

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com

Copyright © 2020 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property

laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark
or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks
of their respective companies.

Optimize Virtualized
Deep Learning Performance with
New Intel Architectures
Performance Study - March 31, 2020

http://www.vmware.com/
http://www.vmware.com/go/patents

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 2

Table of Contents
Executive Summary . 3

Introduction . 3

Intel’s AI Strategy . 5

Kernels for Library Developers.. 5

Libraries for Data Scientists . 6

Toolkits for App Developers . 6

Experimental Environment .6

Example . 7

Tests . 7

Hardware and Software Configuration .9

Results . 10

Single Image Classification Latency – Intel Xeon Scalable CPU + fp32 vs 2nd Gen Intel Xeon Scalable CPU +
int8 . 10

Single Image Classification Latency – Virtualized vs Bare Metal – int8 . 12

Single Image Classification Latency – Virtualized vs Bare Metal – fp32 .. 13

Large Batch Image Classification Throughput – Intel Xeon Scalable CPU + fp32 vs 2nd Gen Intel Xeon
Scalable CPU + int8 . 14

Single Image Classification Throughput Scaling – VMs vs Bare Metal. 15

Multistream Image Classification Throughput – VMs vs Bare Metal . 16

Conclusion . 17

References . 18

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 3

Executive Summary
Four different image classification tests were used to demonstrate the performance benefits of running deep
learning inference on the 2nd Generation Intel® Xeon® Scalable processor compared to previous Intel
processors, and to show the performance benefits of running on the VMware vSphere® hypervisor compared
to bare metal.

The 2nd Generation Intel® Xeon® Scalable processor’s Deep Learning Boost technology includes new Vector
Neural Network Instructions (VNNI), which are especially performant with input data expressed as an 8-bit
integer (int8) rather than a 32-bit floating point number (fp32). Together with the large VNNI registers, these
instructions provide a marked performance improvement in image classification over the previous generation
of Intel® Xeon® Scalable processors.

The latest version of vSphere, 7.0, supports VNNI instructions. The work reported in this paper demonstrates
a very small virtualization overhead for single image inferencing but major performance advantages for
properly configured virtualized servers compared to the same servers running as bare metal.

Introduction
Deep learning typically refers to machine learning on non-tabular data (images, voice, etc.) using neural
networks. Some of the applications include image classification (used in license plate detectors or facial
recognition systems), object detection (which identifies the objects in an image and is used in autonomous
vehicles, for example), or natural language processing (used by voice applications such as Alexa and Siri, and
text applications like chatbots).

To train a neural network (Figure 1), one starts with a set of weights wij that represent the multiplicative factor
of joining two adjacent neurons in the network. A set of pre-labeled training data (for example, the pixels of an
image together with the classification) xi is applied to the input layer and the network is run in the forward
propagation direction, resulting in a set of predicted classifications yi. The predicted classifications are then
compared to the actual labels, generating a loss function that is used by the back-propagation step to modify
the weights in such a manner as to reduce the loss. The cycle of forward propagation followed by back
propagation is repeated until a desired accuracy is achieved. The final set of weights along with the model
structure are referred to as the trained model.

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 4

Figure 1: A Neural Network

In inference, a new, unlabeled input is run through the trained model in just one forward propagation step to
infer the category of an object or the meaning of a voice command. The two key metrics for inference are
latency, the response time to a single image or command, and throughput, the overall amount of inferencing
a system can provide.

Popular current models such as the ResNet50 used in this work can have millions of weights and hundreds of
layers. To do all the calculations, even for one forward propagation step, requires processors that can quickly
handle large numbers of matrix multiply/add operations.

To that end, Intel has introduced Intel® Deep Learning Boost (Intel® DL Boost) technology, a new set of
features in their 2nd Generation Intel® Xeon® Scalable processor (“Cascade Lake”). This feature set includes
new Vector Neural Network Instructions (VNNI), which are especially performant with input data expressed as
an 8-bit integer (int8) rather than a 32-bit floating point number (fp32). Together with the large VNNI
registers, these instructions provide a marked performance improvement over the previous generation of
Intel® Xeon® Scalable processors (“Skylake”).

vSphere 7 supports the VNNI instructions, which allows VNNI to run on the vSphere hypervisor and to let
users take advantage of all that VMware® virtualization offers: enhanced server utilization, scriptable
deployment, and ease of management. The work reported in this paper demonstrates a very small
virtualization overhead for single image inferencing but major performance advantages for properly
configured virtualized servers compared to the same servers running as bare metal.

