

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com

Copyright © 2018 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property

laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered
trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may
be trademarks of their respective companies.

Persistent Memory Performance on
vSphere 6.7
Performance Study – August 13, 2018

http://www.vmware.com/
http://www.vmware.com/
http://www.vmware.com/go/patents

Persistent Memory Performance on vSphere 6.7: Performance Study | 2

Table of Contents
0. Introduction .. 3

1. vSphere PMEM .. 4

vSphere Host Configuration .. 5

Virtual Machine Configuration .. 6

2. Experimental Setup .. 8

3. Use-Cases of PMEM in vSphere .. 9

i. I/O Performance with FIO ... 9

Virtualization Overhead ... 10

Bandwidth and Latency .. 11

ii. Relational Database Performance Using Oracle .. 13

iii. Scale-Out Performance Using Sysbench .. 16

Single VM Results .. 17

Scale-Out Results ... 18

iv. PMEM-Aware Applications ... 19

SQL Server and TOFL Optimization .. 19

VMware’s Modified Redis ..23

v. vMotion Performance .. 27

Oracle DB vMotion ... 27

Redis vMotion .. 28

4. Best Practices ... 29

5. Conclusions .. 29

6. Appendix .. 30

A. HammerDB Oracle ... 30

B. Sysbench with MySQL ... 31

C. HammerDB SQL Server ... 31

7. References ..32

Persistent Memory Performance on vSphere 6.7: Performance Study | 3

0. Introduction
Persistent memory (PMEM) is a new technology that has the characteristics of memory but retains data
through power cycles. PMEM bridges the gap between DRAM and flash storage. PMEM offers several
advantages over current technologies like:

• DRAM-like latency and bandwidth

• CPU can use regular load/store byte-addressable instructions

• Persistence of data across reboots and crashes

These characteristics make PMEM very attractive for a varied set of applications and scenarios.

Currently, there are two PMEM solutions available in the market:

1. NVDIMM-N by DELL EMC and HPE: NVDIMM-N is a type of DIMM that contains both DRAM and
NAND-flash modules on the DIMM itself. Data is transferred between those two modules at startup,
shutdown, or any power loss event. The DIMMs are backed by a battery power source on the
mainboard in case of power loss. Currently, both HPE and DELL EMC are offering 16 GB NVDIMM-N's [1]
[2] [3] [4].

2. Scalable PMEM by HPE: This combines HPE SmartMemory DIMMs with NVMe drives and battery
backup to create logical NVDIMMs. Data is transferred between DIMMs and NVMe drives. This
technology can be used to create large scale PMEM systems [5].

The rest of the paper is organized as follows:

1. We explain how PMEM can be configured and used in a vSphere environment.

2. We describe our experimental setup and various PMEM configurations used.

3. We show how applications with different characteristics can take advantage of PMEM in vSphere. Below
are some of the use-cases:

i. How PMEM device limits can be achieved under vSphere with little to no overhead of virtualization.
We show virtual-to-native ratio along with raw bandwidth and latency numbers from fio, an I/O
microbenchmark.

ii. How traditional relational databases like Oracle can benefit from using PMEM in vSphere.
iii. How scaling-out VMs in vSphere can benefit from PMEM. We used Sysbench with MySQL to show

such benefits.
iv. How modifying applications (PMEM-aware) can get the best performance out of PMEM. We show

performance data from such applications, e.g., an OLTP database like SQL Server and in-memory
database like Redis.

v. Using vMotion to migrate VMs with PMEM which is a host-local device just like NVMe SSDs. We
also characterize in detail, vMotion performance of VMs with PMEM.

4. We outline some best practices on how to get the most out of PMEM in vSphere.

5. Finally, we conclude this paper with a summary.

Persistent Memory Performance on vSphere 6.7: Performance Study | 4

1. vSphere PMEM
In this section, we describe how VMs can use PMEM in a vSphere environment. There are two ways of
exposing PMEM to a VM:

1. vPMEMDisk: vSphere presents PMEM as a regular disk attached to the VM. No guest OS or application
change is needed to leverage this mode. For example, legacy applications on legacy OSes can utilize
this mode. Note that vPMEMDisk configuration is available only in vSphere and not in bare-metal OS.

2. vPMEM: vSphere presents PMEM as a NVDIMM device to the VM. Most of the latest operating systems
(for example, Windows Server 2016 and CentOS 7.4) support NVDIMM devices and can expose them to
the applications as block or byte-addressable devices. Applications can use vPMEM as a regular storage
device by going through the thin layer of the direct-access (DAX) file system or by mapping a region
from the device and accessing it directly in a byte-addressable manner. This mode can be used by
legacy or newer applications running on newer OSes.

Figure 1 shows the details of the PMEM architecture in vSphere. More information about vSphere PMEM can
be found at docs.vmware.com [6] and storagehub.vmware.com [7].

Figure 1. vSphere PMEM Architecture

 Datastore PMEM
Datastore

ESXi
Host

VM

vPMEM

nvdimm-0 pmemdisk-0 Disk-0.vmdk

vRAM

Memory

NVDIMM

PCIe/SAS Memory Bus Memory Bus

vPMEMDisk

vSCSI

vDisk

Persistent Memory Performance on vSphere 6.7: Performance Study | 5

vSphere Host Configuration
vSphere 6.7 identifies PMEM hardware and shows it in the hardware resources section of the host in
vCenter as shown in Figure 2. The recognized PMEM hardware is mounted as a PMEM datastore as shown in
Figure 3.

Figure 2. vSphere showing PMEM as a hardware resource

Persistent Memory Performance on vSphere 6.7: Performance Study | 6

Figure 3. vSphere showing PMEM datastore

Virtual Machine Configuration
1. vPMEMDisk can be added to a VM like any regular disk as shown in Figure 4. Make sure VM Storage

Policy is set to Host-local PMem Default Storage Policy.

2. vPMEM can be added to a VM as new NVDIMM device as shown in Figure 5.

