
</tr>
<tr>
<td>Fully qualified domain name of Directory Services for the vCenter Server group</td>
<td>None</td>
<td>Required if this instance of vCenter Server is joining a group. This is the name of a remote instance of vCenter Server. The local and remote instances will be members of a Linked Mode group.</td>
</tr>
<tr>
<td>LDAP port for the Directory Services for the remote vCenter Server instance</td>
<td>389</td>
<td>Required if this instance of vCenter Server is joining a Linked Mode group. This is the remote instance's LDAP port. See “Required Ports,” on page 18.</td>
</tr>
<tr>
<td>Data source name (DSN)</td>
<td>None</td>
<td>Required to use an existing database. Not required if you are using the bundled database.</td>
</tr>
<tr>
<td>Database user name</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Database password</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>vCenter Server account information</td>
<td>Microsoft Windows system account</td>
<td>Use a user-specified account if you plan to use Microsoft Windows authentication for SQL Server. See “Using a User Account for Running vCenter Server with SQL Server,” on page 96.</td>
</tr>
<tr>
<td>Can be the Microsoft Windows system account or a user-specified account</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTTPS Web services</td>
<td>443</td>
<td>See “Required Ports,” on page 18.</td>
</tr>
<tr>
<td>HTTP Web services</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Heartbeat (UDP) used for sending data to ESX/ESXi hosts</td>
<td>902</td>
<td></td>
</tr>
<tr>
<td>LDAP port for the Directory Services for the local vCenter Server instance</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>SSL port for the Directory Services for the local vCenter Server instance</td>
<td>636</td>
<td></td>
</tr>
<tr>
<td>VMware VirtualCenter Management Webservices</td>
<td>8080</td>
<td></td>
</tr>
<tr>
<td>VMware VirtualCenter Management Webservices</td>
<td>8443</td>
<td></td>
</tr>
</tbody>
</table>
Installing vCenter Server

After you install vCenter Server and the vSphere Client, you can configure communication between them.

This chapter includes the following topics:
- “Download the vCenter Server Installer,” on page 101
- “Install vCenter Server in a Virtual Machine,” on page 101
- “Install vCenter Server,” on page 102

Download the vCenter Server Installer

You must download the installer for vCenter Server, the vSphere Client, and the additional modules.

Procedure
1. Download the zip file for the vCenter Server from the VMware product page at http://www.vmware.com/products/.
 The installer filename is VMware-VIMSetup-xx-4.0.8-yyyyyy.zip, where xx is the two-character language code and yyyyyy is the build number.
2. Extract the files from the zip archive.

Install vCenter Server in a Virtual Machine

You can install vCenter Server in a Microsoft Windows virtual machine, which runs on an ESX host.

Deploying the vCenter Server system in the virtual machine has the following advantages:
- Rather than dedicating a separate server to the vCenter Server system, you can place it in a virtual machine running on the same ESX host where your other virtual machines run.
- You can provide high availability for the vCenter Server system by using VMware HA.
- You can migrate the virtual machine containing the vCenter Server system from one host to another, enabling maintenance and other activities.
- You can create snapshots of the vCenter Server virtual machine and use them for backups, archiving, and so on.

Prerequisites

See “vCenter Server Prerequisites,” on page 95.

Procedure
1. On a standalone server, install ESX.
2 On any machine that has network access to your ESX host, install the vSphere Client.

3 Using the vSphere Client, access the ESX host directly to create the virtual machine for hosting vCenter Server.

4 In the virtual machine, install vCenter Server.

Install vCenter Server

vCenter Server allows you to centrally manage hosts from either a physical or virtual Windows machine, and enables the use of advanced features such as VMware Distributed Resource Scheduler (DRS), VMware High Availability (HA), and VMware VMotion.

Prerequisites

See “vCenter Server Prerequisites,” on page 95.

Procedure

1 In the software installer directory, double-click the autorun.exe file at C:\<installer location>\.

2 Click vCenter Server.

3 Choose a language for the installer and click OK.

This selection controls the language for only the installer. When you use the vSphere Client to connect to the vCenter Server system, the vSphere Client appears in the language associated with the locale setting on your machine. You can alter this behavior with a command-line instruction or by changing the locale in the registry of the machine. See Basic System Administration.

4 When the Welcome screen appears, click Next.

5 Select I agree to the terms in the license agreement and click Next.

6 Type your user name, organization, and vCenter Server license key, and click Next.

If you omit the license key, vCenter Server will be in evaluation mode, which allows you to use the full feature set. After installation, you can convert vCenter Server to licensed mode by entering the license key using the vSphere Client.

7 Choose the type of database that you want to use.

- If you want to use the bundled database, click Install SQL Server 2005 Express instance (for small-scale deployments).

 This database is suitable for deployments of up to 5 hosts and 50 virtual machines.

- If you want to use an existing database, click Use an existing supported database and select your database from the list of available DSNs. Enter the user name and password for the DSN and click Next.

 If your database is a local SQL Server database using Windows NT authentication, leave the user name and password fields blank.

 If you specify a remote SQL Server database that uses Windows NT authentication, the database user and the logged-in user on the vCenter Server machine must be the same.

A dialog box might appear warning you that the DSN points to an older version of a repository that must be upgraded. If you click Yes, the installer upgrades the database schema, making the database irreversibly incompatible with previous VirtualCenter versions. See the Upgrade Guide.
8 Choose the account type.

If you want to use Windows authentication for SQL Server, specify an account that is an administrator on the local machine. As a best practice, type the account name as `<DomainName>\<Username>`. Type the account password, retype the password, and click Next.

9 Either accept the default destination folders or click Change to select another location, and click Next.

The installation path cannot have commas (,) or periods (.)

Note: To install the vCenter Server on a drive other than C:, verify that there is enough space in the C:\ WINDOWS\ Installer folder to install the Microsoft Windows Installer .msi file. If you do not have enough space, your vCenter Server installation might fail.

10 Select **Create a standalone VMware vCenter Server instance** or **Join Group** and click Next.

Join a Linked Mode group to enable the vSphere Client to view, search, and manage data across multiple vCenter Server systems. See Chapter 14, “Creating vCenter Server Linked Mode Groups,” on page 109.

This option does not appear if you are upgrading the VirtualCenter database schema. If it does not appear, you can join a Linked Mode group after the installation is complete.

11 If you join a group, enter the fully qualified domain name and LDAP port number of any remote vCenter Server system and click Next.

In some cases, you can enter the IP address instead of the fully qualified domain name. To help ensure connectivity, the best practice is to use the fully qualified domain name. For IPv6, unless both the local and the remote machine are in IPv6 mode, you must enter the fully qualified domain name of the remote machine instead of the IPv6 address. If the local machine has an IPv4 address and the remote machine has an IPv6 address, the local machine must support IPv4 and IPv6 mixed mode. The domain name server must be able to resolve both IPv4 and IPv6 addresses if your environment has both addressing types in a single Linked Mode group.

12 Enter the port numbers that you want to use or accept the default port numbers and click Next.

See “Required Ports,” on page 18.

13 Click Install.

Installation might take several minutes. Multiple progress bars appear during the installation of the selected components.

14 Click Finish.

What to do next

See Chapter 13, “Postinstallation Considerations for vCenter Server,” on page 105.
After you install vCenter Server, consider the postinstallation options and requirements.

