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Introduction 
VMware vFabric® Postgres (vPostgres) is a distribution of the open-source PostgreSQL [1] along with companion 
drivers and utilities chosen by VMware. It is supported by VMware [2]. 

This white paper presents the performance of vPostgres 9.2 on VMware vSphere® 5.1. We show vPostgres 9.2 in a 
32-vCPU virtual machine (VM) on vSphere and a 32-core physical machine achieves the same vertical scalability 
as in an equally-configured native setup. Using out-of-the-box settings for both vPostgres and vSphere, we show 
a VM-based database consolidation approach performs on par with alternatives when memory is 
undercommitted and increasingly better when memory overcommitment escalates. We also show the vPostgres 
database memory balloon technique can help better preserve performance under memory overcommitment. We 
last summarize key best practices for running vPostgres on vSphere. 

Vertical Scalability 

Database applications benefit from the full performance capacity from each server. Meanwhile server hardware 
keeps improving. For example, each generation has more CPU cores and memory. Thus making database server 
scale up is practical and useful. Running applications on virtualization platforms offers compelling operational 
capability and efficiency. 

vSphere is a proven platform for running many performance-critical enterprise applications, including database 
applications. Our study shows vPostgres on vSphere can scale up its performance as equally well as on native 
setup. 

Consolidation 

Consolidating multiple databases onto one physical machine is economical. Using virtual machines to contain the 
databases enables strong isolation and unique operational capabilities. 

The performance needs of databases often exhibit a time-multiplexed pattern collectively. This common 
workload behavior presents real consolidation opportunities: achieving higher resource utilization without 
jeopardizing performance. 

Our study shows when consolidating multiple vPostgres databases on vSphere consolidating on dedicated VMs 
performs better and more robust than on alternative containers. 

PostgreSQL uses operating system buffer cache extensively for I/O caching and recommends configuring a 
moderate amount of memory (e.g., 25% of total memory [3]) for database shared buffers. This makes VMs well-
suited to consolidate PostgreSQL databases out of the box: Because most of the memory in these VMs is 
managed by the guest operating system, the guest kernel-level memory balloon driver traditionally employed by 
vSphere VMs can effectively redistribute memory among the VMs without disrupting the database server’s own 
memory management when a need for redistribution arises (e.g., when one overcommits memory to attain 
denser consolidation and wants simple VM provisioning). 

The strong isolation between VMs makes it desirable to seek more performance out of a given amount of VM 
resources. Increasing the size of database server shared buffers can be a simple way to achieve this goal for some 
common workloads. We show by changing vPostgres server shared buffers from 25% to 75% of VM memory we 
gain 12-13% more throughput and reduce temporal variation of the throughput by 70-80% for a common 
database workload. VM-based consolidation approach also perform more robustly than alternatives under 
memory overcommitment and the vPostgres database balloon technique [4] can improve the robustness even 
further, particularly in more performance-demanding situations. Our tests show when memory is 55% 
overcommitted the relative performance advantage of VM-based consolidation over alternatives is 200% out of 
the box (25% of VM memory is used for vPostgres shared buffers.) If 75% of VM memory is used for the shared 
buffers, the relative performance advantage of VM-based consolidation under a 55% memory-overcommitted  
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situation is 60% when using only guest kernel-level balloon and 140% when using both guest kernel-level balloon 
and vPostgres database balloon. 

Vertical Scalability Tests 
Scaling up a server (e.g., with more CPUs and more memory) is useful—it reduces the need to purchase and run 
additional server machines—which translates to both capital and operational savings. Scaling up is also known as 
vertical scaling. We conduct vertical scalability tests using a vPostgres VM with 32 vCPUs on vSphere and on a 
physical host with 32 CPU cores. We use two workloads: 

· pgbench default: pgbench [5] is a common benchmark used by the Postgres community and maintained in 
the PostgreSQL source tree. It runs the same sequence of SQL commands repeatedly. With the default 
configuration there is no delay between SQL commands and the composition of these commands is loosely 
based on TPC-B [6], involving five SQL commands (one SELECT, three UPDATEs, and one INSERT) per 
transaction. 

· pgbench SELECT-only: This workload uses a non-default configuration of pgbench: only one SELECT is 
issued per transaction. There is no delay between the SQL commands. 

Test Methodology and Settings 

Figure 1 shows the test bed for vertical scalability tests exercising the vPostgres server on a single database VM 
on a vSphere 5.1 host. 

