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Executive Summary

Best practices are described for optimizing Big Data applications running on VMware vSphere®. Hardware,
software, and vSphere configuration parameters are documented, as well as tuning parameters for the
operating system, Hadoop, and Spark. The Hewlett Packard Enterprise ProLiant DL380 Gen9 servers used in the
test featured fast Intel processors with a large number of cores, large memory (512 GiB), and all-flash disks. Test
results are shown from two MapReduce and three Spark applications running on three different configurations
of vSphere (with 1, 2, and 4 VMs per host) as well as directly on the hardware. Among the virtualized clusters,
the fastest configuration was 4 VMs per host due to NUMA locality and best disk utilization. The 4 VMs per host
platform was faster than bare metal for all tests with the exception of a large (10 TB) TeraSort test where the
the bare metal advantage of larger memory overcame the disadvantage of NUMA misses.

Introduction

Server virtualization has brought its advantages of rapid deployment, ease of management, and improved
resource utilization to many data center applications, and Big Data is no exception. IT departments are being
tasked to provide server clusters to run Hadoop, Spark, and other Big Data programs for a variety of different
uses and sizes. There might be a requirement, for example, to run test/development, quality assurance, and
production clusters at the same time, or different versions of the same software. Virtualizing Hadoop on
vSphere avoids the need to dedicate a set of hardware to each different requirement, thus reducing costs. And
with the need for many identical worker nodes, the automation tools provided by vSphere can provide for rapid
deployment of new clusters.

The current work is the latest in a series of VMware studies into the optimum method to run Big Data workloads
on vSphere, comparing those results to running the same workloads on similarly configured bare metal servers.

A 2015 paper, Virtualized Hadoop Performance with VMware vSphere 6 [1] showed how Hadoop Map Reduce
version 1 (MRv1) workloads running on highly tuned vSphere implementations can approach and sometimes
even exceed native performance. This was followed in 2016 by a study, Big Data Performance on vSphere 6 [2],
that applied some of the learning from the 2015 study to a more typical customer environment, one which
utilized tools such as Cloudera Manager and YARN [3] to deploy and manage a Hadoop cluster in a highly
available fashion. Yet Another Resource Negotiator (YARN) replaced the JobTracker/TaskTracker resource
management of MRv1 with a more general resource management process that can support other workloads
such as Spark, in addition to MapReduce. Using YARN, the performance of the cluster was measured both with
the standard Hadoop MapReduce benchmark suite of TeraGen, TeraSort, and TeraValidate, and the TestDFSIO
Hadoop Distributed Filesystem (HDFS) stress tool, as well as a set of Spark machine learning programs that
represent some of the leading edge uses of Big Data technology. The conclusion of that study was that a
properly virtualized cluster ran both the Hadoop and Spark workloads the same as or faster than the same
cluster running the worker servers on bare metal.

The current study expands upon the previous work using a new cluster equipped with the latest hardware: Intel
v4 processors, large server memory, Non-Volatile Memory Express (NVMe) and solid state disk (SSD) storage,
running the current version of vSphere, 6.5. Additionally, three different virtualization configurations (1, 2, and 4
VMs per host) were tested along with bare metal. Finally, a newer Spark machine learning benchmark, spark-
perf [4], from Databricks, Inc., the developer of Spark, was used for the Spark tests.

This paper will show how to best deploy and configure the underlying vSphere infrastructure, as well as the
Hadoop cluster, in such an environment. Best practices for all layers of the stack will be documented and their
implementation in the test cluster described. The performance of the cluster will be shown both with the
TeraSort suite, TestDFSIO HDFS stress tool, and the new Spark machine learning benchmarks.
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Best Practices

Hardware Selection

The server hardware used in this study reflected general recommendations for Big Data as listed in the previous
paper in this series [2]: large memory, especially for Spark (512 GiB), fast processors (Intel Xeon Processors E5-
2683 v4 @ 2.10 GHz) with a high core count (16 cores per CPU), solid state storage (NVMe and SSD), and 10
GbE networking.

Note: In this document, notation such as “GiB” refers to binary quantities such as gibibytes (2**30 or
1,073,741,824) while “GB” refers to gigabytes (10**9 or 1,000,000,000).

The number of servers should be determined by workload size, number of concurrent users, and types of
application. For workload size, it is necessary to include in the calculation the number of data block replicas
created by the HDFS for availability in the event of disk or server failure (3 by default), as well as the possibility
that the application needs to keep a copy of the input and output at the same time. Once sufficient capacity is
put in place, it might be necessary to increase the cluster’'s computation resources to improve application
performance or handle many simultaneous users.

Software Selection

Hadoop can be deployed directly from open source Apache Hadoop, but many production Hadoop users
employ a distribution such as Cloudera, Hortonworks, or MapR, which provide deployment and management
tools, performance monitoring, and support. These tests used the Cloudera Distribution of Hadoop 5.10.0

Most recent Linux operating systems are supported for Hadoop including RedHat/CentOS 6 and 7, SUSE Linux
Enterprise Server 11 and 12, and Ubuntu 12 and 14. Java Development Kit versions 1.7 and 1.8 are supported. For
any use other than a small test/development cluster, it is recommended to use a standalone database for
management and for the Hive Metastore. MySQL, PostgreSQL, and Oracle are supported. Check the distribution
for details.

Virtualizing Hadoop

On a virtualized server, some memory needs to be reserved for ESXi for its own code and data structures. With
vSphere 6.5, about 5-6% of total server memory should be reserved for ESXi, with the remainder used for virtual
machines.

Contemporary multiprocessor servers employ a design where each processor is directly connected to a portion
of the overall system memory, as shown in Figure 1. This results in non-uniform memory access (NUMA), where
a processor’s access to its local memory is faster than to remote memory attached to other processors. For best
performance with vSphere, it is recommended to size the VMs to each fit within a single NUMA node (the
processor and its local memory), by creating one or more VMs per NUMA node. By doing so, the vSphere
scheduler will keep each virtual machine on the NUMA node to which it was originally assigned, hence
optimizing memory locality. So, for a two processor system, creating 2 or 4 VMs per host will give the fastest
memory access.
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Processor Processor

Cache Cache

Figure 1. NUMA locality in a 2-processor server. The red lines show the virtual machine boundaries.

To maximize the utilization of each data disk, the number of disks per DataNode should be limited: 4 to 6 is a
good starting point. (See Virtualized Hadoop Performance with VMware vSphere 6 [1] for a full discussion). Disk
areas need to be cleared before writing. By choosing the eager-zeroed thick (Thick Provision Eager Zeroed)
format for the virtual machine filesystem’s (VMFS) virtual machine disks (VMDKs), this step will be accomplished
before use, thereby increasing production performance. The file system used inside the guest should be ext4 or
xfs. Ext4 provides fast large block sequential I/O—the kind used in HDFS—by mapping contiguous blocks (up to
128 MB) to a single descriptor or “extent.” Xfs is a newer file system that provides quicker disk formatting times.

The VMware® Paravirtual SCSI (pvscsi) driver for disk controllers provides the best disk performance. There are
four virtual SCSI controllers available in vSphere 6.5; the data disks should be distributed among all four.