Persistent Memory Performance on vSphere 6.7: Performance Study | 7

Figure 4. Adding vPMEMDisk to a VM

Figure 5. Adding vPMEM (NVDIMM) to a VM

Persistent Memory Performance on vSphere 6.7: Performance Study | 8

2. Experimental Setup
We did this performance study on both the PMEM platforms: HPE Scalable PMEM platform (Table 1) and Dell
EMC NVDIMM-N PMEM platform (Table 2). Please note that performance is identical on both PMEM
platforms since both are DRAM based solutions.

Platform HPE ProLiant DL380 Gen10

CPU 2 socket, 48 cores (96 threads)

Intel Xeon Platinum 8160 @ 2.10GHz

Memory 256 GB @ 2666 Mhz

PMEM 512 GB

Storage HPE NVMe SSD

MO001600KWJSN

SAN Violin Memory Array v6000 [8]

64 x 256 GB SLC flash modules

Network 40 GbE

ESXi 6.7 GA

Table 1. HPE Testbed (Scalable PMEM)

Platform Dell EMC PowerEdge R740xd

CPU 2 socket, 32 cores (64 Threads)

Intel Xeon Platinum 8153 @ 2.0 GHz

Memory 384 GB

PMEM 192 GB

Storage Dell EMC Express Flash NVMe PCIe SSD PM1725a

ESXi vSphere 6.7

Table 2. Dell EMC Testbed (NVDIMM-N)

Persistent Memory Performance on vSphere 6.7: Performance Study | 9

Note: All our measurements (SQL Server experiments were conducted on DELL EMC NVDIMM-N) were
done using HPE Scalable PMEM with 512GB of PMEM in a 2-socket HPE 380 Gen 10 server. We believe that
the same general performance trend would be seen on other 2- or 4-socket servers using NVDIMM-N
technologies.

Configurations:

We compare performance of various workloads across 4 different configurations as shown in Table 3. Note
that, vPMEM-aware configuration is applicable only to some workloads.

NVMe SSD Local NVMe SSD attached to VM via vNVMe adapter (Used as Baseline)

vPMEMDisk PMEM attached as a disk to the VM via vNVMe adapter

vPMEM PMEM attached as a NVDIMM device to the VM

vPMEM-aware Application is modified to take advantage of the new byte-addressable PMEM
software paradigms [8].

Table 3. Test Configurations

3. Use-Cases of PMEM in vSphere

i. I/O Performance with FIO
FIO is an I/O microbenchmark to measure I/O performance [10]. We used it to quantify the virtualization
overhead and measure raw bandwidth and latency.

Highlights:

• Virtualization overhead of PMEM is less than 3%.

• The vPMEM-aware configuration can give up to 8x more bandwidth compared to that of an NVMe SSD.

• Latency with vPMEM configurations is less than 1 microsecond.

• The vPMEM-aware configuration can achieve bandwidth close to the device (memory) bandwidth.

Persistent Memory Performance on vSphere 6.7: Performance Study | 10

Configuration:

Table 4 gives the details of the FIO.

OS CentOS 7.4

CPU 4 vCPU

vRAM 16 GB

NVMe SSD 21 GB

vPMEMdisk 21 GB

vPMEM 21 GB

Table 4. FIO VM configuration

Table 5 gives the FIO parameters used.

Ioengines libaio (default) and libpmem (in vPMEM-aware)

Test cases random read, random read-write (50-50), random write

Threads 4 for throughput runs; 1 for latency run

File size 5 GB per thread

OIOs 16 for NVMe SSD; 4 for vPMEMDisk; 1 for vPMEM

Table 5. FIO workload configuration

Virtualization Overhead

To quantify the virtualization overhead of PMEM, we compared FIO throughput on bare-metal installation of
Cent OS and a Cent OS VM running on ESXi. Figure 6 shows the virtual to native ratio. In all the scenarios,
we measured less than 3% overhead. We selected FIO to show virtualization overhead since
microbenchmarks typically stress the system the most and are expected to show the maximum overhead
when virtualized.

Persistent Memory Performance on vSphere 6.7: Performance Study | 11

Figure 6. Virtual to native ratio (FIO 4 KB)

Bandwidth and Latency

Figure 7 shows the bandwidth measured in megabytes per second for different configurations with 4 KB I/O
size. Note that the vPMEM cases are run with 1 thread to have a fair comparison with vNVMe-based
configurations in which I/O is performed by one vNVMe world/thread. In the random read case, the vPMEM-
aware configuration yields ~5x the bandwidth compared to that of an NVMe SSD.

In the randwrite test, vPMEMDisk throughput is slightly lower than NVMe SSD. This is caused by the
inefficient implementation of cache flush instructions in the current processors. We expect this to become
better in next generation processors.

Figure 7. FIO 4KB Throughput

0.0

0.2

0.4

0.6

0.8

1.0

randread randrw randwrite

V
ir

tu
al

 t
o

 N
at

iv
e

 R
at

io

Virtualization Overhead

vPMEM vPMEM-aware

0

1000

2000

3000

4000

5000

6000

7000

randread randrw randwrite

B
an

d
w

id
th

 (
M

B
P

S
)

FIO - 4 KB Throughput

NVME SSD vPMEMDisk vPMEM - 1 thread vPMEM-aware - 1 th

Persistent Memory Performance on vSphere 6.7: Performance Study | 12

Figure 8 shows the bandwidth measured with 512 KB I/O. In the random read test, the vPMEM-aware case
achieved more than 11 gigabytes per second of bandwidth using one thread, which is around 8x compared
to NVMe SSD.

Figure 8. FIO 512KB Throughput

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

randread randrw randwrite

B
an

d
w

id
th

 (
M

B
P

S
)

FIO - 512 KB Throughput

NVME SSD vPMEMDisk vPMEM - 1 thread vPMEM-aware - 1 th

Persistent Memory Performance on vSphere 6.7: Performance Study | 13

Figure 9 shows the raw latency in microseconds with different configurations. Both vPMEM configurations
yielded sub-microsecond latencies.

