

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com

Copyright © 2019 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property

laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark
or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks
of their respective companies.

High-Performance Virtualized
Spark Clusters on Kubernetes for
Deep Learning
Performance Study - January 14, 2021

http://www.vmware.com/
http://www.vmware.com/go/patents

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 2

Table of Contents
Executive Summary . 3

Introduction . 3

Kubernetes . 4

Spark on Kubernetes - Architecture . 5

Spark on Kubernetes - Performance Tests .6

Hardware and Software Configuration .. 6

Spark Workload Containers . 7

Spark Submit Command... 8

Results . 10

Deep Learning Image Classification on Spark with BigDL .. 10

Kubernetes Multiple Workload Performance .. 10

Conclusion . 11

Appendix A: Dockerfile Used to Create Spark Container . 12

References . 13

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 3

Executive Summary
A virtualized cluster was set up with both Spark Standalone worker nodes and Kubernetes worker nodes

running on the same VMware vSphere® virtual machines. The same Spark image classification workload was

run on both Spark Standalone and Spark on Kubernetes with very small (~1%) performance differences,
demonstrating that Spark users can achieve all the benefits of Kubernetes without sacrificing performance.

Introduction
In recent years, Kubernetes [1] has become a dominant container orchestration and workload management
tool. By separating the management of the application and the infrastructure, Kubernetes makes both the
application developer and the IT infrastructure administrator more productive. Through very powerful
scheduling, isolation, and resource management tools, Kubernetes allows multiple users to share the same
computing framework in a secure fashion. Within VMware, the newly announced Project Pacific [2] brings
Kubernetes within the vSphere hypervisor itself, providing additional virtual machine management
possibilities.

Apache Spark [3] is a popular platform for parallel computation, complementing Hadoop as a Big Data
platform. Previous work from the VMware Performance Engineering team has shown that Spark and Hadoop
run on vSphere as fast as on bare metal servers (see, for example, Fast Virtualized Hadoop and Spark on All-
Flash Disks: Best Practices for Optimizing Virtualized Big Data Applications on VMware vSphere 6.5 [4]).
Recent versions of Spark have been modified to work directly with Kubernetes.

To gauge the performance impact of running a Spark cluster on Kubernetes, and to demonstrate the
advantages of running Spark on Kubernetes, a Spark Machine Learning workload was run on both a
Kubernetes cluster and on a Spark Standalone cluster, both running on the same set of VMs. The results of
those tests are described in this paper.

In the next section, Kubernetes is described in more detail, followed by a comparison of the traditional Spark
architecture with Spark on Kubernetes. Then the performance tests are detailed, starting with the hardware
and software configuration, the Kubernetes configuration used, the workload containerization process, and,
finally, the performance results.

https://kubernetes.io/
https://www.vmware.com/products/vsphere/projectpacific.html
https://spark.apache.org/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/bigdata-vsphere65-perf.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/bigdata-vsphere65-perf.pdf

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 4

Kubernetes
The basic Kubernetes architecture is shown in Figure 1. Container deployments and lifetimes are managed in
collections called pods. The Kubernetes control plane manages resources and scheduling through an API
interface. Cluster state is stored in an etcd key-value store. Both the control plane and the etcd store may be
made redundant for high availability. Kubernetes worker nodes (simply referred to as “nodes”) are managed
through the Kubelet agent.

Figure 1: Kubernetes Architecture

Kubernetes operates in both imperative and declarative modes. In the imperative mode, the user issues
commands to directly control the state of the cluster through a kubectl run or kubectl create command,

where kubectl is the main Kubernetes command-line tool. In the declarative mode, the desired state of the

cluster and application is specified in a configuration file. When that configuration file is specified as the
argument of a kubectl apply command, Kubernetes manages the cluster to implement the desired state,

and maintains that state as necessary through the lifecycle of the application, for example, creating new
instances as necessary to replace failing replicas.