 

Figure 1 Experimental setup for vertical scalability tests 

 
Because the scalability improvement of vPostgres 9.2 focuses on a pgbench SELECT-only type of workload, we 
also run vPostgres 9.2 in a comparable native Linux configuration using pgbench SELECT-only, following the 
same methods previously described. The same software stack (vPostgres 9.2, SLES11SP1) is installed natively on 
the same host instead of on vSphere. The vPostgres server instance is configured the same way except that the 
native installation uses all physical memory while the VM is configured with 12GB vRAM. We believe the 
advantage of the physical setup in this case is negligible, if any, given that the same and large size of database 

Database clients
vPostgres 9.2, 8G shbuf
SLES11SP1 64-bit
32 vCPU, 12G vRAM

test harness

Ethernet crossover

Dell R820 Dell R810
4x Intel Xeon E5-4650, 256G RAM 4x Intel Xeon E7-4850, 256G DRAM
EMC VNX5500 Internal RAID0 (2x SAS 15K RPM)

vSphere 5.1 64-bit Linux
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shared buffers is used in both setups (our results indeed show that.) 
Table 1 details the settings for the vertical scalability tests, both the virtual setup and the physical setup. 
 

VIRTUAL SETUP 

Host Dell R820, 4x Intel Xeon E5-5640 (32 cores in total), 256GB DRAM 

Storage EMC VNX5500 SAN, 3 disk array enclosures (each housing 15 SAS-II drives) 

VMFS data store 3 in total, 1 per SAN disk array enclosure (DAE) 

Host OS vSphere 5.1 express patch 2 build 1021289 

Virtual Machine 32 vCPUs, 12GB vRAM, 3 virtual disks (1 per VMFS data store) 

Guest OS 
SUSE Linux Enterprise Server 11 SP1 (SLES11 SP1) 64-bit; vPostgres DATA directory, vPostgres WAL 
(write-ahead log) directory and the rest (e.g., root file system and swap) mounted on a separate virtual 
disk 

Database server vPostgres 9.2.3 

Workload 
Database is populated by pgbench scale factor=100, resulting in an initial database size of about 1.3GB. 
It is exercised by database clients (simulated by pgbench) running on the same database VM. Each 
database client uses a separate database connection established on a Unix domain socket. 

Tests 

A series of database client counts is tested, each constituting a separate test session. Each session lasts 
5 minutes. The same series is run three times back-to-back. The median reading of the three runs is 
reported for each database client count. The database clients drive traffic in a tight loop: no delay is 
used between transactions and different operations inside a transaction. This input exercises the 
vPostgres server in earnest.  

 
 

PHYSICAL SETUP 

Host OS The same SLES11SP1 as used as the guest OS in the virtual setup 

Compute 32 CPU cores, 256GB DRAM 

Storage Three separate raw LUNs from the same three SAN DAEs as in the virtual setup 

Others Database server, workload, and test procedure are the same as those used in the virtual setup. 

Table 1 Configurations in the setup for vertical scalability tests 

Performance Metrics 

The scalability tests are concerned with a high-watermark reading of per-server transaction throughput. Since all 
clients are driving transactions in earnest, how fast vPostgres server can complete the transactions solely 
determines the average throughput that can be achieved during the entire test session. We report the 
throughput in the unit of transactions per second (TPS). 

The scalability of a particular vPostgres server can be gauged by the peak and the slope of the throughput curve 
with respect to the number of database clients: the higher the peak, the steeper the slope, the lengthier the linear 
scaling region, the better the scalability.  

We compare the scalability between vPostgres 9.1 and vPostgres 9.2 using both pgbench SELECT-only and 
pgbench default workloads. 

We compare the scalability between vPostgres 9.2 in the virtual setup and vPostgres 9.2 in the physical setup 
using pgbench SELECT-only workload. 
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Scalability Results: vPostgres 9.2 versus vPostgres 9.1 

Figure 2 Scalability of pgbench SELECT-only: vPostgres 9.2 versus vPostgres 9.1 

 

Figure 3 Scalability of pgbench default: vPostgres 9.2 versus vPostgres 9.1 
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Figure 2 shows the peak throughput of pgbench SELECT-only by vPostgres 9.2 is about four times that of 
vPostgres 9.1. The slope is steeper, and the region of linear scalability extends from up to 8 clients to up to 20 
clients. This suggests that workloads featuring read-heavy and short-duration transactions will benefit greatly 
from vPostgres 9.2. 

