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Executive Summary 
Four different image classification tests were used to demonstrate the performance benefits of running deep 
learning inference on the 2nd Generation Intel® Xeon® Scalable processor compared to previous Intel 
processors, and to show the performance benefits of running on the VMware vSphere® hypervisor compared 
to bare metal. 

The 2nd Generation Intel® Xeon® Scalable processor’s Deep Learning Boost technology includes new Vector 
Neural Network Instructions (VNNI), which are especially performant with input data expressed as an 8-bit 
integer (int8) rather than a 32-bit floating point number (fp32). Together with the large VNNI registers, these 
instructions provide a marked performance improvement in image classification over the previous generation 
of Intel® Xeon® Scalable processors. 

The latest version of vSphere, 7.0, supports VNNI instructions. The work reported in this paper demonstrates 
a very small virtualization overhead for single image inferencing but major performance advantages for 
properly configured virtualized servers compared to the same servers running as bare metal. 

Introduction 
Deep learning typically refers to machine learning on non-tabular data (images, voice, etc.) using neural 
networks. Some of the applications include image classification (used in license plate detectors or facial 
recognition systems), object detection (which identifies the objects in an image and is used in autonomous 
vehicles, for example), or natural language processing (used by voice applications such as Alexa and Siri, and 
text applications like chatbots). 

To train a neural network (Figure 1), one starts with a set of weights wij that represent the multiplicative factor 
of joining two adjacent neurons in the network. A set of pre-labeled training data (for example, the pixels of an 
image together with the classification) xi is applied to the input layer and the network is run in the forward 
propagation direction, resulting in a set of predicted classifications yi. The predicted classifications are then 
compared to the actual labels, generating a loss function that is used by the back-propagation step to modify 
the weights in such a manner as to reduce the loss. The cycle of forward propagation followed by back 
propagation is repeated until a desired accuracy is achieved. The final set of weights along with the model 
structure are referred to as the trained model. 
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Figure 1: A Neural Network 

In inference, a new, unlabeled input is run through the trained model in just one forward propagation step to 
infer the category of an object or the meaning of a voice command. The two key metrics for inference are 
latency, the response time to a single image or command, and throughput, the overall amount of inferencing 
a system can provide. 

Popular current models such as the ResNet50 used in this work can have millions of weights and hundreds of 
layers. To do all the calculations, even for one forward propagation step, requires processors that can quickly 
handle large numbers of matrix multiply/add operations. 

To that end, Intel has introduced Intel® Deep Learning Boost (Intel® DL Boost) technology, a new set of 
features in their 2nd Generation Intel® Xeon® Scalable processor (“Cascade Lake”).  This feature set includes 
new Vector Neural Network Instructions (VNNI), which are especially performant with input data expressed as 
an 8-bit integer (int8) rather than a 32-bit floating point number (fp32). Together with the large VNNI 
registers, these instructions provide a marked performance improvement over the previous generation of 
Intel® Xeon® Scalable processors (“Skylake”). 

vSphere 7 supports the VNNI instructions, which allows VNNI to run on the vSphere hypervisor and to let 
users take advantage of all that VMware® virtualization offers: enhanced server utilization, scriptable 
deployment, and ease of management. The work reported in this paper demonstrates a very small 
virtualization overhead for single image inferencing but major performance advantages for properly 
configured virtualized servers compared to the same servers running as bare metal. 

In the next section, we describe in detail the Intel AI strategy and VNNI architecture. Next, we show the 
hardware and software configurations used in the tests, followed by descriptions of the individual tests run, 
and the results of those tests. 

Forward propagation  

 Back propagation 
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Intel’s AI Strategy 
Over the last few years, we have seen an exponential growth in AI techniques to solve problems in various 
domains, such as health care, manufacturing, finance, and business operations. This growth has been fueled 
by the explosion of available data and the need for some sophisticated means for gleaning meaningful insights 
from the data.  