In the next section, we describe in detail the Intel AI strategy and VNNI architecture. Next, we show the
hardware and software configurations used in the tests, followed by descriptions of the individual tests run,
and the results of those tests.

Forward propagation

 Back propagation

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 5

Intel’s AI Strategy
Over the last few years, we have seen an exponential growth in AI techniques to solve problems in various
domains, such as health care, manufacturing, finance, and business operations. This growth has been fueled
by the explosion of available data and the need for some sophisticated means for gleaning meaningful insights
from the data.

It is expected that the data generated from various "smart" devices will grow from 40 zettabytes to about 175
zettabytes by 2025 [1]. This data will be coming from the greater than 150 billion devices owned by over 6
billion people. This data deluge will need smart analytics to be used in a meaningful way, giving rise to newer
innovative and efficient AI techniques. Focusing on developing AI algorithms, or just designing efficient AI
chips, will not solve the complexity in data-insight analysis. We need to address this with a holistic system-
level view that encompasses hardware (AI chips, storage, memory, and fabric), mature and open software
(algorithms, libraries, and tools) and the tight co-design of hardware and software.

Intel's AI strategy offers the most diverse portfolio of highly performant and efficient compute and
revolutionizes decades-old memory and storage hierarchies. It fills new gaps identified by AI workloads and
enables the development of full-stack software based on open components. This simplifies AI deployments
across increasingly heterogeneous hardware environments while integrating with existing frameworks and
toolchains. The AI portfolio delivers a robust ecosystem of ready-made solutions for every industry.

From a compute perspective, Intel starts by extending its widely proliferated CPU portfolio to include specific
technologies (such as Intel DL Boost) that allow enterprises to accelerate AI applications on existing, familiar
infrastructure. From there, Intel offers multiple, discrete hardware accelerators for a wide range of
programmability, performance, energy, and latency requirements from cloud to edge, including Intel FPGAs
and Intel Movidius Vision Processing Units (VPUs). For the second generation of its Intel Xeon Scalable
processors, Intel added specific instructions to accelerate neural network inference, especially when using
numeric int8 instructions. These instructions, known as VNNI, give a theoretical speedup of up to 30x over
fp32 instructions. The speedup highly depends on the frameworks, models, and the percentage of instructions
that can actually use VNNI technology. Intel is also investing in other purpose-built accelerators to speed up
deep learning training and inference.

Addressing software is a little more complex due to the various layers of the software stack; the fast growth of
tools, libraries, and frameworks in the open source ecosystem; and the optimization of the software for
specific hardware to run various types of AI applications and accommodate a variety of developer types.

Kernels for Library Developers

For library developers who write highly optimized code tailored to the specific hardware, Intel has offerings
such as the Intel distribution of Python, the Intel Data Analytics Acceleration Library (DAAL), the nGraph
Library, and the Intel Deep Neural Network Library (DNNL).

Intel DAAL is a high-performance machine learning and data analytics library. This library helps reduce the
time it takes to develop high-performance data science applications, enabling applications to make better
predictions faster and analyze larger data sets with available compute resources. It supports highly optimized
analytic functions such as logistic regression, which is the most widely used classification algorithm. It
extended gradient boosting functionality for inexact split calculations and user-defined procedures to enable
with feature extraction of datasets. Intel DAAL supports Python via the Intel distribution for Python.

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 6

Intel DNNL, previously known as Intel MKL-DNN, is an open source performance library for deep learning
(DL) applications intended for the acceleration of DL frameworks on Intel® architecture. The library includes
basic building blocks for neural networks optimized for Intel CPUs and GPUs.

The nGraph Library is an open-source C++ library and runtime/compiler suite for deep learning ecosystems.
With nGraph Library, data scientists can use their preferred deep learning framework on any number of
hardware architectures, for both training and inference. nGraph Library supports multiple devices (CPU, GPU,
ASIC) from multiple frameworks (TensorFlow, MXnet, ONNX, PyTorch).

Libraries for Data Scientists

In addition to the above open source libraries, Intel has optimizations for all popular deep learning frameworks
such as TensorFlow, PyTorch, MXNet, PaddlePaddle, and ONNX runtime that can take advantage of Intel
hardware features to make machine learning models run faster.