Figure 3 shows the scalability of pgbench default. The peak throughput of this benchmark by vPostgres 9.2 
improves nearly 100% over that by vPostgres 9.1. The saturation point extends from about 20 clients to beyond 
48 clients. Because this benchmark has 60% UPDATE transactions and 20% INSERT transactions in the mix, this 
suggests that workloads of write-heavy and short-duration transactions will also benefit greatly from vPostgres 
9.2. 

Scalability Results: Virtual versus Physical 

Figure 4 compares the scalability of vPostgres 9.2 running in a VM versus running in a comparable native Linux 
system as described previously. We can see that vPostgres running in a VM scales on par with running in a native 
machine and fully benefits from the 9.2 scalability improvement. 

 

Figure 4. Scalability of vPostgres 9.2 with pgbench select-only: virtual versus physical 
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Consolidation Performance Tests 
Consolidating multiple databases onto one physical server and attaining a higher consolidation rate are useful 
because it can lead to capital savings (e.g., fewer servers and licenses) and operational savings (e.g., less power, 
cooling, and maintenance). 

There are various approaches for consolidating databases. A critical element in any approach is the choice of 
database runtime container: a vPostgres server instance can hold multiple databases, an operating system can 
hold multiple vPostgres server instances, and a hypervisor can hold multiple VMs with each running a separate 
operating system instance. 

From a performance point of view, challenging consolidation situations are those where the resources configured 
for all collocated VMs exceed the underlying host capacity (this is known as overcommitment), while runtime 
demands for resources from different VMs come in at different times and the aggregate demand in real time is 
below the capacity. In such situations, the choices of execution containers and overcommitment techniques can 
make a difference in redistributing resources from where they are less needed to where they are more needed 
and in time. 

Memory often exhibits a stronger attachment to its immediate “owner” than CPU and I/O resources and thus is 
often the limiting factor when one aims for a denser consolidation. In studying database consolidation, we 
prescribe a series of memory overcommitment situations. We quantify a memory overcommitment rate using 
Equation 1 below. 

𝑀𝐸𝑀𝑐𝑜𝑛𝑓𝑖𝑔 = 𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑣𝑅𝐴𝑀𝑠 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑒𝑑 𝑓𝑜𝑟 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑉𝑀𝑠 

𝑀𝐸𝑀𝑎𝑣𝑎𝑖𝑙 = 𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 ℎ𝑜𝑠𝑡 𝑚𝑒𝑚𝑜𝑟𝑦 𝑚𝑎𝑑𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑜 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑉𝑀𝑠 

𝑀𝑒𝑚𝑜𝑟𝑦 𝑜𝑣𝑒𝑟𝑐𝑜𝑚𝑚𝑖𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 = 100% − 𝑀𝐸𝑀𝑎𝑣𝑎𝑖𝑙/𝑀𝐸𝑀𝑐𝑜𝑛𝑓𝑖𝑔 

Equation 1. Definition of memory overcommitment rate (for database VMs) 

We send time-varying and negatively-correlated traffic streams to database VMs and make sure the memory 
demands by these VMs don’t exceed 𝑀𝐸𝑀𝑎𝑣𝑎𝑖𝑙. We acquire quantitative information of these memory demands 
experimentally in advance. 

We use the DBT-2 benchmark [7] to populate and drive loads to the databases. DBT-2 is an online transaction 
processing (OLTP) performance benchmark implementing TPC-C [8]. It models a wholesale parts supplier where 
multiple clients access its production database, conducting five types of transactions including placing new 
orders, processing payments, processing order delivery, as well as checking order status and stock level. The 
workload generates a mixture of SELECT- and UPDATE-intensive transactions. Using DBT-2, we can control the 
memory demands during any period on any database by adjusting the number of database clients transacting 
against the database during the period. 

We create memory overcommitment situations by co-locating a dummy VM and adjusting its vRAM 
configuration with a full memory reservation (thus the dummy VM will not be involved in memory redistribution) 
to attain a prescribed memory overcommitment rate. 
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Test Methodology and Settings 

Figure 5 shows the test bed for consolidation tests. The settings are detailed in Table 2. 