Virtual network interface cards (NICs) should be configured with MTU=9000 for jumbo Ethernet frames and use
the vmxnet3 network driver; the virtual switches and physical switches to which the host attaches should be
configured to enable jumbo frames.

Tuning

Operating System

For both virtual machines and bare metal servers, the following operating system parameters are recommended
for Hadoop (see, for example, the Cloudera documentation for Performance Management) [5].

The Linux kernel parameter vin. swappiness controls the aggressiveness of memory swapping, with higher
values increasing the chance that an inactive memory page will be swapped to disk. This can cause problems for
Hadoop clusters due to lengthy Java garbage collection pauses for critical system processes. It is recommended
this be set to O or 1.

The use of transparent hugepage compaction should be disabled by setting the value of
/sys/kernel/mm/transparent_hugepage/defrag to never. For example, the command

echo never > /sys/kernel/mm/transparent hugepage/defrag

can be placed in /etc/rc.local where it will be executed upon system startup. The value of
/sys/kernel/mm/transparent_hugepage/enabled should be set similarly.
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Jumbo Ethernet frames should be enabled on NICs (both in the bare metal and guest OS) and on physical
network switches.

Hadoop

The developers of Hadoop have exposed a large number of configuration parameters to the user. In this work, a
few key parameters were addressed.

A YARN-based Hadoop cluster has two primary processes: the NameNode and the ResourceManager. The
NameNode manages the Hadoop Distributed Filesystem (HDFS), communicating with DataNode processes on
each worker node to read and write data to HDFS. The YARN ResourceManager manages NodeManager
processes on each worker node, which manage containers to run the map and reduce tasks of MapReduce or
the executors used by Spark.

For HDFS, the two most important parameters involve size and replication number of the blocks making up the
content stored in the HDFS filesystem. The block size dfs.blocksize controls the number of Hadoop input splits.
Higher values result in fewer blocks (and map tasks) and thus more efficiency except for very small workloads.
For most workloads, the block size should be raised from the default 128 MiB to 256 MiB. This can be made a
global parameter that can be overridden at the command line if necessary. To accommodate the larger block
size, mapreduce.task.io.sort.mb (a YARN parameter) should be raised to 400 MiB. This is the buffer space
allocated on the mapper to contain the input split while being processed. Raising it prevents unnecessary spills
to disk. The number of replicas, dfs.replication, defaults to 3 copies of each block for availability in the case of
disk, server, or rack loss. These are general recommendations; as will be shown for the Hadoop applications
tested here, raising these values significantly higher took the best advantage of the large memory servers.

YARN and MapReduce2 do away with the concept of map and reduce slots from MapReduce v1 and instead
dynamically assign resources to applications through the allocation of task containers, where a task is a map or
reduce task or Spark executor. The user specifies available CPU and memory resources as well as minimum and
maximum allocations for container CPU and memory, and YARN will allocate the resources to tasks. This is the
best approach for general cluster use, in which multiple applications are running simultaneously. For greater
control of applications running one at a time, task container CPU and memory requirements can be specified to
manually allocate cluster resources per application. This latter approach was used in the tests described here.

For CPU resources, the key parameter is yarn.nodemanager.resource.cpu-vcores, This tells YARN how many
virtual CPU cores (vcores) it can allocate to containers. In these tests, all available virtual CPUs (vSphere vCPUs)
or logical cores (bare metal) were allocated. This will be discussed in more detail later after the hardware
configurations are described.

The application container CPU requirements for map and reduce tasks are specified by
mapreduce.map.cpu.vcores gnd mapreduce.reduce.cpu.vcores, which are specified in the cluster configuration and
can be overridden in the command line, per application.

Similar to CPU resources, cluster memory resources are specified by yarn.nodemanager.resource.memory-mb,
which should be defined in the cluster configuration parameters, while mapreduce.map.memory.mb and
mapreduce.reduce.memory.mb can be used to specify container memory requirements that differ from the default
of 1 GiB. The java virtual machine (JVM) that runs the task within the YARN container needs some overhead; the
parameter mapreduce. job.heap.memory-mb.ratio specifies what percentage of the container memory to use for
the JVM heap size. The default value of 0.8 was used in these tests. Details of the memory allocation for the
virtualized and bare metal clusters follow.

In general, it is not necessary to specify the number of maps and reduces in an application because YARN will
allocate sufficient containers based on the calculations described above. However, in certain cases (such as
TeraGen, an all-map application that writes data to HDFS for TeraSort to sort), it is necessary to instruct YARN
how many tasks to run in the command line. To fully utilize the cluster, the total number of available tasks minus
one for the primary task that controls the application can be specified. The parameters controlling the number
of tasks are mapreduce.job.maps and mapreduce.job.reduces,
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The correct sizing of task containers—larger versus more containers—and the correct balance between map and
reduce tasks are fundamental to achieving high performance in a Hadoop cluster. A typical MapReduce job
starts with all map tasks ingesting and processing input data from files (possibly the output of a previous
MapReduce job). The result of this processing is a set of key-value pairs which the map tasks then partition and
sort by key and write (or spill) to disk. The sorted output is then copied to other nodes where reduce tasks
merge the files by key, continue the processing, and (usually) write output to HDFS. The map and reduce
phases can overlap, so it is necessary to review the above choices in light of the fact that each
DataNode/NodeManager node will generally be running both kinds of tasks simultaneously.

Spark on YARN

Spark is a memory-based execution engine that in many ways is replacing MapReduce for Big Data applications.
It can run standalone on Big Data clusters or as an application under YARN. For these tests, the latter was used.
The parameters spark.executor.cores and spark.executor.memory play the same role for Spark executors as
map/reduce task memory and vcore assignment do for MapReduce. Additionally, the parameter
spark.yarn.executor.memoryOverhead can be set if the default (10% of spark.executor.memory) is insufficient (if
out-of-memory issues are seen). In general, Spark runs best with fewer executors containing more memory.

Workloads

Several standard benchmarks that exercise the key components of a Big Data cluster were used for this test.
These benchmarks may be used by customers as a starting point for characterizing their Big Data clusters, but
their own applications will provide the best guidance for choosing the correct architecture.

MapReduce

Two industry-standard MapReduce benchmarks, the TeraSort suite and TestDFSIO, were used for measuring
performance of the cluster.

TeraSort Suite

The TeraSort suite (TeraGen/TeraSort/TeraValidate) is the most commonly used Hadoop benchmark and ships
with all Hadoop distributions. By first creating a large dataset, then sorting it, and finally validating that the sort
was correct, the suite exercises many of Hadoop’s functions and stresses CPU, memory, disk, and network.

TeraGen generates a specified number of 100 byte records, each with a randomized key occupying the first 10
bytes, creating the default number of replicas as set by dfs.replication, In these tests 10, 30, and 100 billion
records were specified resulting in datasets of 1, 3, and 10 TB. TeraSort sorts the TeraGen output, creating one
replica of the sorted output. In the first phase of TeraSort, the map tasks read the dataset from HDFS. Following
that is a CPU-intensive phase where map tasks partition the records they have processed by a computed key
range, sort them by key, and spill them to disk. At this point, the reduce tasks take over, fetch the files from
each mapper corresponding to the keys associated with that reducer, and then merge the files for each key
(sorting them in the process) with several passes, and finally write to disk. TeraValidate, which validates that the
TeraSort output is indeed in sorted order, is mainly a read operation with a single reduce task at the end.

