Setup for Failover Clustering and Microsoft Cluster Service

ESX 4.1
ESXi 4.1
vCenter Server 4.1

This document supports the version of each product listed and supports all subsequent versions until the document is replaced by a new edition. To check for more recent editions of this document, see http://www.vmware.com/support/pubs.
You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com
Contents

Updated Information 5

About This Book 7

1 Getting Started with MSCS 9
 Clustering Configuration Overview 9
 Hardware and Software Requirements for Clustering 11
 Supported Shared Storage Configurations 12
 vSphere MSCS Setup Limitations 12
 MSCS and Booting from a SAN 13
 Setting up a Continuous Clustered Replication Environment for Microsoft Exchange 13

2 Cluster Virtual Machines on One Physical Host 15
 Create the First Node for Clusters on One Physical Host 15
 Create the Second Node for Clusters on One Physical Host 16
 Add Hard Disks to the First Node for Clusters on One Physical Host 17
 Add Hard Disks to the Second Node for Clusters on One Physical Host 18

3 Cluster Virtual Machines Across Physical Hosts 21
 Create the First Node for Clusters Across Physical Hosts 21
 Create the Second Node for Clusters Across Physical Hosts 22
 Add Hard Disks to the First Node for Clusters Across Physical Hosts 23
 Add Hard Disks to the Second Node for Clusters Across Physical Hosts 25

4 Cluster Physical and Virtual Machines 27
 Create the First Node for a Cluster of Physical and Virtual Machines 27
 Create the Second Node for a Cluster of Physical and Virtual Machines 28
 Add Hard Disks to the Second Node for a Cluster of Physical and Virtual Machines 29
 Install Microsoft Cluster Service 30
 Create Additional Physical-Virtual Pairs 30

5 Use MSCS in an HA/DRS Environment 31
 Enable VMware HA and DRS in a vCenter Server Cluster 31
 Create VM-VM Affinity Rules for MSCS Virtual Machines 31
 Enable Strict Enforcement of Affinity Rules 32
 Set Automation Level for DRS 32
 Using DRS Groups and VM-Host Affinity Rules with MSCS Virtual Machines 33

6 vSphere MSCS Setup Checklist 35

Index 37
Updated Information

This Setup for Failover Clustering and Microsoft Cluster Service guide is updated with each release of the product or when necessary.

This table provides the update history of the Setup for Failover Clustering and Microsoft Cluster Service guide.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
</table>
| EN-000271-01 | - Added a point in “vSphere MSCS Setup Limitations,” on page 12 section.
- Minor change in “Setting up a Continuous Clustered Replication Environment for Microsoft Exchange,” on page 13 section. |
| EN-000271-00 | Initial release. |
About This Book

Unless stated otherwise, the term Microsoft Cluster Service (MSCS) applies to Microsoft Cluster Service with Windows Server 2003 and Failover Clustering with Windows Server 2008.

Setup for Failover Clustering and Microsoft Cluster Service covers ESX, ESXi, and VMware® vCenter Server.

Intended Audience

This book is for system administrators who are familiar with VMware technology and Microsoft Cluster Service.

Note This is not a guide to using Microsoft Cluster Service or Failover Clustering. Use your Microsoft documentation for information about installation and configuration of Microsoft Cluster Service or Failover Clustering.

VMware Technical Publications Glossary

VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions of terms as they are used in VMware technical documentation, go to http://www.vmware.com/support/pubs.

Document Feedback

VMware welcomes your suggestions for improving our documentation. If you have comments, send your feedback to docfeedback@vmware.com.

VMware vSphere Documentation

The vSphere documentation consists of the combined VMware vCenter Server and ESX/ESXi documentation set.

Abbreviations Used in Figures

The figures in this book use the abbreviations listed in Table 1.
Table 1. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>Fibre Channel</td>
</tr>
<tr>
<td>SAN</td>
<td>Storage area network type datastore shared between managed hosts</td>
</tr>
<tr>
<td>VM#</td>
<td>Virtual machines on a managed host</td>
</tr>
<tr>
<td>VNIC</td>
<td>Virtual NIC</td>
</tr>
<tr>
<td>VSCSI</td>
<td>Virtual SCSI adapter</td>
</tr>
</tbody>
</table>

Technical Support and Education Resources

The following technical support resources are available to you. To access the current version of this book and other books, go to http://www.vmware.com/support/pubs.

Online and Telephone Support

To use online support to submit technical support requests, view your product and contract information, and register your products, go to http://www.vmware.com/support.

Customers with appropriate support contracts should use telephone support for the fastest response on priority 1 issues. Go to http://www.vmware.com/support/phone_support.html.

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials designed to be used as on-the-job reference tools. Courses are available onsite, in the classroom, and live online. For onsite pilot programs and implementation best practices, VMware Consulting Services provides offerings to help you assess, plan, build, and manage your virtual environment. To access information about education classes, certification programs, and consulting services, go to http://www.vmware.com/services.
VMware® vSphere supports clustering using MSCS across virtual machines. Clustering virtual machines can reduce the hardware costs of traditional high-availability clusters.

Note VMware High Availability (HA) supports a clustering solution in conjunction with vCenter Server clusters. The *Availability Guide* describes VMware HA functionality.

This chapter includes the following topics:
- “Clustering Configuration Overview,” on page 9
- “Hardware and Software Requirements for Clustering,” on page 11
- “Supported Shared Storage Configurations,” on page 12
- “vSphere MSCS Setup Limitations,” on page 12
- “MSCS and Booting from a SAN,” on page 13
- “Setting up a Continuous Clustered Replication Environment for Microsoft Exchange,” on page 13

Clustering Configuration Overview

Several applications use clustering, including stateless applications such as Web servers, and applications with built-in recovery features such as database servers. You can set up MSCS clusters in several configurations, depending on your environment.

A typical clustering setup includes:
- Disks that are shared between nodes. A shared disk is required as a quorum disk. In a cluster of virtual machines across physical hosts, the shared disk must be on a Fibre Channel (FC) SAN.
- A private heartbeat network between nodes.

You can set up the shared disks and private heartbeat using one of several clustering configurations.

Clustering Virtual Machines on a Single Host

A cluster of virtual machines on a single host (also known as a cluster in a box) consists of two clustered virtual machines on the same ESX/ESXi host. The virtual machines are connected to the same storage, either local or remote. This configuration protects against failures at the operating system and application level, but it does not protect against hardware failures.

Figure 1-1 shows a cluster in a box setup.