- Install the vSphere Client and make sure that you can access the vCenter Server instance.
- Check the license server configuration. A license server is required if this vCenter Server is managing ESX 3.x/ESXi 3.5 hosts. For information about installing the VMware License Server, see the documentation for VMware Infrastructure 3.
- For environments that require strong security, VMware recommends that you replace the default certificates on your vCenter Server system with certificates signed by a commercial Certificate Authority (CA). See vSphere 4.0 technical note Replacing vCenter Server Certificates at http://www.vmware.com/resources/techresources/.
- When vCenter Server and the database are installed on the same machine, after rebooting the machine, the VMware VirtualCenter Management Webservices service might not start. To start the service manually, select Settings > Control Panel > Administrative Tools > Services > VMware VirtualCenter Management Webservices and start the service. The machine might require several minutes to start the service.
- For Oracle databases, note the following:
 - For the Oracle Instant client, copy ojdbc14.jar to the vCenter Server tomcat directory (<vCenter install location>\Infrastructure\tomcat\lib)
 - The Oracle 10g client and Oracle 11g client come with ojdbc14.jar (<Install location>\oracle\product\10.2.0\<instance_name>\jdbc\lib or <Install location>\app\Administrator\product\11.1.0\<instance_name>\sqldeveloper\jdbc\lib). The vCenter Server installer copies the file from the Oracle client install location to the vCenter Server tomcat directory (<vCenter install location>\Infrastructure\tomcat\lib)
 - If the ojdbc14.jar file is not found in the Oracle 10g or Oracle 11g client location, the vCenter Server installer prompts you to copy the file manually. You can download the file from http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/htdocs/jdbc101040.html.

This chapter includes the following topics:

- “Install the vSphere Client,” on page 106
- “Install the vSphere Host Update Utility,” on page 107
- “Uninstall VMware vSphere Components,” on page 108
Install the vSphere Client

The vSphere Client enables you to connect to an ESX/ESXi host and to a vCenter Server system.

Prerequisites

- You must have the vCenter Server installer or the vSphere Client installer.
- You must be a member of the Administrators group on the machine.

Procedure

1. Run the vSphere Client installer.
 - In the vCenter Server installer, double-click the autorun.exe file at C:\<vc-installer location>\ and click VMware vSphere Client.
 - If you downloaded the vSphere Client, double-click the VMware-viclient.exe file.
2. Choose a language for the installer and click OK.
 This selection controls the language only for the installer. When you use the vSphere Client, the vSphere Client appears in the language associated with the locale setting on the machine. You can alter this behavior with a command-line instruction or by changing the locale in the registry of the machine. See Basic System Administration.
3. When the Welcome screen appears, click Next.
4. Select I agree to the terms in the license agreement and click Next.
5. Type your user name and company name and click Next.
6. Select Install VMware vSphere Host Update Utility to manage host patches, updates, and upgrades from this machine and click Next.
 For large deployments and for environments with clustered hosts, VMware recommends that you use vCenter Update Manager instead of the vSphere Host Update Utility.
7. Accept the default installation location and click Next, or click Change to select a different location and click Next.
8. Click Install to begin the installation.
9. Click Finish to complete the installation.

You can use the vSphere Client to connect to an ESX/ESXi host or to connect to a vCenter Server system.

Start the vSphere Client

After you install the vSphere Client, you can connect to an ESX/ESXi host and to a vCenter Server system.

Note: Do not use the Windows built-in Guest account to start the vSphere Client. By default, the Guest Account is disabled. When you use the Guest account to log in to Windows, you cannot access the applications that are already installed on the computer.

Procedure

1. Select Start > Programs > VMware > VMware vSphere Client.
In the vSphere Client login window, log in to an ESX/ESXi host as root or as a normal user, or log in to a vCenter Server system as the administrator.

a. Enter the IP address or host name.

b. Enter your user name and password.

When you connect to the vCenter Server, use the vCenter Server IP address with your Windows login user name and password. Use the login credentials appropriate to the Windows machine on which vCenter Server is installed. The vCenter Server user name and password might be different than the user name and password that you use for ESX/ESXi.

3. Click **Login**.

If you cannot connect to the vCenter Server system, you might need to start the VMware VirtualCenter Management Webservices service manually. To do this, select **Settings > Control Panel > Administrative Tools > Services > VMware VirtualCenter Management Webservices** and start the service. The machine might require several minutes to start the service.

4. To ignore the security warnings that appear, click **Ignore**.

Security warning messages appear because the vSphere Client detects certificates signed by the ESX/ESXi host or vCenter Server system (default setting). For highly secure environments, certificates generated by a trusted third-party are recommended.

Install the vSphere Host Update Utility

The vSphere Host Update Utility is for updating and patching ESXi 4.0 hosts and upgrading ESX 3.x/ESXi 3.5 hosts to ESX 4.0/ESXi 4.0.

The vSphere Host Update Utility is bundled with the vSphere Client. You can install the utility when you install the vSphere Client. If the vSphere Client is already installed and the vSphere Host Update Utility is not, use this procedure to install vSphere Host Update Utility.

Prerequisites

To use vSphere Host Update Utility, you must have the following:

- Workstation or laptop with the vSphere Client installed.
- Network connection between the ESX/ESXi host and the workstation or laptop.
- Internet connectivity to download patch and update bundles or upgrade images from VMware.com if you do not have a local depot.

Procedure

1. Open a command window by selecting **Start > Run** and then entering `cmd`.
2. Navigate to the folder that contains `VMware-viclient.exe`.

 This executable is in the `vpx` subfolder of the vCenter Server installation package.
3. Run the following command.

 `VMware-viclient.exe /S /V" /qr INSTALL_VIUPDATE=1 /L*v %temp%\vim-viu-launch.log"

The vSphere Host Update Utility is installed.

What to do next

Scan hosts and apply available updates or upgrade a host.
Uninstall VMware vSphere Components

The VMware vSphere components are uninstalled separately, even if they are on the same machine. You must have administrator privileges to uninstall the vCenter Server component.

⚠️ CAUTION Uninstalling a vCenter Server system while it is running disrupts the vSphere Client connections, which can cause data loss.

Uninstalling vCenter Server or the vSphere Client does not uninstall any of the other components, such as the bundled database or Microsoft .NET Framework. Do not uninstall the other components if other applications on your system depend on them.

Procedure

1. If you are uninstalling the vCenter Server, unlicense the vCenter Server and the hosts, and remove the license keys from the license inventory.
2. If you are uninstalling the vCenter Server, remove the hosts from the Hosts and Clusters inventory.
3. As Administrator on the Microsoft Windows system, select Start > Settings > Control Panel > Add/Remove Programs.
4. Select the component to remove from the list and click Remove.
5. Click Yes to confirm that you want to remove the program and click Finish.
Creating vCenter Server Linked Mode Groups

A Linked Mode group allows you to log in to any single instance of vCenter Server and view and manage the inventories of all the vCenter Server systems in the group.

You can join multiple vCenter Server systems to form a Linked Mode group. You can configure a Linked Mode group during vCenter Server installation or after vCenter Server is installed.

To join a vCenter Server group, you enter the fully qualified domain name (or IP address) of a remote machine on which vCenter Server 4.0 is running. The remote machine can be any vCenter Server 4.0 instance that is or will become a member of the Linked Mode group.

You must also provide the Lightweight Directory Access Protocol (LDAP) port number of the remote vCenter Server instance.

vCenter Server instances in a group replicate shared global data to the LDAP directory. The global data includes the following information for each vCenter Server instance:

- Connection information (IP and ports)
- Certificates
- Licensing information
- User roles

This chapter includes the following topics:

- “Linked Mode Prerequisites,” on page 109
- “Linked Mode Considerations,” on page 110
- “Configure the URLs on a Linked Mode vCenter Server System,” on page 110
- “Joining to a Linked Mode Group During and After Installation,” on page 111
- “Join a Linked Mode Group After Installation,” on page 111
- “Isolate a vCenter Server Instance from a Linked Mode Group,” on page 112
- “Linked Mode Troubleshooting,” on page 113

Linked Mode Prerequisites

Prepare the system for joining a Linked Mode group.

