@ vmware Performance Study

10Gbps Networking Performance

VMware® ESX 3.5 Update 1

With increasing number of CPU cores in today’s computers and with high consolidation ratios combined with
the high bandwidth requirements of today’s applications, the total I/O load on a server is substantial. Single
1Gbps network cards are unable to support the demands of these applications, and multiple NICs are often
impractical because the number of ports utilized on the host and on the network switches. Now 10Gbps
Ethernet adapters offer a solution that provides much higher bandwidth while using fewer ports on the hosts
and switches.

Support for 10Gbps networking devices was introduced in ESX 3.5. Features such as TCP segmentation offload
(TSO), jumbo frames, and multiple receive queues were introduced to efficiently use 10Gbps devices. ESX 3.5
Update 1 added support for PCI-E-based Intel Oplin 10Gbps Ethernet adapters to ESX.

In this paper, we present the following results:

B A ssingle one-vCPU virtual machine can drive 8Gbps of traffic on the send path and 4Gbps traffic on the
receive path when using standard MTU (1500 byte) frames.

B Using jumbo frames, a single virtual machine can saturate a 10Gbps link on the transmit path and can
receive network traffic at rates up to 5.7Gbps.

B Both transmit and receive performance scale very well with increasing load on the ESX host.

B Even on hosts with high consolidation ratios, all virtual machines get a fair share of the available receive
and transmit bandwidth.

This paper covers the following topics:

B “Performance Enhancements in ESX 3.5” on page 2

B “Benchmarking Methodology” on page 2

B “Standard MTU Performance” on page 4

B “Jumbo Frame Performance” on page 5

B “Performance Scalability with Multiple Virtual Machines” on page 6
B “Conclusion” on page 8

B “Resources” on page 9

Copyright © 2008 VMware, Inc. All rights reserved. 1

10Gbps Networking Performance

Performance Enhancements in ESX 3.5

A number of enhancements have been integrated into the networking code of ESX 3.5, including support for
jumbo frames and TSO for Enhanced VMXNET devices. Jumbo frames are large Ethernet frames, typically
9000 bytes, which are larger than the standard Ethernet MTU (maximum transfer unit) of 1500 bytes. Guest
operating systems using jumbo frames need fewer packets to transfer large amounts of data and can achieve
higher throughputs and lower CPU utilization than guests using packets with the standard MTU size.

TSOis a feature, widely supported by today’s network cards, that allows the CPU-intensive task of segmenting
large TCP packets (up to 64KB) to be offloaded to the hardware. Because the guest operating system can now
send packets larger than the standard MTU to ESX, the processing overheads on the transmit path are greatly
reduced.

ESX 3.5 also introduced support for NetQueue. The NetQueue API allows a NIC driver to have multiple
queues for processing incoming packets on different physical CPU cores. Hence, on a machine with MSI-X
support, the device can use multiple physical CPU cores for processing packets destined for different virtual
machines on the host. This boosts the networking performance on the receive path (which traditionally has
higher costs than the transmit path) when multiple virtual machines are running on the same host.

Benchmarking Methodology

We used the network benchmarking tool netperf 2.4.2 for all the tests. Netperf measures unidirectional
network performance for TCP and UDP traffic. It includes support to measure TCP and UDP throughput,
using bulk transfers, and end-to-end latencies. Netperf has a client-server model and comprises the following:

B Netperf client, which acts as a data sender
B Netserver process, which acts as a receiver

To check for network performance under different configurations, netperf allows you to specify parameters,
such as the socket size and the message size, for the tests. For more details on netperf, see the Netperf Manual.
For a link to the manual, see “Resources” on page 9.