- Two virtual machines on the same physical machine (ESX/ESXi host) run clustering software.
- The virtual machines share a private network connection for the private heartbeat and a public network connection.
- Each virtual machine is connected to shared storage, which can be local or on a SAN.

Figure 1-1. Virtual Machines Clustered on a Single Host

Clustering Virtual Machines Across Physical Hosts

A cluster of virtual machines across physical hosts (also known as a cluster across boxes) protects against software failures and hardware failures on the physical machine by placing the cluster nodes on separate ESX/ESXi hosts. This configuration requires shared storage on an Fibre Channel SAN for the quorum disk. **Figure 1-2** shows a cluster-across-boxes setup.

- Two virtual machines on two different physical machines (ESX/ESXi hosts) run clustering software.
- The virtual machines share a private network connection for the private heartbeat and a public network connection.
- Each virtual machine is connected to shared storage, which must be on a SAN.

Figure 1-2. Virtual Machines Clustered Across Hosts

This setup provides significant hardware cost savings.

You can expand the cluster-across-boxes model and place multiple virtual machines on multiple physical machines. For example, you can consolidate four clusters of two physical machines each to two physical machines with four virtual machines each.

Figure 1-3 shows how you can move four two-node clusters from eight physical machines to two.
Clustering Physical Machines with Virtual Machines

For a simple clustering solution with low hardware requirements, you might choose to have one standby host. Set up your system to have a virtual machine corresponding to each physical machine on the standby host, and create clusters, one each for each physical machine and its corresponding virtual machine. In case of hardware failure in one of the physical machines, the virtual machine on the standby host can take over for that physical host.

Figure 1-4 shows a standby host using three virtual machines on a single physical machine. Each virtual machine is running clustering software.

Hardware and Software Requirements for Clustering

All vSphere MSCS configurations require certain hardware and software components. Table 1-1 lists hardware and software requirements that apply to all vSphere MSCS configurations.
Table 1-1. Clustering Requirements

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
</table>
| Virtual SCSI adapter | LSI Logic Parallel for Windows Server 2003
 | LSI Logic SAS for Windows Server 2008 |
| Operating system | Windows Server 2003 SP2 or Windows Server 2008 R2 |
| Virtual NIC | Use the default type for all guest operating systems. |
| I/O timeout | Set to 60 seconds or more. Modify HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Disk\TimeOutValue.
 | The system might reset this I/O timeout value if you re-create a cluster. You must reset the value in that case. |
| Disk format | Select **Support clustering features such as Fault Tolerance** to create disks in eagerzeroedthick format. |
| Disk and networking setup | Add networking before disks. Refer to the VMware knowledge base article at http://kb.vmware.com/kb/1513 if you encounter any errors. |
| Number of nodes | Use two-node clustering. |
| NTP server | Synchronize domain controllers and cluster nodes with a common NTP server, and disable host-based time synchronization when using clustering in the guest. |

Supported Shared Storage Configurations

Different MSCS cluster setups support different types of shared storage configurations. Some setups support more than one type. Select the recommended type of shared storage for best results.

Table 1-2 lists supported setups for each clustering solution.

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Clusters on One Physical Machine (Cluster in a Box)</th>
<th>Clusters Across Physical Machines (Cluster Across Boxes)</th>
<th>Clusters of Physical and Virtual Machines (Standby Host Clustering)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual disks</td>
<td>Yes (recommended)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pass-through RDM (physical compatibility mode)</td>
<td>No</td>
<td>Yes (recommended)</td>
<td>Yes</td>
</tr>
<tr>
<td>Non-pass-through RDM (virtual compatibility mode)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Note Clusters across physical machines with non-pass-through RDM is supported only for clustering with Windows Server 2003. It is not supported for clustering with Windows Server 2008.

vSphere MSCS Setup Limitations

Before you set up MSCS, review the list of functions that are not supported for this release, and requirements and recommendations that apply to your configuration.

The following environments and functions are not supported for MSCS setups with this release of vSphere:

- Clustering on iSCSI, FCoE, and NFS disks.
- Mixed environments, such as configurations where one cluster node is running a different version of ESX/ESXi than another cluster node.
- Use of MSCS in conjunction with VMware Fault Tolerance.
Migration with vMotion of clustered virtual machines.

N-Port ID Virtualization (NPIV)

With native multipathing (NMP), clustering is not supported when the path policy is set to round robin.

You must use hardware version 7 with ESX/ESXi 4.1.

With native multipathing (NMP), clustering is not supported when the path policy is set to round robin. Third-party multipathing plug-ins might support round robin or other load balancing behavior with Microsoft clusters. Support of third-party multipathing plug-ins is provided by the plug-in vendor.

MSCS and Booting from a SAN

You can put the boot disk of a virtual machine on a SAN-based VMFS volume.

Booting from a SAN is complex. Problems that you encounter in physical environments extend to virtual environments. For general information about booting from a SAN, see the Fibre Channel SAN Configuration Guide.

Follow these guidelines when you place the boot disk of a virtual machine on a SAN-based VMFS volume:

- Consider the best practices for boot-from-SAN that Microsoft publishes in the following knowledge base article: http://support.microsoft.com/kb/305547/en-us.
- Use StorPort LSI Logic drivers instead of SCSIport drivers when running Microsoft Cluster Service for Windows Server 2003 or 2008 guest operating systems.
- Test clustered configurations in different failover scenarios before you put them into production environments.

Setting up a Continuous Clustered Replication Environment for Microsoft Exchange

You can set up a Continuous Cluster Replication or Database Availability Groups with Exchange 2010 in your vSphere environment.

When working in a vSphere environment:

- Use virtual machines instead of physical machines as the cluster components.
- Use physical compatibility mode RDMs.

If the boot disks of the CCR virtual machines are on a SAN, see “MSCS and Booting from a SAN,” on page 13.

For more information, see Microsoft’s documentation for CCR clusters on the Microsoft Web site.
You can create a two-node MSCS cluster on a single ESX/ESXi host.

A cluster of virtual machines on one physical machine requires an ESX/ESXi host with the following:

- For ESX hosts, use one physical network adapter for the service console. Use a separate physical network adapter for clustered virtual machines to connect with external hosts.
- For ESXi, use one physical network adapter for the VMkernel. Use a separate physical network adapter for clustered virtual machines to connect with external hosts.