TestDFSIO

TestDFSIO is a write-intensive HDFS stress tool also supplied with every distribution. It generates a specified
number of files of a specified size. In these tests 1,000 files of size 1 GB, 3 GB, or 10 GB files were created for
total size of 1, 3, and 10 TB.
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Spark

Three standard analytic programs from the Spark machine learning library (MLLib), K-means clustering, Logistic
Regression classification, and Random Forest decision trees, were driven using spark-perf [4].

K-means Clustering

Clustering is used for analytic tasks such as customer segmentation for purposes of ad placement or product
recommendations. K-means groups input into a specified number, k, of clusters in a multi-dimensional space.
The code tested takes a large training set with a known grouping for each example and uses this to build a
model to quickly place a real input set into one of the groups.

Three K-means tests were run, each with 5 million examples. The number of groups was set to 20 in each. The
number of features was varied with 11,500, 23,000, and 34,500 features generating dataset sizes of 1 TB, 2 TB,
and 3 TB. The training time reported by the benchmark kit was recorded. Six runs at each size were performed,
with the first one being discarded and the remaining five averaged to give the reported elapsed time.

Logistic Regression Classification

Logistic regression (LR) is a binary classifier used in tools such as credit card fraud detection and spam filters.
Given a training set of credit card transaction examples with, say, 20 features, (date, time, location, credit card
number, amount, etc.) and whether that example is valid or not, LR builds a numerical model that is used to
quickly determine if subsequent (real) transactions are fraudulent.

Three LR tests were run, each with 5 million examples. The number of features were varied with 11,500, 23,000,
and 34,500 features generating dataset sizes of 1 TB, 2 TB, and 3 TB. The training time reported by the
benchmark kit was recorded. Six runs at each size were performed, with the first one being discarded and the
remaining five averaged to give the reported elapsed time.

Random Forest Decision Trees

Random Forest automates any kind of decision making or classification algorithm by first creating a model with
a set of training data, with the outcomes included. Random Forest runs an ensemble of decision trees in order to
reduce the risk of overfitting the training data.

Three Random Forest tests were run, each with 5 million examples. The number of trees was set to 10 in each.
The number of features was varied with 15,000, 30,000, and 45,000 features generating dataset sizes of 1 TB, 2
TB, and 3 TB. The training time reported by the benchmark kit was recorded. Six runs at each size were
performed, with the first one discarded and the remaining five averaged to give the reported elapsed time.

The Spark MLLib code enables the specification of the number of partitions that each Spark resilient distributed
dataset (RDD) employs. For these tests, the number of partitions was initially set equal to the number of Spark
executors times the number of cores in each, but was increased in certain configurations as necessary.
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Test Environment

Hardware

Thirteen Hewlett Packard Enterprise (HPE) ProLiant DL380 Gen9 servers were used in the test as shown in
Figure 2. The servers were configured identically, with two Intel Xeon Processors E5-2683 v4 (“Broadwell”)
running at 2.10 GHz with 16 cores each and 512 GiB of memory. Hyperthreading was enabled so each server
showed 64 logical processors or hyperthreads.

Each server:

= 2x Intel Xeon Processors
E5-2683 v4 @
2.10 GHz,16 cores

= 512 GB Memory

= 2x 1.2 TB HDD

= 4x 800 GB NVMe

= 12x 800 GB SSD

Figure 2. Big Data Cluster - 13 HPE ProLiant DL380 Gen9 servers

For the virtualized servers, all 64 logical processors were assigned to virtual CPUs (vCPUs), with the 1, 2, and 4
VMs per host platform having 64, 32, and 16 vCPUs per VM, respectively. To enable the NUMA calculation to
include both physical and hyperthreaded logical cores, it is necessary to set Numa.PreferHT to True in vSphere on
each host. Then, for example, the ESXi scheduler will calculate that a 32 vCPU VM in the 2 VMs per host platform
will indeed fit within a single NUMA node since 32 vCPUs will fit within that processor’s cores if hyperthreads are
counted.

Each server was configured with an SD card, two 1.2 TB spinning disks, four 800 GB NVMe SSDs connected to
the PCI bus, and twelve 800 GB SAS SSDs connected through the HPE Smart Array P840ar/2 GB RAID
controller.

ESXi 6.5.0 was installed on the SD card on each server. The two internal 1.2 TB disks in each server were
mirrored in a RAID1 set and used for the operating system (for bare metal) or as a virtual machine file system
(VMFS) datastore upon which the operating system disks for the VMs on that host were stored. The 16 flash
drives attached to each worker server were used as data drives for the NodeManager and DataNode processes.
With the NVMe storage providing the highest random read/write I/Os per second, the 4 NVMes in each server
were assigned to handle the NodeManager temporary data, which consisted of Hadoop map spills to disk and
reduce shuffles. SAS SSDs provide very high speed sequential reads and writes so the 12 SSDs in each server
were assighed to the DataNode traffic, consisting of reads and writes of permanent HDFS data. As shown later
on in Table 3, the drives are evenly distributed among VMs: for the 1 VM per host platform (as well as bare
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metal), all 4 NVMEs and 12 SSDs are assigned to the VM/OS, while at the other extreme, the 4 VMs per host
platform had 1 NVMe and 3 SSDs per VM.

For the bare metal cluster, the drives were formatted and mounted as an ext4 filesystem. The virtualized
clusters were set up as VMFS datastores with one 745 GB virtual machine disk (VMDK) created on each, which
was then formatted and mounted as ext4 using the same parameters as in the bare metal case. For best
performance, these VMDKs were initialized with eager-zeroed thick formatting, which means the disk was pre-
formatted so writes did not have to format the disk during production.

Each server had one 1 GbE NIC and four 10 GbE NICs (of which only two were used in this test). One virtual
switch was created on each ESXi host using the 1 GbE NIC and served as the management network for the host
as well as the external virtual machine network for the guests. A second virtual switch, created on two 10 GbE
NICs bonded together, served as the internal network between VMs/bare metal hosts for all Hadoop traffic. By
setting the bond load balancing policy to Route based on originating virtual port, both failover and
performance throughput enhancement were achieved because the VMs attached to that NIC bond had different
originating ports. The maximum transmission unit (MTU) of the bonded 10 GbE NIC was set to 9000 bytes to
handle jumbo Ethernet frames. For the bare metal hosts, NIC bonding was achieved with adaptive load
balancing.

An optimized vSphere driver for the HPE Smart Array P840ar/2 GB Controller, VMW-ESX-6.5.0-nhpsa-2.0.10-
4593811.zip, was downloaded from Hewlett Packard Enterprise’s site and installed on each vSphere host.

Hardware details are summarized in Table 1.