All the requirements for standalone vCenter Server systems apply to Linked Mode systems. See “vCenter Server Prerequisites,” on page 95.

The following requirements apply to each vCenter Server system that is a member of a Linked Mode group:

- DNS must be operational for Linked Mode replication to work.
The vCenter Server instances in a Linked Mode group can be in different domains if the domains have a two-way trust relationship. Each domain must trust the other domains on which vCenter Server instances are installed.

When adding a vCenter Server instance to a Linked Mode group, the installer must be run by a domain user who is an administrator on both the machine where vCenter Server is installed and the target machine of the Linked Mode group.

All vCenter Server instances must have network time synchronization. The vCenter Server installer validates that the machine clocks are not more than 5 minutes apart.

Linked Mode Considerations

There are several considerations to take into account before you configure a Linked Mode group.

- Each vCenter Server user sees the vCenter Server instances on which they have valid permissions.
- When first setting up your vCenter Server Linked Mode group, you must install the first vCenter Server as a standalone instance because you do not yet have a remote vCenter Server machine to join. Subsequent vCenter Server instances can join the first vCenter Server or other vCenter Server instances that have joined the Linked Mode group.
- If you are joining a vCenter Server to a standalone instance that is not part of a domain, you must add the standalone instance to a domain and add a domain user as an administrator.
- The vCenter Server instances in a Linked Mode group do not need to have the same domain user login. The instances can run under different domain accounts. By default, they run as the LocalSystem account of the machine on which they are running, which means they are different accounts.
- During vCenter Server installation, if you enter an IP address for the remote instance of vCenter Server, the installer converts it into a fully qualified domain name.
- You cannot join a Linked Mode group during the upgrade procedure when you are upgrading from VirtualCenter 2.x to vCenter Server 4.0. You can join after the upgrade to vCenter Server is complete. See the Upgrade Guide.

Configure the URLs on a Linked Mode vCenter Server System

If you connect a vCenter Server system to a Linked Mode group and the vCenter Server system has a machine name that does not match the domain name, several connectivity problems arise. This procedure describes how to correct this situation.

If you do not update the URLs, remote instances of vCenter Server cannot reach the vCenter Server system, because the default vCenter Server URL entries are no longer accurate. The vCenter Server installer configures default URL entries as follows:

- For the Virtualcenter.VimApiUrl key, the default value is `http(s)://<Fully qualified domain name (FQDN) of VC machine>/sdk`.
- For the Virtualcenter.VimWebServicesUrl key, the default value is `https://<FQDN of VC machine>:<installed-webservices-port>/vws`.

Procedure

1. Isolate the vCenter Server system from the Linked Mode group.

 See “Isolate a vCenter Server Instance from a Linked Mode Group,” on page 112.

2. Change the domain name or the machine name to make them match.

3. From the vSphere Client, connect directly to the vCenter Server instance on which you have changed the domain or machine name.
4 Select Administration > vCenter Server Settings and click Advanced Settings.

5 For the Virtualcenter.VimApiUrl key, change the value to point to the location where the vSphere Client and SDK clients can access the vCenter Server system. For example: http(s)//<machine-name/ip>:<vc-port>/sdk.

6 For the Virtualcenter.VimWebServicesUrl key, change the value to point to the location where vCenter Server Webservices is installed. For example: https://<machine-name/ip>:<webservices-port>/vws.

7 For the Virtualcenter.Instancename key, change the value so that the modified name appears in the vCenter Server inventory view.

8 Rejoin the vCenter Server system to the Linked Mode group. See “Join a Linked Mode Group After Installation,” on page 111.

Joining to a Linked Mode Group During and After Installation

You can join a system to a Linked Mode group during or after installing vCenter Server.

For example, suppose you have three machines on which you want to install vCenter Server. You want the three instances to be members of a Linked Mode group.

1 On Machine 1, you install vCenter Server as a standalone instance because you do not yet have a remote vCenter Server machine to join.

2 On Machine 2, you install vCenter Server, choose to join a Linked Mode group, and provide the fully qualified domain name of Machine 1.

3 On Machine 3, you upgrade to vCenter Server 4.0. After the upgrade, you configure Machine 3 to join either Machine 1 or Machine 2. Machine 1, Machine 2, and Machine 3 are now members of a Linked Mode group.

Join a Linked Mode Group After Installation

If you have a system that is already running vCenter Server 4.0, you can join the machine to a Linked Mode group.

Prerequisites

See “Linked Mode Prerequisites,” on page 109 and “Linked Mode Considerations,” on page 110.

Procedure

1 Select Start > All Programs > VMware > vCenter Server Linked Mode Configuration.

2 Click Next.

3 Select Modify linked mode configuration and click Next.

4 Click Join this vCenter Server instance to an existing linked mode group or another instance and click Next.

5 Enter the server name and LDAP port number of a remote vCenter Server instance that is a member of the group and click Next.

If you enter an IP address for the remote server, the installer converts it into a fully qualified domain name.
6 If the vCenter Server installer detects a role conflict, select how to resolve the conflict.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, let VMware vCenter Server resolve the conflicts for me</td>
<td>Click Next. The role on the joining system is renamed to <code><vcenter_name> <role_name></code>, where <code><vcenter_name></code> is the name of the vCenter Server system that is joining the Linked Mode group, and <code><role_name></code> is the name of the original role.</td>
</tr>
<tr>
<td>No, I'll resolve the conflicts myself</td>
<td>To resolve the conflicts manually:</td>
</tr>
<tr>
<td></td>
<td>a) Using the vSphere Client, log in to one of the vCenter Server systems using an account with Administrator privileges.</td>
</tr>
<tr>
<td></td>
<td>b) Rename the conflicting role.</td>
</tr>
<tr>
<td></td>
<td>c) Close the vSphere Client session and return to the vCenter Server installer.</td>
</tr>
<tr>
<td></td>
<td>d) Click Back and click Next.</td>
</tr>
<tr>
<td></td>
<td>The installation continues without conflicts.</td>
</tr>
</tbody>
</table>

A conflict results if the joining system and the Linked Mode group each contain a role with the same name but with different privileges.

7 Click Finish.

vCenter Server restarts. Depending on the size of your inventory, the change to Linked Mode might take from a few seconds to a few minutes to complete.

The vCenter Server instance is now part of a Linked Mode group. After you form a Linked Mode group, you can log in to any single instance of vCenter Server and view and manage the inventories of all the vCenter Servers in the group. It might take several seconds for the global data (such as user roles) that are changed on one machine to be visible on the other machines. The delay is usually 15 seconds or less. It might take a few minutes for a new vCenter Server instance to be recognized and published by the existing instances, because group members do not read the global data very often.

What to do next

For information about configuring and using your Linked Mode group, see *Basic System Administration*.

Isolate a vCenter Server Instance from a Linked Mode Group

You can isolate a vCenter Server instance from a Linked Mode group.

Procedure

1. Select **Start > All Programs > VMware > vCenter Server Linked Mode Configuration**.
2. Click **Modify linked mode configuration** and click Next.
3. Click **Isolate this vCenter Server instance from linked mode group** and click Next.
4. Click **Continue** and click **Finish**.

vCenter Server restarts. Depending on the size of your inventory, the change to Linked Mode might take from a few seconds to a few minutes to complete.

The vCenter Server instance is no longer part of the Linked Mode group.
Linked Mode Troubleshooting

If you are having trouble with your Linked Mode group, consider the following points.

- When you have multiple vCenter Server instances, each instance must have a working relationship with the domain controller and not conflict with another machine that is in the domain. Conflicts can occur, for example, when you clone a vCenter Server instance that is running in a virtual machine and you do not use sysprep or a similar utility to ensure that the cloned vCenter Server instance has a globally unique identifier (GUID).