This chapter includes the following topics:

- “Create the First Node for Clusters on One Physical Host,” on page 15
- “Create the Second Node for Clusters on One Physical Host,” on page 16
- “Add Hard Disks to the First Node for Clusters on One Physical Host,” on page 17
- “Add Hard Disks to the Second Node for Clusters on One Physical Host,” on page 18

Create the First Node for Clusters on One Physical Host

To create the first node, you create and configure a virtual machine with two virtual network adapters and install a guest operating system on the virtual machine.

You configure the virtual network adapters to handle virtual machine traffic for the cluster: a private network connection for the private heartbeat and a public network connection.

Procedure

1. Open the vSphere Client and connect to the ESX/ESXi host or a vCenter Server system.
 Use the user name and password of the user who will have administrator permissions the virtual machine.

2. In the vSphere Client inventory, right-click the host and select New Virtual Machine.

3. Proceed through the wizard to create the virtual machine.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Select Typical.</td>
</tr>
<tr>
<td>Name and Location</td>
<td>Enter a name and select a location.</td>
</tr>
<tr>
<td>Datastore</td>
<td>Select a datastore as the location for the virtual machine configuration file and the virtual machine disk (.vmdk) file.</td>
</tr>
<tr>
<td>Guest Operating System</td>
<td>Select the Windows Server operating system that you intend to install.</td>
</tr>
</tbody>
</table>
In the Virtual Machine Properties dialog box, select New NIC (adding).

5 Under Network Connection, select a label from the Network Label list.

 The network label refers to the network to be used for virtual machine traffic for the cluster, either public or private.

6 Click Finish to complete creating the virtual machine.

 NOTE: Do not add shared cluster disks at this time.

7 In the Virtual Machine Properties dialog box, click Add.

8 From the list of devices, select Ethernet Adapter and click Next.

9 Select the adapter type and network label.

 - If you selected a private network for the first network adapter, you must select a public network for this network adapter.
 - If you selected a public network for the first network adapter, you must select a private network adapter.

10 Click Next, and click Finish to complete creating the device.

11 Install a Windows Server operating system on the virtual machine.

 The new node appears in the virtual machine inventory.

Create the Second Node for Clusters on One Physical Host

Create a template from the first virtual machine and deploy the second node from that template.

CAUTION: If you clone a virtual machine with an RDM setup, the cloning process converts the RDMs to virtual disks. Unmap all RDMs before cloning, and remap them after cloning is complete.

Procedure

1 In the vSphere Client inventory, right-click the first virtual machine you created and select **Template > Clone to Template**.

2 Proceed through the wizard to create the virtual machine template.

Page	**Action**
 Name and Location | Enter a name (for example, Node2_Template) and select a location.
 Host / Cluster | Select the host or cluster where you will run the virtual machine.
 Datastore | Select a datastore as the location for the virtual machine configuration file and the .vmdk file.
 Disk Format | Select Same format as source.
 Ready to Complete | Click Finish to create the virtual machine template.

3 Right-click the virtual machine template and select **Deploy Virtual Machine from this Template**.
Proceed through the deployment wizard to deploy the virtual machine.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and Location</td>
<td>Enter a name (for example, Node2) and select a location.</td>
</tr>
<tr>
<td>Host / Cluster</td>
<td>Select the host or cluster where you will run the virtual machine.</td>
</tr>
<tr>
<td>Datastore</td>
<td>Select a datastore as the location for the virtual machine configuration file and the .vmdk file.</td>
</tr>
<tr>
<td>Disk Format</td>
<td>Select Same format as source.</td>
</tr>
<tr>
<td>Customization</td>
<td>Select Customize using the Customization Wizard.</td>
</tr>
</tbody>
</table>

Proceed through the guest operating system Customization Wizard.

- Click **Finish** to exit the Customization Wizard.

Click **Finish** to deploy the virtual machine.

Add Hard Disks to the First Node for Clusters on One Physical Host

In an MSCS cluster, storage disks are shared between nodes. You set up a quorum disk and an optional shared storage disk.

Procedure

1. In the vSphere Client inventory, select the newly created virtual machine and select **Edit Settings**.

 The Virtual Machine Properties dialog box appears.
2. Click **Add**, select **Hard Disk**, and click **Next**.
3. Select **Create a new virtual disk** and click **Next**.
4. Select the disk size.
5. Under Disk Provisioning, select **Support clustering features such as Fault Tolerance**.

 You can also use a mapped SAN LUN set to virtual compatibility mode.
6. Click **Next**.
7. From the **Virtual Device Node** drop-down menu, select a new SCSI controller (for example, **SCSI (1:0)**).

 NOTE You must select a new virtual device node. You cannot use SCSI 0.
8. Click **Next**, and click **Finish**.

 The wizard creates a new hard disk and a new SCSI controller.
9. In the Virtual Machine Properties dialog box, select the new SCSI controller and click **Change Type**.

 The Change SCSI Controller Type dialog box appears.
10. Select the appropriate type of controller, depending on your operating system.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Type of Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2003</td>
<td>LSI Logic Parallel</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>LSI Logic SAS</td>
</tr>
</tbody>
</table>

11. Click **OK**.
12. On the Virtual Machine Properties dialog box, set SCSI Bus Sharing to **Virtual** and click **OK**.
Figure 2-1 shows the setup: a virtual machine connected to the shared storage on the Fibre Channel (FC) SAN and to local or remote storage for the virtual disk. The virtual machine has two available network connections, one for the private heartbeat and one for public communications.

Figure 2-1. Cluster in a Box Setup for One Node

Add Hard Disks to the Second Node for Clusters on One Physical Host

To allow shared access to clustered services and data, point the quorum disk of the second node to the same location as the first node’s quorum disk. Point shared storage disks to the same location as the first node’s shared storage disks.

Prerequisites

Before you begin, obtain the following information:

- Which virtual device node is for the first virtual machine’s shared storage disks (for example, SCSI (1:0)).
- The location of the quorum disk specified for the first node.

Procedure

1. In the vSphere Client inventory, select the second virtual machine that you created and select **Edit Settings**.
 The Virtual Machine Properties dialog box appears.
2. Click **Add**, select **Hard Disk**, and click **Next**.
3. Select **Use an existing virtual disk** and click **Next**.
4. Select the same virtual device node you chose for the first virtual machine’s shared storage disks (for example, SCSI (1:0)), and click **Next**.

 Note: The location of the virtual device node for this virtual machine’s shared storage must match the corresponding virtual device node for the first virtual machine.
5. In Disk File Path, browse to the location of the quorum disk specified for the first node.