It is expected that the data generated from various "smart" devices will grow from 40 zettabytes to about 175 
zettabytes by 2025 [1]. This data will be coming from the greater than 150 billion devices owned by over 6 
billion people. This data deluge will need smart analytics to be used in a meaningful way, giving rise to newer 
innovative and efficient AI techniques. Focusing on developing AI algorithms, or just designing efficient AI 
chips, will not solve the complexity in data-insight analysis. We need to address this with a holistic system-
level view that encompasses hardware (AI chips, storage, memory, and fabric), mature and open software 
(algorithms, libraries, and tools) and the tight co-design of hardware and software.  

Intel's AI strategy offers the most diverse portfolio of highly performant and efficient compute and 
revolutionizes decades-old memory and storage hierarchies. It fills new gaps identified by AI workloads and 
enables the development of full-stack software based on open components. This simplifies AI deployments 
across increasingly heterogeneous hardware environments while integrating with existing frameworks and 
toolchains. The AI portfolio delivers a robust ecosystem of ready-made solutions for every industry.  

From a compute perspective, Intel starts by extending its widely proliferated CPU portfolio to include specific 
technologies (such as Intel DL Boost) that allow enterprises to accelerate AI applications on existing, familiar 
infrastructure. From there, Intel offers multiple, discrete hardware accelerators for a wide range of 
programmability, performance, energy, and latency requirements from cloud to edge, including Intel FPGAs 
and Intel Movidius Vision Processing Units (VPUs). For the second generation of its Intel Xeon Scalable 
processors, Intel added specific instructions to accelerate neural network inference, especially when using 
numeric int8 instructions. These instructions, known as VNNI, give a theoretical speedup of up to 30x over 
fp32 instructions. The speedup highly depends on the frameworks, models, and the percentage of instructions 
that can actually use VNNI technology. Intel is also investing in other purpose-built accelerators to speed up 
deep learning training and inference. 

Addressing software is a little more complex due to the various layers of the software stack; the fast growth of 
tools, libraries, and frameworks in the open source ecosystem; and the optimization of the software for 
specific hardware to run various types of AI applications and accommodate a variety of developer types.  

Kernels for Library Developers 

For library developers who write highly optimized code tailored to the specific hardware, Intel has offerings 
such as the Intel distribution of Python, the Intel Data Analytics Acceleration Library (DAAL), the nGraph 
Library, and the Intel Deep Neural Network Library (DNNL). 

Intel DAAL is a high-performance machine learning and data analytics library. This library helps reduce the 
time it takes to develop high-performance data science applications, enabling applications to make better 
predictions faster and analyze larger data sets with available compute resources. It supports highly optimized 
analytic functions such as logistic regression, which is the most widely used classification algorithm. It 
extended gradient boosting functionality for inexact split calculations and user-defined procedures to enable 
with feature extraction of datasets. Intel DAAL supports Python via the Intel distribution for Python. 
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Intel DNNL, previously known as Intel MKL-DNN, is an open source performance library for deep learning 
(DL) applications intended for the acceleration of DL frameworks on Intel®  architecture. The library includes 
basic building blocks for neural networks optimized for Intel CPUs and GPUs.  

The nGraph Library is an open-source C++ library and runtime/compiler suite for deep learning ecosystems. 
With nGraph Library, data scientists can use their preferred deep learning framework on any number of 
hardware architectures, for both training and inference. nGraph Library supports multiple devices (CPU, GPU, 
ASIC) from multiple frameworks (TensorFlow, MXnet, ONNX, PyTorch). 

Libraries for Data Scientists  

In addition to the above open source libraries, Intel has optimizations for all popular deep learning frameworks 
such as TensorFlow, PyTorch, MXNet, PaddlePaddle, and ONNX runtime that can take advantage of Intel 
hardware features to make machine learning models run faster. 

Toolkits for App Developers 

Intel provides special toolkits that are designed to help developers to deploy their applications using any 
framework on the hardware. These toolkits include: 

• Analytics Zoo - an Open source platform for building analytics and AI applications on Apache Spark with 

distributed TensorFlow, Keras, and BigDL. 