 

Figure 5. Experimental setup for database consolidation performance tests 

 
Host HP ML350 G6, 2x E5620 (8 cores in total), 12GB DRAM 

Storage 2 Intel 520 SSDs, 1 RAID0 by HP P410i controller comprising 2 SAS-II 15k-rpm drives 

VMFS data store 3 total, out of 2 SSDs and 1 RAID0 volume 

Host OS vSphere 5.1 express patch 2 build 1021289 

Database VMs 3 vCPUs, vRAM per evaluation, 3 virtual disk files (1 per VMFS data store) 

Guest OS 
SUSE Linux Enterprise Server 11 SP1 (SLES11 SP1) 64-bit; vPostgres DATA directory, vPostgres WAL 
directory and the rest (e.g., root file system and swap) each mounted on a virtual disk backed by SSD, 
SSD, and RAID volume, respectively. 

Database server vPostgres 9.2.3 

Workload 

Two databases are consolidated (referred to as DB_1 and DB_2). Each is populated by DBT-2 
warehouse=30, resulting in an initial database size of about 3GB each. They are exercised by database 
clients (simulated by DBT-2) running on a separate physical box. Each database client uses a separate 
database connection. 

Tests 

Against each database we send a traffic stream comprising four periods alternating between high- and 
low-traffic, rendered by 30 and 2 DBT-2 clients respectively (with zero think time). The two streams are 
complementary: during any period when DB_1 is under high traffic DB_2 is under low traffic and vice 
versa. Each period lasts 10 minutes for measurement and12-40 seconds for ramp-up. Figure 6 is a visual 
depiction of this. 

Dummy VM 1 vCPU, vRAM per evaluation, Windows XP x64 as guest operating system. No active workload runs 
inside. 

Table 2 Configurations in the setup for consolidation performance tests 

 

Database VM(s): Dummy VM:
vPostgres 9.2, SLES11SP1 64-bit Windows XP x64, idle
vCPU per evaluation 1 vCPU
vRAM per evaluation vRAM per evaluation

test harness
Database clients

Ethernet crossover

HP ML350 G6 HP ML350 G6
2x Intel Xeon E5620, 12G DRAM, HT-disabled 2x Intel Xeon E5520, 12G DRAM
2 SSDs and 1 RAID0 (2x SAS 15k-RPM) 1 SSD, 1 RAID0 (3x SAS 10k-RPM)

vSphere 5.1 64-bit Linux
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Figure 6 Streams of traffic sent to the two target databases (DB_1 and DB_2) 

We compare four different consolidation schemes involving three types of containers and the vPostgres 
database memory balloon [4]. These schemes are: 

· Consolidation scheme 1: Use one vPostgres server instance to host multiple databases. This is a 1/1/M 
deployment model (1 VM, 1 vPostgres server instance, and multiple databases). 

· Consolidation scheme 2: Use one Linux to run multiple vPostgres server instances each holding one 
database. This is a 1/M/M deployment model (1 VM, multiple vPostgres server instances, multiple databases, 
and one database per server instance). 

· Consolidation scheme 3: Use one VM to ultimately hold one database. This is an M/M/M deployment model 
(multiple VMs, multiple vPostgres server instances, multiple databases, and one database per server instance 
per VM). 

· Consolidation scheme 4: This scheme uses the M/M/M mode and in addition the vPostgres database 
memory balloon [4]. 

In all schemes, the guest kernel-level balloon is used in all database VMs. By design, the vPostgres database 
balloon coexists and cooperates with the kernel-level balloon in scheme 4. 
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Performance Metrics 

The performance of a database consolidation scheme is gauged by DBT-2 transaction throughput attained on 
both databases during all periods. We summarize the performance of each scheme by one number: the sum of 
DBT-2 throughput attained on the two databases, averaged across the four periods. We report DBT-2 
throughput in the unit of new order transactions per minute (NOTPM) per TPC-C convention [8]. 

To establish a baseline, we measure the performance of these consolidation schemes under a common memory 
undercommitment situation. 

For each consolidation scheme, we report its performance under various memory overcommitment situations 
relative to its baseline. The performance preservation trend under a series of progressive memory 
overcommitment rates characterizes the scheme’s ability of capitalizing on the consolidation opportunities.  

We also report on the following system metrics to provide additional perspective: 

· Physical CPU usage: This is to provide a CPU cost perspective to the performance comparison between the 
consolidation schemes. 

