You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.
If you have comments about this documentation, submit your feedback to:
docfeedback@vmware.com
Contents

About This Book 5

Using VMware OVF Tool 7
 About VMware OVF Tool 7
 Features Highlights 7
 OVF Standard 8
 Benefits of OVF 8
 VMware Platforms Using OVF 8
 Space Requirements of OVF Packages 9
 VMware OVF Tool Delta Disk Facilities 9
 Supported Operating Systems 10
Installing VMware OVF Tool 11
 Linux Installation Details 11
 Windows Installation Details 11
 Running OVF Tool After Installation 12
Using VMware OVF Tool 12
 Command-Line Options 13
 Specifying a Locator 16
 File Locators 16
 HTTP, HTTPS, and FTP Locators 17
 VI Locators 17
 Specifying the Inventory Path to a Virtual Machine or vApp 18
 Specifying the Inventory Path for a Cluster, Host, or Resource Pool 18
 Partial Locators 18
 Configuration Files 20
Examples of Using VMware OVF Tool Usage 20
 Convert a VMX to an OVF 20
 Convert a VMX to an OVA 20
 Convert an OVF to a VMX 20
 Convert VMX to a VI 21
 Deploy an OVF Package Directly on an ESX Host 21
 Deploy an OVF Package and Power It On 21
 Export a Running Virtual Machine or vApp from VI 21
 Rename the OVF Package 21
 Omit Disks in the VMware OVF Tool Output 21
 Compress an OVF Package 21
 Chunk or Split OVF Package Files 22
 Validate an OVF 1.0 Descriptor 22
 Download an OVF Package from a Protected Web Site 22
 Use a Proxy 22
 Overwrite a Running Virtual Machine or vApp from VI 23
 Set OVF Properties When Deploying to vSphere 23
 Set OVF Network Mappings When Deploying to vSphere 23
 Obtain Progress Feedback from VMware OVF Tool 23
 Cancel VMware OVF Tool While it Is Running 23
 Probe Mode 24
Appendix: OVF Package Signing 25
 Creating an RSA Public/Private Key Pair and Certificate 25
 Signing an OVF Package 26
 Validating an OVF Package 26

Index 27
About This Book

This OVF Tool User Guide provides information about how to use VMware® OVF Tool to package virtual machines and vApps into Open Virtualization Format (OVF) standard packages.

Intended Audience

This book is intended for anyone who needs to convert an OVF package to a virtual machine, or a virtual machine to an OVF package. Users typically include people who do software development and testing or work with multiple operating systems or computing environments: system administrators, software developers, QA engineers, and anyone who wants to package or unpackage virtual machines using open industry standards.

Document Feedback

VMware welcomes your suggestions for improving our documentation. If you have comments, send your feedback to docfeedback@vmware.com.

Technical Support and Education Resources

The following sections describe the technical support resources available to you. To access the current version of this book and other books, go to http://www.vmware.com/support/pubs.

Online and Telephone Support

To use online support to submit technical support requests, view your product and contract information, and register your products, go to http://www.vmware.com/support.

Customers with appropriate support contracts should use telephone support for the fastest response on priority 1 issues. Go to http://www.vmware.com/support/phone_support.

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials designed to be used as on-the-job reference tools. Courses are available onsite, in the classroom, and live online. For onsite pilot programs and implementation best practices, VMware Consulting Services provides offerings to help you assess, plan, build, and manage your virtual environment. To access information about education classes, certification programs, and consulting services, go to http://www.vmware.com/services.
Using VMware OVF Tool

Open Virtualization Format (OVF) is an industry standard that describes metadata about virtual machine images in XML format. VMware® OVF Tool is a command-line utility that enables a user to import and export OVF packages to and from a wide variety of VMware products. This guide contains the following topics:

- “About VMware OVF Tool” on page 7.
- “Installing VMware OVF Tool” on page 11.
- “Using VMware OVF Tool” on page 12
- “Examples of Using VMware OVF Tool Usage” on page 20.

About VMware OVF Tool

You can use OVF Tool to distribute and import virtual machines and vApps. For example, you can create a virtual machine within VMware vSphere™, and use OVF Tool to export it into an OVF package for installation, either within your organization or for distribution to other organizations. OVF facilitates the use of vApps, which consist of preconfigured virtual machines that package applications with the operating system that they require.

OVF Tool 1.0 replaces an earlier Java-based OVF Tool that was experimental. OVF Tool supports OVF version 1.0 and is backward compatible with OVF 0.9 that was supported by the Java-based OVF Tool, VirtualCenter 2.5, and VMware ESXTM 3.5. OVF Tool 1.0 allows you to script OVF import and export on products such as VMware vCenter™ 4.0, VirtualCenter 2.5 and later, ESX 3.5 and later, VMware Server 2.0 and later, and VMware Workstation 6.0 and later.

Features Highlights

OVF Tool 1.0 provides the following key features:

- Includes full OVF 1.0 support and backward-compatible mode for importing existing OVF 0.9 packages
- Supports both import and generation of OVA packages (OVA is the portable virtual machine format from XenSource.)
- Directly converts between any VI, VMX, or OVF source format to any VI, VMX, or OVF target format
- Accesses OVF sources using HTTP, HTTPS, or FTP, or from a local file
- Deploys and exports vApp configurations on vSphere 4 targets
- Provides options to power on a VM or vApp after deployment, and to power off a virtual machine or vApp before exporting (caution advised)
- Show information about the content of any source in probe mode
- Provides context sensitive error messages for vSphere sources and targets, showing possible completions for common errors, such as an incomplete vCenter inventory path or missing datastore and network mappings
- Provides an optional output format to support scripting when another program calls OVF Tool
- Uses new optimized upload and download API (optimized for vSphere 4)
- Signs OVF packages and validates OVF package signatures
- Validates XML Schema of OVF 1.0 descriptors

OVF Standard

The OVF specification describes a secure, portable, efficient, and flexible method to package and distribute virtual machines and components. It originated from the Distributed Management Task Force (DMTF) after vendor initiative. Companies that contributed to the standard include Dell, HP, IBM, Microsoft, VMware, and Citrix. Version 1.0 was published in April 2009 and is available on the DMTF Web site, along with a white paper.

Specification: http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf

Whitepaper: http://www.dmtf.org/standards/published_documents/DSP2017_1.0.0.pdf

Benefits of OVF

Using OVF to distribute virtual machines has the following benefits:

- **Ease of use.** When users receive a package in OVF format, they do not have to unzip files, execute binaries, or convert disk formats. Adding a vApp can be as simple as typing a URL and clicking **Install**.

- **Virtual hardware validation.** OVF supports fast and robust hardware validation. You do not have to install a complete virtual machine before determining whether it is compatible with an ESX host (for example, because it uses IDE virtual disks).

- **Metadata inclusion.** Additional metadata, such as an end-user license agreement, can be packaged with the OVF and displayed before installation.

- **Optimized download from the Internet.** Large virtual disks are compressed for fast download and to reduce disk space for large template libraries.

VMware Platforms Using OVF

VMware supports OVF on the following platforms:

- For VirtualCenter 2.5 and later, and ESX 3.5 and later, the VI Client supports OVF 0.9 import and export.
- For vCenter 4.0, VirtualCenter 2.x and later, ESX 3.x and later, VMware Server 2, Workstation 5.x and later, use OVF Tool 1.0 documented here.
- VMware Studio 1.0 and later can generate OVF packages.
- For most of the current VMware products, you can also use Converter to import and export OVF.