• OpenVINO - a highly optimized and popular open source toolkit that deploys applications and solutions 

that emulate human vision. Based on convolutional neural networks (CNN), the toolkit extends computer 
vision (CV) and deep learning workloads across Intel®  hardware on CPU/GPU/FPGA/VPU for Caffe, 
TensorFlow, MXNet, ONNX, and Kaldi. 

• Nauta - an open source, scalable, and extensible distributed deep learning training platform built on 

Kubernetes and includes open source components and Intel-developed custom applications, tools, and 
scripts for ease-of-use and deployment. 

Experimental Environment 
We conducted experiments to show the benefit of using Intel DL Boost technology to accelerate inferencing 
on 2nd Generation Intel Xeon Scalable processors. Before we delve into the details of the experiments, we 
discuss the different parameters used for tuning to get the best results. 

We ran the experiments with the Intel-optimized version of TensorFlow using pretrained models in fp32 and 
int8 precisions. These pretrained models are part of the TensorFlow model zoo and are available for everyone 
to use. We focused on the image classification model, ResNet50; we used the ImageNet validation dataset for 
inferencing predictions. 

The benchmark is launched using a Python script benchmark_ launcher.py that can take in the input 
parameters, validate the arguments, and initialize the platform. It also will initialize the model by locating it in 
the specified data path.   

For the model itself, the framework used, the pretrained model precision and location, and the batch size 
need to be specified. In addition to these, the script allows the benchmark to be run in a pure “benchmark 
only” mode, where only the performance is measured, or in "accuracy mode” where the inferencing accuracy 
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is reported in TOP1 and TOP5. It is critical to run the accuracy mode at least once when changing hyper 
parameters to ensure that the inference is maintaining the accuracy specified by the pretrained model.  

For initializing the platform parameters: socket_ id, numbers of cores per socket, number of threads per core, 
and the number of inter threads and intra threads must be specified. The socket parameter indicates to the 
script if the inferencing must be run on only one socket of the underlying CPU. In some cases, affinitizing to a 
single socket gives better performance where the NUMA memory accesses could cause extra latency. 
However, if the inferencing needs more threads than available on a single socket, then using all the cores from 
both sockets in the system is useful and will give better performance in terms of throughput. This is especially 
useful when running large batch sizes where the images are distributed across many cores. The intra threads 
parameter refers to the number of cores to use, while the inter threads are usually set to indicate how many 
threads to use per core. 

 Other environment variables such as KMP_ affinity can be specified either in the environment or in the 
launcher command line. This is used to indicate to the script how to distribute the threads to the physical 
cores. You can also use this to affinitize the threads to a particular set of cores such as {proclist=  1, 4, 8} that 
will run all the threads specified to run on core numbers 1, 4 and 8. The numbering scheme for the cores can 
be obtained by running the lscpu command in the shell. 

In addition, you can specify the output file where the results will be collected. This is usually a text file that can 
be parsed to get the parameters used when the script actually ran and also the latency and throughput of the 
inferencing. In the output file, you must check the OMP_ NUM_ THREADS, which will be obtained from the 
num_ intra_ threads parameters specified while launching the script. A detailed list of thread assignment to the 
cores is also stored in the output file so you can determine on which cores the inferencing was executed. 
Analyzing the output log file is necessary to understand the behavior of the parameters to the launcher script. 

Example  

python3.6 /home/user1/AI/Launcher/models/benchmarks/launch_benchmark.py  --data-location 
/home/user1/imagenet/ImageV --benchmark-only --in-graph 
/home/user1/AI/pre_trained_models/resnet50_fp32_pretrained_model.pb --model-name resnet50 --
framework tensorflow --precision fp32 --mode inference --batch-size=$u  -num_intra_threads 20 –
num_inter_threads 1  -- warmup_steps=250 steps=500 > output_file 
 
Set KMP_* environment variables to the specified value 
Validate the args and initializes platform_util 
Create model initializer for the specified model 

 

Tests 
Our tests used four different workloads, as shown in Table 1, below.  