COMPONENT QUANTITY/TYPE
Server HPE ProLiant DL380 Gen9
CPU 2x Intel Xeon Processors E5-2683 v4 @ 210 GHz w/16 cores each

Logical Processors
(including hyperthreads)

64

Memory 512 GiB (16x 32 GiB DIMMs)

NICs 2x 1 GbE ports + 4 x 10 GbE ports

Hard Drives 2x12 TB12 Gb/s SAS 10K 2.5in HDD - RAID 1 for OS
NVMes 4x 800 GB NVMe PCle - NodeManager traffic
SSDs 12x 800 GB 12G SAS SSD - DataNode traffic

RAID Controller

HPE Smart Array P840ar/2G controller

Remote Access

HPE iLO Advanced

Table 1. Server configuration. In this document notation such as “GiB” refers to binary quantities such as
gibibytes (2**30 or 1,073,741,824) while “GB” refers to gigabytes (10**9 or 1,000,000,000).
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Hadoop Cluster Configuration

In a Hadoop cluster, there are three kinds of servers or nodes (see Table 2). One or more gateway servers act as
client systems for Hadoop applications and provide a remote access point for users of cluster applications.
Primary servers run the Hadoop primary services such as HDFS NameNode and YARN ResourceManager and
their associated services (JobHistory Server, etc.), as well as other Hadoop services such as Hive, Oozie, and
Hue. Worker nodes run only the resource-intensive HDFS DataNode role and the YARN NodeManager role
(which also serve as Spark executors). For NameNode and ResourceManager high availability, at least three
ZooKeeper services and three HDFS JournalNodes are required; these can run on the gateway and two primary
servers.

For these tests, three of the servers were virtualized with VMware vSphere 6.5 and ran infrastructure VMs to
manage the Hadoop cluster. On the first server a VM hosted the gateway node, running Cloudera Manager and
several other Hadoop functions as well as the gateways for the HDFS, YARN, Spark, and Hive services. The
second and third servers each hosted a primary VM, on which the active and passive NameNode and
ResourceManager components and associated services ran. The active NameNode and active ResourceManager
ran on different nodes for best distribution of CPU load, with the standby of each on the opposite primary node.
ZooKeeper, running on all three VMs, provided synchronization of the distributed processes. Placing the
gateway and two primary VMs on different physical servers guaranteed the highest cluster availability.

The other ten servers (either virtualized or bare metal) ran only the worker services, HDFS DataNode, and YARN
NodeManager. Spark executors ran on the YARN NodeManagers.

In a production vSphere cluster, the three infrastructure hosts dedicated to the gateway and primary nodes also
host additional VMs supporting services such as VMware vCenter Server® and VMware management tools such
as VMware vRealize® Operations Manager™ appliance and VMware vRealize® Log Insight™. These services can be
protected and load-balanced through vSphere high availability (HA) and distributed resource scheduler (DRS),
in addition to the protection offered by NameNode and ResourceManager high availability. The gateway VM is
the only server that needs direct network access to the outside world, so it can be protected with a firewall and
access limited with a tool such as Kerberos. (The other nodes may need Internet access during installation
depending on the method used; that can be achieved by IP forwarding through the gateway).

The full assignment of roles is shown in Table 2. Key software component versions are shown in Table 4.

NODE ROLES

Gateway Cloudera Manager, ZooKeeper Server, HDFS JournalNode, HDFS gateway, YARN gateway, Hive gateway,
Spark gateway, Spark History Server, Hive Metastore Server, Hive Server2, Hive WebHCat Server, Hue
Server, Oozie Server

Primaryl HDFS NameNode (active), YARN ResourceManager (standby), ZooKeeper Server, HDFS JournalNode,
HDFS Balancer, HDFS FailoverController, HDFS HttpFS, HDFS NFS gateway

Primary2 HDFS NameNode (standby), YARN ResourceManager (active), ZooKeeper Server, HDFS JournalNode,
HDFS FailoverController, YARN JobHistory Server,

Workers (10) HDFS DataNode, YARN NodeManager, Spark Executor

Table 2. Hadoop/Spark roles
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During these tests, the three virtualized servers controlling the cluster were left unchanged, while the
configuration of the worker servers, which determine application performance, was changed for each platform.
It is a common practice in production clusters to have a dedicated infrastructure (comprising less expensive
servers) managing several clusters of more richly configured worker servers.

For the virtualized platforms, vSphere 6.5 was installed on each server. The 64 vCPUs on each host
(corresponding to the 64 logical processors with hyperthreading enabled) were evenly committed to the VMs
(see Table 3 for per-platform details). Following best practices, 32 GiB of each server’s 512 GiB of memory (6%)
was provided for ESXi, and the remaining 480 GiB was divided equally between the VMs. On all VMs, the virtual
NIC connected to the bonded 10 GbE NICs was assigned an |IP address internal to the cluster. The vmxnet3
driver was used for all network connections.

Each virtual machine was installed with its CentOS 7.3 operating system on the RAID1 datastore for that host,
one or more NVMes assigned as NodeManager disks, and three or more SSDs assigned as DataNode disks. All
disks were connected through virtual SCSI controllers using the VMware Paravirtual SCSI driver. The OS disk
and data disks were spread evenly over the four SCSI controllers. The virtualized cluster is shown in Figure 3.

For the bare metal performance tests, the worker servers were reinstalled with CentOS 7.3. Each of the 10 bare
metal worker servers used the full complement of 64 logical processors, 512 GiB, one RAID1 pair of 1.2 TB disks
for its operating system, four 800 GB NVMes for NodeManager data, and twelve 800 GB SSDs for DataNode
data. The two 10 GbE NICs were bonded together using Linux bonding mode adaptive load balancing to provide
both failover and enhanced throughput similar to that employed with ESXi. In neither the virtualized nor the
bare metal case was the network switch to which the NICs attach configured with any special configuration for
the NIC bonding. The bare metal cluster is shown in Figure 4.

The worker node configurations for virtualized and bare metal are compared in Table 3. The important YARN
cluster parameters yarn.nodemanager.resource.memory-mb (container memory) and
yarn.nodemanager.resource.cpu-vcores (container CPUs) are discussed in more detail following.

Virtualized Cluster

Cloudera | vCenter DataMode | DataMode | DataMode | DataMode
Manager | Server ModaMgr | ModeMgr | Modebgr | ModeMgr | VMS

Host 4

Host 1

Infrastructure nodes
Disks

Host 2 Master 1 | vRealize
Ops Worker nodes

DataMNode | DataMode | DataMode | DataMNode
ModeMgr | ModeMor | ModeMagr | MNodeMgr | VMS

Host 3 Master 2 | vRealize Host 13
Leg
Insight

Disks

Figure 3. Big Data cluster - virtualized - 4 VMs per host platform shown
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Bare Metal Cluster

Host 1 Cloudera | vCenter DataMode
Manager | Server ModeMgr WMs
Host 4
Infrastructure nodes
Disks
Host 2 Master 1 | vRealize
Ops Worker nodes
DataMode
ModeMgr VMs
Host 3 Master 2 | vRealize Host 13
Log
Insight
Disks
Figure 4. Big Data cluster - bare metal
COMPONENT 1VM PER HOST 2 VMS PER HOST 4 VMS PER HOST BARE METAL
Virtual CPUs 64 32 16 64
Memory 480 GIiB 240 GIB 120 GIiB 512 GiB
Container memory | 432 GiB 208 GiB 104 GiB 448 GIiB
Container vcores 64 32 16 64

Virtual NICs Bonded 10 GbE NICs - Bonded 10 GbE NICs - Bonded 10 GbE NICs - Bonded 10 GbE NICs -
ESX bonding ESX bonding ESX bonding Balance ALB

OS drives 100 GB HDD 100 GB HDD 100 GB HDD 11TB HDD

NodeManager 4x 740 GB NVMe 2x 740 GB NVMe 1x 740 GB NVMe 4x 740 GB NVMe

drives

DataNode drives

12x 741 GB SSD

6x 741 GB SSD

3x 741 GB SSD

12x 741 GB SSD

Table 3. Worker node configuration per VM or bare metal server
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Software

The software stack employed on each VM is shown in Table 4. The combination of Cloudera Distribution of
Hadoop (CDH) 5.10.0 on CentOS 7.3 was used. The Oracle JDK 1.8.0_65 was installed on each node and then
employed by CDH. MySQL 5.7 Community Release was installed on the gateway node for the Hive metastore
and Oozie databases.