OVF support is built into the vSphere Client that installs from, and is compatible with, vCenter 4.0 and ESX 4.0. It is also built into the VI Client that installs from and is compatible with VirtualCenter 2.5 and later, and ESX 3.5 and later.

Using the vSphere Client 4, you can import an OVF package and export a vApp into an OVF package.

For example, to import an OVF package using vSphere Client 4:

Click File > Deploy OVF Template

For example, to export a vApp into an OVF package using vSphere Client 4:

Click File > Export > Export OVF Template
Using the VI Client 2.5, you can import an OVF virtual machine into an ESX host and export a virtual machine to an OVF file (note that VI Client 2.5 is limited to OVF 0.9). For example, to import an OVF vApp into an ESX host using VI Client 2.5:

Click File > Virtual Appliance > Import

For example, to export a virtual machine to an OVF file using VI Client 2.5:

Click File > Virtual Appliance > Export

OVF packages imported or exported by OVF Tool are completely compatible with packages imported or exported by the vSphere Client or the VI Client.

Space Requirements of OVF Packages

A virtual machine is stored as a set of files on disk. In the VMware runtime format, these files have extensions .vmx, .vmdk, .vmxf, and .nvram. The VMware hypervisor requires these file formats, which are optimized for efficient execution. An ESX host often uses fully allocated flat disks in a VMFS file system to optimize virtual machine performance.

OVF supports efficient, secure distribution of vApps and virtual machine templates. OVF is optimized for these goals, rather than for efficient runtime execution. OVF does not include specific information on runtime disk format because such information is not required until the virtual machine is deployed. When you package appliances with OVF, you can optimize one vApp for high performance in a production environment, and optimize another for minimal storage space during evaluation.

Table contrasts a virtual machine in VMware file format with a virtual machine in OVF format. OVF employs a compressed sparse format for VMDK files. Virtual disks in that format cannot be used directly for execution without conversion.

Table 1. VMware-Format File Sizes Compared to OVF and OVA File Sizes

<table>
<thead>
<tr>
<th>VMware Format</th>
<th>OVF Format</th>
<th>OVA Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>LinuxBasedAppliance.nvram</td>
<td>LinuxBasedAppliance.ovf</td>
<td>LinuxBasedAppliance.ova</td>
</tr>
<tr>
<td>LinuxBasedAppliance.vmdk</td>
<td>LinuxBasedAppliance-0.vmdk</td>
<td></td>
</tr>
<tr>
<td>LinuxBasedAppliance-s001.vmdk</td>
<td>LinuxBasedAppliance-1.vmdk</td>
<td></td>
</tr>
<tr>
<td>LinuxBasedAppliance-s002.vmdk</td>
<td>LinuxBasedAppliance-2.vmdk</td>
<td></td>
</tr>
<tr>
<td>LinuxBasedAppliance.vmsd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LinuxBasedAppliance.vmx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LinuxBasedAppliance.vmxf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total size</td>
<td>251MB using thin provisioning</td>
<td>132MB</td>
</tr>
<tr>
<td></td>
<td>4000MB using thick provisioning</td>
<td>132MB</td>
</tr>
</tbody>
</table>

VMware OVF Tool Delta Disk Facilities

VMware OVF Tool automatically compresses disk files. In the streaming VMDK files that OVF Tool generates, the tool compresses each 64KB disk grain. It is possible to achieve even better compression using the --compress option. In addition, if a package contains multiple virtual machines, it is possible to compress an OVF package even more using a technique called delta disk compression. This compression algorithm is invoked using the --makeDeltaDisks option.

`ovftool --makeDeltaDisks package.ovf output-dir/`

Delta disk compression identifies disk segments that are equal and combines these equal parts in a parent disk. This process prevents storing the same segment twice.
As an example, consider a software solution that consists of an Apache Web server virtual machine and a MySQL database virtual machine, both installed on top of a single-disk Ubuntu server. The two virtual machines were created with the following process:

1. Create a plain Ubuntu installation on one virtual machine.
2. Clone the virtual machine.
3. Install Apache on the first virtual machine.
4. Install MySQL on the second virtual machine.

Using delta disk compression on the two virtual machine disks creates a parent disk containing all of the information they share, which is essentially the entire operation system and two child disks containing the MySQL and Apache parts.

A plain Ubuntu server can use 400–500MB of space, and two would use 800–1000MB of space. By contrast, using delta disk compression, an OVF package with these two servers uses only 400–500MB (plus the size of the MySQL and Apache installations), which saves 400–500MB by not duplicating the Ubuntu server.

Any number of disks can be combined creating various disk trees and saving more space.

vSphere 4 and later support the deployment of OVF packages that contain delta disk hierarchies.

For delta disk compression, keep in mind the following:

- Only disks with equal capacity can be combined. If you expect to use delta disk compression, you must keep disk capacities equal.
- Delta disk compression necessitates that segments that might be put in a parent disk are at the same offset from the beginning of their respective files. In the Ubuntu example, if the setup varies between the two installations, it can completely offset each segment on one of the disks from the segments on the other disk. In this case, delta disk compression does not produce any significant disk space savings. This is why the example specified cloning the Ubuntu server before installing the MySQL and Apache parts, respectively.
- Delta disk compression takes OVF packages and vSphere and VMX files as input, but not OVA packages.
- The delta disk compression algorithm needs to read the contents of each disk up to two times. It might make sense to invoke OVF Tool on a local copy of the OVF package.
- The delta disk compression algorithm always generates an OVF package in the given output directory. To convert this OVF package into an OVA package, reinvoke OVF Tool.

Supported Operating Systems

OVF Tool supports the operating systems shown in Table 2.

<table>
<thead>
<tr>
<th>Supported Operating Systems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 32 bit (x86) and 64 bit (x86_64)</td>
<td>Linux 32 bit (x86) and 64 bit (x86_64)</td>
</tr>
<tr>
<td>Windows XP</td>
<td>CentOS 5.x</td>
</tr>
<tr>
<td>Windows 2003</td>
<td>Fedora Core 10.x</td>
</tr>
<tr>
<td>Windows Vista</td>
<td>Red Hat Enterprise Linux (RHEL) 5.x</td>
</tr>
<tr>
<td>Windows 2K8</td>
<td>SUSE Enterprise Server 10.x</td>
</tr>
<tr>
<td></td>
<td>Ubuntu Desktop 9.x</td>
</tr>
</tbody>
</table>
Installing VMware OVF Tool

The VMware OVF Tool is available as an installer or ZIP file, depending on the operating system.