- If the domain controller is unreachable, vCenter Server might be unable to start. You might be unable to make changes to the Linked Mode configuration of the affected vCenter Server system.

 If this occurs, resolve the problem with the domain controller and restart vCenter Server. If resolving the problem with the domain controller is not possible, you can restart vCenter Server by removing the vCenter Server system from the domain and isolating the system from its current Linked Mode group.

- The DNS name of the machine must match with the actual machine name. Symptoms of machine names not matching the DNS name are data replication issues, ticket errors when trying to search, and missing search results from remote instances.

- There is correct order of operations for joining a Linked Mode group.

 a. Verify that the vCenter Server domain name matches the machine name. If they do not match, change one or both to make them match.

 b. Update the URLs to make them compatible with the new domain name and machine name.

 c. Join the vCenter Server system to a Linked Mode group.

 If you do not update the URLs, remote instances of vCenter Server cannot reach the vCenter Server system, because the default vCenter Server URL entries are no longer accurate. See “Configure the URLs on a Linked Mode vCenter Server System,” on page 110.

 If a vCenter Server instance is no longer reachable by remote instances of vCenter Server, the following symptom might occur:

 ▪ Clients logging in to other vCenter Server systems in the group cannot view the information that belongs to the vCenter Server system on which you changed the domain name because the users cannot log in to the system.

 ▪ Any users that are currently logged in to the vCenter Server system might be disconnected.

 ▪ Search queries do not return results from the vCenter Server system.

 To resolve this issue, make sure that the Virtualcenter.VimApiUrl key points to the location where the vSphere Client and SDK clients can access the vCenter Server system, and the Virtualcenter.VimWebServicesUrl key points to the location where vCenter Server Web services is installed. For the Virtualcenter.InstanceName key, change the value so that the modified name appears in the vCenter Server inventory view.

- If you cannot join a vCenter Server instance, you can resolve the problem with the following actions:

 ▪ Ensure that the machine is grouped into the correct organizational unit in the corresponding domain controller.

 ▪ When you install vCenter Server, ensure that the logged in user account has administrator privileges on the machine.

 ▪ To resolve trust problems between a machine and the domain controller, remove the machine from the domain and then add it to the domain again.
To ensure that the Windows policy cache is updated, run the `gpupdate /force` command from the Windows command line. This command performs a group policy update.

If the local host cannot reach the remote host during a join operation, verify the following:
- Remote vCenter Server IP address or fully qualified domain name is correct.
- LDAP port on the remote vCenter Server is correct.
- VMwareVCMSDS service is running.
- Make sure your Windows and network-based firewalls are configured to allow Linked Mode.

Configuring a Windows Firewall to Allow a Specified Program Access

vCenter Server 4.0 uses Microsoft ADAM/AD LDS to enable Linked Mode, which uses the Windows RPC port mapper to open RPC ports for replication. When you install vCenter Server in Linked Mode, the firewall configuration on the local machine must be modified.

Incorrect configuration of firewalls can cause licenses and roles to become inconsistent between instances.

Prerequisites
- There must be no network-based firewalls between vCenter Server Linked Mode instances. For environments with network-based firewalls, see “Configuring Firewall Access by Opening Selected Ports,” on page 114.

Procedure

1. Select **Start > Run**.
2. Type `firewall.cpl` and click **OK**.
3. Make sure that the firewall is set to allow exceptions.
4. Click the **Exceptions** tab.
5. Click **Add Program**.
6. Add an exception for `C:\Windows\ADAM\dsamain.exe` and click **OK**.
7. Click **OK**.

Configuring Firewall Access by Opening Selected Ports

vCenter Server 4.0 uses Microsoft ADAM/AD LDS to enable Linked Mode, which uses the Windows RPC port mapper to open RPC ports for replication. When you install vCenter Server in Linked Mode, the firewall configuration on any network-based firewalls must be modified.

Incorrect configuration of firewalls can cause licenses and roles to become inconsistent between instances.

Procedure

- Configure Windows RPC ports to generically allow selective ports for machine-to-machine RPC communication.

Choose one of the following methods.
You can install additional modules on the same machine that hosts vCenter Server or on remote machines.

This chapter includes the following topics:

- “Install VMware vCenter Guided Consolidation,” on page 115
- “Install VMware vCenter Update Manager,” on page 116
- “Install VMware vCenter Converter,” on page 117

Install VMware vCenter Guided Consolidation

The vCenter Guided Consolidation service is an extension to vCenter Server. vCenter Guided Consolidation enables you to migrate from physical servers to virtual infrastructure using a wizard that identifies physical servers for consolidation, converts them to virtual machines, and places them onto ESX/ESXi hosts.

This procedure describes how to install vCenter Guided Consolidation as an additional module (sometimes called a plug-in) on the same machine that hosts vCenter Server or on a remote machine.

The VMware vCenter Guided Consolidation service includes the following components:

- **vCenter Collector service**: This service discovers computers in your network and collects performance data. To enable this service, the installer prompts you to enter a user name and password for an administrative account on the local machine. This account can be a domain user account specified as DomainName\UserName. The vCenter Collector service uses port 8181 and 8182, by default.

- **vCenter Web Server**: Uses ports 8080 and 8443, by default.

Prerequisites

Before you install vCenter Guided Consolidation, download the software installer and install vCenter Server 4.0 on the local machine or on a machine that is reachable by the local machine.

Procedure

1. In the software installer directory, double-click the autorun.exe file at C:\vc-installer location\.
2. Click vCenter Guided Consolidation Service.
3. Choose a language for the installer and click OK.
4. When the Welcome screen appears, click Next.
5. Select I agree to the terms in the license agreement and click Next.
6. Accept the default installation location, or click Change to select a different location, and click Next.
7 Type an administrative user name and password and click **Next**.

8 Enter the port numbers that you want to use or accept the default port numbers and click **Next**.

9 Enter the location of the vCenter Server system.
 - Enter an IP address or fully qualified domain name of the remote vCenter Server system to which the vCenter Guided Consolidation service will be an extension.
 - Enter **localhost** if you are installing the vCenter Guided Consolidation service on the same system on which you installed vCenter Server.

10 Enter the port number that the vCenter Server system uses for secure HTTP (HTTPS) communication.
 The default port is 443.

11 Enter the user name and password for the vCenter Server system and click **Next**.
 The user account must have extension registration privileges on the vCenter Server system.

12 Select the server identity from the drop-down menu and click **Next**.

13 Click **Install** to begin the installation.

14 Click **Finish** to complete the installation.

The vCenter Guided Consolidation Service is installed.

Install VMware vCenter Update Manager

vCenter Update Manager is for environments with vCenter Server. Using vCenter Update Manager, you can orchestrate steps of an upgrade process sequentially, based on compliance baselines at the host, virtual machine, and datastore level.

This procedure describes how to install vCenter Update Manager as an additional module (sometimes called a plug-in) on the same machine that hosts vCenter Server or on a remote machine.

Prerequisites

Before you install vCenter Update Manager, download the software installer and install vCenter Server 4.0 on the local machine or on a machine that is reachable by the local machine.

vCenter Update Manager requires a supported database. The database requirements are the same as vCenter Server, except that DB2 is not supported. You can use a supported database that is configured to work with vCenter Update Manager, or you can install the Microsoft SQL Server 2005 Express database that is bundled with vCenter Update Manager. vCenter Update Manager can use the same database as vCenter Server, but VMware recommends that you have separate databases for vCenter Server and vCenter Update Manager.