Toolkits for App Developers

Intel provides special toolkits that are designed to help developers to deploy their applications using any
framework on the hardware. These toolkits include:

• Analytics Zoo - an Open source platform for building analytics and AI applications on Apache Spark with

distributed TensorFlow, Keras, and BigDL.

• OpenVINO - a highly optimized and popular open source toolkit that deploys applications and solutions

that emulate human vision. Based on convolutional neural networks (CNN), the toolkit extends computer
vision (CV) and deep learning workloads across Intel® hardware on CPU/GPU/FPGA/VPU for Caffe,
TensorFlow, MXNet, ONNX, and Kaldi.

• Nauta - an open source, scalable, and extensible distributed deep learning training platform built on

Kubernetes and includes open source components and Intel-developed custom applications, tools, and
scripts for ease-of-use and deployment.

Experimental Environment
We conducted experiments to show the benefit of using Intel DL Boost technology to accelerate inferencing
on 2nd Generation Intel Xeon Scalable processors. Before we delve into the details of the experiments, we
discuss the different parameters used for tuning to get the best results.

We ran the experiments with the Intel-optimized version of TensorFlow using pretrained models in fp32 and
int8 precisions. These pretrained models are part of the TensorFlow model zoo and are available for everyone
to use. We focused on the image classification model, ResNet50; we used the ImageNet validation dataset for
inferencing predictions.

The benchmark is launched using a Python script benchmark_ launcher.py that can take in the input
parameters, validate the arguments, and initialize the platform. It also will initialize the model by locating it in
the specified data path.

For the model itself, the framework used, the pretrained model precision and location, and the batch size
need to be specified. In addition to these, the script allows the benchmark to be run in a pure “benchmark
only” mode, where only the performance is measured, or in "accuracy mode” where the inferencing accuracy

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 7

is reported in TOP1 and TOP5. It is critical to run the accuracy mode at least once when changing hyper
parameters to ensure that the inference is maintaining the accuracy specified by the pretrained model.

For initializing the platform parameters: socket_ id, numbers of cores per socket, number of threads per core,
and the number of inter threads and intra threads must be specified. The socket parameter indicates to the
script if the inferencing must be run on only one socket of the underlying CPU. In some cases, affinitizing to a
single socket gives better performance where the NUMA memory accesses could cause extra latency.
However, if the inferencing needs more threads than available on a single socket, then using all the cores from
both sockets in the system is useful and will give better performance in terms of throughput. This is especially
useful when running large batch sizes where the images are distributed across many cores. The intra threads
parameter refers to the number of cores to use, while the inter threads are usually set to indicate how many
threads to use per core.

 Other environment variables such as KMP_ affinity can be specified either in the environment or in the
launcher command line. This is used to indicate to the script how to distribute the threads to the physical
cores. You can also use this to affinitize the threads to a particular set of cores such as {proclist= 1, 4, 8} that
will run all the threads specified to run on core numbers 1, 4 and 8. The numbering scheme for the cores can
be obtained by running the lscpu command in the shell.

In addition, you can specify the output file where the results will be collected. This is usually a text file that can
be parsed to get the parameters used when the script actually ran and also the latency and throughput of the
inferencing. In the output file, you must check the OMP_ NUM_ THREADS, which will be obtained from the
num_ intra_ threads parameters specified while launching the script. A detailed list of thread assignment to the
cores is also stored in the output file so you can determine on which cores the inferencing was executed.
Analyzing the output log file is necessary to understand the behavior of the parameters to the launcher script.

Example

python3.6 /home/user1/AI/Launcher/models/benchmarks/launch_benchmark.py --data-location
/home/user1/imagenet/ImageV --benchmark-only --in-graph
/home/user1/AI/pre_trained_models/resnet50_fp32_pretrained_model.pb --model-name resnet50 --
framework tensorflow --precision fp32 --mode inference --batch-size=$u -num_intra_threads 20 –
num_inter_threads 1 -- warmup_steps=250 steps=500 > output_file

Set KMP_* environment variables to the specified value
Validate the args and initializes platform_util
Create model initializer for the specified model

Tests
Our tests used four different workloads, as shown in Table 1, below.