To install VMware OVF Tool

1. Download VMware OVF Tool:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Download Filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux 32 bit</td>
<td>VMware-OVF-Tool.sh</td>
</tr>
<tr>
<td>Linux 64 bit</td>
<td>VMware-OVF-Tool.x86_64.sh</td>
</tr>
<tr>
<td>Windows 32 bit</td>
<td>VMware-OVF-Tool.exe</td>
</tr>
</tbody>
</table>

2. Install using the method for your operating system:

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Installation Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux 32 bit</td>
<td>Run the shell script as ./VMware-OVF-Tool.sh</td>
</tr>
<tr>
<td>Linux 64 bit</td>
<td>Run the shell script as ./VMware-OVF-Tool.x86_64.sh</td>
</tr>
<tr>
<td>Windows 32 bit</td>
<td>Double click on the installer, VMware-OVF-Tool.exe</td>
</tr>
</tbody>
</table>

Linux Installation Details

To install VMware OVF Tool on a Linux machine

1. Download the installer script (VMware-OVF-Tool.sh for 32 bit or VMware-OVF-Tool.x86_64.sh for 64 bit).
 You must download the script as a binary file; otherwise the install script fails.

2. Make the script executable.

   ```bash
   chmod +x VMware-OVF-Tool.sh
   ```

3. Run the installer script.

   ```bash
   ./VMware-OVF-Tool.sh
   ```
 The script is interactive and prompts for the EULA and installation directory.

Windows Installation Details

The following are screen by screen instructions for a Windows 32-bit installation:

1. At the Welcome screen, click Next.
2. At the license agreement, read the license agreements, select “I agree...” and click Next.
3. Accept the path suggested or change to a path of your choice and click Next.
4. When you have finished choosing your installation options, click Install.
5. When the installation is complete, click Next.
6. Deselect Show the readme file if you do not want to view the readme file, and click Finish to exit.
Running OVF Tool After Installation

After installing OVF Tools on Windows, you can run OVF Tool from a DOS prompt.

To run OVF Tool from a DOS Prompt

1. From the Start menu, click Run.
 - Start > Run
2. In the Run dialog, write `cmd`, which opens a DOS prompt.
 - `cmd`

If you have the OVF Tool folder in your Path environment variable, you can run OVF Tool at the command line. For instructions on running the utility, see “Using VMware OVF Tool” on page 12.

To add VMware OVF Tool to your Path environment variable

The following instructions are for Windows XP, but it is done similarly on other Windows systems.

1. Right-click My Computer
2. Select properties
3. Select Advanced
4. Select Environment Variables
5. Find the system variable called Path and add the OVF Tool install directory by selecting the variable, click Edit and adding the text.
 - For example, the path might be the following:
 - `;C:\Program Files\VMware\VMware OVF Tool\`
 - The leading semi-colon is necessary to append the OVF Tool path to the existing path variable.

Using VMware OVF Tool

VMware OVF Tool is a command-line utility that supports importing and exporting of OVF packages from ESX hosts and other VMware products. A VI location refers to any location on a VMware product, such as vSphere, VMware Server or ESX. This section describes how to run and select OVF Tool options.

To run VMware OVF Tool from the command line

1. At the command-line prompt, run the OVF Tool.
 - `ovftool <source locator> <target locator>`
 - where `<source locator>` and `<target locator>` are the paths to the source and target for the virtual machine, OVF package, OVA package or VI location. See “Command-Line Options” on page 13 for the various options.
2. If you want to specify additional options, type them before the source and target locators.
 - `ovftool <options> <source locator> <target locator>`
3. To display all options, type `ovftool -h`.
4. Probe mode allows you to investigate the contents of a source. To invoke probe mode, use the `ovftool` command with only a source and no target.
 - `ovftool <options> <source locator>`
 - OVF Tool prints information about the source such as hardware, EULAs and OVF properties.
Use probe mode to examine an OVF package before deploying it. For example, you can examine the download and deployment sizes, determine the set of networks to be mapped, determine the OVF properties to be configured, read the EULA, and determine the virtual hardware requirements. OVF Tool must access only the OVF descriptor to display this information, so the operation does not require the entire OVA or VMDK files to be downloaded. Probe mode also validates the certificate if the source is signed.

For more information about Probe Mode and an example of the output, see “Probe Mode” on page 24.

Table 3 describes the source and target locators. For more information, see “Specifying a Locator” on page 16.

Command-Line Options

For every command, you specify the source and target locators. Table 3 defines each locator type.

<table>
<thead>
<tr>
<th>Locator</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><source locator></td>
<td>Path to the source, which must be either a virtual machine, vApp, or an OVF package. The source locator can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>■ A path to an OVF or OVA file (a local file path, or an HTTP, HTTPS, or FTP URL)</td>
</tr>
<tr>
<td></td>
<td>■ A virtual machine (a local file path to a .vmx file)</td>
</tr>
<tr>
<td></td>
<td>■ A VI locator identifying a virtual machine or vApp on vCenter, ESX, or VMware Server</td>
</tr>
<tr>
<td><target locator></td>
<td>The target locator can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>■ A local file path for VMX, OVF, or OVA</td>
</tr>
<tr>
<td></td>
<td>■ A VI locator identifying a cluster, host, or a vSphere location</td>
</tr>
</tbody>
</table>

Table 4 shows all the command-line options.

Options perform actions only between certain source and target types. Table 4 shows which source and target types each option works with. If you specify an option using an irrelevant source or target type, the command does nothing.

All options can be set using the form **--option=value**.

Binary options can be enabled or disabled explicitly. For example: **--option=true, --option=false**.

<table>
<thead>
<tr>
<th>Option Long Name</th>
<th>Option Short Name</th>
<th>Relevant Source Types</th>
<th>Relevant Target Types</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--acceptAllEulas</td>
<td></td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>Accept all EULAs without being prompted. Binary option.</td>
</tr>
<tr>
<td>--chunkSize</td>
<td></td>
<td>N/A</td>
<td>OVF, OVA</td>
<td>Specifies the chunk size to use for files in a generated OVF package. Default is not to chunk. When using this option, all output files (except the OVF descriptor, manifest and certificate files) are sliced into the specified chunk size. This is useful if you need to transport an OVF package on a series of 800MB CD-ROMs, or are only able to create files up to 2GB on FAT32 file systems. Chunking combined with an OVA package as output makes an OVA in which all the files are chunked, like for the OVF package, but the OVA package itself is still a single file.</td>
</tr>
<tr>
<td>--compress</td>
<td></td>
<td>N/A</td>
<td>OVF, OVA</td>
<td>Compresses the disk when given an OVF or OVA target locator. The value must be between 1 and 9. The fastest is 1, but gives the worst compression. The slowest is 9, but gives the best compression.</td>
</tr>
</tbody>
</table>
Table 4. OVF Tool Command-Line Options (Continued)