Procedure

1 In the software installer directory, double-click the autorun.exe file at C:\vc-installer location\.

2 Click **vCenter Update Manager**.

3 Choose a language for the installer and click **OK**.

4 When the Welcome screen appears, click **Next**.

5 Select **I agree to the terms in the license agreement** and click **Next**.
6 Enter the connection information for the vCenter Server system to which vCenter Update Manager will be an extension.
 a Enter the IP address. By default, the IP address is that of the local host.
 b Enter the port number that the vCenter Server system is configured to use for HTTP. By default, vCenter Server uses port 80.
 c Enter the user name and password for the vCenter Server system.

7 Choose the type of database that you want to use for vCenter Update Manager.
 - To use the bundled database, click Install a Microsoft SQL Server 2005 Express instance and click Next.
 This database is suitable for small deployments of up to 5 hosts and 50 virtual machines.
 - To use an existing database, click Use an existing supported database, select your database from the list of available DSNs, and click Next.

8 If you chose to use an existing database, enter the user name and password for the DSN and click Next.
 If your database is a local SQL Server database using Microsoft Windows NT authentication, leave the user name and password fields blank.

9 Select the fully qualified domain name or IP address to identify this instance of vCenter Update Manager on the network.
 Make sure that the fully qualified domain name is accessible by the vCenter Server system and by all the ESX/ESXi hosts managed by the vCenter Server system.

10 Enter the port numbers that you want to use or accept the default port numbers.

11 (Optional) Select Yes, I have an Internet connection, and I want to configure proxy settings now.

12 Click Next.

13 Enter the proxy server name and port number.
 If the local machine has proxy settings configured, the installer uses these settings by default.

14 (Optional) Select Authenticate proxy using the credentials below, and enter the user name and password to use for authentication.

15 Accept the default installation location or click Change to select a different location.

16 Accept the default location for patch downloads or click Change to select a different location, and click Next.

17 Click Install to begin the installation.

18 Click Finish to complete the installation.

The vCenter Update Manager is installed.

What to do next
Install the Update Manager client plug-in. See the vCenter Update Manager Administration Guide.

Install VMware vCenter Converter

vCenter Converter enables you to automate and simplify physical to virtual machine conversions as well as conversions between virtual machine formats.

This procedure describes how to install vCenter Converter as an additional module (sometimes called a plug-in) on the same machine that hosts vCenter Server or on a remote machine.
Prerequisites
Before you install vCenter Converter, download the software installer and install vCenter Server 4.0 on the local machine or on a machine that is reachable by the local machine.

Procedure
1. In the software installer directory, double-click the autorun.exe file at C:\<vc-installer location>\.
2. Click vCenter Converter.
3. Choose a language for the installer and click OK.
4. When the Welcome screen appears, click Next.
5. Select I agree to the terms in the license agreement and click Next.
6. Accept the default installation location and click Next, or click Change to select a different location and click Next.
7. Select the installation mode.
 - Select Typical (Recommended) to install the most common components.
 - Select Custom to choose the components to install.
8. Enter the connection information for the vCenter Server system to which vCenter Converter will be an extension.
 a. Enter the IP address. By default, the IP address is that of the local host.
 b. Enter the port number that the vCenter Server system is configured to use for secure HTTP (HTTPS). By default, vCenter Server uses port 443.
 c. Enter an administrative user name and password for the vCenter Server system.
9. Enter the port numbers that you want to use or accept the default port numbers and click Next.
10. Select the vCenter Server identity from the drop-down menu and click Next.
11. Click Install to begin the installation.
12. Click Finish to complete the installation.

vCenter Converter is installed.

What to do next
Install the Converter client plug-in. See the vCenter Converter Administration Guide.
License reporting and management are centralized.

All product licenses are encapsulated in 25-character license keys that you can manage and monitor from vCenter Server.

Licensing is applicable to ESX/ESXi hosts, vCenter Server, and solutions. However, solutions licensing management is specific to the solution. For solutions, licensing can be based on processors, asset instances, virtual machines, and so on. Therefore, the licensing for a solution such as VMware vCenter Site Recovery Manager might differ entirely from the licensing of another solution. For information about licensing a specific solution, see the documentation for that solution.

In terms of licensing hosts, if you upgrade all your hosts, you no longer need a license server or host-based license files.

Each host requires a license and each vCenter Server instance requires a license. You cannot assign multiple license keys to a host or to a vCenter Server system. You can license multiple hosts with one license key if the key has enough capacity for more than one host. Likewise, you can license multiple vCenter Server instances with one license key if the key has a capacity greater than one and you can license multiple solutions with one license key if the key has a capacity greater than one. When you apply a minor upgrade or patch the ESX/ESXi or vCenter Server software, you do not need to replace the existing license key with a new one.

If you upgrade the edition of the license (for example, from standard to enterprise), you must replace the existing license key in the inventory with a new upgraded license key.

This chapter includes the following topics:

- “About License Key Capacity,” on page 120
- “About vSphere and vCenter Server License Keys,” on page 121
- “About Using a License Server to Manage ESX 3.x/ESXi 3.5 Hosts,” on page 121
- “About the License Portal,” on page 121
- “About License Inventories,” on page 122
- “Controlling License Permissions,” on page 123
- “View License Information,” on page 124
- “Add a License Key to the License Inventory and Assign It to an Asset,” on page 125
- “Add Multiple License Keys to the License Inventory,” on page 125
- “Assign a License Key to Multiple Assets,” on page 126
- “Export Report Data,” on page 127
- “License a Host Without vCenter Server,” on page 127
About License Key Capacity

License keys have a certain amount of capacity. For hosts, capacity is based on the number of processors in the host. For vCenter Server, capacity is based on the number of instances of vCenter Server. However, the licensing of solutions can be based on processors, asset instances, virtual machines, etc.

The examples that follow might not apply to all solutions.

Though licensing is applicable to solutions as well as ESX/ESXi hosts and vCenter Server, solutions licensing management is too variable and, therefore, specific to each solution to be discussed in general terms. For information about licensing a specific solution, see the documentation for that solution.

Licensing for Each Processor

For most vSphere products, when you purchase vSphere licenses, you must consider the total number of processors, not hosts, that will run the products. You can assign and reassign the processor capacity to any combination of hosts. For example, suppose you purchase a 10-processor vSphere license key. You can assign the 10-processor license key to any of the following combinations of hosts:

- Five 2-processor hosts
- Three 2-processor hosts and one 4-processor host
- Two 4-processor hosts and one 2-processor host
- One 8-processor host and one 2-processor host

Special considerations include:

- Dual-core and quad-core processors, such as Intel processors that combine two or four independent CPUs on a single chip, count as one processor.
- You cannot partially license a multiprocessor host. For example, a 4-CPU host requires 4-processors of vSphere license key capacity.

IMPORTANT From the ESX/ESXi license perspective, a CPU is a processor with a physical processor in it. When you purchase a license, you select the edition, the number of CPUs, and the maximum number of cores per CPU. For example, if you purchase an enterprise license with 100 CPUs, you must also choose the maximum number of cores per CPU. For example, you might select a maximum of 2 cores per CPU, 6 cores per CPU, or 12 cores per CPU. The choice depends on the type of hardware on which you are installing ESX/ESXi.

Licensing for Each Asset Instance

Products for which you purchase a license for each instance require a single unit of license key capacity, regardless of the number of processors in the machine. The vCenter Server is an example of a product that requires this type of license. If you purchase a vCenter Server license key with a capacity greater than one, you assign one unit of the capacity to each instance of vCenter Server.
About vSphere and vCenter Server License Keys

The terms vSphere and vCenter Server are used for licenses. Solution licenses are listed under the product name for the solution.

vSphere Licenses
For ESX/ESXi.

vCenter Server Licenses
For vCenter Server (formerly, VirtualCenter).