Figure 9. FIO 4KB Latency

For scenarios that demand more I/O bandwidth, we used more FIO I/O threads and observed that the
bandwidth scales linearly. To measure the peak memory bandwidth on this system, we used STREAM [9]
which reported 67 gigabytes per second using 8 threads. With FIO using 8 threads, we measured 66
gigabytes per second using the vPMEM-aware configuration.

ii. Relational Database Performance Using Oracle
We used the hammerdb-2.23 [10] tool to benchmark Oracle Database (version 12c).

Highlights:

• 35% application performance improvement (Hammer-DB Transactions per minute) with vPMEM

• Up to 4.5x increase in Oracle IOPs

• 1.4x DB reads, 3x DB writes and up to ~17x increase in DB Log writes

• Up to more than 57x decrease in Oracle DB operations (read/write) latency

0

50

100

150

200

250

randread randrw randwrite

T
im

e
 (

m
ic

ro
se

c)
FIO - 4 KB Latency

NVME SSD vPMEMDisk vPMEM vPMEM-aware

Persistent Memory Performance on vSphere 6.7: Performance Study | 14

Configuration:

Table 6 shows Oracle VM configuration and Table 7 shows the HammerDB parameters used to test Oracle
DB. Some additional configurations and parameters are mentioned in Appendix A.

OS CentOS 7.4

CPU 48 vCPUs

vRAM 128 GB (SGA size = 35GB)

NVMe SSD 400 GB DB, 100 GB Logs

vPMEM 400 GB DB, 100 GB Logs

Table 6. Oracle VM Configuration

Virtual Users 70

Warehouses 3500

Warm Up Time 5 minutes

Run Time 25 minutes

Tests-Profile TPC_C

Table 7. HammerDB Parameters for Oracle

Results:

All the IOPS and latency numbers reported in Figure 10 and Table 8 are obtained via iostats tool in linux [11]
[12]. More detailed iostats output is in Appendix A.

Figure 10 shows the breakdown of IOPS achieved by Oracle DB. The NVMe SSD bars show that read-to-
write ratio is 75:25 which makes it a typical OLTP workload. The most fascinating data point in Figure 12 is
16.7x increase in DB Log writes/sec to almost ~90K writes/sec with vPMEM. The Oracle DB writer issues
smaller log writes at a high frequency because of low device latency which results in more read/write DB
operations. This translates to overall application throughput. Log write size with NVMe SSD is 40KB and with
vPMEM it is 3.4KB (from iostats).

Persistent Memory Performance on vSphere 6.7: Performance Study | 15

Figure 10. HammerDB with Oracle IOPS breakdown

Table 8 shows the dramatic decrease in latencies of DB read/write operations and Log writes. The minimum
latency reported by iostats tool is 10 microsecs (0.01 milliseconds).

Config DB Reads
(usecs)

DB Writes
(usecs)

Log Writes
(usecs)

NVME SSD 388 571 90

vPMEM < 10 < 10 < 10

Table 8. Hammer-DB with Oracle Latency breakdown (using iostat)

Figure 11 shows HammerDB throughput increase by 35% and the server being fully utilized (98% Guest CPU
Utilization obtained from mpstats/iostats)

19,039

4,515 5,367

26,607

13,742

89,777

0

20,000

40,000

60,000

80,000

100,000

DB Reads/Sec DB Writes/sec DB Log Writes/sec

IO
P

S
HammerDB with Oracle IOPS Breakdown

NVME SSD vPMEM

Persistent Memory Performance on vSphere 6.7: Performance Study | 16

Figure 11. Hammer-DB Throughput gain with vPMEM

Note: We also increased virtual users to a value (80 users) where NVMe SSD achieved the maximum
performance. Even when comparing 80 virtual users for NVMe SSD, vPMEM at 70 users was 29% better.

iii. Scale-Out Performance Using Sysbench
This section shows how VMs can use PMEM in a scale-out fashion when traditional storage like SAN or SSDs
become a bottleneck. We used Sysbench [15] which is a database performance benchmark against MySQL
database to demonstrate the scaling benefits of PMEM.

Highlights:

• 4 VMs scale to 3.5x with vPMEM compared to 2x with NVMe SSD

• vPMEM throughput and latency are 5x compared to NVMe SSD in a single VM.

Configuration:

Table 9 gives the details of the VM.

OS CentOS 7.4

CPU 12 vCPU

vRAM 16 GB

NVMe SSD 128 GB

vPMEMdisk 128 GB

vPMEM 128 GB

Table 9. Sysbench VM configuration

1.00

1.35

68

98

0

20

40

60

80

100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

NVME SSD vPMEM

%
 C

P
U

 U
se

d

N
o

rm
al

iz
ed

 T
hr

o
ug

hp
ut

Persistent Memory Performance on vSphere 6.7: Performance Study | 17

Table 10 gives the Sysbench parameters used.

DB Tables 6

Rows per table 90 M

DB Size 120 GB

Sysbench Threads 12

Tests oltp_read_only

oltp_read_write (75/25)

oltp_write_only

Table 10. Sysbench workload configuration

Single VM Results

Figure 12 shows the normalized throughput reported by Sysbench in different configurations. The vPMEM
case yields up to 5.5x better throughput compared to NVMe SSD.

Figure 12. Sysbench Throughput

Figure 13 shows the normalized application-level 95th percentile latency reported by Sysbench in different
configurations. The vPMEM case yields 5x better latency compared to NVMe SSD.

0

1

2

3

4

5

6

oltp_read_only oltp_read_write
(75/25)

oltp_write_only

N
o

rm
al

iz
e

d
 T

ra
ns

/s
e

c

Sysbench - Throughput

NVME SSD vPMEMDISK vPMEM

Persistent Memory Performance on vSphere 6.7: Performance Study | 18

Figure 13. Sysbench latency

Scale-Out Results

We used multiple copies (two and four) of the same VM from Table 7. Figure 14 shows the scaling of
multiple VMs in different configurations for oltp_read_write test. We observe that vPMEMDisk and vPMEM
can scale to around 3.5x while NVMe SSD stops at 2x. We see similar trend in the other two tests
(read_only and write_only).