COMPONENT VERSION
vSphere/ESXi 6.5.0, 4564106

Guest operating system Cent0S 7.3

Cloudera distribution of Hadoop | 5.10.0

Cloudera Manager 510.0

Hadoop 2.6.0+cdh5.10.0+2102
HDFS 2.6.0+cdh5.10.0+2102
YARN 2.6.0+cdh5.10.0+2102
MapReduce2 2.6.0+cdh5.10.0+2102
Hive 11.0+cdh5.10.0+859
Spark 1.6.0+cdh5.10.0+457
ZooKeeper 3.4.5+cdh5.10.0+104
Java Oracle 1.8.0_11-b14
MySQL 5.6.35 community server

Table 4. Key software components

Hadoop/Spark Configuration

The Cloudera Distribution of Hadoop (CDH) was installed using Cloudera Manager and the parcels method (see
the Cloudera documentation [6] for details). HDFS, YARN, ZooKeeper, Spark, Hive, Hue, and Oozie were
installed with the roles deployed as shown in Table 2. Once the Cloudera Manager and primary nodes were
installed on the infrastructure servers, they were left in place for all three virtualized configurations, as well as
the bare metal cluster, with the worker nodes being redeployed between each set of tests. The Cloudera
Manager home screen is shown in Figure 5.
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cloudera C ~ Hosts ~ Diagnostics =  Audit harts >~ Backup ~  Administration ~

Home

Status Al Health Issues  Configuration =  All Recent Commands

@ Cluster 1 (CDH 5.10.0, Parcels) = Charts A
@ E=EHosts Cluster CPU Cluster Disk 10
@® [ HoFs - O R S et AN E 2 (2E B D _
— = P 4 2 ar.aals|
@® ¢ Hive - 2
S 50% 2 s
@ éHue - N ; 186as
@ @ oozie - g T - S S = ol
L 04:30 04:45 15 P 5:15 4
® <2spark ] mCluster 1, Host CPU Usage Across Hosts 64.7% = Total Disk Byt... 32.0G/s = Total Disk Byte... 2.9M/s
@® I YARN -
5 Cluster Network 10 HDFS 10
@ & ZooKeeper -
Cloudera Management Service 8 " se.scs| ‘
® [ cioudera Mana... - g o B hiddds..
] 8 | 0 5 5 P
v 04:45 05 P
= HDFS names... 38.6G/s = HDFS namese... 283K/s
= Total Bytes R... 59.4M/s m Total Byles Tra... 16M/s = HDFS, Total ... 38.6G/s = HOFS, Total B... 283K/s

Figure 5. Cloudera Manager screenshot showing 10 Terabyte TeraGen/TeraSort/TeraValidate resource utilization.
Where the CPU% drops marks the beginning of the next application.

As described previously, in tuning for Hadoop, the two key cluster parameters that need to be set by the user
are yarn.nodemanager.resource.cpu-vcores gnd yarn.nodemanager.resource.memory-mb, which tell YARN how

much CPU and memory resources, respectively, can be allocated to task containers in each worker node.

For the virtualized case, the vCPUs in each worker VM were exactly committed to YARN containers, that is,
yarn.nodemanager.resource.cpu-vcores was set equal to the number of vCPUs in each VM. As seen in Figure 6,
this actually overcommits the CPUs slightly since, in addition to the 16 vcores for containers (4 VMs per host
case), a total of 1 vcore was required for the DataNode and NodeManager processes that run on each worker
node. For the bare metal case, all 64 logical CPUs were allocated to containers, again slightly overcommitting
the CPU resources.

The memory calculation was a little more involved. Taking the 4 VMs per host platform as an example (Figure
6), each of the 4 VMs have 120 GiB of memory after the 32 GiB of the 512 GiB host memory was set aside for
ESXi. 9.4 GiB of that 120 GiB was set aside for the guest operating system. Of the remaining 110.6 GiB, 1.3 GiB
each were required for the JVMs running the DataNode and NodeManager processes, plus 4 GiB for cache,
leaving 104 GiB for containers (varn.nodemanager.resource.memory-mb), The amount of memory for the operating
system was under Cloudera’s target of 20%. Since no swapping was seen on the worker nodes, the warning
from Cloudera Manager was suppressed. (The 20% target could have been lowered as well).
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The role instances configured for this host may use the following host resources.

CPU
Service Instance Description Approximate CPU
@ HOFs DataNode DataNode GPU 05
8 YARN NodeManager NodeManager process 05
B! YARN NodeManager NodeManager MR Containers 16.0

Memory
Service Instance Description Bytes
B HoFs DataNode Java Heap Size of DataNode in Bytes (+ 30% Overhead) 13GB
@ HoFs DataNode Maximum Memory Used for Gaching 40GIB
B2 YARN NodeManager Java Heap Size of NodeManager in Bytes (+ 30% Overhead) 1.3GiB
Bl YARN NodeManager Container Memary 104.0 GiB

Figure 6. DataNode/NodeManager resources - 4 VMs/host case

The memory calculation for the bare metal servers is similar. Setting aside 57.4 GiB of the 512 GiB server
memory for the OS plus the 6.6 GiB for the DataNode and NodeManager processes and cache leaves 448 GiB
for containers. Again, no swapping was seen with this amount of OS memory.

Totaling the available container memory and vcores for each cluster, all platforms have the same number of
vcores available (640) as shown in Table 5. But note that between the ESXi overhead (32 GiB) and the fact that
each VM requires one set of JVMs for the DataNode, NodeManager, and associated cache (requiring 6.6 GiB
total) versus just one set total on bare metal, the total container memory of the virtualized platforms is lower
than that available on the bare metal server. However, as will be shown in the results, this advantage does not
make up for the virtualization advantages of NUMA locality and better disk utilization on most applications.

COMPONENT 1VM PER 2 VMS PER 4 VMS PER BARE METAL
HOST HOST HOST
YARN container 432 GiB 208 GiB 104 GiB 448 GIB

memory per VM or
bare metal server

YARN container 64 32 16 64
vcores per VM or
bare metal server

Number of VMs or | 10 20 40 10
servers per cluster

YARN container 4320 GiB 4160 GiB 4160 GiB 4480 GiB
memory per

cluster

YARN container 640 640 640 640

vcores per cluster

Table 5. Available YARN container memory and vcores per VM and per cluster by platform
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These cluster parameters define the total memory and number of cores available to applications. To achieve the
correct balance between the number and size of containers, much experimentation was done, particularly with
TeraSort, factoring in the available memory vs. vcores. In general, the best performance on Hadoop was found
by utilizing all YARN vcores but not all cluster memory. For Spark, the best performance was achieved by
leaving both memory and cores underutilized. The exact settings per application per platform are shown in the
Performance Results section.