· vSphere and vPostgres memory statistics: We report memory ballooned by the guest kernel-level balloon 
drivers as well as by the vPostgres database balloon drivers in scheme 4, memory compressed by the 
hypervisor, and memory swapped by the hypervisor. This is to correlate with the end-to-end performance of 
DBT-2 throughput and to gauge how effectively the ballooning techniques redistribute memory in various 
database consolidation schemes to reduce the extent of more drastic hypervisor memory reclamation 
measures. 

Memory Working Set Sizes 

In order to make sure the memory overcommitment situations under study still present real consolidation 
opportunities, we measure the memory working set sizes (that is, the memory demands) experimentally and use 
this information when setting memory overcommitment rates for the consolidation performance study. 

We are concerned with two separate areas of memory management: vPostgres server shared buffers and the 
entire VM memory managed by the guest operating system. Thus we are interested in two kinds of working set 
sizes: (1) working set size of the database shared buffers and (2) working set size of the VM memory all treated 
by the guest operating system in no discretion. 

We arrive at both working set sizes by exercising a target database (sized with 30 warehouses under DBT-2) on 
a VM with a series of deliberately sized VM memory and vPostgres shared buffers. We conduct the sizing 
experiments for both traffic levels we use in consolidation performance study (that is, 30 DBT-2 clients and 2 
DBT-2 clients). 

We first determine the VM memory working set size: We keep the vPostgres shared buffers constant at 1GB and 
exercise a range of VM memory sizes. We measure DBT-2 throughput. In the resulting performance curve, the 
memory size reading at the knee point provides the working set size. 

We then determine the working set size of the vPostgres shared buffers. We keep the difference between the VM 
memory size and the size of vPostgres shared buffers constant (at the value of the non-discretionary VM 
memory working set size determined previously subtracting 1GB). We exercise a range of vPostgres shared 
buffers and VM memory sizes. We measure DBT-2 throughput. In the resulting performance curve, the shared 
buffers size reading at the knee point provides the working set size. 

Figure 7 and Figure 8 are the performance memory curves resulting from running 30 DBT-2 clients. From these 
figures, we read 1376MB for the non-discretionary VM memory working set size and 984MB for the shared buffers 
working set size. Note the performance dips around the VM memory size of 2048MB: We believe it results from  
the fact that PostgreSQL using operating system buffer cache extensively and thus sizing shared buffers at about 
half the total memory (such as in these cases) exacerbates a double-buffering phenomenon where one pays 
extra buffering overhead for little performance gain. 
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Figure 9 and Figure 10 are the performance memory curves under 2 DBT-2 clients. In this case, the traffic is light 
to the extent that the 1GB vPostgres shared buffers cache almost all I/O. As a result, we read no performance 
degradation in Figure 9 where the VM memory is sized all the way down to 1GB.  We add a small safety margin 
and determine 1152MB to be the VM memory working set size. From Figure 10 we read 524MB for the shared 
buffers working set size. 

In reading these working set sizes, we err on being too cautious; we make sure under all the memory 
overcommitment situations there is still enough host memory available to the database VMs to accommodate 
memory demands. We calculate that there is 5664MB memory to spare from database VMs of 8192MB total 
configured memory with all VM working set sizes still covered. That is, situations with memory overcommitment 

  

Figure 7. Normalized DBT-2 performance (30  warehouses and 30 
clients) under various VM memory sizes while keeping the shared 
buffers constant at 1GB 

Figure 8. Normalized DBT-2 performance (30 warehouses and 30 
clients) under various VM memory and shared buffers while keeping 
the difference between them constant at 352MB 

  

Figure 9. Normalized DBT-2 performance (30  warehouses and 2 
clients) under various VM memory sizes while keeping shared buffers 
size constant at 1GB 

Figure 10. Normalized DBT-2 performance (30 warehouses and 2 
clients) under various VM memory and shared buffers while keeping 
the difference between them constant at 0 
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rates up to 69% are still real consolidation opportunities without necessarily taking underused memory from 
vPostgres shared buffers to redistribute to other databases. 

Consolidation Results: Baseline 

We use performance in a common memory undercommitment situation (by configuring the dummy VM with 1GB 
vRAM) as the baseline. Figure 11 compares the baseline performance of the four consolidation schemes. Table 3 
details the settings of these schemes.  

 

Figure 11. Performance in a memory undercommitment situation: configured per Table 3 and exercised by the traffic 
detailed in Figure 6. The average throughput attained on the two target databases during each traffic period are reported 
and stacked on top of each other. 