Running Kubernetes on vSphere brings all the advantages of virtualization including manageability, ease of
deployment, and workload consolidation. Additionally, VM-based isolation and multi-tenancy provide
additional security and resource management to containers.

VMware currently supports three Kubernetes distributions: Enterprise PKS [5], which is based on Pivotal
Container Services and integrated with VMware NSX; Cloud PKS [6] for cloud deployments; and Essential PKS
[7], which is closely aligned with open-source Kubernetes. The latter was chosen for this work.

https://cloud.vmware.com/vmware-enterprise-pks
https://cloud.vmware.com/vmware-cloud-pks
https://cloud.vmware.com/vmware-essential-pks

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 5

Spark on Kubernetes - Architecture
The standard Spark architecture is shown in Figure 2. Applications are submitted to the Spark driver, which
divides up the application into tasks and distributes them to worker nodes running one or more Spark
executors, with the cluster manager handling the resources allocated to the workers. For Spark running under
Hadoop distributions, the cluster manager typically has been the Hadoop resource manager, YARN (Yet
Another Resource Manager).

Figure 2: Standard Spark Architecture

For Spark on Kubernetes, the Kubernetes scheduler provides the cluster manager capability as shown in
Figure 3. Upon receiving a spark-submit command to start an application, Kubernetes instantiates the
requested number of Spark executor pods, each with one or more Spark executors. The Spark driver may run
in a pod (Spark Cluster mode) or directly in a VM (Spark Client mode). The latter was used here.

Figure 3: Spark on Kubernetes Architecture

spark-
submit

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 6

Spark applications running in Standalone mode require that every Spark worker node be installed with the
correct version of Spark, Python, Java, etc. This puts a burden on the IT administrator, who may be managing
many Spark applications with different requirements, and it requires coordination between the administrator
and the application developer. With Kubernetes, the developer only needs to create a container with the
correct software, and the IT administrator just needs to manage the cluster using the fine-grained resource
management tools to enable the different Spark workloads.

Spark on Kubernetes - Performance Tests

Hardware and Software Configuration

The tests were run on four virtualized (VMware ESXi™ 6.7.3) 2nd-generation Intel® Xeon® Scalable processor

(“Cascade Lake”) servers, each with 2x Intel Xeon Platinum 8260 CPUs @ 2.4GHz, with a total of 96 logical
cores with hyperthreading on, and 768 GB of memory. Five CentOS 7.6 VMs were created on each host, with
four beefy worker nodes configured with 16 vCPUs and 120 GB each and a fifth, smaller VM with 8 vCPUs and
64 GB. The total allocation per host was 72 vCPUs and 544 GB.

For Spark Standalone, the smaller VM on Host 1 was set up as the Spark controller (Figure 4). This is where the
Spark driver was run. The 16 larger nodes were configured as Spark workers. All Spark nodes were installed
with the same versions of Spark, Java, and Python.

Figure 4: Spark Standalone VM Configuration

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 7

To enable the performance comparison between Spark Standalone and Spark on Kubernetes, a VMware
Essential PKS cluster was installed on the same VMs (Figure 5). The smaller VM on the first three hosts was set
up as a highly available control plane with three stacked controllers, fronted by an HAProxy load balancer
running on the small VM on the fourth host. Each of the three controllers ran a redundant copy of the etcd
key-value store containing the cluster configuration data.

The 16 larger VMs served as Kubernetes worker nodes, with each Kubernetes worker node hosting one Spark
executor pod, which may contain one or more Spark executors.

The Spark driver ran on the first Kubernetes control plane. One important difference between this
configuration and the Spark Standalone configuration is that, in the Kubernetes cluster, the Spark components
only need to be installed in the VM hosting the Spark driver.