A few additional parameters were changed from their default values on all platforms. The buffer space allocated
on each mapper to contain the input split while being processed (mapreduce.task.io.sort.mb) was raised to its
maximum value, 2047 MiB (about 2 GiB) to accommodate the very large block size that was used in the
TeraSort suite (see below). The amount of memory dedicated to the primary application process,
yarn.app.mapreduce.am.resource.mb, was raised from 1 GiB to 4 GiB. The parameter yarn.scheduler.increment—
allocation-mb was lowered from 512 GiB to 256 MiB to allow finer grained specification of task sizes. The log
levels of all key processes were turned down from the Cloudera default of INFO to WARN for production use,
but the much lower levels of log writes did not have a measurable impact on application performance.

These global parameters are summarized in Table 6.

PARAMETER DEFAULT CONFIGURED
mapreduce.task.io.sort.mb 256 MiB 2047 MiB
yarn.app.mapreduce.am.resource.mb 1GIB 4 GiB
yarn.scheduler.increment-allocation-mb 512 MiB 256 MiB

Log Level on HDFS, YARN, Hive INFO WARN

Note: MiB = 2**20 (1048576) bytes, GiB = 2**30 (1073741824) bytes

Table 6. Key Hadoop/Spark cluster parameters used in tests
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Performance Results - Virtualized vs Bare Metal

TeraSort Results

The commands to run the three components of the TeraSort suite (TeraGen, TeraSort, and TeraValidate) are
shown in Table 7. The key application-dependent parameters such as blocksize, map and reduce task container
size (memory and cores) and, in some cases, number of tasks, are shown in Table 8 for each platform.

The dfs.blocksize was set at 1 GiB to take advantage of the large memory available to YARN, and, as mentioned
previously, mapreduce.task.io.sort.mb was consequently set to the largest possible value, 2047 MiB, to
minimize spills to disk during the map processing of each HDFS block.

It was found that the TeraGen map tasks for all platforms ran faster with 2 vcores. With 640 total cores available
for each platform, 320 2-vcore map tasks could run simultaneously. However, a vcore must be set aside to run
the primary application process, leaving 319 map tasks. Similarly, the TeraSort reduce task runs best with 1
vcore, so 639 are assigned.

The optimum map and reduce task memory allocations were determined experimentally. In all cases, less than
the total cluster memory was assigned. For example, for the bare metal cluster, with 448 GiB of container
memory available per server, 64 reduce tasks could be as large as 7 GiB (7168 MiB). However, it was found that
a value of 6400 MiB, for a total consumption of 400 GiB, was found to give the best performance. As can be
seen in Table 8 these values vary for each platform.

TERASORT COMMANDS

time hadoop jar $examples jar teragen -Ddfs.blocksize=Sblocksize -Dmapreduce.job.maps=$n _maps_tg \
-Dmapreduce.map.memory.mb=5map mem tg -Dmapreduce.map.cpu.vcores=$map_vcores_tg \
10000000000/30000000000/100000000000 terasort<size> input

time hadoop jar $examples jar terasort -Ddfs.blocksize=$blocksize -Dmapreduce.job.reduces=$n reds ts \
-Dmapreduce.map.memory.mb=5map_mem_ts -Dmapreduce.reduce.memory.mb=5red mem_ts \
—Dmapreduce.map.cpu.vcores=$map_vcores_ts —Dmapreduce.reduce.cpu.vcores:$red_vcores_ts terasort<size>_ input \

terasort<size>_ output

time hadoop jar $examples jar teravalidate -Dmapreduce.map.memory.mb=$map mem tv terasort<size> output \
terasortlTB validate

where $examples jar = /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar

Table 7. TeraSort suite commands for 1, 3, and 10 TB input - see below for parameters

PERFORMANCE STUDY | 18



FAST VIRTUALIZED HADOOP AND SPARK ON ALL-FLASH DISKS

blocksize 1342177280

n_maps_tg 319

map_mem_tg (MiB) 13824 12800 13312 12800
map_vcores_tg 2

n_reds_ts 639

map_mem_ts (MiB) 6912 6400 6656 6400
red_mem_ts (MiB) 6912 6400 6656 6400
map_vcores_ts 1

red_vcores_ts 1

map_mem_tv (MiB) 6912 6400 6656 6400

Table 8. TeraSort suite parameters per platform

The TeraSort results are shown in Table 9-Table 11 and plotted in Figure 7. Focusing first on the optimum
virtualized platform, 4 VMs per host, virtualized TeraGen was faster than bare metal due to the smaller number
of disks per data node. This is consistent as the dataset created grows from 1 TB to 3 TB to 10 TB. Virtualized
TeraSort starts at 7.5% faster than bare metal largely due to the benefits of NUMA locality (the NUMA miss rate
as measured by the Linux numastat tool is 0% for the VMs, 21% for bare metal), but decreases to 1.1% faster at 3
TB, and finally goes slower than bare metal as the extra memory available in bare metal dominates. Virtualized
TeraValidate, mainly reads, was faster than bare metal for the smaller dataset sizes but ended up about the
same as bare metal at 10 TB.

Examining the relative performance of the three virtualized platforms, 4 VMs per host consistently is faster than
2 VMs per host due to its better match to number of disks per DataNode (4 vs. 8). 1 VM per host, which suffers
from both NUMA non-locality and vSphere overhead, is the worst of the three virtualized configurations and is,
in fact, worse than bare metal.

The resource utilization of the three applications is shown in the Cloudera Manager screenshot in Figure 5 (10 TB
TeraSort suite). During TeraGen, about 35.3 GB/s of cluster disk writes occur accompanied by 23.7 GB/s of
cluster network /O as replicas are copied to other nodes. TeraSort starts with the CPU-intensive map sort, with
disk writes occurring as sorted data is spilled to disk. In the reduce copy phase of TeraSort, network /O ticks
up, followed by disk 1/O as the sorted data gets written to HDFS by the reducers. Finally, TeraValidate is a high
disk read, low CPU operation.
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1VM/host 211.4 4725 522
2 VMs/host 127.4 290.2 473
4 VMs/host 101.2 274.7 46.3
Bare metal 145.4 295.2 52.6
Performance advantage,

4 VMs/host over bare 437% 75% 13.7%
metal

Table 9. TeraSort performance results showing vSphere vs. bare metal - 1 TB (smaller is better)

1VM/host 586.1 1371.9 108.8
2 VMs/host 318.4 949.9 100.9
4 VMs/host 242.5 7221 94.4

Bare metal 382.9 729.6 101.8

Performance advantage,

4 VMs/host over bare 57.9% 1.0% 7.8%

metal

Table 10. TeraSort performance results showing vSphere vs. bare metal - 3 TB (smaller is better)

1VM/host 18778 5216.4 3051
2 VMs/host 991.6 3186.2 283.0
4 VMs/host 748.3 2519.8 2615
Bare metal 12211 23187 264.3
Performance advantage,