 
 SCHEME 1 SCHEME 2 SCHEME 3 SCHEME 4 

# database VMs, # vPostgres servers per 
VM, # of databases 1, 1, 2 1, 2, 2 2, 2, 2 2, 2, 2 

# of vCPU per VM 3 3 3 3 

vRAM per VM 8GB 8GB 4GB 4GB 

shared buffers per vPostgres server 2GB 1GB 1GB 1GB 

Use guest balloon Yes Yes Yes Yes 

Use vPostgres balloon No No No Yes 

Table 3. Settings of four database consolidation schemes under study 

We weigh the following factors for an apples-to-apples performance comparison: 

· Schemes 3 and 4 have three vCPUs provisioned for each of two VMs while schemes 1 and 2 have three vCPUs 
provisioned for one VM. Thus schemes 1 and 2 are disadvantaged in this regard.  

· During any period of time one of the two databases is only lightly exercised. Thus the extra three vCPUs 
provisioned in schemes 3 and 4 will be lightly used per test design. 
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· The 4GB vRAM configured for each of the two VMs in schemes 3 and 4 is strongly isolated, in contrast to the 
8GB vRAM configured for the one VM in schemes 1 and 2. Thus the busier database gains extra performance 
by taking advantage of the larger pool of memory in scheme 1 and to the lesser extent (as shown in Figure 11) 
in scheme 2. Thus schemes 3 and 4 are disadvantaged by design. 

To estimate the additional throughput schemes 1 and 2 would have gained should the shortfall of CPU resources 
(in the amount of what is actually used in schemes 3 and 4) have been made up, we approximate it with the 
throughput that is already attained on the light database in the very same schemes. We add this extra 
throughput to schemes 1 and 2 for a baseline performance comparison: VM–based consolidations (schemes 3 and 
4) perform on par with database server instance–based consolidation (scheme 1) and slightly better than 
operating system–based consolidation (scheme 2). 

This strong isolation between VMs makes it desirable to extract more performance out of the given amount of 
VM resources, especially when host-wide resources are undercommitted. Figure 12 shows that, by sizing 
database shared buffers to be 75% of VM memory, schemes 3 and 4 perform better and more consistently: the 
average throughput (NOTPM) increases from 52,647 to 58,994 (12.1% more) in scheme 3 and from 52,399 to 
59,296 (13.2% more) in scheme 4; the coefficient of variation (defined as standard deviation divided by mean) 
across the four periods decreases from 3.8% to 1.1% (71% less) in scheme 3 and from 5.2% to 1.0% (81% less ) in 
scheme 4. Table 4 details the settings of all four schemes. 

 

Figure 12. Performance in a memory undercommitment situation: configured per Table 4 (particularly using 75% of VM 
memory for database shared buffers) and exercised by the traffic detailed in Figure 6 
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 SCHEME 1 SCHEME 2 SCHEME 3 SCHEME 4 

# database VMs, # vPostgres servers per 
VM, # of databases 1, 1, 2 1, 2, 2 2, 2, 2 2, 2, 2 

# of vCPU per VM 3 3 3 3 

vRAM per VM 8GB 8GB 4GB 4GB 

shared buffers per vPostgres server 6GB 3GB 3GB 3GB 

Use guest balloon Yes Yes Yes Yes 

Use vPostgres balloon No No No Yes 

Table 4. Settings of four database consolidation schemes using a larger portion of VM memory for database shared buffers 
(75% here versus 25% in Table 3) 

Consolidation Results: Memory Overcommitment 

While the baseline performance readings of the four consolidation schemes are roughly equal, we want to see 
how well they can preserve the performance in memory overcommitment situations. Figure 13 shows the 
performance curves under a series of escalating memory overcommitment rates. We observe that VM-based 
consolidation schemes are more capable of preserving the performance once the memory overcommitment rate 
exceeds 20%. Co-opting the vPostgres database balloon (as in scheme 4) doesn’t provide extra benefit beyond 
using only the guest kernel-level balloon (as in scheme 3). This is not surprising as the database shared buffers 
only use 25% of VM memory and there is little need to enlist contribution from the underused memory in 
vPostgres shared buffers. 
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Figure 13. Performance in memory overcommitment situations: The configurations and traffic are the same as those used 
in Figure 11 except that the host memory available to the database VMs is adjusted to stage the prescribed memory 
overcommitment rates. 