Figure 14. Sysbench throughput scaling for oltp_read_write test

Figure 15 shows the latency scaling with multiple Sysbench VMs. We don’t observe any significant increase
in latency when multiple VMs are running on vPMEMDisk and vPMEM, while NVMe SSD suffers more than 2x
latency when four VMs are running.

0

0.2

0.4

0.6

0.8

1

1.2

oltp_read_only oltp_read_write
(75/25)

oltp_write_only

N
o

rm
al

iz
e

d
 9

5
 %

-i
le

 L
at

e
nc

y

Sysbench - Latency

NVME SSD vPMEMDISK vPMEM

0
0.5

1
1.5

2
2.5

3
3.5

4

1 VM 2 VMs 4 VMs

R
e

la
ti

ve
 T

hr
o

ug
hp

ut

Sysbench Scaling - Throughput

NVME SSD vPMEMDISK vPMEM

Persistent Memory Performance on vSphere 6.7: Performance Study | 19

Figure 15. Sysbench latency scaling

iv. PMEM-Aware Applications
We believe that, in order to achieve the maximum possible benefit from PMEM devices, applications need to
be modified. PMEM-aware applications work in conjunction with direct access (DAX) mode where the
NVDIMM device is mounted in the guest OS with DAX filesystem option. Applications can use vPMEM by
mapping a region from the device and accessing it directly in a byte-addressable manner.

Examples of such modified applications are SQL Server using tail-of-the-log (TOFL) optimization [13] and
VMware’s modified Redis [14].

SQL Server and TOFL Optimization

We used HammerDB v2.23 to test SQL Server 2016 with various configurations.

Highlights:

• Up to 16% increase in application performance using SQL TOFL optimization.

• Up to 22% increase in application performance using vPMEM on top of SQL TOFL.

• 93x decrease in LogFlushWaitTime

How SQL TOFL works:

SQL Server 2016 introduced an optimization known as tail-of-the-log where portion of the log buffer is
mapped in PMEM instead of DRAM. Here are the steps involved in how TOFL works:

1. Logs records are copied persistently into the buffer.

2. Whenever a commit arrives, the transaction completes, returning control to SQL Server (since it is
persistent already).

3. When the log block is full (typically 64 KB), it is closed-out, ready to be hardened to disk.

4. I/O is scheduled to persist the full block to disk.

0

0.5

1

1.5

2

2.5

1 VM 2 VMs 4 VMs

R
el

at
iv

e
La

te
nc

y

Sysbench Scaling - Latency

NVME SSD vPMEMDISK vPMEM

Persistent Memory Performance on vSphere 6.7: Performance Study | 20

Note: Without TOFL, SQL Server has to wait till the log block is hardened to the disk.

Figure 16. SQL Server-TOFL

Configuration:

OS Windows Server 2016

CPU 8vCPU

vRAM 16GB (SQL.Max.Memory = 14GB)

NVMe SSD 100GB DB, 22GB Logs

vPMEM 100GB DB, 22GB Logs

Table 11: SQL Server VM Configuration

Virtual Users 10

Warehouses 1000

Warm Up Time 5 minutes

Run Time 25 minutes

Tests-Profile TPC_C

Table 12: HammerDB parameters for SQL Server

Persistent Memory Performance on vSphere 6.7: Performance Study | 21

We used five configurations to quantify the performance gains:

1. SSD – DB and Logs are on NVME SSD

2. Logs-vPMEMDisk – Only Logs are moved to vPMEMDisk (DB stays on SSD)

3. Logs-vPMEM – Only Logs are moved to vPMEM (DB stays on SSD)

4. TOFL (Tail-of-the-log) – Only portion of the log buffer (a.k.a TOFL) is moved to vPMEM DAX volume

5. vPMEM-TOFL – DB and Logs both are moved to vPMEM and portion of log buffer is on vPMEM DAX
volume

Results:

The various numbers reported in Figure 17 to 18 and Table 13 are obtained using Windows perfmon counters
and SQL Server perfmon events. More details about the counter descriptions can be found in Appendix C.

Figure 17 shows the IOPS breakdown for the different configurations. In the first three configurations, there
is no SQL-specific PMEM change. It shows 20% increase in Log Writes/sec by just moving the Logs (22 GB)
to vPMEM. This results in 12% increase in performance as shown in Figure 24. The reason for more Log
writes is because LogFlushWaitTime is reduced by 4.5x to 65 msecs. In the TOFL configuration, only 20 MB
of Log buffer is mapped as byte-addressable PMEM.

The LogFlushWaits/sec event in Figure 18. It reduced by 114x to a value of 53. This is because SQL Server
doesn’t have to wait until the I/O is persisted on the disk. As soon as the commit arrives, the transaction is
complete. The DB log writes/sec is just 340 as shown in Figure 18. The reason is that the perfmon counter
does not capture direct writes (memory load/store) to the PMEM since it is in DAX mode. The log write size
increased to 61 KB (3.6 KB in the SSD case) in TOFL. In the vPMEM-TOFL configuration, the
LogFlushWaitTime reduced to 3.2 msecs, and the performance increased by 22% compared to baseline
NVMe SSD case. The CPU utilization of the VM is 95% in the vPMEM-TOFL configuration as compared to
baseline (81% CPU utilization).

Notes:

1. % Processor Time perfmon counter is used for CPU numbers.

2. LogFlushes/sec in Figure 18 is roughly equal to DB Log Writes/sec in Figure 17.

3. We do not show latency numbers because Windows perfmon latency counters cannot capture
anything less than 10 milliseconds of latency.