Table 1. Benchmark Test Configuration

Hardware

ESX HP DL 580 G5 4 quad-core Xeon X7350 at 2.93GHz
16GB RAM
Intel 82598 XF 10Gbps dual-port
adapter

Client machine HP DL 380 G5 ® 2 quad-core Xeon X5355 at 2.66GHz
16GB RAM

®m Intel 82598 XF 10Gbps dual-port

adapter

Software

ESX ESX 3.5 Update 1

Client machine Red Hat Enterprise Linux 5 Update 1 AS 64-bit

kernel: 2.6.18-53.el5
Virtual machines ® Red Hat Enterprise Linux 5 Update 1 AS 64-bit ®m 1 virtual CPU

kernel: 2.6.18-53.el5 m 512MB RAM

® Windows Server 2003 SP2 Enterprise Edition ®m Virtual device: Enhanced VMXNET
64-bit

For tests using both single and multiple virtual machines, we used five simultaneous netperf sessions per
virtual machine. Multiple netperf sessions are needed, because a single session is unable to saturate a 10Gbps
link even when ample CPU cycles are available.

Copyright © 2008 VMware, Inc. All rights reserved. 2

10Gbps Networking Performance

The details of the experimental configuration are presented in Table 1. All virtual machines used for the
experiments used a uniprocessor kernel or HAL and were configured with one virtual CPU. All virtual
machines were configured with 512MB of RAM and used the Enhanced VMXNET virtual device. To
understand the performance difference between e1000 and vmxnet virtual devices, see “Performance
Comparison of Virtual Network Devices.” For a link, see “Resources” on page 9.

TSO was enabled by default in the virtual machines as well as on the client machine. To enable jumbo frames,
the MTU was set to 9000 in the following places:

B In the client, using ifconfig ethl mtu 9000
B On the ESX host, using esxcfg-vswitch —m 9000 vSwitchl

B In the Windows virtual machine, by setting Device Manager > Network adapters > VMware PCI
Ethernet Adapter > Properties > Advanced > MTU to 9000

B In the Linux virtual machine, using ifconfig ethl mtu 9000

NOTE Itis important that there is no mismatch of MTUs along a given link.

For tests using a single virtual machine, for minimal variance in the experiments, both the virtual machine and
physical NIC interrupt vectors were pinned to two adjoining cores on the same CPU. We pinned the virtual
machine to physical CPU 3 using VI Client (VM > Edit Settings > Resources > Advanced CPU > Scheduling
affinity). We pinned the Oplin interrupt vector (0xb1 in our case) to the adjoining core by running the
following command in ESX:

echo "move Oxbl 2" > /proc/vmware/intr-tracker

For the tests using multiple virtual machines, instead of creating 15 clones of the original virtual machines, we
used nonpersistent disks. We booted the virtual machines in nonpersistent mode by adding the following line
to the . vmx file for each virtual machine:

scsif:0.mode = independent-nonpersistent

In this way, we could boot multiple virtual machines from the same virtual disk. All changes to such a virtual
machine are lost after the virtual machine powers down.

Because 16 virtual machines sending a large number of small packets can easily overflow the default queues
on the host, for tests using multiple virtual machines, we increased the Pending Tx Packet queue size from the
default value of 200 to 500 using VI Client (Configuration > Advanced Settings > Net >
Net.MaxNetifTxQueueLen).

For the scaling tests using multiple virtual machines, we enabled NetQueue using VI Client (Configuration >
Advanced Settings > VMkernel > VMkernel.Boot.netNetqueueEnabled).

We configured the Intel Oplin driver (ixgbe) to be loaded with MSI-X based interrupt and 16 receive queues
on the test interface and a single queue on the second interface of the dual-port NIC by using the following
command:

esxcfg-module -s "InterruptType=2,2 VMDQ=16,1" ixgbe

For the changes to come into effect, we needed to reboot the ESX host. For more details on enabling NetQueue,
see “Enabling Support for NetQueue on the Intel 82598 10 Gigabit Ethernet Controller.” For a link, see
“Resources” on page 9.