4 VMs/host over bare 63.2% -8.0% 11%
metal

Table 11. TeraSort performance results showing vSphere vs. bare metal - 10 TB (smaller is better)
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TeraSort Suite Performance - Virtualized vs. Bare Metal - Smaller Is Better
m1VM/Host m2VMs/Host m4VMs/Host Bare Metal

6000
5000
4000
3000

2000

Elapsed Time (sec)

1000

0 M im L — Hm

TeraGen TeraSort TeraValidate TeraGen TeraSort TeraValidate TeraGen TeraSort TeraValidate
1TB 3TB 10TB

Figure 7. TeraSort suite performance showing vSphere vs. bare metal

TestDFSIO Results

TestDFSIO was run as shown in Table 12 to generate output of 1, 3, and 10 TB by writing 1,000 files of increasing
size. As in TeraSort, the map memory size was adjusted experimentally for best performance for each platform,
as shown in Table 13. There is a short reduce phase at the end of the test which was found to run best with 2
cores per reduce task.

time hadoop jar $test jar TestDFSIO -Ddfs.blocksize=$blocksize -Dmapreduce.map.memory.mb=$map mem \
-Dmapreduce.reduce.cpu.vcores=5red _vcores -write -nrFiles 1000 -size 1GB/3GB/10GB

where $test jar=/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-client-jobclient-tests.jar

Table 12. TestDFSIO command for 1, 3, and 10 TB datasets - see below for parameters
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blocksize 1342177280

map_mem (MiB)

6912

6400

6656

6400

red_vcores 2

Table 13. TestDFSIO parameters per platform

The results are shown in Table 14 and Figure 8. Like TeraGen, TestDFSIO was faster on the 4 VMs per host
platform due to the best match of number of disks (4) per DataNodes than on the other three virtualized
platforms (8 or 16) or bare metal (16). For all three sizes, the 4 VMs per host platform was faster than 2 VMs per
host, which was faster than bare metal. 1 VM per host was always slowest for the reasons cited above.

The 4 VMs per host platform maxed out at 47.5 GB/s total cluster disk I/O compared to 28.3 GB/s for the bare

metal platform.

1VM/host 234.4 623.6 2016.7
2 VMs/host 135.0 3189 1008.3
4 VMs/host 12.7 2372 7495
Bare metal 145.3 400.4 1300.4
Performance Advantage, o o o
4 VMs/host over bare metal 28.9% 68.8% 75:5%

Table 14. TestDFSIO performance results showing vSphere vs. bare metal (smaller is better)
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TestDFSIO Performance - Virtualized vs. Bare Metal - Smaller Is Better

m1VM/Host m2VMs/Host m4 VMs/Host Bare Metal
2500

2000
1500
1000
500 .
o N .

TestDFSIO (1TB) TestDFSIO (3TB) TestDFSIO (10TB)

Elapsed Time (sec)

Figure 8. TestDFSIO performance showing vSphere vs. bare metal

Spark Results

The three Spark MLLib benchmarks were controlled by configuration files exposing many Spark and algorithm
parameters. The parameters that were modified from their default values are documented for each application
following.

For Hadoop, the best performance was seen with large numbers of map or reduce tasks, each with 1 or 2 vcores
and 6 to 14 GiB per task, whereas the best performance with the Spark benchmarks was seen with a smaller
number of larger Spark executors. As shown in the tables below, the Spark applications ran best with 2 or 4
vcores (spark.executor.cores) and up to 34 GiB (spark.executor.memory plus
spark.yarn.executor.memoryOverhead) per Spark executor. For K-means and Logistic Regression, it was
necessary to vary slightly the memory settings between platforms to achieve the best performance. The number
of resilient distributed dataset (RDD) partitions was initially set to the number of executors times the number of
cores per executor so there would be one partition per core. However, for some applications the partition size
for the 2 and 3 TB datasets exceeded the 2 GiB Spark partition limit, so additional partitions were specified.
Spark was run in yarn-client mode; this means the Spark primary process ran on the Spark gateway on the
gateway VM. 20 GiB was assigned to this process throughout (spark.driver.memory),

All three MLLib applications were tested with training dataset sizes of 1, 2, and 3 TB. The cluster memory was
sufficient to contain all datasets. For each test, first a training set of the specified size was created. Then the
machine learning component was executed and timed, with the training set ingested and used to build the
mathematical model to be used to classify real input data. The training times of six runs were recorded, with the
first one discarded and the average of the remaining five values reported here.

K-means Clustering

K-means was tested with 5 million examples and 11,500, 23,000, and 34,500 features. Through testing it was
determined that 4 cores per executor was optimal, but rather than specify a total of 160 executors on the 640-
core clusters, 120 executors were found to be faster. This translates to 12 executors on each of the 10 bare metal
servers or 3 executors on each of the 40 VMs of the 4 VMs per host platform. As before, the number, 120, was
reduced by 1to leave room for the primary application node.
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The number of partitions specified was 476 (119x4) for the smaller datasets and was raised to 952 for the 3 TB
dataset.

Each executor in the 1 and 2 VMs per host case was assigned 34 GiB of memory (including 10 GiB of overhead
memory). This was slightly reduced to 32 GiB for the 4 VMs per host platform and bare metal. So for the bare
metal case 384 GiB (12 executors at 32 GiB each) of the 448 GiB container memory was found optimal.

The K-means parameters are shown in Table 15.

PARAMETER ALL :-I\(I)I:TPER fl(\)lzl'rs PER :I gg_lrs PER BARE METAL
# examples 5,000,000

1TB # features 11,500

2 TB # features 23,000

3 TB # features 34,500

# executors 19

Cores per executor 4

1TB # partitions 476

2 TB # partitions 476

3 TB # partitions 952

Spark driver memory 20 GiB

Executor memory 24 GiB 24 GiB 22 GiB 22 GiB
Executor overhead mem 10 GiB 10 GiB 10 GiB 10 GiB

Table 15. Spark K-means parameters per platform

The K-means performance results are shown in Table 16 and Figure 9. The spark-perf applications were coded
as NUMA-aware, so there were no NUMA misses on any of the platforms. Since the datasets remain in memory,
the number of disks per DataNode does not matter. Thus the performance across the four platforms is very
similar. The slight advantage seen on the 4 VMs per host platform is due to the large amount of data that has to
be transmitted from executors on one node to executors on other nodes in a Spark distributed application. For
the VMs on the 4 VMs per host platform, 3 of the 39 nodes (8%) that an executor can write to are, in fact, on the
same physical server so the communication occurs through the server’'s memory bus, much faster than having
to go through the network. The same factor is 1 of 19 nodes (5%) for the 2 VMs per host platform and 0% for the
1 VM per host and bare metal platforms.
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1VM/host 130.9 2724 5497
2 VMs/host 130.3 276.9 567.6
4 VMs/host 120.2 258.8 526.5
Bare metal 129.4 2778 560.3
Performance advantage,

4 VMs/host over bare 76% 7.3% 6.4%
metal

Table 16. Spark K-means performance results showing vSphere vs. bare metal - smaller is better

Spark K-means Performance - Virtualized vs. Bare Metal - Smaller Is Better

m1VMPerHost m2VMsPerHost ™4 VMsPerHost Bare Metal
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Figure 9. Spark K-means performance