In Single Image Classification Latency, the benchmark program sent one image at a time through a pre-
trained ResNet50 neural network model (setting the program’s batch_ size parameter to 1). The metric
recorded was the latency, or average time to infer a single image, in milliseconds (msec). The benchmark
program has a parameter that sets the number of threads for the calculations of the forward propagation of
the neural network needed to classify the image. For this test, this parameter was optimized separately for the
bare metal and virtualized tests. The Single Image Classification Latency test was used to compare both the
performance of 2nd Generation Intel Xeon Scalable processors using the int8 quantization to that on 1st
Generation Xeon Scalable processors using fp32 as well as to compare bare metal vs. virtualized performance.

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 8

In Large Batch Image Classification Throughput, the performance of large batch classification on Cascade
Lake using the int8 quantization was compared to that on Skylake using fp32, both running on a single VM.
The batch size was set to 1024 and the metric recorded was throughput in images per second. There was no
constraint on the average image classification latency.

Single Image Classification Throughput Scaling measures the throughput of running single image
classification in multiple instances as the number of instances are increased. For the bare metal case, the
benchmark program was run in a single instance, and then run simultaneously in multiple instances, with the
number of instances increasing from 2 to 8. For the virtualized case, the benchmark program was run
simultaneously in separate VMs, with the number of VMs increasing from 1 to 8. The metric recorded was
throughput, in images per second.

In Multistream Image Classification Throughput, the program sent multiple images at once (batch_ size > 1)
through the ResNet50 inference engine. The maximum throughput achievable by the bare metal server and
the virtualized server meeting a specified latency constraint was measured. The latency constraint used was
33.3 msec, equivalent to 30 video frames per second. The average latency reported by the program was used
to compare to the latency constraint. The metric recorded was throughput in images per second.

Workload Batch Size Metric

Single Image Classification Latency 1 Latency (average time to infer single image)
(milliseconds)

Large Batch Image Classification Throughput 1024 Throughput (images/second), no latency constraint

Single Image Classification Throughput Scaling 1 Throughput (images/second)

Multistream Image Classification Throughput > 1 Throughput (images/second) with latency constraint

Table 1: Workloads Used in Image Classification Tests

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 9

Hardware and Software Configuration
The 1st Generation Intel® Xeon® Scalable processor (“Skylake”) server and 2nd Generation Intel® Xeon®
Scalable processor (“Cascade Lake”) server configurations are shown in Table 2 below.

Component Skylake Server Cascade Lake Server

Processor 2x Intel® Xeon® Platinum 8160 @
2.10GHz, 24C/48T, 33.00M Cache

2x Intel® Xeon ® Platinum 8260 @
2.4GHz, 24C/48T, 35.75M Cache

Logical Processors (including
hyperthreads)

96 96

Memory Type/Speed DDR4 / 2666 MT/s DDR4 / 2666 MT/s

Memory Size 768 GiB (24x 32 GiB DIMMs) 768 GiB (24x 32 GiB DIMMs)

NICs 2x 1 GbE ports + 2 x 10GbE ports 2x 1 GbE ports + 2 x 10 GbE ports

Non-Volatile Memory Express storage 2x Intel® Optane™ P4800 375 GiB

1x P4510 8TB

2x 1.6TB NVMe PCIe

Solid State Disks 8x 1.92 TB SSD SATA

Table 2: Server Configurations

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 10

The virtualized configurations used in the tests are shown in Table 3.

Configuration
Number of
VMs

vCPUs per VM Memory per VM (GB)
Total vCPUs
Allocated

Total Memory
Allocated (GB)

1 1 48 360 48 360

2 2 48 360 96 720

3 1 12 90 12 90

4 2 12 90 24 180

5 3 12 90 36 270

6 4 12 90 48 360

7 5 12 90 60 450

8 6 12 90 72 540

9 7 12 90 84 630

10 8 12 90 96 720

Table 3: Virtualized Configurations

Both the virtual machines and the bare metal server ran the Ubuntu 18.04 operating system.

Results

Single Image Classification Latency – Intel Xeon Scalable CPU + fp32 vs 2nd
Gen Intel Xeon Scalable CPU + int8

In Single Image Classification Latency, the benchmark program’s batch_ size parameter was set to 1, sending
one image at a time through a pre-trained ResNet50 neural network model. The performance metric was the
latency, or average time to infer a single image, in milliseconds (msec).