Copyright © 2008 VMware, Inc. All rights reserved. 3

10Gbps Networking Performance

Figure 1. Test Setup for Send Test from Virtual Machine to Native Environment

guest (virtual machine)

A

\4

A
ESX host client machine

\/
.l crossover cable %

Figure 1 shows the test configuration for the send tests in which a virtual machine is sending data. For the
receive tests, we swapped the netperf and netserver processes. We ran two sets of throughput tests—first
without jumbo frames, and then with jumbo frames enabled. For the tests using a single virtual machine, all
reported numbers are the average of three one-minute runs. For the tests using multiple virtual machines, the
run lengths were increased to two minutes to compensate for the skew in starting experiments simultaneously
in as many as 16 virtual machines.

This paper does not discuss the performance when two virtual machines are running on the same ESX host.
The network performance between two virtual machines on the same host is independent of physical NIC
speeds and is discussed in detail in “Networking Performance in VMware ESX Server 3.5.” For a link, see
“Resources” on page 9.

Standard MTU Performance

Figure 2 shows the TCP throughput observed for Linux and Windows one-vCPU virtual machines
transmitting and receiving without using Jumbo Frames. With either operating system, a single uniprocessor
virtual machine can drive approximately 8Gbps of traffic. Using a large socket size and a large message size
helps transmit performance significantly. On the receive path, Linux virtual machines can receive 4Gbps of
traffic, whereas Windows virtual machines are limited to 3Gbps of traffic. This difference in performance can
be attributed to the differences in the TCP/IP stacks of the two operating systems. The receive throughput is
usually lower than the transmit throughput for the same network configuration, because the processing
overheads on the receive path are higher than those on the transmit path.

Thus, with current hardware, a one-vCPU virtual machine can drive 8Gbps of traffic on the transmit path and
4Gbps on the receive path.

Copyright © 2008 VMware, Inc. All rights reserved. 4

10Gbps Networking Performance

Figure 2. Single Virtual Machine Performance with 1500-byte Packets

Throughput (Gbps)

8KB - 8KB- 64KB - 64KB - 64KB - 64KB - 8KB - 8KB - 64KB - 64KB - 64KB - 64KB -
512B 4KB 512B 8KB 16KB 64KB 512B 4KB 512B 8KB 16KB 64KB

Netperf configuration (Socket size - Message size)

Transmit Receive

® Linux © Windows

Jumbo Frame Performance

Though the transmit throughput using the standard MTU (1500 bytes) packets comes close to the native
throughput, a single uniprocessor virtual machine is CPU limited and cannot saturate a 10Gbps link. Similarly,
receive throughput is limited to 4Gbps. Jumbo frames can help reduce some processing overheads because
large Ethernet frames result in few packets.

Figure 3 shows the throughput results for one-vCPU virtual machines using 9000 byte jumbo frames. For
jumbo frame tests, we used 128KB sockets instead of 8KB sockets because most operating systems see benefits
from jumbo frames when using large socket sizes. As the graphs show, with a 128KB socket, the Linux virtual
machine is able to saturate the 10Gbps link, irrespective of the message sizes being used for the test. Windows
throughput remains nearly constant for all the network configurations.

On the receive path, the throughput for Linux virtual machines increases by up to 40 percent over the standard
MTU case. We have observed that Windows receive performance is adversely affected by socket sizes greater
than 64KB, as can be seen in the graph.

Thus, with jumbo frames, a single virtual machine can saturate a 10Gbps link on the transmit path and its
receive performance can improve by up to 40 percent in some cases.

Copyright © 2008 VMware, Inc. All rights reserved. 5

10Gbps Networking Performance

Figure 3. Single Virtual Machine Performance with 9000-byte Packets
10

Throughput (Gbps)
(6]

64KB - 64KB - 64KB - 128KB 128KB 128KB 64KB - 64KB - 64KB - 128KB 128KB 128KB
8KB 16KB 64KB - 8KB -16KB -64KB 8KB 16KB 64KB - 8KB -16KB -64KB

Netperf configuration (Socket size - Message size)