Persistent Memory Performance on vSphere 6.7: Performance Study | 22

Figure 17. HammerDB with SQL Server IOPs breakdown

Figure 18. SQL Server Perfmon Flush Events

0

1000

2000

3000

4000

5000

6000

DB Reads/Sec DB Writes/sec DB Log Writes/sec

IO
P

S
SQL Server - IOPS Breakdown

SSD Logs-vPMEMDisk Logs-vPMEM TOFL vPMEM-TOFL

340 53371 64
0

1000

2000

3000

4000

5000

6000

7000

8000

LogFlushes/sec LogFlushWaits/secN
o

 o
f

fl
us

h
e

ve
nt

s
p

e
r

se
co

nd

SQL Server Flush events

SSD Logs-vPMEMDisk Logs-vPMEM TOFL vPMEM-TOFL

Persistent Memory Performance on vSphere 6.7: Performance Study | 23

Configuration LogFlushWaitTime (msecs)

SSD 296.4

Logs-vPMEMDisk 107.4

Logs-vPMEM 65

TOFL 9.5

vPMEM-TOFL 3.2

Table 13: SQL Server Perfmon Flush Time Event

Figure 19. HammerDB throughput gain with SQL Server

VMware’s Modified Redis

Redis is a popular open source, in-memory key-value store [13]. Redis can be used as a database, cache, or
message broker. In this instance, we used Redis as a database with perfect consistency (sync every SET
operation to backing storage), and compared it to the PMEM-aware Redis that is developed in-house by
VMware, using the new PMEM software libraries [14]. PMEM-aware Redis offers perfect consistency by
default because both SET and GET operations are done in PMEM as opposed to in DRAM like in the case of
vanilla Redis.

1.00
1.10 1.12 1.16 1.22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
e

d
 T

hr
o

ug
hp

ut

HammerDB SQL Server Performance

Persistent Memory Performance on vSphere 6.7: Performance Study | 24

PMEM-aware Redis offers the following benefits:

• Better performance with persistence and perfect consistency for all operations. This makes a case for
using PMEM-aware Redis as a primary database.

• Instant recovery from crash. PMEM-aware Redis does all operations to and from PMEM, which persists
at crash. It does not need to load any data from disk to memory at initialization. On the other hand,
vanilla Redis must load the database from disk to memory at initialization, which can take up to several
minutes.

We used memtier_benchmark, which is an open source benchmarking tool for key-value stores to drive
Redis [18].

Highlights:

• Redis throughput is 2.4x better in the vPMEM-aware case compared to NVMe SSD.

• The vPMEM-aware configuration yields 12x better latency.

• The vPMEM-aware configuration performs much better than vPMEM, making a case to modify
applications

Configuration:

Table 14 gives the details about the Redis VM.

OS CentOS 7.4

CPU 4 vCPUs

vRAM 128 GB

NVMe SSD 128 GB

vPMEMdisk 128 GB

vPMEM 128 GB

Table 14. Redis VM configuration

Persistent Memory Performance on vSphere 6.7: Performance Study | 25

Table 15 shows the Redis parameters used.

DB Size 25M keys (120 GB in memory)

Data Size 4 KB

Driver memtier_benchmark

Throughput
parameters

pipeline=4; clients=50; threads=4

Latency parameters pipeline=1; clients=1; threads=1

Tests 0% SETs; 20% SETs; 50% SETs; 80% SETs; 100% SETs

Table 15. Redis workload configuration

Results:

Figure 20 shows the normalized throughput reported by memtier_benchmark in different configurations.
The 100% SETs case stresses the storage most in which the vPMEM-aware configuration, provided 2.4x
better throughput. Moreover, vPMEM-aware throughput is 1.7x compared to vPMEM.

Figure 20. Redis throughput

Figure 21 shows the normalized latency per operation reported by memtier_benchmark. Again, in the 100%
SETs case, latency with vPMEM-aware is 12x better than NVMe SSD and 2.8x better than vPMEM.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 % SETS 20 % SETS 50% SETS 80 % SETS 100 % SETS

N
o

rm
al

iz
e

d
 O

p
/s

Redis - Throughput

NVME SSD vPMEMDISK vPMEM vPMEM-aware

Persistent Memory Performance on vSphere 6.7: Performance Study | 26

Figure 21. Redis latency

Figure 22 shows the crash recovery time in seconds. Note that, vPMEM-aware Redis recovers instantly.

Figure 22. Redis crash recovery time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 % SETS 20 % SETS 50% SETS 80 % SETS 100 % SETS

N
ar

m
al

iz
e

d
 L

at
e

nc
y

Redis - Latency

NVME SSD vPMEMDISK vPMEM vPMEM-aware

242

120

83

0
0

50

100

150

200

250

300

NVME SSD vPMEMDISK vPMEM vPMEM-aware

T
im

e
 (

se
cs

)

Redis - Recovery Time

Persistent Memory Performance on vSphere 6.7: Performance Study | 27

v. vMotion Performance
vSphere supports vMotion of both vPMEMDisk and vPMEM. vPMEMDisk vMotion is conducted as XvMotion,
where both local storage and memory contents are transferred to another host. vPMEM vMotion is
conducted as compute vMotion, where vPMEM is transferred as memory along with vRAM. Note that, PMEM
is a host local storage and seamless live-migration like vMotion is only possible in vSphere environment
(unlike bare-metal OS)

We used 2 identical hosts connected over 40 GbE network. We created 3 vmknics for vMotion over the 40
GbE physical NIC.

Oracle DB vMotion

In this section, we show vMotion performance with a VM running HammerDB against an Oracle database.
Highlights:

• vMotion time is 30% lower in the vPMEM configuration compared to the NVMe SSD configuration

Configuration:

We used the VM detailed in Table 18 to do the vMotion between hosts. Client and Server are in different
VMs on different hosts connected via 10G link.

Results:

In both the PMEM cases, downtime is less than half of a second as shown in Table 16.