The first Single Image Classification Latency test (Figure 2) demonstrated the performance improvement from
the fp32 quantization running on the Intel® Xeon® Scalable processor (“Skylake”) to int8 running on 2nd Gen
Intel® Xeon® Scalable processor (“Cascade Lake”) using the VNNI instruction. The classification performance
improved by 2.18x due to the smaller quantization, the enhanced VNNI instruction set, and the architectural
improvements of Cascade Lake over Skylake. In addition, the image classification accuracy of the int8
quantization was measured to be less than 1% less than the fp32 accuracy. The tests used a VM size of 48
vCPU and 360 GB of memory (Configuration 1 in Table 3).

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 11

Figure 2: Single Image Classification Latency – Skylake fp32 vs Cascade Lake int8

Skylake FP32 = 1

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 12

Single Image Classification Latency – Virtualized vs Bare Metal – int8

The virtualization overhead was shown to be small (1.5%) running the Single Image Classification Latency int8
test on a 48-vCPU, 360 GB memory VM on a Cascade Lake server compared to running the same test on an
identically configured Cascade Lake server (Figure 3).

Figure 3: Single Image Classification Latency – Virtualized vs Bare Metal – int8

Bare Metal Int8 = 1

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 13

Single Image Classification Latency – Virtualized vs Bare Metal – fp32

The virtualization overhead using the fp32 quantization was shown as even smaller (0.6%) running the Single
Image Classification Latency than the int8 test. Again, the test compared image classification latency on a 48-
vCPU, 360 GB memory VM on a 2nd Gen Intel Xeon Scalable server compared to running the same test on an
identically configured server (Figure 4).

Figure 4: Single Image Classification Latency – Virtualized vs Bare Metal – fp32

Bare Metal FP32 = 1

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 14

Large Batch Image Classification Throughput – Intel Xeon Scalable CPU +
fp32 vs 2nd Gen Intel Xeon Scalable CPU + int8

A second method for comparing the performance improvement from Intel Xeon Scalable CPUs using fp32 to
2nd Generation Intel Xeon Scalable CPUs using int8 was Large Batch Image Classification, in which VMs on
both platforms were driven with the batch size set to 1024, and the resulting throughput was measured in
images per second. A VM size of 96 vCPU and 720 GB was used (Configuration 2 in Table 3). As seen in
Figure 5, the performance improvement, 3.49x, was even larger than the 2.18x shown in Figure 2, due to the
large VNNI register as well as the other improvements already mentioned (VNNI instruction set, int8
quantization, enhanced Cascade Lake architecture).

Figure 5: Large Batch Image Classification Throughput - Skylake fp32 vs Cascade Lake int8

Skylake FP32 = 1

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 15

Single Image Classification Throughput Scaling – VMs vs Bare Metal

In Single Image Classification Throughput Scaling, the Single Image Classification Latency tests (with either
int8 or fp32 quantization) was run in multiple instances. For the bare metal case, the benchmark program was
run in a single instance, and then run simultaneously in multiple instances, with the number of instances
increasing from 2 to 8. For the virtualized case, the benchmark program was run simultaneously in separate
VMs, with the number of VMs increasing from 1 to 8, using Configurations 3-10 from Table 3.

As shown in Figure 6, the single-instance bare metal result (either int8 or fp32), which uses the entire server,
is faster than the virtualized result from one small (12 vCPU, 90 GB) VM, but as the number of bare metal
instances and VMs increase, the total throughput in the virtualized case overtakes that of the bare metal case
and ends up being 2.04x faster (int8) and 1.44x faster (fp32) due to the better resource utilization afforded by
virtualization. The int8 throughputs are faster than those of fp32 due to the smaller quantization.

Figure 6: Single Image Classification Throughput Scaling – VMs vs Bare Metal

Bare Metal FP32 = 1

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 16

Multistream Image Classification Throughput – VMs vs Bare Metal

In Multistream Image Classification Throughput, the program sent multiple images at once through the
ResNet50 inference engine. For both the bare metal and the virtualized servers, the batch_ size was increased
while the average latency remained below 33.3 msec, equivalent to 30 video frames per second. The
virtualized configuration consisted of two VMs, each with 48 vCPUs and 360 GB memory, to provide an
optimal resource configuration for the workload. The resulting attainable throughput is shown in Figure 7. The
virtualized int8 and fp32 were faster than their bare metal equivalents, but not by the same factor seen in the
Single Stream Throughput Scaling. The multistream workload makes better use of the bare metal resources
than does single stream, but running the same workload on two VMs is still faster due to better resource
utilization

The batch_ size used was 15 (int8) and 5 (fp32) for the VMs, and 28 (int8) and 10 (fp32) for bare metal.