<table>
<thead>
<tr>
<th>Option Long Name</th>
<th>Option Short Name</th>
<th>Relevant Source Types</th>
<th>Relevant Target Types</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--datastore</td>
<td>-ds</td>
<td>N/A</td>
<td>VI</td>
<td>Target datastore name for a VI or vSphere deployment.</td>
</tr>
<tr>
<td>--deploymentOption</td>
<td></td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>Deployment options for a deployed OVF package. An OVF package can contain several deployment configurations. This option allows you to select which configuration to use when deploying to the VI target.</td>
</tr>
<tr>
<td>--disableVerification</td>
<td></td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>Skips validation of signature and certificate. Binary option.</td>
</tr>
<tr>
<td>--diskMode</td>
<td>-dm</td>
<td>N/A</td>
<td>VMX, VI</td>
<td>Selects target disk format. Common formats are monolithicSparse, monolithicFlat, twoGbMaxExtentSparse, twoGbMaxExtentFlat, streamOptimized, thin (VI target), thick (VI target).</td>
</tr>
<tr>
<td>--eula</td>
<td></td>
<td>N/A</td>
<td>OVF, OVA</td>
<td>Inserts the EULA in the first virtual system or virtual system collection in the OVF. If the EULA is in a file, use the following option format: --eula@=filename</td>
</tr>
<tr>
<td>--help</td>
<td>-h</td>
<td>N/A</td>
<td>N/A</td>
<td>Prints the VMware OVF Tool help message with usage information.</td>
</tr>
<tr>
<td>--hideEula</td>
<td></td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>Does not include the EULA in the probe output. Binary option.</td>
</tr>
<tr>
<td>--ipAllocationPolicy</td>
<td></td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>IP allocation policy for a deployed OVF package. Supported values are: fixed, transient, and dhcp. In OVF descriptors, you can specify a VMware specific IP assignment policy that guides the deployment process by expressing which of the policies the OVF package supports. Only values listed in the OVF descriptor are supported when the OVF or OVA package is deployed.</td>
</tr>
<tr>
<td>--ipProtocol</td>
<td></td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>Selects the IP protocol to use. For example, IPv4, IPv6. As with the ipAllocationPolicy option, you can specify which IP version this OVF package uses when it is deployed. Use only the values listed in the OVF descriptor.</td>
</tr>
<tr>
<td>--locale</td>
<td></td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>Selects the locale for the target.</td>
</tr>
<tr>
<td>--machineOutput</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>Outputs OVF Tool messages in a machine readable format. Binary option.</td>
</tr>
<tr>
<td>--makeDeltaDisks</td>
<td></td>
<td>OVF, VI, VMX</td>
<td>Must be directory</td>
<td>Use delta disk compression to create an OVF package from a disk source. Binary option.</td>
</tr>
<tr>
<td>--name</td>
<td>-n</td>
<td>N/A</td>
<td>All</td>
<td>Specifies the target name. Defaults to the source name.</td>
</tr>
<tr>
<td>--net</td>
<td></td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>Sets a network assignment in the deployed OVF package. For example, --net:<OVF name>=<target name>. OVF packages contain symbolic names for network names which are assigned with this option. For multiple network mappings, repeat the option, separating them with a blank, for example, --net:s1=t1 --net:s2=t2 --net:s3=t3.</td>
</tr>
<tr>
<td>Option Long Name</td>
<td>Option Short Name</td>
<td>Relevant Source Types</td>
<td>Relevant Target Types</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>--network</td>
<td>-nw</td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>Target network for a vSphere deployment. Use this option in place of the --net option when only one network exists in the OVF package. This option maps the symbolic OVF name to the specified network name.</td>
</tr>
<tr>
<td>--overwrite</td>
<td>-o</td>
<td>N/A</td>
<td>All</td>
<td>Forces overwrite of existing files. Binary option.</td>
</tr>
<tr>
<td>--powerOffSource</td>
<td>VI</td>
<td>N/A</td>
<td>All</td>
<td>Ensures that a virtual machine or vApp is powered off before importing from a VI source. Binary option.</td>
</tr>
<tr>
<td>--powerOffTarget</td>
<td>N/A</td>
<td>VI</td>
<td>All</td>
<td>Ensures that a virtual machine or vApp is powered off before overwriting a VI target. Binary option.</td>
</tr>
<tr>
<td>--powerOn</td>
<td>N/A</td>
<td>VI</td>
<td>All</td>
<td>Powers on a virtual machine or vApp deployed on a VI target. Binary option.</td>
</tr>
<tr>
<td>--privateKey</td>
<td>N/A</td>
<td>OVF, OVA</td>
<td>All</td>
<td>Signs the OVF package with the given private key (.pem file). The file must contain a private key and a certificate.</td>
</tr>
<tr>
<td>--privateKeyPassword</td>
<td>N/A</td>
<td>OVF, OVA</td>
<td>All</td>
<td>Password for the private key. Used in conjunction with --privateKey if the private key requires password authentication. If required but not specified, the tool prompts for the password.</td>
</tr>
<tr>
<td>--prop</td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>All</td>
<td>Sets a property in the deployed OVF package. For example, --prop:<key>=<value>. Use probe mode to learn which properties an OVF package can set. For multiple property mappings, repeat the option, separating them with a blank, for example --prop:p1=v1 --prop:p2=v2 --prop:p3=v3.</td>
</tr>
<tr>
<td>--proxy</td>
<td>OVF, OVA, VI</td>
<td>OVF, OVA, VI</td>
<td>All</td>
<td>Proxy used for HTTP, HTTPS, FTP, and VI access. The proxy is expressed as the URL to the proxy. For example, for proxy.example.com, the option value is: https://proxy.example.com:345. OVF Tool supports proxies that require authentication. If you do not provide credentials in the URL, OVF Tool prompts for them.</td>
</tr>
<tr>
<td>--quiet</td>
<td>-q</td>
<td>N/A</td>
<td>N/A</td>
<td>Prints no output to the screen except for errors. Binary option.</td>
</tr>
<tr>
<td>--schemaValidate</td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>All</td>
<td>Validates OVF descriptor against the OVF schema. Binary option.</td>
</tr>
<tr>
<td>--skipManifestCheck</td>
<td>OVF, OVA</td>
<td>N/A</td>
<td>All</td>
<td>Skips validation of the OVF package manifest. Binary option.</td>
</tr>
<tr>
<td>--skipManifestGeneration</td>
<td>N/A</td>
<td>OVF, OVA</td>
<td>All</td>
<td>Skips generation of the OVF package manifest. Binary option.</td>
</tr>
<tr>
<td>--sourceType</td>
<td>-st</td>
<td>All</td>
<td>All</td>
<td>Explicitly expresses that the source is OVF, OVA, VMX, or VI.</td>
</tr>
<tr>
<td>--targetType</td>
<td>-tt</td>
<td>All</td>
<td>All</td>
<td>Explicitly express that the target is OVF, OVA, VMX, or VI.</td>
</tr>
<tr>
<td>--version</td>
<td>-v</td>
<td>N/A</td>
<td>N/A</td>
<td>Shows version information for OVF Tool. Binary option.</td>
</tr>
<tr>
<td>--vmFolder</td>
<td>-vf</td>
<td>N/A</td>
<td>VI</td>
<td>The target virtual machine folder in VI inventory (for a datacenter).</td>
</tr>
</tbody>
</table>
Specifying a Locator

A source or target locator points to some resource. Locators must specify a protocol, which defines how to reach the resource. Supported protocols are file access, VI, HTTP, HTTPS, and FTP.

File locators can point to an OVF package (.ovf or .ova) or a virtual machine (.vmx). HTTP, HTTPS, and FTP locators can point to OVF and OVA files. The resource type is determined from the filename suffix, unless one or both of the options --sourceType and --targetType are used explicitly.

VI locators can point to various resource types: virtual machines, vApps, hosts, clusters, or resource pools. For a source locator, the resource type must be a virtual machine or vApp. For a target locator, the resource type must be a host, cluster, or a resource pool. A VI locator is used for a vSphere server, vCenter Server, VMware Server, or an ESX host.

At the command line, type ---help locators to display the online help for locators.