Logistic Regression

Logistic Regression was also tested with 5 million examples and 11,500, 23,000, and 34,500 features. It was
found that 2-core executors with 279 executors per cluster (28 per bare metal cluster node) gave the best
performance. Executor sizes of 14 or 15 GiB were used (see Table 17). So, using the bare metal cluster as an
example, 56 of the 64 container vcores and 420 GiB of the 448 GiB container memory was found to be optimal.
The number of partitions specified was set to 558 (279x2) in all cases but one.
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# examples 5,000,000

1TB # features 11,500

2 TB # features 23,000

3 TB # features 34,500

# executors 279

Cores per executor 2

1TB # partitions 558 558 558 558
2 TB # partitions 558 558 558 558
3 TB # partitions 558 me 558 558
Spark driver memory 20 GiB

Executor memory 12 GiB 1 GiB 1 GiB 12 GiB
Executor overhead mem 3GiB 3GiB 3GiB 3GiB

Table 17. Spark Logistic Regression parameters per platform

Logistic Regression performance results are shown in Table 18 and Figure 10. Like K-means, they are close with
the 4 VMs per host platform showing a slight lead over the others due to the higher percentage of in-memory
transfers.

1VM/host 36.0 61.3 99.9
2 VMs/host 351 589 85.0
4 VMs/host 25.8 384 52.7
Bare metal 34.9 54.1 83.8
Performance advantage,

4 VMs/host over bare 35.4% 40.9% 59.2%
metal

Table 18. Spark Logistic Regression performance results showing vSphere vs. bare metal - smaller is better
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Spark Logistic Regression Performance - Virtualized vs. Bare Metal
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Figure 10. Spark Logistic Regression performance

Random Forest

The Random Forest workload was tested with 5 million examples and 15,000, 30,000, and 45,000 features.
Similar to K-means, it ran best with 119 4-core executors. For each platform, 32 GiB of executor memory
(including 10 GiB of overhead) was optimal. The number of partitions required scaled with the dataset size, from
476 to 952 to 1666 (see Table 19).
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# examples 5,000,000
1TB # features 15,000
2 TB # features 30,000
3 TB # features 45,000
# executors 19
Cores per executor 4

1TB # partitions 476

2 TB # partitions 952

3 TB # partitions 1666
Spark driver memory 20 GiB
Executor memory 22 GiB
rEnx:;Li)troyr overhead 0GB

Table 19. Spark Random Forest parameters for all platforms

Random Forest performance results (shown in Table 20 and Figure 11) are once again close, with 4 VMs per host
being the best.

1VM/host 157.3 3405 652.7
2 VMs/host 140.7 305.4 594.9
4 VMs/host 1335 2917 534.8
Bare metal 149.0 324 609.0
Performance advantage,

4 VMs/host over bare 1.6% N1% 13.9%
metal

Table 20. Spark Random Forest performance results showing vSphere vs. bare metal - smaller is better
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Spark Random Forest Performance - Virtualized vs. Bare Metal - Smaller Is Better
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Figure 11. Spark Random Forest performance

Spark Scaling as Dataset Exceeds Memory Size

Spark caches its RDDs in memory while processing, and then writes to disk when necessary. To gauge the
performance of the Spark applications when dataset size exceeded cluster memory, the Logistic Regression
workload was run on the 4 VMs per host platform with training datasets from 1 TB to 6 TB. The first three fit in
memory, the last three require that Spark RDDs be cached to disk. The data is in Table 21 and Figure 12.

17B 245
278 376
3TB 522
47B 157.4
5TB 203.9
6TB 2744

Table 21. Spark Logistic Regression performance for large datasets

As seen clearly in Figure 12, the performance scales linearly with dataset size as the dataset remains in memory,
then scales linearly again, but at a slower rate as the dataset gets cached to disk.
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Spark Machine Learning Performance Scaling as Dataset Size Exceeds Memory
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Figure 12. Spark Logistic Regression performance as dataset size exceeds cluster memory

Summary of Best Practices

To recap, here are the best practices cited in this paper:

Reserve about 5-6% of total server memory for ESXi; use the remainder for the virtual machines.
Do not overcommit physical memory on any host server that is hosting Big Data workloads.
Create one or more virtual machines per NUMA node.

Limit the number of disks per DataNode to maximize the utilization of each disk: 4 to 6 is a good starting
point.

Use eager-zeroed thick VMDKs along with the ext4 or xfs filesystem inside the guest.

Use the VMware Paravirtual SCSI (pvscsi) adapter for disk controllers; use all 4 virtual SCSI controllers
available in vSphere 6.5.

Use the vmxnet3 network driver; configure virtual switches with MTU=9000 for jumbo frames.

Configure the guest operating system for Hadoop performance including enabling jumbo IP frames, reducing
swappiness, and disabling transparent hugepage compaction.

Place Hadoop primary roles, ZooKeeper, and journal nodes on three virtual machines for optimum
performance and to enable high availability.

Dedicate the worker nodes to run only the HDFS DataNode, YARN NodeManager, and Spark Executor roles.
Run the Hive Metastore in a separate MySQL database.
Set the Yarn cluster container memory and vcores to slightly overcommit both resources.

Adjust the task memory and vcore requirement to optimize the number of maps and reduces for each
application.
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Conclusion

Virtualization of Big Data clusters with vSphere brings advantages that bare metal clusters don’t have including
better utilization of cluster resources, enhanced operational flexibility, and ease of deployment and
management. From a performance point of view, enhanced NUMA locality and a better match of disk drives per
HDFS DataNode more than outweigh the extra memory required for virtualization. Through application of best
practices throughout the hardware and software stack, it is possible to utilize all the benefits of virtualization
without sacrificing performance in a production cluster.

These best practices were tested in a highly available 13 server cluster running Hadoop MapReduce version 2
and Spark on YARN with the latest cluster management tools. Similarly configured virtualized platforms
including 1, 2, and 4 VMs per host as well as a bare metal platform were installed on the 10 cluster worker
servers.

The optimal virtualization point was seen to be 4 VMs on each 2-processor, 16 data disk host. This configuration
ensured that the VMs would fit within NUMA node boundaries for fastest memory access, and the number of
data disks per VM (4) was in the optimal range of 4-6 per HDFS DataNode for utilization. Next fastest was 2
VMs per host, which also fit within NUMA node boundaries, but at 8 data disks per VM left the disks somewhat
underutilized. The 1 VM per host platform was the slowest since it neither exhibits NUMA locality nor good
match of disks per DataNode.

Input/output-dominated applications such as TeraGen and TestDFSIO ran significantly faster on the 4 VMs per
host platform than on bare metal. TeraSort ran faster virtualized on smaller datasets but at 10 TB the bare metal
advantage of larger memory overcame the disadvantage of NUMA misses, so bare metal became faster. Spark
Machine Learning Library applications ran up to 60% faster virtualized than on bare metal due to the virtualized
advantage of having multiple nodes per physical server.

The large server memory (512 GiB) was put to use by running very large blocksize Hadoop applications for the
best performance. The flash disks provided both very fast random reads and writes for YARN NodeManager
traffic (on NVMe storage) and fast large sequential reads and writes for HDFS DataNode traffic (on SSDs).
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