 

As discussed, for some workloads and some deployment circumstances, one might want to use unconventionally 
large database server shared buffers relative to VM memory. Figure 12 demonstrates the performance benefits of 
such cases where vPostgres shared buffers use 75% of VM memory. Figure 14 shows that the performance curves 
under such a setting and under various memory overcommitment situations. A VM-based consolidation scheme 
using only the guest kernel-level balloon (scheme 3) performs better than other consolidation approaches 
(schemes 1 and 2). For example, it performs 60% better under a 55% memory overcommitment rate. Co-opting 
the vPostgres database balloon (scheme 4) can help improve the performance by another 50% and overall 
performs 140% better than schemes 1 and 2. 
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Figure 14. Performance in memory overcommitment situations—the configurations and traffic are the same as those used 
in Figure 12 except that the host memory available to the database VMs is adjusted to stage the prescribed memory 
overcommitment rates. 

System Dynamics of Consolidation: CPU 

While the end-to-end performance superiority of a VM-based consolidation approach is clear, extra insight into 
the underlying system dynamics is also useful. We want to compare CPU usage between all schemes. We also 
want to inspect memory reclamation data (e.g., ballooning, compression, and swapping activities) expecting that 
they can help explain the performance differences observed. Due to the constraint of space, we look into the 
system dynamics of some representative test points.  

Figure 15 shows the physical CPU (PCPU) usage observed in the baseline experiments in Figure 11. Table 5 
calculates CPU productivity (how much end-to-end payload throughput a fully used PCPU delivers) achieved in 
these experiments.  
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Figure 15. Physical CPU (PCPU) used by the database VMs in the baseline experiments in Figure 11: 100% PCPU used means 
one physical CPU is fully used. 

 Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Average DBT-2 throughput (NOTPM) 45,303.41 40,790.49 52,647.45 52,398.71 

Average PCPU used (%) 297.66 282.43 370.95 372.95 

Throughput delivered per PCPU 15,219.85 14442.69 14192.60 14049.79 

Table 5. CPU productivity achieved in the baseline experiments in Figure 11. 
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Figure 16. Physical CPU (PCPU) used by the database VMs in the baseline experiments in Figure 12 

 

 SCHEME 1 SCHEME 2 SCHEME 3 SCHEME 4 

Average DBT-2 throughput (NOTPM) 44595.37 44257.74 58993.92 59295.53 

Average PCPU used (%) 296.20 293.73 383.04 389.49 

Throughput delivered per PCPU 15055.83 15067.49 15401.50 15223.89 

Table 6. CPU productivity achieved in the baseline experiments in Figure 12 

Figure 16 shows the physical CPU usage observed in the experiments in Figure 12. Table 6 calculates CPU 
productivity achieved in these experiments. We see that the larger database shared buffers configured in these 
experiments offset the rigid memory boundary that disadvantages schemes 3 and 4: the CPU productivity of all 
consolidation schemes in memory-abundant baseline situations is equal, validating our previous approximation. 

Comparing Figure 15 and Figure 16, we also observe more regular CPU usage in the latter. This corroborates the 
observation we made before that more consistent performance is attained in Figure 12 (where 75% VM memory 
is used for database shared buffers) than in Figure 11. 

System Dynamics of Consolidation: Memory 

We first inspect the memory dynamics of one set of experiments shown in Figure 13: 30% memory 
overcommitment rate with 25% VM memory for vPostgres shared buffers. 
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Figure 17. Memory ballooned by guest kernel-level balloon drivers and vPostgres database balloon drivers, configured per 
Table 3 and exercised by the traffic detailed in Figure 6 and subjected to a 30% memory overcommitment rate. 

Figure 17 shows the amount of ballooned memory by kernel-level balloon drivers in all consolidation schemes and 
in addition to that by vPostgres database balloon drivers in scheme 4. On average 8% more memory is 
consistently ballooned in scheme 3 and 4 than in schemes 1 and 2. Note we only need to look at the memory 
ballooned by the kernel-level balloon driver for this comparison because the vPostgres database balloon driver 
by design cooperates with the guest operating system memory management regime and thus the memory 
ballooned by the vPostgres database balloon drivers will, in time, be reflected in the memory ballooned by the 
guest kernel-level balloon drivers. 
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Figure 18. Memory compressed by hypervisor, configured per Table 3 and exercised by the traffic detailed in Figure 6 and 
subjected under a 30% memory overcommitment rate. 

 

Figure 19. Memory swap-in rate by hypervisor, configured per Table 3 and exercised by the traffic detailed in Figure 6 and 
subjected under a 30% memory overcommitment rate. 