Figure 2-2 shows the complete setup.
Figure 2-2. Cluster in a Box Complete Setup

- NIC1
 - virtual switch1 (public)
 - virtual switch2 (private)
- VNIC1, VNIC2
 - virtual machine Node1
 - virtual machine Node2
- VSCSI1, VSCSI2
- SCSI1, SCSI2
- local or remote storage
- remote storage
You can create a MSCS cluster that consists of two virtual machines on two ESX/ESXi hosts.

A cluster across physical hosts requires specific hardware and software.

- ESX/ESXi hosts that have the following:
 - Two physical network adapters dedicated to the MSCS cluster and to the public and private networks.
 - One physical network adapter dedicated to the service console (ESX hosts) or the VMkernel (ESXi hosts).
- Fibre Channel (FC) SAN. Shared storage must be on an FC SAN.
- RDM in physical compatibility (pass-through) or virtual compatibility (non-pass-through) mode. VMware recommends physical compatibility mode. The cluster cannot use virtual disks for shared storage.
 - Failover clustering with Windows Server 2008 is not supported with virtual compatibility mode (non-pass-through) RDMs.

This chapter includes the following topics:

- “Create the First Node for Clusters Across Physical Hosts,” on page 21
- “Create the Second Node for Clusters Across Physical Hosts,” on page 22
- “Add Hard Disks to the First Node for Clusters Across Physical Hosts,” on page 23
- “Add Hard Disks to the Second Node for Clusters Across Physical Hosts,” on page 25

Create the First Node for Clusters Across Physical Hosts

To create the first node, you create and configure a virtual machine with two virtual network adapters and install a guest operating system on the virtual machine.

You configure the virtual network adapters to handle virtual machine traffic for the cluster: a private network connection for the private heartbeat and a public network connection.

Procedure

1. Open the vSphere Client and connect to the ESX/ESXi host or a vCenter Server system.
 - Use the user name and password of the user who will have administrator permissions the virtual machine.

2. In the vSphere Client inventory, right-click the host and select **New Virtual Machine**.
3 Proceed through the wizard to create the virtual machine.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Select Typical.</td>
</tr>
<tr>
<td>Name and Location</td>
<td>Enter a name and select a location.</td>
</tr>
<tr>
<td>Datastore</td>
<td>Select a datastore as the location for the virtual machine configuration file and the virtual machine disk (.vmdk) file.</td>
</tr>
<tr>
<td>Guest Operating System</td>
<td>Select the Windows Server operating system that you intend to install.</td>
</tr>
<tr>
<td>Create Disk</td>
<td>Enter the appropriate value in Virtual disk size. Select Support clustering features such as Fault Tolerance to create a disk in eagerzeroedthick format.</td>
</tr>
<tr>
<td>Ready to Complete</td>
<td>Select Edit the virtual machine settings before completion and click Continue. The Virtual Machine Properties dialog box appears.</td>
</tr>
</tbody>
</table>

4 In the Virtual Machine Properties dialog box, select **New NIC (adding)**.

5 Under Network Connection, select a label from the Network Label list. The network label refers to the network to be used for virtual machine traffic for the cluster, either public or private.

6 Click **Finish** to complete creating the virtual machine.

NOTE Do not add shared cluster disks at this time.

7 In the Virtual Machine Properties dialog box, click **Add**.

8 From the list of devices, select **Ethernet Adapter** and click **Next**.

9 Select the adapter type and network label.

 - If you selected a private network for the first network adapter, you must select a public network for this network adapter.
 - If you selected a public network for the first network adapter, you must select a private network adapter.

10 Click **Next**, and click **Finish** to complete creating the device.

11 Install a Windows Server operating system on the virtual machine.

The new node appears in the virtual machine inventory.

Create the Second Node for Clusters Across Physical Hosts

To create the second node in a cluster of virtual machines across physical hosts, you create a template of the first virtual machine and use it to deploy a second virtual machine onto a second ESX/ESXi host.

CAUTION If you clone a virtual machine with an RDM setup, the cloning process converts the RDMs to virtual disks. Unmap all RDMs before cloning, and remap them after cloning is complete.

Procedure

1 In the vSphere Client inventory, right-click the first virtual machine you created and select **Template > Clone to Template**.
2 Proceed through the wizard to create the virtual machine template.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and Location</td>
<td>Enter a name and select a location.</td>
</tr>
<tr>
<td>Host or Cluster</td>
<td>Select the second host for the cluster setup.</td>
</tr>
<tr>
<td>Resource Partition</td>
<td>Select the resource pool for the virtual machine, or select the host if no resource pools exist.</td>
</tr>
<tr>
<td>Datastore</td>
<td>Select a datastore as the location for the virtual machine configuration file and the .vmdk file.</td>
</tr>
<tr>
<td>Ready to Complete</td>
<td>Click OK to create the virtual machine template.</td>
</tr>
</tbody>
</table>

3 Right-click the virtual machine template and select **Deploy Virtual Machine from this Template**.

4 Proceed through the deployment wizard to deploy the virtual machine.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and Location</td>
<td>Enter a name (for example, Node2) and select a location.</td>
</tr>
<tr>
<td>Host / Cluster</td>
<td>Select the host or cluster where you will run the virtual machine.</td>
</tr>
<tr>
<td>Datastore</td>
<td>Select a datastore as the location for the virtual machine configuration file and the .vmdk file.</td>
</tr>
<tr>
<td>Disk Format</td>
<td>Select Same format as source.</td>
</tr>
<tr>
<td>Customization</td>
<td>Select Customize using the Customization Wizard.</td>
</tr>
</tbody>
</table>

5 Proceed through the guest operating system Customization Wizard.

a On the Operating Systems Options page, select **Generate New Security ID (SID)** to generate a new security identity.

b Click **Finish** to exit the Customization Wizard.

6 Click **Finish** to deploy the virtual machine.

Add Hard Disks to the First Node for Clusters Across Physical Hosts

In an MSCS cluster, storage disks are shared between nodes. You set up a quorum disk and an optional shared storage disk.

Prerequisites

Before you add hard disks to the first node, complete the following tasks:

- For each virtual machine, configure the guest operating system’s private and public IP addresses.
- Ask your SAN administrator for the location of unformatted SAN LUNs. The hard disks you create in this task must point to SAN LUNs.

Note Use RDMs in physical compatibility mode. The procedure below uses physical compatibility mode.

Procedure

1 In the vSphere Client inventory, select the newly created virtual machine and select **Edit Settings**. The Virtual Machine Properties dialog box appears.