Solution Licenses
For solutions.

About Using a License Server to Manage ESX 3.x/ESXi 3.5 Hosts

vCenter Server 4.0 does not require a license server to manage ESX 4.0/ESXi 4.0 hosts. vCenter Server 4.0 requires a license server to manage ESX 3.x/ESXi 3.5 hosts.

If you do not have a license server installed and you need one, download the VMware License Server from the VMware Web site.

The License Server installation requires no downtime. No virtual machines, servers, hosts, or clients need to be powered off for the installation of the license server.

Configure vCenter Server to Use a License Server

To manage ESX 3.x/ESXi 3.5 hosts, you must configure vCenter Server to use a license server.

Procedure

1. In vCenter Server, select Administration > vCenter Server Settings.
2. In the License Server text box, enter the port number and license server machine name, as in port@host.
 For example: 27000@license-3.companyname.com
3. If you want the hosts and vCenter Server to use the same license server, select the Reconfigure ESX 3 hosts using license servers to use this server check box.
4. Click OK.

About the License Portal

Use the license portal to get upgraded license keys, downgrade license keys, combine the capacity of multiple license keys, divide the capacity of a single license key, view the change history of your license keys, and find lost license keys.

Getting Upgraded License Keys

If you have VMware Infrastructure 3 license keys and you have been provided upgrades to vSphere 4.0, use the license portal to retrieve the new license keys and deactivate the old licenses. After you retrieve the license keys, enter them into the vCenter Server license inventory.

Downgrading License Keys

If you have vSphere 4.0 license keys but you need to license VMware Infrastructure 3 assets, use the license portal to downgrade the license keys. When you do this, your vSphere 4.0 license keys remain valid. When you are ready to upgrade your assets, you can stop using the VMware Infrastructure licenses and start using the vSphere 4.0 license keys by entering them into the vCenter Server license inventory and assigning them to your upgraded assets.
Combining the Capacity of License Keys

If your license inventory contains multiple license keys, each with a small amount of capacity, you might want to combine them into one large-capacity license key. This is useful when the total available capacity across license keys is large enough to accommodate an asset, but no single license key is large enough to accommodate the asset.

After you use the license portal to combine license keys, you must add the new license key to the vCenter Server license inventory and remove the old license keys.

Dividing the Capacity of License Keys

If you have a large-capacity license key, you might want to divide the capacity to create multiple smaller-capacity license keys. This is useful for managing license keys in different vCenter Server inventories or assigning different license keys to groups in your organization.

Viewing the Change History of License Keys

The license portal tracks the complete history of license key upgrades, downgrades, combinations, and divisions for your organization.

Finding Lost License Keys

If a license key is misplaced, you can search for it in the license portal using the following criteria:

- Date range
- License key
- Order number
- Transaction type

About License Inventories

The license inventories that are maintained by a vCenter Server system work slightly differently, depending on whether you have Linked Mode groups or standalone systems.

The examples that follow are specific to ESX/ESXi hosts and might not apply to solutions.

Solutions vary greatly. For example, some solutions are not licensed separately from vCenter Server. Furthermore, solutions licensing can be based on processors, asset instances, virtual machines, and so on. Therefore, for license information specific to a solution, see the documentation for that solution.

Example: Uninstallation Scenarios

1. You uninstall vCenter Server without first unlicensing and removing the hosts.
2. The hosts remain licensed.
3. You add the licensed hosts to another vCenter Server instance.
4. The license keys are transferred with the hosts.

Here is a slightly different scenario:

1. You uninstall vCenter Server without first unlicensing the hosts.
2. You reinstall vCenter Server and make it part of a different Linked Mode group.
3. The host license keys from the previous group are not transferred to the new group.
4. You add hosts that were licensed by the previous vCenter Server group to the new group.

5. The host license keys are transferred to the new group.

6. The host license keys now belong to two Linked Mode groups. If the total assignment of the key exceeds the key’s capacity, this scenario is not supported and causes your license usage to be out of compliance.

Example: Standalone Scenario

Each vCenter Server instance maintains its own license inventory. If you add an ESX/ESXi host to vCenter Server and add the same host to another vCenter Server instance, the host license key moves from the first inventory to the second inventory.

1. You have two vCenter Server instances that are standalone.
2. You assign a license to a host in one vCenter Server instance.
3. You add the host to another vCenter Server instance and choose to retain the license when you perform the Add Host operation.
4. The host license key belongs to two separate license inventories. If the total assignment of the key exceeds the key’s capacity, this scenario is not supported and causes your license usage to be out of compliance.

Example: Linked Mode Scenario

1. You have two vCenter Server instances that belong to the same Linked Mode group.
2. You assign a license to a host in one vCenter Server instance.
3. The two vCenter Server instances share a single license inventory.
4. When you add a license key, the key becomes available to all the vCenter Server systems within the same Linked Mode group. The license keys are shared, and each system in the group has the same inventory view, although this might not always seem so because of replication delays.

Controlling License Permissions

You can control which users are able to view and manage license resources.

The examples that follow are specific to ESX/ESXi hosts and might not apply to solutions.

Though licensing is applicable to solutions as well as ESX/ESXi hosts and vCenter Server, solutions licensing management is too variable and, therefore, specific to each solution to be discussed in general terms. For information about licensing a specific solution, see the documentation for that solution.

The following permission types are supported.

Global.licenses

If you have global permission at the root folder, you can view and modify all licenses in the vCenter Server inventory. This includes other vCenter Server systems in a Linked Mode group.

Read-only

If you have read-only permission on a host, the vCenter Server displays the first and last five characters of the license key assigned to the host, the features present in the license, and the expiration date for the license.

If you have neither of these permissions but you can add a host to vCenter Server, you can add a license to the inventory and assign a license to the host when you perform the add host operation.
View License Information

You can see all the licenses assigned or available in your vSphere inventory using the licensing view.

Procedure

1. From a vSphere Client session that is connected to a vCenter Server system, click **Home > Licensing**.
2. (Optional) Click **Refresh**.
3. On the licensing page, select the view.
 - To view the available licenses listed by product, select **Product**.
 - To view the available licenses listed by license key, select **License key**.
 - To view licenses listed by the asset (host, vCenter Server system, or solution) to which they are assigned, select **Asset**.

From these report views, you can right-click entities to add, assign, and remove license keys and copy license information to your clipboard.

Example: Use the Product View to Add and Assign a License Key

In this example, you select the **Product** view in the Licensing Report window. In the Evaluation Mode list, right-click a vCenter Server instance and select **Change license key**. You can then assign a license key that is in the license inventory or add a new license key and assign it in a single operation.

What to do next

If you have a license with zero assigned capacity, as seen in the Assigned column of the License Report, ask yourself the following questions:

- Did I forget to assign this license key to an asset?
- Did I forget to remove this license key from the inventory?

Remove the license key in the following cases:

- The license key has expired.
- You use the license portal to combine the capacities of multiple small-capacity license keys to create a larger-capacity license key. Then you remove the old license keys and add the new license key to the vCenter Server inventory.
You have upgraded your licenses, and you must remove the legacy licenses.

Add a License Key to the License Inventory and Assign It to an Asset

After you purchase an asset, you can add the license key to the inventory and assign it to the asset. Use this procedure to add one license key and assign it to one asset.

Prerequisites

The vSphere Client must be connected to the vCenter Server system.

Procedure

1. From a vSphere Client host that is connected to a vCenter Server system, select Home > Licensing.
2. For the report view, select Asset.
3. Right-click an asset and select Change license key.
4. Select Assign a new license key and click Enter Key.
5. Enter the license key, enter an optional label for the key, and click OK.
6. Click OK.