Transmit Receive

® Linux =~ Windows

Performance Scalability with Multiple Virtual Machines

One of the primary advantages of using virtualization is the ability to consolidate multiple physical servers
into multiple virtual machines running on a single physical host. These virtual machines share the host CPU
and memory as well as the storage and networking devices. We assume that a large number of small virtual
machines will share a single physical 10Gbps NIC. To understand the performance in such a scenario, we ran
tests with as many as 16 virtual machines sharing the same physical NIC. Ideally, as virtual machines are
added to the system, the throughput should increase linearly and then stabilize after a certain point (and not
decrease as the load is increased on the system). Figure 4 and Figure 5 show the results from the transmit
scaling and receive scaling tests, respectively. The results presented in this section simulate the worst case
scenario, in which all virtual machines are simultaneously stressing the network. In real world deployments,
the bandwidth requirements of most applications are low, and hence consolidation ratios will be higher.

Figure 4. Multiple Virtual Machine Transmit Performance

10
9 /‘j*
8
g7 f
O 6
5 5 A
% 4 /’/ \‘\0—~0\N
- e ———¢ 0o
5 , vl
= , P
1
0 T T T T T T T T T T T T T T
17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of virtual machines
—o— Linux 8KB - 512B Linux 64KB - 512B —4— Linux 64KB - 16KB
Windows 8KB - 512B Windows 64KB - 512B —+— Windows 64KB - 16KB

Copyright © 2008 VMware, Inc. All rights reserved. 6

10Gbps Networking Performance

Figure 4 shows how the transmit performance scales with an increasing number of virtual machines. For both
Linux and Windows, two virtual machines are enough to saturate a 10Gbps link. In the previous sections, we
showed that a single virtual machine can drive up to 8Gbps of traffic. The large socket size cases show that
VMware Infrastructure 3.5 scales well and that networking throughput increases until it reaches the saturation
point (9.4Gbps for standard MTU) and remains constant despite increasing load on the system. In tests with
small socket sizes and small message sizes, throughput increases linearly up to a few virtual machines and
then stabilizes at a lower value. In such configurations, throughput is usually limited by the TCP/IP stack or
by the processing power of the single client, which is receiving all traffic from multiple virtual machines. To
confirm this, we ran Red Hat Enterprise Linux 5 natively on the same hardware (with 16 physical cores) and
found that it can drive only approximately 6Gbps of traffic when using an 8KB socket size and 512 byte
message size.

Figure 5. Multiple Virtual Machine Receive Performance

10
9 Aﬁ L
) — Ay
py %
. / — .
Z 7=
Ke)
O 6
5 5 _—
2" "
o 4 —*
=} e
2+ —*
1 ‘/
0 T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of virtual machines
—o— Linux 8KB - 512B Linux 64KB - 512B —a4— Linux 64KB - 16KB

Windows 8KB - 512B Windows 64KB - 512B Windows 64KB - 16KB

Figure 5 shows how performance scales on the receive path with an increasing number of virtual machines.
As expected from the single virtual machine results, three virtual machines are enough to saturate the link in
the receive case. All lines on the graph show a similar trend —the throughput increases linearly until it reaches
line rates and remains constant until the load reaches seven virtual machines. As we increased to more than
seven virtual machines, we saw a very gradual continuous decline as the load in increased to 16 virtual
machines. The Linux small socket size and small message size case does not perform as well as the others and,
as mentioned earlier, this is a result of the fact that Red Hat Enterprise Linux 5 running natively (on the client)
cannot push beyond 6Gbps when using small sockets and small message sizes.

Thus, ESX scales well with an increasing number of virtual machines on the system. Our tests show the worst
case scenario, in which all virtual machines are running a bandwidth-intensive application. Performance
should be better in real world deployments in which it is rare that all virtual machines booted on a system are
pushing traffic at the maximum rate at the same time. Virtual machines in typical customer environments
usually have much lower throughput requirements and can scale to a much larger numbers of virtual
machines.