Memory Transfer (GB) Disk Transfer (GB) Downtime
(secs)

Total Duration
(secs)

SAN 128 0 0.293 53.04

NVMe SSD 128 485 0.534 526.64

vPMEMDISK 128 485 0.284 631.89

vPMem 128 + 485 0 0.259 379.67

Table 16. vMotion HammerDB Workload Configuration

We see that vPMEM vMotion is 30% faster than that of the NVMe SSD configuration, even though the
amount of data transferred is the same in both cases. As explained in FIO results, vPMEMDisk vMotion falls

under the pure write scenario and as a result the vMotion duration is longer.

Figure 23 shows the normalized throughput reported by the below Oracle query while vMotion is occurring.

select value from v$sysstat where name='user commits';

This metric closely tracks the HammerDB throughput. We see that in all the cases the throughput is restored
to normal after the vMotion is complete. The SAN performane in Figure 23 is roughly 60% of NVMe SSD.
Although the performance is lower with SAN it comes with the added benefit of vSphere High Availability

Persistent Memory Performance on vSphere 6.7: Performance Study | 28

(HA). All other configurations (local storage) don’t have vSphere HA support. Interestingly, when vMotion is
taking place, the throughput in the vPMem case is 13% better than the NVMe SSD case with no vMotion.

Figure 23. HammerDB vMotion performance

Redis vMotion

We used the Redis VM detailed in Table 17 for vMotion between the hosts. We added SAN configuration to
get a baseline with compute vMotion. Table 13 gives the details of the Redis parameters used in this test.

DB Size 25M keys (120 GB in memory)

Data Size 4 KB

Driver memtier_benchmark

Parameters pipeline=4; clients=50; threads=4

Tests 50% SETs

Table 17. vMotion Redis workload configuration

Results:

Table 18 shows the amount of memory and disk transferred, along with VM downtime and total duration for
vMotion. In the vPMEM case, both 128 GB of vRAM and 128 GB of vPMEM need to be transferred. In the
vPMEM-aware case, vRAM is not touched by Redis and only few gigabytes of vRAM need to be transferred
along with the 128 GB of vPMEM. Although the amount of memory (RAM or PMEM) transferred is the same
in both SAN and vPMEM-aware cases, the total vMotion duration is higher in the vPMEM-aware case. We
believe this is because memory is touched/dirtied at a higher rate in vPMEM-aware case and this results in
more pre-copy-phase iterations of vMotion. Interested readers can learn more about vMotion details in
vMotion Architecture, Best Practices, and Performance in vSphere 5.0 [16].

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 17 33 4
9 6
5 81 9
7

11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

35
3

36
9

38
5

4
0

1
4

17
4

33
4

49 4
65 4
81

4
97 51

3
52

9
54

5
56

1
57

7

N
o

rm
al

iz
ed

 T
hr

o
ug

hp
ut

Time (secs)

HammerDB vMotion Performance

SAN SSD PMEM

Persistent Memory Performance on vSphere 6.7: Performance Study | 29

Memory Transfer
(GB)

Disk Transfer (GB) Downtime
(secs)

Total Duration
(secs)

SAN 128 0 0.128 58.91

NVMe SSD 128 128 0.123 161.93

vPMEMDISK 128 128 0.449 194.59

vPMem 128 + 128 0 0.305 108.52

vPMEM-aware 128 0 0.186 85.84

Table 18. vMotion Redis down time

Note: Spectre/Meltdown mitigations can impact the performance of a workload depending on the I/O rate
and/or the frequency of system calls. 1

4. Best Practices
Here are some of the best practices based on our performance testing:

1. If PMEM capacity is limited, first move the database logs to PMEM first to get performance benefits
of PMEM.

2. Scale-out VMs with PMEM to get the most benefit out of the PMEM device in vSphere.

3. vPMEMDisk is slightly slower than SSD for write-only workloads. This is due to the inefficient
implementation of Cache Flush instructions in current processors.

5. Conclusions
In summary:

• vSphere can achieve close to PMEM device bandwidth and latency

• Virtualization overhead of PMEM in vSphere is less than 3%

• vSphere PMEM gives up to 8x throughput and improvement in micro benchmarks and up to 35%
improvement in Tier-1 workloads compared to NVMe SSD.

• Scaling out VMs on vSphere PMEM can take full advantage of the device bandwidth.

• Performance of VMs with PMEM during vMotion is much better than NVMe SSD (or All-flash SAN)
performance (even when there is no vMotion).

1 We use kernel 3.10.0-693.21 (patched) to measure the impact of Spectre/Meltdown mitigations. In FIO, we see a 38% loss
in the vPMEM configuration and only a 7% loss in the vPMEM-aware (libpmem) configuration. The lower overhead in
libpmem is because it is a user-space library. For OLTP workloads, like HammerDB with Oracle Database, we observe a
less than 10% performance degradation with vPMEM.

Persistent Memory Performance on vSphere 6.7: Performance Study | 30

6. Appendix

A. HammerDB Oracle
We used large pages at system boot and THP in Linux was disabled. We also set priority for LGWRT and DB
WRT via this command:

chrt --rr -p 83 -$P

We figured out that this command was needed to get the best performance because when CPU is near
saturation log writer does not get scheduled optimally resulting in sub-optimal performance.

HammerDB client and Oracle server are in the same VM for results in Section ii.

Iostats for pmem devices can be enabled via the following command.

$ echo 1 > /sys/block/pmem<n>/queue/iostats

I/Os that go through DAX paths (mounted using –o dax option) are not counted in iostat output. In this
experiment, the -o dax option did not make a difference to performance, so we mounted the pmem devices
without the –o dax option to collect detailed iostats for more insights.

The nvme0n1/pmem1 – nvme0n10/pmem10 have Oracle DB tables. Nvme0n11/pmem11 has the Oracle redo
logs.