Add Multiple License Keys to the License Inventory

After you purchase assets, you can add the license keys to the license inventory. You can add multiple license keys at the same time.

Prerequisites

The vSphere Client must be connected to the vCenter Server system.

Procedure

1. From a vSphere Client host that is connected to a vCenter Server system, select Home > Licensing.
2. Click Manage vSphere Licenses.
3. In the Add License Keys text area, enter license keys one per line.
 - You can paste a list of keys in one operation.
4. (Optional) Type a brief description of the keys.
5. Click Add License Keys.
 - If any of the keys are invalid, an error message lists the invalid keys. You can correct the invalid keys and try adding them again, or delete them.
6. If you are not ready to assign license keys to assets, click Next through the remaining wizard screens and click Finish to save your changes.
Assign a License Key to Multiple Assets

You can assign licenses to single or multiple assets, individually or in batches.

Though licensing is applicable to solutions as well as ESX/ESXi hosts and vCenter Server, solutions licensing management is too variable and, therefore, specific to each solution to be discussed in general terms. For information about licensing a specific solution, see the documentation for that solution.

NOTE After you assign a license to a host, the software might update the license report before the license assignment operation is complete. If the host becomes disconnected immediately after you assign the license, the license report might not accurately reflect the host license state. The report might show the host as licensed, even though the license assignment operation is not yet complete. When the host is reconnected to a vCenter Server system, the license assignment operation continues, and the host becomes licensed as shown in the report.

Procedure

1. From a vSphere Client session that is connected to a vCenter Server system, select **Home > Licensing**.
2. Click **Manage vSphere Licenses**.
3. Click **Next** to go to the Assign Licenses page.
4. Click the **ESX**, **vCenter Server**, or **Solutions** tab to display the available assets.
5. Click **Show Unlicensed assets**, **Show licensed assets**, or **Show all**.
6. In the Asset window, select one or more assets to license.
 - To select multiple assets, use Ctrl-click or Shift-click.
7. In the Product window, select an appropriate license key and click **Next**.
 - The capacity of the license key must be greater than or equal to the sum of the asset CPUs.
8. If you are not ready to remove any license keys, click **Next** to skip the Remove License Keys page and click **Finish** to save your changes.

Example: Assign a License Key to Two ESX Hosts

In this example, Shift-click to select two 2-CPU ESX hosts and then assign a vSphere Enterprise license key to the hosts. Before the assignment, the license key has an available capacity of 98 CPUs. After the assignment, the license key has an available capacity of 94 CPUs. The pop-up tool tip lists the product features included in the vSphere Enterprise license edition.
Export Report Data

You can export license data to a file that you can open in a third-party application.

Procedure

1. From a vSphere Client host that is connected to a vCenter Server system, select Home > Licensing.
2. Select the view that you want to export.
 - Product
 - License key
 - Asset
3. From the report screen, click Export.
4. In the Save As dialog box, select a folder, a filename, and a format for the exported license data and click Save.

License a Host Without vCenter Server

If you are directly connected to the host through the vSphere Client, you can license the host.

Procedure

1. From the vSphere Client, click the Configuration tab.
3. Click Edit.
4 Assign a license key.
 - Select Assign an existing license key to this host and select a license key from the Product list.
 - Select Assign a new license key to this host, click Enter Key, and enter a license key and an optional label for the license key.
5 Click OK.

License a Host When Adding It to the vCenter Server Inventory

When you add a host to the vCenter Server inventory, you can license the host.

Prerequisites

You must have a communication channel through a firewall before adding a host.

Procedure

1 Click Inventory in the navigation bar.
2 Expand the inventory as needed and click the appropriate datacenter, folder, or cluster.
3 Right-click the datacenter or cluster and select Add Host.
4 When prompted by the Add Host wizard, assign an existing vSphere license key or add a new vSphere license key.

View Which Features Are Licensed on a Host

You can view which features a host is licensed to use.

If you try to configure features that are not included in the host license, the vSphere Client displays an error message.

Procedure

1 From the vSphere Client, select the host in the inventory.
2 Click the Configuration tab.
3 Under Software, click Licensed Features.
 The Licensed Features window displays the list of features that you can configure on the host.

Set an ESX/ESXi Host to Evaluation Mode

If you entered a license for ESX, you can switch to evaluation mode to explore the full functionality of ESX.

Procedure

1 From the vSphere Client, select the host in the inventory.
2 Click the Configuration tab.
3 Under Software, click Licensed Features.
4 Click Edit next to ESX License Type.
5 Click Product Evaluation.
6 Click OK to save your changes.
Troubleshooting Licensing

These topics provide guidelines for troubleshooting your license setup for environments with only ESX 4.0/ESXi 4.0 hosts and environments that have a mixture of ESX 4.0/ESXi 4.0 and legacy ESX 3.x/ESXi 3.5 hosts.

If you cannot resolve the problem, contact VMware for support as follows:

- If you have difficulties in configuring licensed features, file a support request at http://www.vmware.com/support.
- To license vCenter Server, you must apply a vCenter Server license key.
- To license ESX/ESXi, you must apply a vSphere license key.
- If you downgrade your license from evaluation mode to a license that does not support the features that you configured while using evaluation mode, the features might stop working without warning.
- If a licensing-related error message appears when you try to configure a feature, check the licensed features on the host and on the vCenter Server system to make sure that the host or vCenter Server system is licensed to use the feature that you are trying to configure.
- If all the hosts in a vCenter Server system inventory become disconnected, this might be because the vCenter Server license is expired or the 60-day evaluation period has expired.
- If you cannot power on the virtual machines that reside on a host, this might be because the host license is expired or the 60-day evaluation period is expired.
- If an ESX/ESXi host is managed by a vCenter Server system, changes made to the host license via direct connection to the host do not persist, because the changes are overwritten by the license key assigned via vCenter Server. See “About Overriding the Host License Configuration,” on page 130.
- If vCenter Server is managing ESX 3.x/ESXi 3.5 hosts, vCenter Server must check out vCenter Server Agent licenses from a license server. If vCenter Server is having trouble communicating with your license server, do the following:
 - Check that the license server Microsoft Windows service is running.
 - Check that the license server is listening.
 - Check the license server status.

 If your license server is operating properly, you might have a problem with your license file.

 If your license server is working correctly and your license file is correct, check that you correctly configured centralized or single-host licensing, as appropriate to your environment.

 For detailed troubleshooting and configuration instructions, see the licensing documentation in the Installation Guide or the Setup Guide for VMware Infrastructure 3.

Applying Licenses

If you cannot apply a license to an asset, the license might not match the currently configured features and resources. When you assign a license to an asset, the license must be compatible with all the configured resources and features.

For example, suppose you add 10 ESX hosts to the vCenter Server inventory during the evaluation period. After the evaluation period expires, you try to assign a Foundation edition license to a vCenter Server system. The assignment operation fails because the Foundation edition allows a vCenter Server system to manage up to three hosts only. To correct this issue, you can upgrade the edition or you can remove seven hosts from the inventory.
As another example, suppose that you configure VMotion and DRS on a cluster of Enterprise edition hosts. Later, you try to assign Standard license keys to the hosts. This operation fails because the Standard edition does not include VMotion and DRS. You must assign Enterprise licenses to the ESX hosts or disable VMotion and DRS. For detailed information about how to disable features, see the VMware Knowledge Base.

Also, make sure you are applying the correct license key, as follows:
- To license vCenter Server assets, you must apply a vCenter Server license key.
- To license ESX/ESXi assets, you must apply a vSphere license key.

About Overriding the Host License Configuration

If the host is managed by vCenter Server, use either the Home > Licensing interface or the Add Host operation to configure host licensing.

If you use the Configuration > Licensed Features > Edit operation, the host license configuration is overridden by any license assignment operation that you perform in vCenter Server.