Table 5 and Table 6 list the default extensions of the different source and target types, as well as which protocols are supported.

Table 5. Source Locator

<table>
<thead>
<tr>
<th>Source Type</th>
<th>Default File Extension</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVF</td>
<td>.ovf</td>
<td>File, HTTP, HTTPS, FTP</td>
</tr>
<tr>
<td>OVA</td>
<td>.ova</td>
<td>File, HTTP, HTTPS, FTP</td>
</tr>
<tr>
<td>VMX</td>
<td>.vmx</td>
<td>File</td>
</tr>
<tr>
<td>VI</td>
<td>N/A</td>
<td>VI</td>
</tr>
</tbody>
</table>

Table 6. Target Locator

<table>
<thead>
<tr>
<th>Target Type</th>
<th>File Extension</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVF</td>
<td>.ovf</td>
<td>File</td>
</tr>
<tr>
<td>OVA</td>
<td>.ova</td>
<td>File</td>
</tr>
<tr>
<td>VMX</td>
<td>.vmx</td>
<td>File (Source must be a single virtual machine)</td>
</tr>
<tr>
<td>VI</td>
<td>N/A</td>
<td>VI (If the VI target locator is on a VMware Server system, or directly on an ESX host, the source must be a single virtual machine)</td>
</tr>
</tbody>
</table>

File Locators

File locators are the same for source and target. They are specified using ordinary path syntax.

Windows Path Syntax

On Windows, paths are specified as either absolute or relative.

This is an example of an absolute path on Windows:

```
C:\folder1\folder2\package.ovf
```

These examples show relative paths on Windows:

```
..\folder1\package1.ovf
package1.ovf
```

Linux Path Syntax

On Linux, paths are specified, similarly, as either absolute or relative.

The following is an example of an absolute path on Linux:

```
/folder1/folder2/package.ovf
```

The following are examples of relative paths on Linux:

```
../folder1/package1.ovf
package1.ovf
```
Using URIs as Locators

It is possible to specify file locations as a URI by prefixing the path with file://, as shown in the following examples:

- file://c:/folder1/folder2/package.ovf (Absolute, Windows)
- file:///folder1/folder2/package.ovf (Absolute, Linux)
- file://package.ovf (Relative for both Windows and Linux)

HTTP, HTTPS, and FTP Locators

You can use HTTP, HTTPS, and FTP to refer to an OVF package (OVF or OVA file) on a Web server. You can only use these protocols to specify a source locator. In the following syntax, protocol is HTTP, HTTPS or FTP:

```
protocol://username:password@host:port/<path to OVF package>
```

It is possible to omit the user name and password from the locator. If needed, OVF Tool prompts you for them. If you use the standard port, it is not necessary to specify the port. Table 7 shows the standard ports.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>80</td>
</tr>
<tr>
<td>HTTPS</td>
<td>443</td>
</tr>
<tr>
<td>FTP</td>
<td>21</td>
</tr>
</tbody>
</table>

VI Locators

VI source locators point to a virtual machine or vApp within the virtual infrastructure. The VI target locator provides all required information for importing an OVF package or virtual machine into a cluster, host or resource pool. Both source and target locator use the same syntax:

```
vi://<username>[:<password>]<host>[:<port>]<search-term>
```

The server name and port can designate either a vCenter server, VirtualCenter server, VMware Server, or an ESX host. If you omit credentials, in which case OVF Tool prompts you for them. Default installations of vCenter Server, VirtualCenter, and ESX use port 443. If you are using the default port, you do not need to specify it. When using OVF Tool against a VMware Server, you must explicitly specify port 8333, which is the default port for VMware Server.

The search term has the following format:

```
<path>[/?<query>=<value>]
```

If a query is not given, a VC inventory path lookup is performed using the specified path. Otherwise, the object matching the query is used. The meaning of the query depends on the object type. Table 8 shows the different values that you can use in the query field.

<table>
<thead>
<tr>
<th>Name</th>
<th>Query</th>
<th>Source</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS</td>
<td>bios</td>
<td>BIOS ID of a virtual machine</td>
<td>BIOS ID of a host</td>
</tr>
<tr>
<td>Datastore</td>
<td>ds</td>
<td>Datastore path to a virtual machine</td>
<td>N/A</td>
</tr>
<tr>
<td>IP Address</td>
<td>ip</td>
<td>IP address of a virtual machine</td>
<td>IP address of a host</td>
</tr>
<tr>
<td>DNS</td>
<td>dns</td>
<td>DNS name of a virtual machine</td>
<td>DNS name of a host</td>
</tr>
<tr>
<td>Mo-Ref</td>
<td>moref</td>
<td>Managed object reference (vSphere specific identifier) of a virtual machine or vApp</td>
<td>Managed object reference (vSphere specific identifier) of a host, cluster, or resource pool</td>
</tr>
</tbody>
</table>

Table 8. Source and Target Values for All Query Types
Table 9 shows example values for each query type.

Table 9. Examples of Query Values

<table>
<thead>
<tr>
<th>Name</th>
<th>Query</th>
<th>Example Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS</td>
<td>bios</td>
<td>vi://localhost?bios=234290984</td>
</tr>
<tr>
<td>Datastore</td>
<td>ds</td>
<td>vi://localhost/TestDatacenter?ds=[foo]/myvm/myvm.vmx</td>
</tr>
<tr>
<td>IP Address</td>
<td>ip</td>
<td>vi://localhost?ip=123.231.232.232</td>
</tr>
<tr>
<td>DNS</td>
<td>dns</td>
<td>vi://localhost?dns=production-vm3.example.com</td>
</tr>
</tbody>
</table>

You can enter a partial source locator if you do not know the entire inventory path. In this case, the tool fails but suggests possible inventory path completions.

Specifying the Inventory Path to a Virtual Machine or vApp

To specify an inventory path for a virtual machine or vApp, use the following syntax:

```
<datacenter name>/vm/<folders>/<vm or vApp name>
```

or

```
<datacenter name>/host/<resource pool path>/<vm or vApp name>
```

The use of the vm tag after the datacenter name specifies that you are locating a virtual machine or vApp in the VM and Template view. Use the host tag after the datacenter name if you are locating a virtual machine or vApp in the Host and Clusters view.

The following example shows an inventory path without any folders:

MyDatacenter/vm/MyVM

The following example shows an inventory path with two nested folders:

MyDatacenter/vm/Folder 1/Sub Folder/MyVM

Specifying the Inventory Path for a Cluster, Host, or Resource Pool

You can specify an inventory path for a host or a resource pool. You can nest resource pools similar to folders. To specify an inventory path for a host or a resource pool as part of target locators, use the following syntax:

```
<datacenter name>/host/<host name>/Resources/<resource pool>
```

- **host and Resources** - Fixed parts of the path.

- **Resources** - Specify only when a resource pool is specified.

- **<resource pool>** - Can take the value of one or more nested resource pools. If no resource pools are specified, the default resource pool for the host is used.