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await

nvme0n1 0.00 0.20 1959.90 439.17 15679.20 8526.13 20.18 0.89 0.37 0.35 0.49

nvme0n2 0.00 0.20 1993.73 475.53 15949.87 9099.73 20.29 0.92 0.37 0.34 0.50

nvme0n3 0.00 0.20 1888.13 474.13 15105.07 9939.47 21.20 0.93 0.39 0.35 0.57

nvme0n4 0.00 0.20 1864.33 451.40 14914.67 8845.87 20.52 0.90 0.39 0.34 0.59

nvme0n5 0.00 0.20 1861.33 449.87 14890.67 9002.13 20.68 0.89 0.39 0.35 0.55

nvme0n6 0.00 0.20 1862.23 457.00 14897.87 8779.20 20.42 0.91 0.39 0.35 0.57

nvme0n7 0.00 0.20 1841.60 443.93 14732.80 8446.93 20.28 0.91 0.40 0.35 0.61

nvme0n8 0.00 0.20 1857.67 435.93 14861.33 7655.73 19.63 0.91 0.40 0.34 0.62

nvme0n9 0.00 0.20 1925.17 444.00 15401.33 7873.33 19.65 0.93 0.39 0.35 0.60

nvme0n10 0.00 0.20 1989.57 448.10 15916.53 7865.87 19.51 0.96 0.39 0.34 0.61

nvme0n11 0.00 56.80 0.07 5367.10 0.03 206904.32 77.10 0.48 0.09 0.00 0.09

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await

pmem1 0.00 0.00 2776.40 1325.80 22211.20 13635.73 17.48 0.01 0.00 0.00 0.00

pmem2 0.00 0.00 2782.53 1338.67 22260.27 12730.40 16.98 0.01 0.00 0.00 0.00

pmem3 0.00 0.00 2733.27 1496.60 21866.13 15594.93 17.71 0.01 0.00 0.00 0.00

pmem4 0.00 0.00 2583.43 1426.67 20667.47 15173.87 17.88 0.01 0.00 0.00 0.00

pmem5 0.00 0.00 2590.70 1444.27 20725.60 14511.47 17.47 0.01 0.00 0.00 0.00

pmem6 0.00 0.00 2574.03 1390.80 20592.27 13338.13 17.12 0.01 0.00 0.00 0.00

pmem7 0.00 0.00 2667.43 1356.27 21339.47 12721.87 16.93 0.01 0.00 0.00 0.00

pmem8 0.00 0.00 2602.90 1318.87 20823.20 11549.87 16.51 0.01 0.00 0.00 0.00

Persistent Memory Performance on vSphere 6.7: Performance Study | 31

pmem9 0.00 0.00 2628.10 1344.07 21024.80 12040.27 16.65 0.01 0.00 0.00 0.00

pmem10 0.00 0.00 2672.37 1305.87 21378.93 11498.13 16.53 0.01 0.00 0.00 0.00

pmem11 0.00 0.00 0.00 89777.27 0.00 300545.35 6.70 0.09 0.00 0.00 0.00

B. Sysbench with MySQL
The below iostats show the IO statistics when a single VM is running on NVMe SSD. Note that just one
instance of Sysbench can exercise close to 550 MBPS from the storage device and scaling to 4 VMs need
2200 MBPS bandwidth.

read_write (79/21)

Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await r_await w_await

nvme0n1 0.00 934.50 26331.50 6645.50 411.43 128.95 33.56 9.93 0.30 0.36 0.07

C. HammerDB SQL Server
Table 19 describes the SQL Server 2016 [13].

Log Flush Wait Time Total wait time (in milliseconds) to flush the log. Indicates the wait time for log records to
be hardened to disk.

Log Flush Waits/sec Number of commits per second waiting for the log flush.

Log Flush Write Time
(ms)

Time in milliseconds for performing writes of log flushes that were completed in the last
second.

Log Flushes/sec Number of log flushes per second.

Table 19. Description of Log Flush events

Persistent Memory Performance on vSphere 6.7: Performance Study | 32

7. References

[1] Hewlett Packard Enterprise. (2018) HPE NVDIMMs. https://www.hpe.com/us/en/product-
catalog/servers/persistent-memory/pip.hpe-persistent-memory.1008649009.html

[2] Hewlett Packard Enterprise. (2018) https://www.hpe.com/us/en/servers/persistent-memory.html

[3] Dell EMC. Dell EMC NVDIMM-N Persistent Memory User Guide.
https://www.dell.com/support/manuals/us/en/04/poweredge-r940/nvdimm-
n_ug_pub/introduction?guid=guid-8884370c-5553-4089-b613-a3c570b56f0e&lang=en-us

[4] Dell EMC. (2018, April) Dell EMC NVDIMM-N Persistent Memory User Guide. https://topics-
cdn.dell.com/pdf/poweredge-r740_users-guide3_en-us.pdf

[5] Hewlett Packard Enterprise. (2018, June) HPE Scalable Persistent Memory User.
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00038915en_us

[6] VMware. (2018, March) What's New in Performance for vSphere 6.7? Persistent Memory.
https://docs.vmware.com/en/vSphere/6.7/solutions/vSphere-
6.7.2cd6d2a77980cc623caa6062f3c89362/GUID-B65C7840D2D42343A7630B03A47BF4FB.html

[7] VMware. (2018) vSphere support for Persistent Memory (PMem) NVDIMM.
https://storagehub.vmware.com/t/vsphere-storage/vsphere-6-7-core-storage-1/pmem-persistant-
memory-nvdimm-support-in-vsphere/

[8] Violin Systems. Violin 6600 All Flash Array. https://www.violinsystems.com/products/violin-6600/

[9] pmem.io. Persistent Memory Development Kit. https://pmem.io/pmdk/

[10] GitHub: fio. https://github.com/axboe/fio

[11] John McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance Computers.
https://www.cs.virginia.edu/stream/

[12] (2018) HammerDB. http://www.hammerdb.com/

[13] Michael Kerrisk. (2018, April) Linux User's Manual. http://man7.org/linux/man-pages/man1/iostat.1.html