2 Click **Add**, select **Hard Disk**, and click **Next**.

3 Select **Raw Device Mappings** and click **Next**.

4 Select an unformatted LUN and click **Next**.
5 Select a datastore and click **Next**.
This datastore must be on a SAN because you need a single shared RDM file for each shared LUN on the SAN.

6 Select **Physical** as the compatibility mode and click **Next**.
A SCSI controller is created when the virtual hard disk is created.

7 Select a new virtual device node (for example, select **SCSI (1:0)**), and click **Next**.

NOTE This must be a new SCSI controller. You cannot use SCSI 0.

8 Click **Finish** to complete creating the disk.
The wizard creates a new SCSI controller and a new hard disk.

9 In the Virtual Machine Properties dialog box, select the new SCSI controller and click **Change Type**.
The Change SCSI Controller Type dialog box appears.

10 Select the appropriate type of controller, depending on your operating system.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Type of Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2003</td>
<td>LSI Logic Parallel</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>LSI Logic SAS</td>
</tr>
</tbody>
</table>

11 Click **OK**.

12 On the Virtual Machine Properties dialog box, set SCSI Bus Sharing to **Physical** and click **OK**.

Figure 3-1 shows the setup: the virtual machine is connected to a public network and a private network with two virtual switches, and is connected to the quorum disk on FC SAN and the virtual machine virtual disk on local or remote storage.

Figure 3-1. Cluster Across Boxes with First Node Set Up
Add Hard Disks to the Second Node for Clusters Across Physical Hosts

To allow shared access to clustered services and data, point the quorum disk of the second node to the same location as the first node’s quorum disk. Point shared storage disks to the same location as the first node’s shared storage disks.

Prerequisites

Before you begin, obtain the following information:

- Which virtual device node is for the first virtual machine’s shared storage disks (for example, SCSI (1:0)).
- The location of the quorum disk specified for the first node.

Procedure

1. In the vSphere Client inventory, select the second virtual machine that you created and select **Edit Settings**.

 The Virtual Machine Properties dialog box appears.

2. Click **Add**, select **Hard Disk**, and click **Next**.

3. Select **Use an existing virtual disk** and click **Next**.

4. In Disk File Path, browse to the location of the quorum disk specified for the first node.

5. Select **Physical** as the compatibility mode and click **Next**.

 A SCSI controller is created when the virtual hard disk is created.

6. Select the same virtual device node you chose for the first virtual machine’s shared storage disks (for example, **SCSI (1:0)**), and click **Next**.

 Note: The location of the virtual device node for this virtual machine’s shared storage must match the corresponding virtual device node for the first virtual machine.

7. Click **Finish**.

 The wizard creates a new hard disk and a new SCSI controller.

8. In the Virtual Machine Properties dialog box, select the new SCSI controller and click **Change Type**.

 The Change SCSI Controller Type dialog box appears.

9. Select the appropriate type of controller, depending on your operating system.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Type of Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2003</td>
<td>LSI Logic Parallel</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>LSI Logic SAS</td>
</tr>
</tbody>
</table>

10. Click **OK**.

11. Set SCSI Bus Sharing to **Physical** and click **OK**.

 Figure 3-2 shows the completed setup, including the shared storage on the quorum disk and the shared private network.
Figure 3-2. Cluster Across Boxes Complete Setup
You can create an MSCS cluster in which each physical machine has a corresponding virtual machine. This type of configuration is known as a standby host cluster.

A standby host cluster has specific hardware and software requirements.

- Use ESX/ESXi hosts that have the following:
 - Two physical network adapters dedicated to the MSCS cluster and to the public and private networks.
 - One physical network adapter dedicated to the service console (ESX hosts) or the VMkernel (ESXi hosts).
- Use RDMs in physical compatibility mode (pass-through RDM). You cannot use virtual disks or RDMs in virtual compatibility mode (non-pass-through RDM) for shared storage.
- Use the STORport Miniport driver for the Fibre Channel (FC) HBA (QLogic or Emulex) in the physical Windows machine.
- Do not run multipathing software in the physical or virtual machines.
- Use only a single physical path from the host to the storage arrays in standby host configurations.

This chapter includes the following topics:

- “Create the First Node for a Cluster of Physical and Virtual Machines,” on page 27
- “Create the Second Node for a Cluster of Physical and Virtual Machines,” on page 28
- “Add Hard Disks to the Second Node for a Cluster of Physical and Virtual Machines,” on page 29
- “Install Microsoft Cluster Service,” on page 30
- “Create Additional Physical-Virtual Pairs,” on page 30

Create the First Node for a Cluster of Physical and Virtual Machines

The first node in a standby host setup is a physical machine.

For information about setting up a physical machine that participates in an MSCS cluster, see the Microsoft Cluster Service documentation.
Procedure

- Set up the physical machine using the settings listed in the table.

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Cluster Administrator</td>
<td>Advanced minimum configuration if Windows 2003 is used.</td>
</tr>
<tr>
<td>application</td>
<td></td>
</tr>
<tr>
<td>Network adapters</td>
<td>At least two.</td>
</tr>
<tr>
<td>Storage</td>
<td>Access to the same storage on a SAN as the ESX/ESXi host on which the</td>
</tr>
<tr>
<td></td>
<td>corresponding virtual machine will run.</td>
</tr>
<tr>
<td>Operating system</td>
<td>Installed on each physical machine.</td>
</tr>
</tbody>
</table>

Create the Second Node for a Cluster of Physical and Virtual Machines

To create the second node, you set up a virtual machine for clustering across physical machines.

You configure the virtual network adapters to handle virtual machine traffic for the cluster: a private network connection for the private heartbeat and a public network connection.

Prerequisites

Before you begin, make sure that the shared storage that is visible from the physical machine that you configured in “Create the First Node for a Cluster of Physical and Virtual Machines,” on page 27 is also visible from the virtual machine.

Procedure

1. Open the vSphere Client and connect to the ESX/ESXi host.
 Use the user name and password of the user who will have administrator permissions the virtual machine.