In Single Image Classification Latency, the benchmark program sent one image at a time through a pre-
trained ResNet50 neural network model (setting the program’s batch_ size parameter to 1). The metric 
recorded was the latency, or average time to infer a single image, in milliseconds (msec). The benchmark 
program has a parameter that sets the number of threads for the calculations of the forward propagation of 
the neural network needed to classify the image. For this test, this parameter was optimized separately for the 
bare metal and virtualized tests. The Single Image Classification Latency test was used to compare both the 
performance of 2nd Generation Intel Xeon Scalable processors using the int8 quantization to that on 1st 
Generation Xeon Scalable processors using fp32 as well as to compare bare metal vs. virtualized performance. 
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In Large Batch Image Classification Throughput, the performance of large batch classification on Cascade 
Lake using the int8 quantization was compared to that on Skylake using fp32, both running on a single VM. 
The batch size was set to 1024 and the metric recorded was throughput in images per second. There was no 
constraint on the average image classification latency. 

Single Image Classification Throughput Scaling measures the throughput of running single image 
classification in multiple instances as the number of instances are increased. For the bare metal case, the 
benchmark program was run in a single instance, and then run simultaneously in multiple instances, with the 
number of instances increasing from 2 to 8. For the virtualized case, the benchmark program was run 
simultaneously in separate VMs, with the number of VMs increasing from 1 to 8. The metric recorded was 
throughput, in images per second. 

In Multistream Image Classification Throughput, the program sent multiple images at once (batch_ size > 1) 
through the ResNet50 inference engine. The maximum throughput achievable by the bare metal server and 
the virtualized server meeting a specified latency constraint was measured. The latency constraint used was 
33.3 msec, equivalent to 30 video frames per second. The average latency reported by the program was used 
to compare to the latency constraint. The metric recorded was throughput in images per second. 

 

Workload Batch Size Metric 

Single Image Classification Latency 1 Latency (average time to infer single image) 
(milliseconds) 

Large Batch Image Classification Throughput 1024 Throughput (images/second), no latency constraint 

Single Image Classification Throughput Scaling 1 Throughput (images/second) 

Multistream Image Classification Throughput > 1 Throughput (images/second) with latency constraint 

Table 1: Workloads Used in Image Classification Tests 
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Hardware and Software Configuration 
The 1st Generation Intel® Xeon® Scalable processor (“Skylake”) server and 2nd Generation Intel® Xeon® 
Scalable processor (“Cascade Lake”) server configurations are shown in Table 2 below. 

Component Skylake Server  Cascade Lake Server 

Processor 2x Intel® Xeon® Platinum 8160 @ 
2.10GHz, 24C/48T, 33.00M Cache 

2x Intel® Xeon ® Platinum 8260 @ 
2.4GHz, 24C/48T, 35.75M Cache 

Logical Processors (including 
hyperthreads) 

96 96 

Memory Type/Speed DDR4 / 2666 MT/s DDR4 / 2666 MT/s 

Memory Size 768 GiB (24x 32 GiB DIMMs) 768 GiB (24x 32 GiB DIMMs) 

NICs 2x 1 GbE ports + 2 x 10GbE ports 2x 1 GbE ports + 2 x 10 GbE ports 

Non-Volatile Memory Express storage 2x Intel® Optane™ P4800 375 GiB 

1x P4510 8TB 

2x 1.6TB NVMe PCIe 

Solid State Disks  8x 1.92 TB SSD SATA 

Table 2: Server Configurations 
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The virtualized configurations used in the tests are shown in Table 3. 