License Expiration

Upon license expiration, the vCenter Server software and the ESX/ESXi software continue to run, but certain operations stop working.

If a vCenter Server license expires, the managed hosts become disconnected from the vCenter Server inventory, and you cannot add hosts to the inventory. The hosts and the virtual machines on the hosts continue to run. By using the vSphere Client to connect directly to the host, you can power on or reset the virtual machines.

After you assign a valid vCenter Server license, you can reconnect all the hosts at once as follows:
1. From the vCenter Server inventory, select the datacenter.
2. Select the Hosts tab.
3. Shift-click or Ctrl-click to select the hosts.
4. Right-click and select Connect.

If an ESX/ESXi host license expires, the virtual machines that reside on the host continue to run, but you cannot power on the virtual machines or reset them.

Licensing vCenter Server and ESX/ESXi After Evaluation

After the 60-day evaluation period expires, you are no longer able to perform some operations in vCenter Server and ESX/ESXi. If you want to continue to have full use of ESX/ESXi and vCenter Server operations, you must acquire a license.

Without a license, you are able to perform some operations, but you cannot power on or reset your virtual machines. All hosts are disconnected from the vCenter Server system if the evaluation period expires before you assign a license to the vCenter Server system. Any single ESX/ESXi host is disconnected from the vCenter Server system if the ESX/ESXi evaluation period expires before you assign a license to the host.

When you switch your vCenter Server system and ESX from evaluation mode to licensed mode, consider the following:
- If a vCenter Server system is managing VMware Infrastructure 3 hosts (for example, ESX 3.x or ESXi 3.5), the vCenter Server system must have access to a license server. You can download the VMware License Server from the VMware Web site.
- To license vCenter Server, you must apply a vCenter Server license key.
- To license ESX/ESXi, you must apply a vSphere license key.
- When you assign a license to a machine on which a VMware vSphere component is installed, the license must be compatible with all resources and features that you configure during the evaluation period.
For example, suppose you add 10 ESX hosts to the vCenter Server system inventory during the evaluation period. After the evaluation period expires, you try to assign an edition license that limits the number of hosts that can be managed by a vCenter Server system. The assignment operation fails because the edition allows a vCenter Server system to manage fewer than 10 hosts. To correct this issue, you can upgrade your license key to a higher edition or you can remove hosts from the inventory.

As another example, if you configure a cluster of ESX hosts to use Fault Tolerance and DRS during the evaluation period, you can only assign a license that allows the use of those features. Hence, the assignment of a higher edition license succeeds. To assign a lower edition license, you must first disable Fault Tolerance and DRS.
Symbols
/ / 63
/ partition 22, 63
/boot 63
/boot partition 63
/home 64
/root/ks.cfg 48
/tmp 64
/usr 64
/var/log 64
/vmfs/volumes 63
%include command 50
%packages command 50
%post command 50
%pre command 50

Numerics
32-bit DSN requirement 75
3rd-party extensions 67
3rd-party modules, removing 70

A
accepteula command 50
adding, license keys 125
additional modules 115
append 27
applying licenses, troubleshooting 129
applying patches 68
applying patches to ESX/ESXi 69
askmedia 27, 36
assigning license keys 126
ATA disks 13
auth command 50
authconfig command 50
autopart command 50

B
boot options 27
boot prompt 29
booting the ESX installer 29
booting the ESX installer from the DVD 30
bootloader 50
bootloader kernel options 29
bootstrap commands 29
bulletins 68
bulletins, for patching ESX/ESXi 69
bundled database 76

C
CIM provider 67
clearpart command 50
clients, firewall 18
combining license keys 121
components included with the vCenter Server installer 98
computer name
Oracle 76
SQL Server 76
configuration options 29
configuring a DB2 database 77
configuring ports 18
connecting
Oracle database 92, 93
SQL Server database 87
cores per CPU 120
creating a DB2 database 79
creating a SQL Server database 84, 86
creating an Oracle database 89, 90
custom extension, removing 70

databases
maintaining 76
Oracle 91
preparing 109
SQL Server 87, 88
DB2, creating the schema 81
DB2 database
client instance registry variables 79
configure for remote connection 83
configure locally on Microsoft Windows 82
database instance registry variables 78
script for creating 79
user and group 77

D
data source name 75
dB2O privileges 84
default installation scripts 48
default root password 48
depot, for patching ESX/ESXi 69
determining which features are licensed 128
DHCP, for PXE booting the ESX installer 35
Directory Services 111, 112
dividing license keys 121
DNS 113
DNS requirements 19
domain controller 113
downgrading license keys 121
download the vCenter Server installer 101
DRAC 20, 39
drivers 67
dryrun command 50
DSN, 32-bit requirement 75
DVD
 booting the ESX installer from 30
 burning the ESX ISO image 27
DVD media 15

E
educational support 9
end user license agreement 41, 45
ESX
 booting the installer from the DVD 30
differences with kickstart 58
installation prerequisites 21
licensing 119
scripted installation 49
ESX installation, process and options 22
ESX installation media 27
ESX installation script, about 48
ESX ISO image, burning on a DVD 27
esxconsole.vmdk 22, 41, 45, 63
esxlocation command 50
Etherboot Project 31
EULA 41, 45
evaluation, licensing after 130
evaluation mode, switching to 66, 128
expired license 130
export license data 127
extensions, installing, removing, and updating 67

F
F2 27
firewall
 network-based 114
 Windows 114
firewall command 50
firewallport command 50
FTP 31

G
global data 111, 112

Global.licenses permission 123
gpupdate /force command 113
gPXE 31, 36
group policy update 113
groups, requirements 109
guest operating systems 18
GUID 113

H
hardware requirements, for vCenter Server 16
hardware requirements for the vSphere Client 16
host licensing 65
host patching 67
hosts, configuring licensing 127
hosts firewall 18

I
IBM DB2, requirements 74
IDE disks 13
iLO 39
iLO 20
include command 50
initrd.img 39
install command 27, 50
installation logs 41, 45
installation script, creating 48
installation scripts, default 48
installing
 ESX 41, 45
 vCenter Server 102
 vCenter Server in a virtual machine 101
 VirtualCenter Server 109
 vSphere Client 106
 vSphere Host Update Utility 107
installing ESX, scripted 47, 49
interactive installation 27
introduction to vSphere 11
IPAPPEND 36
IPv6 97

J
JDBC 88

K
kernel 39
keyboard command 50
kickstart, differences with ESX 58
kickstart commands 58
kickstart file, creating 48
ks-first-safe.cfg 48
ks-first.cfg 48
install procedure 102
installing from a network drive 97
installing in a virtual machine 101
installing on IPv6 machine 97
joining a group 111, 112
licensing 119
Linked Mode 109
ports 18
prerequisites for installing 95
required data for installation 98
requirements for joining a group 109
vCenter Server license 121
vCenter Update Manager 73, 98, 116
vCenterServer.VimApiUrl 97, 110, 113
vCenterServer.VimWebServicesUrl 97, 110, 113
vihostupdate 68, 69
virtual CD 39
virtual disk 22, 63
virtual machine, installing vCenter Server in 101
virtual machines, requirements 18
virtualdisk command 50
vmaccepteula command 50
VMFS3 23
vmkcore partition 63
vmkernel module, removing 70
VMkernel module 67
vmlinuz 36, 39
vmserialnum command 50
vSphere, introduction 11
vSphere CLI 68, 69
vSphere Client
downloading 65
hardware requirements 16
installing 106
installing from a network drive 97
requirements 18
starting 106
vSphere DNS requirements 19
vSphere Host Update Utility
installing 107
patching hosts 67
vSphere license 121
VWS 97, 110, 113