2. In the vSphere Client inventory, right-click the host and select New Virtual Machine.

3. Proceed through the wizard to create the virtual machine.

<table>
<thead>
<tr>
<th>Page</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>Select Typical.</td>
</tr>
<tr>
<td>Name and Location</td>
<td>Enter a name and select a location.</td>
</tr>
<tr>
<td>Datastore</td>
<td>Select a datastore as the location for the virtual machine configuration file and the virtual machine disk (.vmdk) file.</td>
</tr>
<tr>
<td>Guest Operating System</td>
<td>Select the Windows Server operating system that you intend to install.</td>
</tr>
<tr>
<td>Create Disk</td>
<td>Enter the appropriate value in Virtual disk size. Select Support clustering features such as Fault Tolerance to create a disk in eagerzeroedthick format.</td>
</tr>
<tr>
<td>Ready to Complete</td>
<td>Select Edit the virtual machine settings before completion and click Continue. The Virtual Machine Properties dialog box appears.</td>
</tr>
</tbody>
</table>

5. Under Network Connection, select a label from the Network Label list.
 The network label refers to the network to be used for virtual machine traffic for the cluster, either public or private.

6. Click Finish to complete creating the virtual machine.

8. From the list of devices, select Ethernet Adapter and click Next.
Select the adapter type and network label.

- If you selected a private network for the first network adapter, you must select a public network for this network adapter.
- If you selected a public network for the first network adapter, you must select a private network adapter.

10 Click Next, and click Finish to complete creating the device.

11 Install a Windows Server operating system on the virtual machine.

The new node appears in the virtual machine inventory.

Add Hard Disks to the Second Node for a Cluster of Physical and Virtual Machines

When you add hard disks to the second node, you set up the disks to point to the quorum disk and shared storage disks, if any, for the first node. The setup allows shared access to clustered services and data.

Procedure

1 In the vSphere Client inventory, select the newly created virtual machine and select Edit Settings.

 The Virtual Machine Properties dialog box appears.

2 Click Add, select Hard Disk, and click Next.

3 Select Raw Device Mappings and click Next.

4 Select the LUN that is used by the physical machine.

5 Select the datastore, which is also the location of the boot disk, and click Next.

6 Select Physical as the compatibility mode and click Next.

 A SCSI controller is created when the virtual hard disk is created.

7 From the Virtual Device Node drop-down menu, select a new SCSI controller (for example, SCSI (1:0)).

 Note You must select a new virtual device node. You cannot use SCSI 0.

8 Click Next, and click Finish.

 The wizard creates a new hard disk and a new SCSI controller.

9 In the Virtual Machine Properties dialog box, select the new SCSI controller and click Change Type.

 The Change SCSI Controller Type dialog box appears.

10 Select the appropriate type of controller, depending on your operating system.

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Type of Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Server 2003</td>
<td>LSI Logic Parallel</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>LSI Logic SAS</td>
</tr>
</tbody>
</table>

11 Click OK.

12 On the Virtual Machine Properties dialog box, set SCSI Bus Sharing to Physical and click OK.
Install Microsoft Cluster Service

For Windows Server 2003 operating systems only, after you set up the first and second nodes, you must configure Microsoft Cluster Service.

See Microsoft’s documentation for creating and configuring server clusters on the Microsoft Web site.

In complex storage solutions, such as an FC switched fabric, a storage unit might have a different identity (target ID or raw disk ID) on each computer in the cluster. Although this is a valid storage configuration, it causes a problem when you add a node to the cluster.

The following procedure allows you to avoid target identity problems when using clustering with Windows 2003.

Procedure

1. Within the Microsoft Cluster Administrator utility, on the Select Computer page, click Advanced to disable the storage validation heuristics.
2. Select the Advanced (minimum) configuration option, and click OK.

Microsoft Cluster Service should operate normally in the virtual machine after it is installed.

Create Additional Physical-Virtual Pairs

If you have additional physical machines, you can create additional clusters for each.

Procedure

1. On the ESX/ESXi host, set up an additional virtual machine for the physical machine.
2. Cluster the physical machine with the new virtual machine.
Use MSCS in an HA/DRS Environment

When you use MSCS in a VMware High Availability (HA) or VMware Dynamic Resource Scheduler (DRS) environment, you must configure your hosts and virtual machines to use certain settings. All hosts that run MSCS virtual machines must be managed by a vCenter Server system.

This chapter includes the following topics:

- “Enable VMware HA and DRS in a vCenter Server Cluster,” on page 31
- “Create VM-VM Affinity Rules for MSCS Virtual Machines,” on page 31
- “Enable Strict Enforcement of Affinity Rules,” on page 32
- “Set Automation Level for DRS,” on page 32
- “Using DRS Groups and VM-Host Affinity Rules with MSCS Virtual Machines,” on page 33

Enable VMware HA and DRS in a vCenter Server Cluster

All hosts that are running MSCS virtual machines can be part of a vCenter Server cluster with both VMware HA and DRS enabled. You can enable VMware HA and DRS in the Cluster Settings dialog box.

Procedure

1. In the vSphere Client, right-click the cluster in the inventory and select Edit Settings.
2. In the left pane of the Cluster Settings dialog box, select Cluster Features.
3. Select the Turn on VMware HA and Turn on VMware DRS check boxes.
4. Click OK.

Create VM-VM Affinity Rules for MSCS Virtual Machines

For MSCS virtual machines in a cluster, you must create VM-VM affinity or anti-affinity rules. VM-VM affinity rules specify which virtual machines should be kept together on the same host (for example, a cluster of MSCS virtual machines on one physical host). VM-VM anti-affinity rules specify which virtual machines should be kept apart on different physical hosts (for example, a cluster of MSCS virtual machines across physical hosts).

For a cluster of virtual machines on one physical host, use affinity rules. For a cluster of virtual machines across physical hosts, use anti-affinity rules.

Procedure

1. In the vSphere Client, right-click the cluster in the inventory and select Edit Settings.
2. In the left pane of the Cluster Settings dialog box under VMware DRS, select Rules.
3. Click Add.
4 In the Rule dialog box, type a name for the rule.
5 From the **Type** drop-down menu, select a rule.
 - For a cluster of virtual machines on one physical host, select **Keep Virtual Machines Together**.
 - For a cluster of virtual machines across physical hosts, select **Separate Virtual Machines**.
6 Click **Add**.
7 Select the two virtual machines to which the rule applies and click **OK**.
8 Click **OK**.

Enable Strict Enforcement of Affinity Rules

To ensure that affinity and anti-affinity rules are strictly applied, set an advanced option for VMware DRS. Setting the advanced option `ForceAffinePoweron` to 1 will enable strict enforcement of the affinity and anti-affinity rules that you created.

Procedure

1. In the vSphere Client, right-click the cluster in the inventory and select **Edit Settings**.
2. In the left pane of the Cluster Settings dialog box, select **VMware DRS**.
3. Click **Advanced Options**.
4. In the Option column, type `ForceAffinePoweron`.
5. In the Value column, type `1`.
6. Click **OK**.