The following example is of an inventory path without a specified resource pool:

TestDatacenter/host/esx-host3.example.com

The following example is of an inventory path with a specified resource pool:

TestDatacenter/host/esx-host3.example.com/Resources/SmallResourcePool

Partial Locators

When using OVF Tool, it is often not necessary to specify source and target types as long as certain filename conventions are used. It is possible to the ignore locator type and specify the source and target explicitly using the arguments `--sourceType=...` and `--targetType=...`.
OVF Tool assumes the locator type based on the following rules:

- If the name starts with `vi://`, OVF Tool assumes VI type.
- If the name ends with `.ovf`, OVF Tool assumes OVF type.
- If the name ends with `.vmx`, OVF Tool assumes VMX type.
- If the name ends with `.ova`, the OVT tool assumes OVA type.

Similarly, source and target types can be inferred from folder locators. OVF Tool assumes the type according the following rules:

- If the source locator is a folder, OVF Tool assumes that the source is an OVF package and that the OVF descriptor is called the same as the folder, for example, `my-ovf/my-ovf.ovf`.
- If the source is an OVF package and the target locator is a directory, such as `MyVirtualMachines/`, OVF Tool assumes that the target is a VMX locator. The created VMX/VMDK file is put in a directory with the target name, for example, `MyVirtualMachines/MyVM/MyVM.vmx`.
- If the source is a VMX locator and the target locator is a directory, OVF Tool assumes that the target is an OVF package.
- If the source is a VI locator, and the target locator is a directory, OVF Tool assumes that the target is an OVF package.

OVF Tool supports partial VI locators when deploying or exporting. For an incomplete locator path, the tool suggests completions at the command line. Example 1 shows the command-line dialog when partial locators are used.

Example 1. Partial Locators at the Command Line

```
> ovftool LAMP.ovf vi://localhost/
Opening source: LAMP.ovf
Opening target: vi://user@localhost/
Error: Found wrong kind of object (Folder)
Possible completions are:
  Datacenter/
  Remote Datacenter/
  Secondary Datacenter/

> ovftool LAMP.ovf vi://localhost/Datacenter
Opening source: LAMP.ovf
Opening target: vi://user@localhost/Datacenter
Error: Found wrong kind of object (Datacenter)
Possible completions are:
  vm/
  host/

> ovftool LAMP.ovf vi://localhost/Datacenter/host
Opening source: LAMP.ovf
Opening target: vi://user@localhost/Datacenter/host
Error: Found wrong kind of object (Folder)
Possible completions are:
  host1.foo.com/
  host2.foo.com/

> ovftool LAMP.ovf vi://localhost/Datacenter/vm/host1.foo.com
```
Configuration Files

OVF Tool has many options. Rather than repeatedly entering long commands on the command line, you can create a configuration file. A configuration file uses the following syntax:

```
option1=value
...#comment
optionN=value
```

The following is an example of a configuration file:

```
proxy=http://proxy.example.com
datastore=storage-test42
# Comment on something
locale=dk
```

You can create local or global configuration files. A local configuration file has the `.ovftool` suffix and is read in the folder from which you invoke OVF Tool. A global configuration file is per user.

On Windows, the global configuration file is read from the following location:

```
C:\Documents and Settings\$USERNAME\VMware\ovftool.cfg
```

On Linux, the global configuration file is read from the following location:

```
$HOME/.ovftool
```

When using configuration files, globally defined options are overwritten by locally defined and command-line options. Locally defined options are overwritten by command-line options.

You can use the `ovftool --help config` command to get information about how to use a configuration file. In addition, the current contents of the global configuration file as well as any local configuration file is shown.

Examples of Using VMware OVF Tool Usage

At the command line, type `--help examples` to display examples of ovftool commands.

Convert a VMX to an OVF

To convert a virtual machine in VMware runtime format (.vmx) to an OVF package, type a command like the following:

```
> ovftool f:/myvms/BigDemo.vmx x:/ovf/BigDemo.ovf
```

Convert a VMX to an OVA

To convert a VMX to an OVA file, type a command like the following:

```
> ovftool vmxs/Nostalgia.vmx ovfs/Nostalgia.ova
```

Convert an OVF to a VMX

To convert an OVF package to a file in VMware format, type a command like the following:

```
> ovftool http://www.mycompany.com/ovflib/BigDemo.ovf x:/myvms/BigDemo.vmx
```

Because the source is an OVF package, you can specify it as a URL or a local file path.

If you convert an OVF package to a VMX file without specifying the target directory, OVF Tool creates a directory using the OVF package name and writes the VMX file in it.

```
> ovftool "Windows 7.ovf"
```

The VMX file is written at `Windows 7/Windows 7.vmx`.
Convert VMX to a VI
You can convert any VI, or VMX source to any VI, or VMX target format without an intermediate OVF conversion. The following example uses OVF Tool to directly convert a VMX file to a VI file, without first doing a VMX to OVF conversion and then an OVF to VI conversion.

> ovftool Nostalgia.vmx vi://user:pwd@host/Datacenter/host/host1.foo.com

Deploy an OVF Package Directly on an ESX Host
The following command deploys an OVF package on an ESX host.

> ovftool package.ovf vi://my.esx-machine.example.com/

Deploy an OVF Package and Power It On
OVF Tool can power on a virtual machine or vApp after deployment. This action can be done on all supported platforms. The following example powers on the virtual machine or vApp to a particular host through vCenter Server.

> ovftool --powerOn package.ovf vi://MyvCenterServer/?dns=fast-esx-host1.example.com.

Export a Running Virtual Machine or vApp from VI
You must power off a virtual machine or vApp before exporting it. The following example locates the virtual machine or vApp based on its DNS name through the vCenter Server and powers it off.

> ovftool --powerOffSource vi://MyvCenterServer/?dns=test-vm test-vm.ova

NOTE This option does not perform a shutdown, where the operating system shuts down by itself. This is only a power off operation.

Rename the OVF Package
You can rename an OVF package by converting the OVF to an OVF. This action also renames all the disk names and changes the references in the OVF descriptor.

> ovftool "Windows 7.ovf" win7.ovf

Omit Disks in the VMware OVF Tool Output
If you want only information about the OVF descriptor and not about the disks that it refers to, you can suppress the output.

The following example command omits disk output and simply copies the OVF descriptor and any message bundle files that might be associated with it:

> ovftool --noDisks http://example.com/ovf/InterestingVirtualAppliance package.ovf

Compress an OVF Package
For maximum compression of an OVF package with multiple virtual machines, set both the --compress=9 and --makeDeltaDisks options. The following are examples of using maximum compression:

> ovftool --compress=9 --makeDeltaDisks package.ovf output-dir
> ovftool --compress=9 --makeDeltaDisks vi://localhost/dc/vm/VirtualAppDemo output-dir/

If the source contains only a single virtual machine, the --makeDeltaDisks option does not yield any compression boost. In this case, the --compress=9 option gives maximum compression.
Chunk or Split OVF Package Files

Some file systems have a restriction on maximum file size. For example, FAT32 allows files only up to 2GB. You can split the OVF files from a generated package into pieces of a specified maximum size. The default measurement is megabytes (keyword mb). You can specify other units using one of the following keywords:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes</td>
<td>b</td>
</tr>
<tr>
<td>Kilobytes</td>
<td>kb</td>
</tr>
<tr>
<td>Gigabytes</td>
<td>gb</td>
</tr>
</tbody>
</table>

For example, to create an OVF package optimized for a FAT32 file system, use the following command:

> ovftool --chunkSize=2gb <source> package.ovf

Each file chunk has a sequentially numbered suffix. For example, for a 6GB disk, the chunks have these names:

disk1.vmdk.000000000, disk1.vmdk.000000001, disk1.vmdk.000000002

Validate an OVF 1.0 Descriptor

If you are generating OVF 1.0 descriptors manually, you can check whether the descriptors comply with the OVF 1.0. The following examples show how to validate descriptors:

> ovftool --schemaValidate package.ovf
> ovftool --schemaValidate package.ova
> ovftool --schemaValidate http://example.com/folder1/package.ovf
> ovftool --schemaValidate http://example.com/folder1/package.ova

If everything is correct, OVF Tool outputs the result of probing the OVF. Otherwise, a list of warnings and errors is shown.