Copyright © 2008 VMware, Inc. All rights reserved. 7

10Gbps Networking Performance

Figure 6. Throughput Fairness in Test with 15 Virtual Machines
800

700

600

500 +— -

400

300

Throughput (Mbps)

200

100

0 T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Virtual machines

Linux Rx Linux Tx Windows Rx —<—Windows Tx

We also investigated fairness among the TCP flows across all virtual machines. Figure 6 shows the average
throughput per virtual machine when using a configuration with 64KB sockets and 16KB messages. The
relatively flat lines indicate that even when the system is highly loaded, all virtual machines get a fair share of
the bandwidth. For example, in the Windows transmit case with 15 virtual machines, in which there are 75
TCP connections (five per virtual machines), the average throughput per virtual machine is 627Mbps and the
standard deviation is a mere 17Mbps.

Conclusion

The results presented in the previous sections show that virtual machines running on ESX 3.5 Update 1 can
efficiently share and saturate 10Gbps Ethernet links. A single uniprocessor virtual machine can push as much
as 8Gbps of traffic with frames that use the standard MTU size and can saturate a 10Gbps link when using
jumbo frames. Jumbo frames can also boost receive throughput by up to 40 percent, allowing a single virtual
machine to receive traffic at rates up to 5.7Gbps.

Our detailed scaling tests show that ESX scales very well with increasing load on the system and fairly
allocates bandwidth to all the booted virtual machines. Two virtual machines can easily saturate a 10Gbps link
(the practical limit is 9.3Gbps for packets that use the standard MTU size because of protocol overheads), and
the throughput remains constant as we add more virtual machines. Scaling on the receive path is similar, with
throughput increasing linearly until we achieve line rate and then gracefully decreasing as system load and
resource contention increase.

Thus, ESX 3.5 Update 1 supports the latest generation of 10Gbps NICs with minimal overheads and allows
high virtual machine consolidation ratios while being fair to all virtual machines sharing the NICs and
maintaining 10Gbps line rates.

Copyright © 2008 VMware, Inc. All rights reserved. 8

10Gbps Networking Performance

Resources

® “Enabling Support for NetQueue on the Intel 82598 10 Gigabit Ethernet Controller”
http://kb.vmware.com/kb/1004278

® “Performance Comparison of Virtual Network Devices”
www.vmware.com/files/pdf/perf_comparison_virtual_network_devices_wp.pdf

® Netperf manual
http://www .netperf.org/netperf/training/Netperf.html

® “Networking Performance: VMware ESX Server 3.5”
http://www.vmware.com/files/pdf/ESX_networking_performance.pdf

If you have comments about this documentation, submit your feedback to: docfeedback@vmware.com

VMware, Inc. 3401 Hillview Ave., Palo Alto, CA 94304 www.vmware.com

Copyright © 2008 VMware, Inc. All rights reserved. Protected by one or more of U.S. Patent Nos. 6,397,242, 6,496,847, 6,704,925, 6,711,672, 6,725,289, 6,735,601, 6,785,886,
6,789,156, 6,795,966, 6,880,022, 6,944,699, 6,961,806, 6,961,941, 7,069,413, 7,082,598, 7,089,377, 7,111,086, 7,111,145, 7,117,481, 7,149, 843, 7,155,558, 7,222,221, 7,260,815,
7,260,820, 7,269,683, 7,275,136, 7,277,998, 7,277,999, 7,278,030, 7,281,102, 7,290,253, 7,356,679, 7,409,487, 7,412,492, 7,412,702, 7,424,710, 7,428,636, 7,433,951, and 7,434,002;
patents pending. VMware, the VMware “boxes” logo and design, Virtual SMP, and VMotion are registered trademarks or trademarks of VMware, Inc. in the United States and/or
other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.

Revision: 20081104 Item: PS-071-PRD-01-01

mailto:docfeedback@vmware.com

	Performance Enhancements in ESX 3.5
	Benchmarking Methodology
	Standard MTU Performance
	Jumbo Frame Performance
	Performance Scalability with Multiple Virtual Machines
	Conclusion
	Resources