Set Automation Level for DRS

You must set the automation level of all virtual machines in an MSCS cluster to Partially Automated. When you set the DRS automation level for the virtual machine to Partially Automated, vCenter Server will perform initial placement of virtual machines when they are powered on and will provide migration recommendations for them.

Note Migration of MSCS clustered virtual machines is not recommended.

Procedure

1. In the vSphere Client, right-click the cluster in the inventory and select **Edit Settings**.
2. In the left pane under VMware DRS, select **Virtual Machine Options**.
3. Select the **Enable individual virtual machine automation levels** check box.
4. Change the virtual machine automation level for each MSCS virtual machine in the cluster.
 a. In the Virtual Machine column, select the virtual machine.
 b. In the Automation Level column, select **Partially Automated** from the drop-down menu.
 c. Repeat Step 4a and Step 4b for each virtual machine.
5. Click **OK**.
Using DRS Groups and VM-Host Affinity Rules with MSCS Virtual Machines

You can use the vSphere Client to set up two types of DRS groups: virtual machine DRS groups, which contain at least one virtual machine, and host DRS groups, which contain at least one host. A VM-Host affinity rule establishes an affinity (or anti-affinity) relationship between a virtual machine DRS group and a host DRS group.

You must use VM-Host affinity rules because VMware HA does not obey VM-VM affinity rules. This means that if a host fails, VMware HA might separate clustered virtual machines that are meant to stay together, or VMware HA might put clustered virtual machines that are meant to stay apart on the same host. You can avoid this problem by setting up DRS groups and using VM-Host affinity rules, which are obeyed by VMware HA.

For a cluster of virtual machines on one physical host, all MSCS virtual machines must be in the same virtual machine DRS group, linked to the same host DRS group with the affinity rule "Must run on hosts in group."

For a cluster of virtual machines across physical hosts, each MSCS virtual machine must be in a different virtual machine DRS group, linked to a different host DRS group with the affinity rule "Must run on hosts in group."

CAUTION Limit the number of hosts to two when you define host DRS group rules for a cluster of virtual machines on one physical host. (This does not apply to clusters of virtual machines across physical hosts.) Since VMware HA does not obey VM-VM affinity rules, virtual machines in the configuration could be spread across hosts during a VMware HA recovery from host failure if more than two hosts are included in a host DRS group rule.

Create a Virtual Machine DRS Group

Before you can create a VM-Host affinity rule, you must create the host DRS group and the virtual machine DRS group that the rule applies to.

For a cluster of virtual machines on one physical host, create one virtual machine DRS group that contains all MSCS virtual machines. For example, VMGroup_1 contains MSCS_VM_1 and MSCS_VM_2.

For a cluster of virtual machines across physical hosts, create one virtual machine DRS group for each MSCS virtual machine. For example, VMGroup_1 contains MSCS_VM_1 and VMGroup_2 contains MSCS_VM_2.

Procedure

1. In the vSphere Client, right-click the cluster in the inventory and select Edit Settings.
2. In the left pane of the cluster Settings dialog box under VMware DRS, select DRS Groups Manager.
3. In the Virtual Machines DRS Groups section, click Add.
4. In the DRS Group dialog box, type a name for the group (for example, VMGroup_1).
5. In the left pane, select the virtual machine and click >> to add it to the group.
 - For a cluster of virtual machines on one physical host, add all MSCS virtual machines to one group.
 - For a cluster of virtual machines across physical hosts, add one MSCS virtual machine per group.
6. Click OK.

Create a Host DRS Group

Before you can create a VM-Host affinity rule, you must create the host DRS group and the virtual machine DRS group that the rule applies to.

For a cluster of virtual machines on one physical host, create one host DRS group that contains the ESX/ESXi hosts. For example, HostGroup_1 contains ESX_HOST_1 and ESX_HOST_2.
For a cluster of virtual machines across physical hosts, create groups with sets of hosts that do not overlap. This ensures that virtual machines placed in different host groups do not ever run on the same host simultaneously.

Procedure

1. In the vSphere Client, right-click the cluster in the inventory and select Edit Settings.
2. In the left pane of the Cluster Settings dialog box under VMware DRS, select DRS Groups Manager.
3. In the Host DRS Groups section, click Add.
4. In the DRS Group dialog box, type a name for the group (for example, HostGroup_1).
5. In the left pane, select a host and click >> to add it to the group.
6. Click OK.

Set up VM-Host Affinity Rules for DRS Groups

Create VM-Host affinity rules to specify whether the members of a selected virtual machine DRS group can run on the members of a specific host DRS group.

Prerequisites

Create virtual machine DRS groups that contain one or more MSCS virtual machines as described in “Create a Virtual Machine DRS Group,” on page 33.

Create host DRS groups that contain one or more ESX/ESXi hosts, as described in “Create a Host DRS Group,” on page 33.

Procedure

1. In the vSphere Client, right-click the cluster in the inventory and select Edit Settings.
2. In the left pane of the cluster Settings dialog box under VMware DRS, select Rules.
3. Click Add.
4. In the Virtual Machine Rule dialog box, type a name for the rule.
5. From the Type menu, select Virtual Machines to Hosts.
6. Select the virtual machine DRS group and the host DRS group to which the rule applies. For example, select VMGroup_1 and HostGroup_1.
7. Select Must run on hosts in group.
8. Click OK.
vSphere MSCS Setup Checklist

When you set up MSCS on ESX/ESXi, see the checklists to configure your environment according to the requirements. You can also use the checklists to verify that your setup meets the requirements if you need technical support.

Requirements for Clustered Disks

Each type of clustered disk has its own requirements, depending on whether it is in a single-host cluster or multihost cluster. Table 6-1 lists the requirements.