IMPORTANT Being compliant with the OVF 1.0 schema is only part of the requirements for being a valid OVF package. The schema validation does not check for all the requirements specified in the OVF 1.0 specification.

Download an OVF Package from a Protected Web Site

OVF Tool can read sources given by a URL using both HTTP and HTTPS. You access it with the user name and password. The following example downloads the LAMP OVF package and puts it in an OVA package.

> ovftool https://user:pass@example.com/repository/ovf/LAMP.ovf LAMP.ova

If you omit the user name and password, in which case OVF Tool prompts you for them.

Use a Proxy

You can specify a proxy for OVF Tool. The following examples show the use of the --proxy option:

> ovftool --proxy=proxy.example.com http://external-site.com/ovf/package.ovf

OVF Tool allows proxies that require authentication. Credentials are supplied in the proxy path as shown in the following example:

> ovftool --proxy=user:pass@proxy.example.com http://external-site.com/ovf/package.ovf

You can omit the username and password for a proxy server that requires authentication. OVF Tool prompts for them.
Overwrite a Running Virtual Machine or vApp from VI

VMware OVF Tool supports overwriting existing targets. If a target virtual machine or vApp has the same name as the source, OVF Tool overwrites the target when the --overwrite option is specified. If the target virtual machine or vApp is running, OVF Tool cannot overwrite it. OVF Tool does not automatically power off the target. To power off the target before overwriting it, use the --powerOffTarget option.

> ovftool --overwrite --powerOffTarget package.ovf
 vi://localhost/?dns=production-host.example.com

You can also power on the newly written virtual machine or vApp at the same time. In the following example, the target machine is powered off and deleted, the package.ovf is imported, and the imported virtual machine or vApp is powered on.

> ovftool --overwrite --powerOffTarget --powerOn package.ovf
 vi://localhost/?dns=production-host.example.com

Set OVF Properties When Deploying to vSphere

OVF descriptors can contain configuration properties for the deployed OVF package. You can set only one property at a time, but you can have multiple instances of the option per command.

The property option has the following syntax:

--prop:<option>=<value>

The following example sets two properties: the administrator’s email address and the number of concurrent sessions.

> ovftool --prop:adminEmail=john@example.com --prop:concurrentSessions=200 package.ovf
 vi://localhost/?dns=production-host.example.com

Set OVF Network Mappings When Deploying to vSphere

OVF descriptors can use symbolic identifiers for network names. These identifiers must be mapped to a network that is available on the chosen VI platform. If only one network is available on the target and only one network is described in the OVF descriptor, OVF Tool selects that network automatically. In this case, you do not need to specify a network mapping. The --net option has the following syntax:

--net:<OVF network name>=<target network name>

In the following example, a network is selected.

> ovftool --net:"Example net 1"="VM Network" <source> <VI locator>

If the OVF descriptor only specifies one network name, you can specify the target network name of the network mapping, as in the following example:

> ovftool --network="VM Network" <source> <VI locator>

Obtain Progress Feedback from VMware OVF Tool

You can have machine readable progress feedback displayed on the command line. The progress is simply written as the percentage finished.

> ovftool --machineOutput source target
 0
 1
 3
 10
 ...
 99
 100

Cancel VMware OVF Tool While it Is Running

To cancel OVF Tool while it is running, enter Ctrl-C. This halts OVF Tool and cleans up any generated files.
Probe Mode

Probe mode reveals information about the content of a source. You can probe OVA and OVF packages, VMX, and VI source types. You can use the information gathered to find out how it can be configured when you deploy it.

To use the probe feature, omit the target locator when invoking OVF Tool. For example, at the command line, type: `ovftool LAMP.ovf`. The tool displays all available information about the LAMP.ovf.

When probe mode is used on an OVF or OVA package, OVF Tool also validates the certificate file, if present.

As part of the information displayed in probe mode, the EULA is displayed by default. To prevent the EULA from displaying, use the `--hideEula` option.

```
> ovftool --hideEula LAMP.ovf
```

The following example shows the result of probing the LAMP.ovf.

```
OVF version:   1.0
Name:          LAMP running PHP-Fusion
Version:       0.1
Vendor:        VMware Aarhus
Product URL:   http://example.com/ovf/1.0/LAMP/readme.txt

Annotation: This vApp offers the programming environment stack: Linux, Apache, MySQL and PHP programming environment, LAMP. More specifically the vApp contains a database server running MySQL and a Web server VM running Apache2 and PHP.

End-user License Agreements:
Present:     Yes (1)

Download Size:   604.07 MB

Deployment Sizes:
Flat disks:     16.00 GB
Sparse disks:   Unknown

Networks:
Name:        VM Network
Description: The VM Network network

Virtual Hardware:
Family:       vmx-04
Disk Types:   SCSI-Islogic

Properties:
Key:         db-ip
Label:       IP address
Type:        ip:VM Network
Description: The IP address of the database server.

Key:         ws-ip
Label:       IP address
Type:        ip:VM Network
Description: The IP address of the Web server.

IP Allocation Policy:
Schemes:     ovfenv dhcp
Protocols:   IPv4
```
Appendix: OVF Package Signing

A valid OVF signature requires two special files, a manifest (.mf) file that contains the SHA1 hash codes of all the files in the package (except the .mf and .cert files), and a certificate file (.cert) that contains the signed SHA1 of the manifest file and the X.509 encoded certificate. This appendix specifies how to use OpenSSL and VMware OVF Tools commands to sign and validate OVF packages.

This appendix contains the following topics:

- “Creating an RSA Public/Private Key Pair and Certificate” on page 25
- “Signing an OVF Package” on page 26
- “Validating an OVF Package” on page 26

Creating an RSA Public/Private Key Pair and Certificate

To sign a package, a public/private key pair and certificate that wraps the public key is required. The private key and the certificate, which includes the public key, is stored in a .pem file.

The following OpenSSL command creates a .pem file:

```
> openssl req -x509 -nodes -sha1 -days 365 -newkey rsa:1024 -keyout myself.pem -out myself.pem
```

Example A-1 shows the contents of the `myself.pem` file.