Figure 5: Spark on Kubernetes VM Configuration

Spark Workload Containers

Spark 2.4 ships with sample Docker build files to build containers to run Spark programs in Scala, Python, or
R. These were used as a base to create container images for the workloads used in these tests. To customize
these containers, the developer can work inside the container instance and then issue a docker commit

command to create the image when complete. A better method, used here, is to add commands to the
Dockerfile to customize it for the desired workloads. The resulting Dockerfile is a self-documenting description
of what is in the container. The customized container image was pushed to a local repository available to all
nodes using docker push.

The workload used in this test classified images using a pre-trained ResNet50 convolutional neural network
model. The Spark application was written using Intel BigDL [8] which uses Spark to distribute the neural
network operations across Spark executors, calling TensorFlow through Keras.

https://github.com/intel-analytics/BigDL

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 8

The dataset used was ImageNet [9], a publicly available set of over one million complex labeled images, with
1,000 classes.

The program used was the Maximum Throughput Spark BigDL ResNet50 image classifier from VMware IoT
Analytics Benchmark [10].

For these image classification workloads, Python 3.6, TensorFlow, Keras, and BigDL code were installed in
the container. The complete contents of the Dockerfile are shown in “Appendix A: Dockerfile Used to Create
Spark Container.”

Spark Submit Command

Once the Kubernetes cluster is up and the Spark workload container is prepared, there are two required steps
and a recommended step prior to running the Spark application. The recommended step is to create a private
namespace for Spark to enable Spark-specific resource quotas and access control policies. For example:

kubectl create namespace spark

The required steps are to create a Kubernetes service account and give it the ability to create pods:

kubectl create serviceaccount spark --namespace=spark

kubectl create clusterrolebinding spark-role --clusterrole=edit \
 --serviceaccount=spark:spark --namespace=spark

The Spark application run command, spark_submit, has been updated to call on a K8s control plane rather

than a Spark controller (shown as “master” in Table 1) using the k8s:// prefix. In addition to this change, it is
necessary to specify the location of the container image, the service account created above, and the
namespace if one was created. Aside from that, the spark-submit command is unchanged, as shown in

Table 1 (next page), with all Kubernetes-specific parameters highlighted in red.

http://image-net.org/
https://github.com/vmware/iot-analytics-benchmark
https://github.com/vmware/iot-analytics-benchmark

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 9

Spark Standalone Spark on Kubernetes

spark-submit spark-submit

--master spark://192.168.1.1:7077 --master k8s://192.168.1.2:6443

--driver-memory 40G --driver-memory 40G

--conf spark.executor.instances= 16 --conf spark.executor.instances= 16

--conf spark.cores.max=240 --conf spark.cores.max=240

--conf spark.executor.cores= 15 --conf spark.executor.cores= 15

--executor-memory 100g --executor-memory 100g

 --conf
spark.kubernetes.container.image=192.168.1.1:5000/spark-tf

 --conf spark.kubernetes.namespace=spark

 --conf
spark.kubernetes.authenticate.driver.serviceAccountName=
spark

--jars <path to jar> --jars <path to jar>

<program> <arguments> <program> <arguments>

Table 1: Spark Submit Command - Spark Standalone vs. Spark on Kubernetes

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 10

Results

Deep Learning Image Classification on Spark with BigDL

To compare Spark Standalone performance to Spark on Kubernetes performance, the Maximum Throughput
Spark BigDL ResNet50 image classifier was run on the same 16 worker nodes, first while configured as Spark
worker nodes, then while configured as Kubernetes nodes. Then the number of nodes was reduced by four
(by removing the four workers on host 4), and the same comparison was made using 12 nodes, then 8, then 4.

The relative results are shown in Figure 6. The Spark Standalone and Spark on Kubernetes performance in
terms of images per second classified was within ~1% of each other for all configurations. Performance scaled
well for the Spark tests as the number of VMs increased from 4 (1 server) to 16 (4 servers), although it should
be pointed out that the base configuration of 4 VMs was artificially fast since all the VMs were on the same
server and thus there was no intra-worker node network traffic. Without this boost, the scaling from 4 to 16
VMs would be closer to the 4x ideal scaling.