Configuration 
Number of 
VMs 

vCPUs per VM Memory per VM (GB) 
Total vCPUs 
Allocated 

Total Memory 
Allocated (GB) 

1 1 48 360 48 360 

2 2 48 360 96 720 

3 1 12 90 12 90 

4 2 12 90 24 180 

5 3 12 90 36 270 

6 4 12 90 48 360 

7 5 12 90 60 450 

8 6 12 90 72 540 

9 7 12 90 84 630 

10 8 12 90 96 720 

Table 3: Virtualized Configurations 

Both the virtual machines and the bare metal server ran the Ubuntu 18.04 operating system. 

Results 

Single Image Classification Latency – Intel Xeon Scalable CPU + fp32 vs 2nd 
Gen Intel Xeon Scalable CPU + int8 

In Single Image Classification Latency, the benchmark program’s batch_ size parameter was set to 1, sending 
one image at a time through a pre-trained ResNet50 neural network model. The performance metric was the 
latency, or average time to infer a single image, in milliseconds (msec). 

The first Single Image Classification Latency test (Figure 2) demonstrated the performance improvement from 
the fp32 quantization running on the Intel® Xeon® Scalable processor (“Skylake”) to int8 running on 2nd Gen 
Intel® Xeon® Scalable processor (“Cascade Lake”) using the VNNI instruction. The classification performance 
improved by 2.18x due to the smaller quantization, the enhanced VNNI instruction set, and the architectural 
improvements of Cascade Lake over Skylake. In addition, the image classification accuracy of the int8 
quantization was measured to be less than 1% less than the fp32 accuracy. The tests used a VM size of 48 
vCPU and 360 GB of memory (Configuration 1 in Table 3). 
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Figure 2:  Single Image Classification Latency – Skylake fp32 vs Cascade Lake int8 

 

  

Skylake FP32 =  1 
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Single Image Classification Latency – Virtualized vs Bare Metal – int8 

The virtualization overhead was shown to be small (1.5%) running the Single Image Classification Latency int8 
test on a 48-vCPU, 360 GB memory VM on a Cascade Lake server compared to running the same test on an 
identically configured Cascade Lake server (Figure 3). 

 

 

Figure 3: Single Image Classification Latency – Virtualized vs Bare Metal – int8 

  

Bare Metal Int8 =  1 
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Single Image Classification Latency – Virtualized vs Bare Metal – fp32 

The virtualization overhead using the fp32 quantization was shown as even smaller (0.6%) running the Single 
Image Classification Latency than the int8 test. Again, the test compared image classification latency on a 48-
vCPU, 360 GB memory VM on a 2nd Gen Intel Xeon Scalable server compared to running the same test on an 
identically configured server (Figure 4). 

 

 

Figure 4: Single Image Classification Latency – Virtualized vs Bare Metal – fp32 

  

Bare Metal FP32 =  1 
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Large Batch Image Classification Throughput – Intel Xeon Scalable CPU + 
fp32 vs 2nd Gen Intel Xeon Scalable CPU + int8 

A second method for comparing the performance improvement from Intel Xeon Scalable CPUs using fp32 to 
2nd Generation Intel Xeon Scalable CPUs using int8 was Large Batch Image Classification, in which VMs on 
both platforms were driven with the batch size set to 1024, and the resulting throughput was measured in 
images per second. A VM size of 96 vCPU and 720 GB was used (Configuration 2 in Table 3). As seen in 
Figure 5, the performance improvement, 3.49x,  was even larger than the 2.18x shown in Figure 2, due to the 
large VNNI register as well as the other improvements already mentioned (VNNI instruction set, int8 
quantization, enhanced Cascade Lake architecture). 

 

 

Figure 5: Large Batch Image Classification Throughput - Skylake fp32 vs Cascade Lake int8 

 

  

Skylake FP32 =  1 
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Single Image Classification Throughput Scaling – VMs vs Bare Metal 

In Single Image Classification Throughput Scaling, the Single Image Classification Latency tests (with either 
int8 or fp32 quantization) was run in multiple instances. For the bare metal case, the benchmark program was 
run in a single instance, and then run simultaneously in multiple instances, with the number of instances 
increasing from 2 to 8. For the virtualized case, the benchmark program was run simultaneously in separate 
VMs, with the number of VMs increasing from 1 to 8, using Configurations 3-10 from Table 3. 