Table 6-1. Requirements for Clustered Disks

<table>
<thead>
<tr>
<th>Component</th>
<th>Single-Host Clustering</th>
<th>Multihost Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clustered virtual disk (.vmdk)</td>
<td>SCSI bus sharing mode must be set to virtual.</td>
<td>Not supported.</td>
</tr>
<tr>
<td>Clustered disks, virtual compatibility mode (non-pass-through RDM)</td>
<td>Device type must be set to virtual compatibility mode. SCSI bus sharing mode must be set to virtual mode. A single, shared RDM mapping file for each clustered disk is required.</td>
<td>Device type must be set to virtual compatibility mode for cluster across boxes, but not for standby host clustering or cluster across boxes on Windows Sever 2008. SCSI bus sharing mode must be set to physical. Requires a single, shared RDM mapping file for each clustered disk.</td>
</tr>
<tr>
<td>Clustered disks, physical compatibility mode (pass-through RDM)</td>
<td>Not supported.</td>
<td>Device type must be set to Physical compatibility mode during hard disk creation. SCSI bus sharing mode must be set to physical (the default). A single, shared RDM mapping file for each clustered disk is required.</td>
</tr>
<tr>
<td>All types</td>
<td>All clustered nodes must use the same target ID (on the virtual SCSI adapter) for the same clustered disk. A separate virtual adapter must be used for clustered disks.</td>
<td></td>
</tr>
</tbody>
</table>

Other Requirements and Recommendations

Table 6-2 lists the components in your environment that have requirements for options or settings.
Table 6-2. Other Clustering Requirements and Recommendations

<table>
<thead>
<tr>
<th>Component</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk</td>
<td>If you place the boot disk on a virtual disk, select Support clustering features such as Fault Tolerance during disk provisioning. The only disks that you should not create with the <code>eagerzeroedthick</code> option are RDM files (both physical and virtual compatibility mode).</td>
</tr>
<tr>
<td>Windows</td>
<td>Use Windows Server 2003 SP2 (32 bit), Windows Server 2003 (64 bit) SP2, or Windows Server 2008 R2. Only two cluster nodes. Disk I/O timeout is 60 seconds or more (HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Disk\TimeOutValue). Note If you recreate the cluster, this value might be reset to its default, so you must change it again. The cluster service must restart automatically on failure (first, second, and subsequent times).</td>
</tr>
<tr>
<td>ESX configuration</td>
<td>Do not overcommit memory. Set the Memory Reservation (minimum memory) option to the same as the amount of memory assigned to the virtual machine. If you must overcommit memory, the swap file must be local, not on the SAN.</td>
</tr>
<tr>
<td>Multipathing</td>
<td>Contact your multipathing software vendor for information and support of non-VMware multipathing software in vSphere.</td>
</tr>
</tbody>
</table>

Required Information for Technical Support

Table 6-3 lists the files and settings to collect if you require technical support. Technical support uses these files and settings to analyze clustering issues.

Note Verify that your setup complies with the checklists in Table 6-1 and Table 6-2 before you contact technical support.

Table 6-3. Information Required by Technical Support

<table>
<thead>
<tr>
<th>File or Information</th>
<th>Description or Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>vm-support tarball</td>
<td>Contains the vmkernel log, virtual machine configuration files and logs, and so on.</td>
</tr>
<tr>
<td>Application and system event logs of all virtual machines with the problem</td>
<td></td>
</tr>
<tr>
<td>Cluster log of all virtual machines with the problem</td>
<td>%ClusterLog%, which is usually set to %SystemRoot%\cluster.cluster.log.</td>
</tr>
<tr>
<td>Disk I/O timeout</td>
<td>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Disk\TimeOutValue</td>
</tr>
<tr>
<td>vSphere Client display names and Windows NETBIOS names of the virtual machines experiencing the problem</td>
<td></td>
</tr>
<tr>
<td>Date and time that the problem occurred</td>
<td></td>
</tr>
<tr>
<td>SAN configuration of the ESX system</td>
<td>Details about LUNs, paths, and adapters.</td>
</tr>
<tr>
<td>(Optional) Memory dump of the virtual machine</td>
<td>Required if a guest virtual machine fails (a blue screen appears with an error message).</td>
</tr>
</tbody>
</table>
Index

A
abbreviations 7
affinity rules
cluster across boxes 31
cluster in a box 31
creating 31
DRS groups 34
enforcing 32
anti-affinity rules, creating 31
automation level, setting for DRS 32

B
boot from SAN 13

C
cluster across boxes 10, 21, 31
cluster in a box 9, 15, 31
clustering
hardware requirements 11
limitations 12
multiple host 10
overview 9
physical and virtual machines 11, 27
types of applications 9
virtual machines across hosts 10, 21
virtual machines on one host 9, 15
compatibility mode
physical 12, 21, 23, 25, 27
virtual 12, 21, 27
continuous clustered replication (CCR) 13

D
disks
adding to nodes 17, 18, 23
format 11
formatting 15, 21
quorum 17, 23, 29
shared 17, 23, 29
DRS
enabling 31
setting automation level 32
DRS groups
host 33
virtual machine 33

E
eagerzeroedthick 11, 15, 21
ESX/ESXi 15, 21, 27
Ethernet adapter 15, 21

F
Fault Tolerance (FT) 11, 12, 15, 17, 35
feedback 7
Fibre Channel (FC) SAN 9, 13, 17, 21
format
 disks 11, 15, 21
eagerzeroedthick 11, 15, 21
 thick 11

G
guest operating system requirements 11

H
HA, See high availability (HA)
hardware requirements 11
hardware version 7 12
high availability (HA), enabling 31
host DRS group 33
hosts, standby 27

I
iSCSI 12
iSCSI SAN 13

L
LSI Logic Parallel 11, 17, 23, 25, 29
LSI Logic SAS 11, 17, 23, 25, 29

M
Microsoft Cluster Service (MSCS)
 boot from SAN 13
 installing 30
Microsoft Exchange and CCR, See continuous clustered replication (CCR)
multipathing 12, 27, 35
multiple host clustering 10

N
N-Port ID Virtualization (NPIV) 12
native multipathing (NMP) 12
NFS 12
NIC, virtual 11
nodes
 creating first 15, 21, 27
 creating second 16, 22, 28
NTP server 11

P
physical compatibility mode 12, 21, 23, 25, 27
physical-virtual pairs, creating 30

Q
quorum disk 17, 23, 29

R
RDM
 non-pass-through 12, 27
 pass-through 12, 27
requirements
 checklist 35
 clustering 11
 guest operating system 11
 hardware 11
rules, DRS 31

S
SAN 9, 10, 13, 27, 35
SAN LUN 17, 23
SAN, boot from 13
SCSI adapter, virtual 11
SCSI bus sharing
 physical 23, 25, 29
 virtual 17
service console 15, 21, 27
shared storage
 disks 17, 23, 29
 supported configurations 12
single host clustering 9
standby host 11, 27, 28
storage
 quorum disk 17, 23, 29
 shared 12, 17, 23, 29
support 7

T
technical support checklist 35
thick format, disks 11

V
virtual compatibility mode 21, 27
VMkernel 15, 21, 27
vmkfstools 16, 22
vMotion 12