[14] Sebastien Godard. iostat(1) - Linux man page. https://linux.die.net/man/1/iostat

[15] (2018) GitHub: Sysbench. https://github.com/akopytov/sysbench

https://www.hpe.com/us/en/product-catalog/servers/persistent-memory/pip.hpe-persistent-memory.1008649009.html
https://www.hpe.com/us/en/product-catalog/servers/persistent-memory/pip.hpe-persistent-memory.1008649009.html
https://www.hpe.com/us/en/servers/persistent-memory.html
https://www.dell.com/support/manuals/us/en/04/poweredge-r940/nvdimm-n_ug_pub/introduction?guid=guid-8884370c-5553-4089-b613-a3c570b56f0e&lang=en-us
https://www.dell.com/support/manuals/us/en/04/poweredge-r940/nvdimm-n_ug_pub/introduction?guid=guid-8884370c-5553-4089-b613-a3c570b56f0e&lang=en-us
https://topics-cdn.dell.com/pdf/poweredge-r740_users-guide3_en-us.pdf
https://topics-cdn.dell.com/pdf/poweredge-r740_users-guide3_en-us.pdf
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00038915en_us
https://docs.vmware.com/en/vSphere/6.7/solutions/vSphere-6.7.2cd6d2a77980cc623caa6062f3c89362/GUID-B65C7840D2D42343A7630B03A47BF4FB.html
https://docs.vmware.com/en/vSphere/6.7/solutions/vSphere-6.7.2cd6d2a77980cc623caa6062f3c89362/GUID-B65C7840D2D42343A7630B03A47BF4FB.html
https://storagehub.vmware.com/t/vsphere-storage/vsphere-6-7-core-storage-1/pmem-persistant-memory-nvdimm-support-in-vsphere/
https://storagehub.vmware.com/t/vsphere-storage/vsphere-6-7-core-storage-1/pmem-persistant-memory-nvdimm-support-in-vsphere/
https://www.violinsystems.com/products/violin-6600/
https://pmem.io/pmdk/
https://github.com/axboe/fio
https://www.cs.virginia.edu/stream/
http://www.hammerdb.com/
http://man7.org/linux/man-pages/man1/iostat.1.html
https://linux.die.net/man/1/iostat
https://github.com/akopytov/sysbench

Persistent Memory Performance on vSphere 6.7: Performance Study | 33

[16] Microsoft. (2016, November) How It Works (It Just Runs Faster): Non-Volatile Memory SQL Server Tail
Of Log Caching on NVDIMM. https://blogs.msdn.microsoft.com/bobsql/2016/11/08/how-it-works-it-
just-runs-faster-non-volatile-memory-sql-server-tail-of-log-caching-on-nvdimm/

[17] VMware. (2018) What Is Persistent Memory? https://code.vmware.com/persistent-memory-initiative

[18] Redis Labs. Redis. https://redis.io/

[19] Redis Labs. (2018) GitHub: memtier_benchmark. https://github.com/RedisLabs/memtier_benchmark

[20] (2011) vMotion Architecture, Best Practices, and Performance in vSphere 5.0.
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-
vmotion-performance-vsphere5.pdf

[21] Microsoft. (2017, March) SQL Server, Databases Object. https://docs.microsoft.com/en-
us/sql/relational-databases/performance-monitor/sql-server-databases-object?view=sql-server-2016

About the Authors

Qasim Ali is a Staff Engineer II in the Performance team at VMware. He graduated with a PhD from Purdue
University in 2009. Since then, he has been working on tuning vSphere's hypervisor and VMkernel stack
(CPU, memory and Power). Currently he is focused on Persistent memory (PMEM) performance in vSphere.
He enjoys the challenges of optimizing vSphere using the latest hardware enhancements and technologies.
He is the author of many conference papers, patents and VMworld presentations.

Praveen Yedlapalli is a Sr. MTS in the ESX performance team. He focuses on the CPU and Memory

management in the ESX Kernel. He is actively working on quantifying and improving PMEM performance in

vSphere. Praveen has a PhD from Pennsylvania State University (2014) where he focused on improving CPU-

Memory bottlenecks. He is the author of many CPU/Memory publications and given talks at various
academic conferences and past VMworld.

Acknowledgements

We would like to thank Tuyet Pham from the vSphere Performance team and Sreekanth Setty from the
Outbound Performance team who helped us in conducting various experiments.

https://blogs.msdn.microsoft.com/bobsql/2016/11/08/how-it-works-it-just-runs-faster-non-volatile-memory-sql-server-tail-of-log-caching-on-nvdimm/
https://blogs.msdn.microsoft.com/bobsql/2016/11/08/how-it-works-it-just-runs-faster-non-volatile-memory-sql-server-tail-of-log-caching-on-nvdimm/
https://code.vmware.com/persistent-memory-initiative
https://redis.io/
https://github.com/RedisLabs/memtier_benchmark
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vmotion-performance-vsphere5.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-vmotion-performance-vsphere5.pdf
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-databases-object?view=sql-server-2016
https://docs.microsoft.com/en-us/sql/relational-databases/performance-monitor/sql-server-databases-object?view=sql-server-2016

	0. Introduction
	1. vSphere PMEM
	vSphere Host Configuration
	Virtual Machine Configuration

	2. Experimental Setup
	3. Use-Cases of PMEM in vSphere
	i. I/O Performance with FIO
	Virtualization Overhead
	Bandwidth and Latency

	ii. Relational Database Performance Using Oracle
	iii. Scale-Out Performance Using Sysbench
	Single VM Results
	Scale-Out Results

	iv. PMEM-Aware Applications
	SQL Server and TOFL Optimization
	VMware’s Modified Redis

	v. vMotion Performance
	Oracle DB vMotion
	Redis vMotion

	4. Best Practices
	5. Conclusions
	6. Appendix
	A. HammerDB Oracle
	B. Sysbench with MySQL
	C. HammerDB SQL Server

	7. References