Figure 6: Deep Learning Image Classification on Spark with BigDL

Kubernetes Multiple Workload Performance

A further test was run to determine how well Kubernetes can handle multiple simultaneous workloads running
on the cluster. The same Spark Maximum Throughput Spark BigDL ResNet50 image classifier was run on the
16-node Kubernetes cluster, while four image classification tests from the MLPerf Inference benchmark [11]
were run on four Kubernetes nodes on one server, using 80% of CPU on that server. The resulting
degradation in the Spark test was only 3%, demonstrating the ability of Kubernetes to schedule resources
among multiple workloads.

https://mlperf.org/

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 11

Conclusion
The benefits of running Spark on Kubernetes are many: ease of deployment, resource sharing, simplifying the
coordination between developer and cluster administrator, and enhanced security. A standalone Spark cluster
on vSphere virtual machines running in the same configuration as a Kubernetes-managed Spark cluster on
vSphere virtual machines were compared for performance using a heavy workload, and the difference
imposed by Kubernetes was found to be insignificant.

Containers provide a great mechanism for application packaging and Kubernetes provides the management
of those deployed containers. When you want to isolate workloads on the same servers from each other,
however, then virtual machines provide that strong isolation, as seen in the mixed workloads example.

 VMware has made a considerable investment in this key technology and will continue to do so.

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 12

Appendix A: Dockerfile Used to Create Spark Container

Dockerfile.spark.tf: Spark on CentOS container with TensorFlow and IoT Analytics Benchmark
Based on Dockerfile.spark.centos

FROM centos

ARG spark_jars=jars
ARG img_path=kubernetes/dockerfiles

Before building the docker image, first build and make a Spark distribution following
the instructions in http://spark.apache.org/docs/latest/building-spark.html.
Also need to copy a Java JDK to the spark directory (jdk-8u201-linux-x64.rpm used here)
Modify /root/spark/kubernetes/dockerfiles/spark/entrypoint.sh to change last line to exec
"${CMD[@]}"
If this docker file is being used in the context of building your images from a Spark
distribution, the docker build command should be invoked from the top level directory
of the Spark distribution. E.g.:
docker build -t spark-tf:latest -f <path>/Dockerfile.spark.tf .

RUN set -ex
RUN mkdir -p /opt/spark/work-dir

COPY ${spark_jars} /opt/spark/jars
COPY bin /opt/spark/bin
COPY sbin /opt/spark/sbin
COPY ${img_path}/spark/entrypoint.sh /opt/
COPY jdk-8u201-linux-x64.rpm /opt

ENV SPARK_HOME /opt/spark

WORKDIR /
RUN mkdir ${SPARK_HOME}/python
RUN yum -y install iputils iproute which wget pdsh ntp nc unzip
RUN yum -y install https://centos7.iuscommunity.org/ius-release.rpm
RUN yum -y install python36u python36u-pip
RUN ln -s /usr/bin/python3.6 /usr/bin/python3
RUN ln -s /usr/bin/pip3.6 /usr/bin/pip3
RUN pip3 install --upgrade pip
RUN pip3 install numpy keras tensorflow
RUN rpm -iv /opt/jdk-8u201-linux-x64.rpm
ENV JAVA_HOME /usr/java/latest
RUN wget -nv https://github.com/vmware/iot-analytics-benchmark/archive/master.zip -O /root/iot-
analytics-benchmark-master.zip
RUN unzip /root/iot-analytics-benchmark-master.zip -d /root
RUN mkdir /root/BigDL
RUN wget -nv https://repo1.maven.org/maven2/com/intel/analytics/bigdl/dist-spark-2.4.0-scala-
2.11.8-all/0.8.0/dist-spark-2.4.0-scala-2.11.8-all-0.8.0-dist.zip -O /root/BigDL/dist-spark-
2.4.0-scala-2.11.8-all-0.8.0-dist.zip
RUN unzip /root/BigDL/dist-spark-2.4.0-scala-2.11.8-all-0.8.0-dist.zip -d /root/BigDL
RUN pip3 install BigDL==0.8.0
RUN mkdir -p /root/.keras/datasets
RUN wget -nv https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz -O
/root/.keras/datasets/cifar-10-batches-py.tar.gz
RUN cd /root/.keras/datasets; tar xzvf cifar-10-batches-py.tar.gz
RUN rm -r /root/.cache