Figure 7: Multistream Image Classification Throughput – VMs vs Bare Metal

Bare Metal FP32 = 1

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 17

Conclusion
This study’s results demonstrate the performance benefits of running deep learning inference on the 2nd
Generation Intel® Xeon® Scalable processor compared to previous Intel processors, and the performance
benefits of running on VMware’s vSphere hypervisor compared to bare metal.

Two tests were run to compare the Intel processor generations, Single Image Classification Latency and Large
Batch Image Classification. For the Single Image Classification, the classification performance improved by
2.18x from the fp32 quantization running on the Intel® Xeon® Scalable processor (“Skylake”) to int8 running on
2nd Generation Intel® Xeon® Scalable processor (“Cascade Lake”) due to the smaller quantization, the
enhanced VNNI instruction set, and the architectural improvements of Cascade Lake over Skylake.

For Large Batch Image Classification, the performance improvement was 3.49x, even larger than the 2.18x in
Single Image Classification, due to the large VNNI register, as well as the other improvements already
mentioned (VNNI instruction set, int8 quantization, enhanced Cascade Lake architecture).

The rest of the tests compared Deep Learning inference performance on vSphere vs bare metal. The
virtualization overhead was shown to be small (1.5% for the int8 quantization and 0.6% for fp32) running the
Single Image Classification Latency int8 test on a VM on a Cascade Lake server compared to running the same
test on an identically configured bare metal Cascade Lake server.

Single Image Classification Throughput Scaling shows slightly worse performance for one image classification
instance running on a single, small VM versus running on a full bare metal server, but, as the number of bare
metal instances and VMs increase, the total throughput in the virtualized case overtakes that of the bare metal
case and ends up being 2.04x faster (int8) and 1.44x faster (fp32) due to the better resource utilization
afforded by virtualization. The int8 throughputs are faster than those of fp32 due to the smaller quantization.

Finally, virtualized Multistream Image Classification Throughput was 9% (int8) and 3% (fp32) faster than when
run on bare metal. The multistream workload makes better use of the bare metal resources than does single
stream, but, running the same workload on two VMs is still faster due to better resource utilization.

Optimize Virtualized Deep Learning Performance with New Intel Architectures | Page 18

References

About the authors

Dave Jaffe is an engineer on the VMware Performance Engineering team, focusing on big data and machine
learning.

Padma Apparao is a principal engineer and the chief performance architect in the VMware Center of
Excellence team at Intel, optimizing Intel Data Center technologies (artificial intelligence, persistent memory,
and accelerators) on the VMware Cloud stack. She has over 20 patents and many published papers.

[1] MarketWatch. (2019, February) 175 Zettabytes by 2025! A data deluge is round the corner.
https://www.marketwatch.com/press-release/175-zettabytes-by-2025-a-data-deluge-is-round-the-
corner-2019-02-20

https://www.marketwatch.com/press-release/175-zettabytes-by-2025-a-data-deluge-is-round-the-corner-2019-02-20
https://www.marketwatch.com/press-release/175-zettabytes-by-2025-a-data-deluge-is-round-the-corner-2019-02-20

	Optimize Virtualized Deep Learning Performance with New Intel Architectures
	Executive Summary
	Introduction
	Intel’s AI Strategy
	Kernels for Library Developers
	Libraries for Data Scientists
	Toolkits for App Developers

	Experimental Environment
	Example

	Tests
	Hardware and Software Configuration
	Results
	Single Image Classification Latency – Intel Xeon Scalable CPU + fp32 vs 2nd Gen Intel Xeon Scalable CPU + int8
	Single Image Classification Latency – Virtualized vs Bare Metal – int8
	Single Image Classification Latency – Virtualized vs Bare Metal – fp32
	Large Batch Image Classification Throughput – Intel Xeon Scalable CPU + fp32 vs 2nd Gen Intel Xeon Scalable CPU + int8
	Single Image Classification Throughput Scaling – VMs vs Bare Metal
	Multistream Image Classification Throughput – VMs vs Bare Metal

	Conclusion
	References