Example A-1. Myself.pem File Contents

```
-----BEGIN RSA PRIVATE KEY-----
MIICXAIBAAKBgQDe0dCCKNfQ45+D8ezGGAuVShbEBbuqFCQnQfiz27Wt6bu4OhcE
bQtjgfuEpci14e31tx3cu18XTv4iCRL7D7i2pMN2UVj60Zw/B7jIw4UPG2g96f
...
-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----
MIIC5CAK2gAwIBAgIJKAgIJKAgIJKAgIJKAgIJKAgIJKAgIJKAgIJKAgIJKAgIJKAgIJK
GaryILMRMwEQQyDQIeWb211LVNBQxL0M8wOQyDQIeWb5AYX3odXMsITAf
...
-----END CERTIFICATE-----
```

To display the contents of a .pem file at the command line, type the following:

```
> openssl x509 -text -noout -in <filename>.pem
```

Certificate:

Data:

Version: 3 (0x2)
Serial Number:

To create a trusted certificate, use the OpenSSL command, omitting the --x509 option. This creates a certificate request in a .pem file that you can send to any public authority, such as Verisign.

Signing an OVF Package

Signing an OVF package enables the person deploying it to validate the authenticity of the OVF package. Once the package is signed, OVF package files cannot be changed, without invalidating the signature. When a package comes from a trusted source and has a valid OVF signature, you can deploy the package knowing the package has not been tampered with.

Signing an OVF package requires a .pem file that contains a private key and a certificate, as shown in section “Creating an RSA Public/Private Key Pair and Certificate” on page 25.

To sign a generated OVF package, include the --privateKey option. The option syntax is shown in the following example:

```
> ovftool --privateKey=<path to .pem file> <source> <output OVF or OVA file>
```

When this option is used, OVF Tool uses the private key and certificate to generate a signature based on the SHA1 digest of each file that is included in the OVF package, including the OVF descriptor itself.

OVF Tool generates an additional .cert file with a signed SHA1 signature and the certificate used to sign it. **Example A-2** shows an example of the .cert file generated by OVF Tool.

Example A-2. Certificate File Created by OVF Tool

SHA1(signed-package.mf)=5d9a307f80acdc1a424079eb38ff8954c153f978e599ed3744d784c853bab1856415ffa16ef 78be34d7cd5dfad411a3017eda9188f69e33be0aadcf2e428ce6d8ba3a19ef800c8729511131603 dcb21f9ba7a6088f1a87fe15ebf3699c8a874bb05c43b1387d5sd373273e7f8a3720d489e147e31c 4570d15f7a3beae77

```
-----BEGIN CERTIFICATE-----
MIIDtzCCArigAwIBAgIJAKDgFLg9wvBwMAcGCSqGSIb3DQEBCwUAMHkxCzAJBgNV
BAYTARKLQ8wDQYDVQQIHEwZBYXIoZodXMxFATBGNVBA6TDZNd2FzYszgswDjJlJEM
MAOGA1UEcCMdMckjKEwEwDVQQDEwhLcm1zdGhjelM8BGCSqGSIb3DQEJARY5
a2xhck3N1bk2xB2xhdcm3juY29mBT4AXGTMdMxwJZeMDUwGxkZTEwMDMwJzEMdUw
NFowTELMGA1UEBhMCpRexDrANBgNVBAcTBFkhcm1zc3VEMBMGAIUECQMvMk1k
YXJlLCBmbMuMQowCgYDVQQLExNWhSUxETAPBgoNbVAMTCETyoXNbaTeFuMEwHwYJ
KoZlXhvcNQAPKbFrHzGfzCvHUHt2dFzY55jb2wogZ8wODY3JkoZlXhvcNQAEBQAD
qYBAIGAoGBAM2xxK91y1ITiRrXpXGg9zXeP40epcs71ZCnpBZ3mB5smEeC6
ZSSemmJo5wpkvV/8zRAL0Bgmj/hot1noSkiAZi10liPnXIMB0US0ps/Pim7VNBkmv
SU1fC4T6/MgyVynfxPHB58EwZlUwvRex6Yt1229MOGCnxlpvd90AgMBAAgj
gd4w6sHqYxYdVR0OBYFEM2KkX7pWToMnf+gaC65MF2kxX7pXwTQmMg+iD6HwMOZLRlrfJ3i1GrBgLH5MEm0mpw
gaCAF2MKkX7pWToMnf+gaC65MF2kxX7pXwTQmMg+iD6HwMOZLRlrfJ3i1GrBgLH5MEm0mpw
----END CERTIFICATE-----
```

Validating an OVF Package

If an OVF certificate file is present, OVF Tool always verifies if the signature fits the SHA1 digest of the files in the package and tests the authenticity of the certificate.

To quickly validate the authenticity of an OVF package, use the probe mode as shown in the following example:

```
> ovftool signed-package.ovf
```
Index

<table>
<thead>
<tr>
<th>B</th>
<th>benefits of OVF</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>command line, running OVF Tool from</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>command-line options</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>--compress</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>compression</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>configuration files</td>
<td>20</td>
</tr>
<tr>
<td>D</td>
<td>delta disk compression</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>introduction</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>limitations</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>download file names</td>
<td>11</td>
</tr>
<tr>
<td>E</td>
<td>examples</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>cancelling OVF Tool while running</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>chunking</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>convert .ovf to .vmx</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>convert .vmx to .ova</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>convert .vmx to .ovf</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>convert source to target</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>deploying and powering on</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>deploying OVF package</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>downloading from a protected site</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>exporting a running virtual machine or vApp</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>maximum compression</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>obtaining progress feedback</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>omitting disks in output</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>overwriting a running virtual machine or vApp</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>probe mode</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>renaming the OVF package</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>setting OVF network mappings</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>setting OVF properties</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>using a proxy</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>validating</td>
<td>22</td>
</tr>
<tr>
<td>F</td>
<td>feature highlights</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>file locators</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>file size comparisons</td>
<td>9</td>
</tr>
<tr>
<td>I</td>
<td>installing OVF</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Linux details</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Windows details</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>installing OVF Tool</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>introduction to OVF Tool</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>inventory path</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>host or resource pool</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>virtual machine or vApp</td>
<td>18</td>
</tr>
<tr>
<td>L</td>
<td>Linux</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>path syntax for file locators</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Linux installation of OVF</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Linux operating systems supported</td>
<td>10</td>
</tr>
<tr>
<td>M</td>
<td>--makeDeltaDisks</td>
<td>9</td>
</tr>
<tr>
<td>O</td>
<td>operating systems supported</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>OVF package</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>space requirements</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>OVF standard</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>OVF support in vSphere</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>OVF Tool</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>adding to PATH variable</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>command-line options</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>examples</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>installation</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>installing</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>partial locators</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>running</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>running from command line</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>source and target locator definitions</td>
<td>13</td>
</tr>
<tr>
<td>P</td>
<td>partial locators</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>command-line dialog</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>OVF Tool assumptions</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>PATH variable, adding OVF Tool</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>platforms supported</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>protocol locators, HTTP, HTTPS, FTP</td>
<td>17</td>
</tr>
<tr>
<td>R</td>
<td>running OVF Tool after install</td>
<td>12</td>
</tr>
<tr>
<td>S</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>source locator</td>
<td>VI source locators</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>definition</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>query values</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>source and target values</td>
<td></td>
</tr>
<tr>
<td>space requirements</td>
<td>virtual machine file extensions</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>supported platforms</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>vSphere support for OVF</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>target locator</td>
<td>Windows</td>
<td></td>
</tr>
<tr>
<td>definition</td>
<td>path syntax for file locators</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>technical support resources</td>
<td>Windows installation details</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Windows operating systems supported</td>
<td></td>
</tr>
<tr>
<td>URI, using for file locators</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>URI, using for locators</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>