Figure 18 and Figure 19 show hypervisor-level memory compression and swapping activities, respectively. On 
average, schemes 3 and 4 reduce the extent of these more drastic memory reclamation measures by more than 
50% compared with schemes 1 and 2. 

We then take a look at the memory dynamics of one set of experiments shown in Figure 14, that of 30% memory 
overcommitment rate with 75% VM memory for vPostgres shared buffers. 

Figure 20, Figure 21, and Figure 22 show the ballooning, compression, and swapping activities in these 
experiments, respectively. Besides a similar pattern we saw in Figure 17, Figure 18, and Figure 19, scheme 4 now 
clearly benefits from the vPostgres database balloon: compared to scheme 3, scheme 4 reduces the extent of 
hypervisor-level compression and swapping by about 20%. 
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Figure 20. Memory ballooned by the guest kernel-level balloon drivers and vPostgres database balloon drivers, configured 
per Table 4 and exercised by the traffic detailed in Figure 6 and subjected to a 30% memory overcommitment rate. 

 

Figure 21. Memory compressed by hypervisor, configured per Table 4 and exercised by the traffic detailed in Figure 6 and 
subjected under a 30% memory overcommitment rate. 
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Figure 22. Memory swap-in rate by hypervisor, configured per Table 4 and exercised by the traffic detailed in Figure 6 and 
subjected under a 30% memory overcommitment rate. 
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Performance Best Practices 
vPostgres 9.2 inherits all the performance improvements made in PostgreSQL 9.2 from upstream and features 
good out-of-box performance in most situations. vSphere is known for great out-of-box performance for 
common enterprise workloads. As a result, we refer to the performance best practices for vSphere [9] and 
PostgreSQL [3] for general performance tuning efforts. We point out what are most relevant to database 
workloads below: 

· Configure the VM to use the VMXNET3 NIC driver. 

· Configure the VM to use the PVSCSI disk driver and use thick and eager-zero virtual disk formats. 

· When using Linux as a guest operating system, use the noop disk scheduler for guest disks. Refer to VMware 
KB 2011861 [10]. 

We recommend the following performance best practices specifically for vPostgres on vSphere: 

· Dedicate a VM and a vPostgres server to any database of nontrivial performance concern. 

· Put the vPostgres database cluster’s DATA and WAL directories each on a dedicated virtual disk (VMDK) file 
and separate them from other entities such as operating system code and data. 

· Test your application by experimentally sizing vPostgres server shared buffers beyond the conventional 
recommendation to seek the best performance out of fixed VM memory resources and use the highest load 
levels anticipated for your database application to conduct such tests. 

· Avoid sizing vPostgres shared buffers of around 50% of VM memory. For example, size vPostgres shared 
buffers outside the region of 45-55% of VM memory. 

· Enabling the vPostgres database balloon is recommended when (even occasional) memory overcommitment 
is anticipated, particularly if you size shared buffers unconventionally large relative to VM memory size. To 
use this feature, add the following line to the postgresql.conf of vPostgres server instance and then 
reload postgresql.conf (refer to Tuning Your PostgreSQL Server [3] for how to do this). 

enable_pgballoon = on 

· Always enable the guest kernel-level balloon driver. Refer to the “Guest Operating System Consideration” 
section in vSphere Performance Best Practices [9]. 

 

  



 

 T E C H N I C A L  W H I T E  P A P E R  / 2 5   

VMware vFabric Postgres 9.2  
Performance and Best Practices 

 

Conclusion 
This paper presents performance data and best practices for vPostgres 9.2 on vSphere 5.1. 

We demonstrate vPostgres 9.2 features significant scalability improvement over the previous version. We also 
demonstrate vPostgres 9.2 on vSphere 5.1 achieves a vertical scalability equal to what is achieved on a native 
setup. 

We show consolidating vPostgres databases on dedicated VMs performs superior to consolidating them on a 
database server instance or on a guest operating system instance with multiple server instances.  

We show that one can use an unconventionally larger sizing for vPostgres shared buffers to gain better and more 
consistent performance out of a fixed amount of VM resource when using dedicated VMs to contain databases. 

We show that under memory overcommitment situations, vPostgres database contained in dedicated VM 
perform more robustly than that contained in other types of containers and even more so with the vPostgres 
database balloon, particularly in more performance-demanding situations.  
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