COPY python/lib ${SPARK_HOME}/python/lib
ENV PYTHONPATH ${SPARK_HOME}/python/lib/pyspark.zip:${SPARK_HOME}/python/lib/py4j-*.zip

WORKDIR /opt/spark/work-dir

ENTRYPOINT ["/opt/entrypoint.sh"]

High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning | Page 13

References

[1] The Kubernetes Authors. (2019) Kubernetes (K8s) Production-Grade Container Orchestration.
https://kubernetes.io

[2] VMware. (2019) Project Pacific. https://www.vmware.com/products/vsphere/projectpacific.html

[3] The Apache Software Foundation. (2018) Apache Spark - a unified analytics engine for large-scale data
processing. https://spark.apache.org

[4] Dave Jaffe. (2017) Fast Virtualized Hadoop and Spark on All-Flash Disks: Best Practices for Optimizing
Virtualized Big Data Applications on VMware vSphere 6.5.
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/bigd
ata-vsphere65-perf.pdf

[5] VMware. (2019) VMware Enterprise PKS: Deploy, run and manage Kubernetes for production.
https://cloud.vmware.com/vmware-enterprise-pks

[6] VMware. (2019) VMware Cloud PKS. https://cloud.vmware.com/vmware-cloud-pks

[7] VMware. (2019) VMware Essential PKS. https://cloud.vmware.com/vmware-essential-pks

[8] Intel Analytics. (2019) GitHub: Intel Analytics BigDL. https://github.com/intel-analytics/BigDL

[9] Stanford Vision Lab, Stanford University, Princeton University. (2016) ImageNet. http://image-net.org/

[10] Dave Jaffe. (2019, August) GitHub: VMware IoT Analytics Benchmark. https://github.com/vmware/iot-
analytics-benchmark

[11] MLPerf. (2019) MLPerf - Fair and useful benchmarks for measuring training and inference performance
of ML hardware, software, and services. https://mlperf.org/

About the Author

Dave Jaffe is an engineer on the VMware Performance Engineering team, focusing on Big Data and Machine
Learning.

Acknowledgements

Dave would like to thank Ralph Bankston of the VMware Essential PKS team for installation guidance, Louie
Tsai of the Intel BigDL team for support, and Justin Murray of VMware Technical Marketing for continuing
discussions of all things Big Data, Machine Learning, and Kubernetes.

https://kubernetes.io/
https://www.vmware.com/products/vsphere/projectpacific.html
https://spark.apache.org/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/bigdata-vsphere65-perf.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/bigdata-vsphere65-perf.pdf
https://cloud.vmware.com/vmware-enterprise-pks
https://cloud.vmware.com/vmware-cloud-pks
https://cloud.vmware.com/vmware-essential-pks
https://github.com/intel-analytics/BigDL
http://image-net.org/
https://github.com/vmware/iot-analytics-benchmark
https://github.com/vmware/iot-analytics-benchmark
https://mlperf.org/

	Executive Summary
	Introduction
	Kubernetes
	Spark on Kubernetes - Architecture
	Spark on Kubernetes - Performance Tests
	Hardware and Software Configuration
	Spark Workload Containers
	Spark Submit Command
	Results
	Deep Learning Image Classification on Spark with BigDL
	Kubernetes Multiple Workload Performance

	Conclusion
	Appendix A: Dockerfile Used to Create Spark Container
	References