As shown in Figure 6, the single-instance bare metal result (either int8 or fp32), which uses the entire server, 
is faster than the virtualized result from one small (12 vCPU, 90 GB) VM, but as the number of bare metal 
instances and VMs increase, the total throughput in the virtualized case overtakes that of the bare metal case 
and ends up being 2.04x faster (int8) and 1.44x faster (fp32) due to the better resource utilization afforded by 
virtualization. The int8 throughputs are faster than those of fp32 due to the smaller quantization. 

 

 

Figure 6: Single Image Classification Throughput Scaling – VMs vs Bare Metal 

 

  

Bare Metal FP32 =  1 
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Multistream Image Classification Throughput – VMs vs Bare Metal 

In Multistream Image Classification Throughput, the program sent multiple images at once through the 
ResNet50 inference engine. For both the bare metal and the virtualized servers, the batch_ size was increased 
while the average latency remained below 33.3 msec, equivalent to 30 video frames per second. The 
virtualized configuration consisted of two VMs, each with 48 vCPUs and 360 GB memory, to provide an 
optimal resource configuration for the workload. The resulting attainable throughput is shown in Figure 7. The 
virtualized int8 and fp32 were faster than their bare metal equivalents, but not by the same factor seen in the 
Single Stream Throughput Scaling. The multistream workload makes better use of the bare metal resources 
than does single stream, but running the same workload on two VMs is still faster due to better resource 
utilization 

The batch_ size used was 15 (int8) and 5 (fp32) for the VMs, and 28 (int8) and 10 (fp32) for bare metal.  

 

Figure 7: Multistream Image Classification Throughput – VMs vs Bare Metal  

Bare Metal FP32 =  1 
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Conclusion 
This study’s results demonstrate the performance benefits of running deep learning inference on the 2nd 
Generation Intel® Xeon® Scalable processor compared to previous Intel processors, and the performance 
benefits of running on VMware’s vSphere hypervisor compared to bare metal. 

Two tests were run to compare the Intel processor generations, Single Image Classification Latency and Large 
Batch Image Classification. For the Single Image Classification, the classification performance improved by 
2.18x from the fp32 quantization running on the Intel® Xeon® Scalable processor (“Skylake”) to int8 running on 
2nd Generation Intel® Xeon® Scalable processor (“Cascade Lake”) due to the smaller quantization, the 
enhanced VNNI instruction set, and the architectural improvements of Cascade Lake over Skylake. 

For Large Batch Image Classification, the performance improvement was 3.49x, even larger than the 2.18x in 
Single Image Classification, due to the large VNNI register, as well as the other improvements already 
mentioned (VNNI instruction set, int8 quantization, enhanced Cascade Lake architecture). 

The rest of the tests compared Deep Learning inference performance on vSphere vs bare metal. The 
virtualization overhead was shown to be small (1.5% for the int8 quantization and 0.6% for fp32) running the 
Single Image Classification Latency int8 test on a VM on a Cascade Lake server compared to running the same 
test on an identically configured bare metal Cascade Lake server. 

Single Image Classification Throughput Scaling shows slightly worse performance for one image classification 
instance running on a single, small VM versus running on a full bare metal server, but, as the number of bare 
metal instances and VMs increase, the total throughput in the virtualized case overtakes that of the bare metal 
case and ends up being 2.04x faster (int8) and 1.44x faster (fp32) due to the better resource utilization 
afforded by virtualization. The int8 throughputs are faster than those of fp32 due to the smaller quantization. 

Finally, virtualized Multistream Image Classification Throughput was 9% (int8) and 3% (fp32) faster than when 
run on bare metal. The multistream workload makes better use of the bare metal resources than does single 
stream, but, running the same workload on two VMs is still faster due to better resource utilization. 
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