

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2022 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property
laws. VMware products are covered by one or more patents listed at http://www.vmware.com/go/patents. VMware is a registered trademark
or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks
of their respective companies.

VMware vSphere 7.0 U1 Tagging
Best Practices
Performance Study - August 10, 2022

http://www.vmware.com/
http://www.vmware.com/go/patents

VMware vSphere 7.0 U1 Tagging Best Practices | Page 2

Table of Contents

1 Executive Summary .. 3

2 Introduction ... 3

3 Terminology and Scope of Paper ..4

4 Tagging APIs: Java... 5

5 Tagging APIs: PowerShell ... 23

6 Linked Mode .. 24

7 Tags vs. Custom Attributes ... 26

8 Scale Numbers for Good Performance ... 26

9 Concluding Remarks .. 28

10 References ... 30

11 Appendix ... 33

VMware vSphere 7.0 U1 Tagging Best Practices | Page 3

1 Executive Summary

Writing code to use VMware vSphere® tags can be challenging in large-scale

environments. This technical paper discusses the scalability limits of tags and gives tips
and tricks for writing performant tagging code in Java or PowerShell.

This paper is an updated version of the tagging whitepaper for the vSphere 6.7 release.
For 7.0 U1, we have seen performance improvements in various APIs vs. 6.7. We will
highlight these changes throughout the paper, but briefly:

• Performance for tag and category creation is improved. (Section 4.1, Create tag)

• Performance for list APIs is improved. (Section 4.3.1, Query VMs associated with tags)

• Additional list API options are available to simplify retrieving associations. (Section
4.3.1, Query VMs associated with tags)

• To accommodate the performance improvements in the list APIs, some attach() APIs

perform some caching. This cache slightly degrades performance at attach() time but

improves performance for creating and listing tags, as indicated above. (Section 4.2.3,
Multiple tags to a single VM)

• The limits for good performance out of the box (assuming an appropriate hardware
configuration) have been increased. (Section 8, Scale Numbers for Good
Performance.)

2 Introduction

vSphere 5.1 introduced an inventory tagging feature that has been available in all later
versions of vSphere, including vSphere 7.0 U1. Tags let datacenter administrators organize
different vSphere objects like datastores, virtual machines, hosts, etc. This makes it easier
to sort and search for objects that share a tag, among other things.

In vSphere, tags are organized into categories. A category is typically used for a high-level
description. For example, a category might be “OS type” or “application name.” Within a
category, the tags are the distinct values for that category. For example, if the category is
“OS type,” then the tags might be “Linux” or “Windows 2016.” If the category is
“application name,” the tags might be “DB,” “Middleware,” or “vCenter Server.” If the
category is “CPU type,” the tag values might be “AMD,” “Intel Broadwell,” or “Intel
Cascade Lake.”

Writing code to use tags can be challenging in large-scale environments. In this
whitepaper, we discuss the scalability limits of tags and give tips and tricks for writing

VMware vSphere 7.0 U1 Tagging Best Practices | Page 4

performant tagging code in Java or PowerShell. While the performance results in this
paper are specific to the hardware configuration and vCenter Server Appliance (VCSA)
configuration in our lab, the fundamental trends will be the same as in customer
environments.

We first discuss the scalability limits for tags in vSphere 7.0 U1. We then provide best
practices for writing code for tagging.

3 Terminology and Scope of Paper

Before describing the scale limits for tagging, we first define some terms:

• “Category definitions” refers to the number of tag categories, for example, “OS type”
or “application name.”

• “Tag definitions” refers to the number of tag definitions in the system, for example,
“Windows” from the category “OS type” or “SQL Server” under the category
“application name.”

• “Tag associations” refers to the mapping between a tag and an object (like a virtual
machine or datastore). For example, if tag “Windows” is applied to VM “vm-111,” then
that is one association, and if tag “Windows” and tag “SQL Server” are both applied to
“vm-111,” then that is two associations. If a user associated 25 tags (“Windows,” “SQL
Server,” “Pasadena Datacenter”, and so on) with 1,000 VMs, that would be 25,000
tag associations.

There are no hard limits to the number of tags, categories, and tag associations. However,
increasing the number of tags, categories, or associations can impact performance. In this
paper, we have tried to provide information you can use to understand the performance
limits in your environment. We give best practices for writing scripts to create tag
associations and retrieve association information from vCenter. We will focus on Java-
and PowerCLI-based programs, although the same principles apply to other languages
like Python. Moreover, we will focus primarily on three operations:

1. Creating tag definitions
2. Associating (attaching) tags to entities like VMs or datastores
3. Retrieving tag associations

These three operations are the most common tasks performed by scripts or plugins.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 5

4 Tagging APIs: Java

We will first discuss tag creation. In vSphere, a tag can only be created as part of an
existing category. Thus, a category must be created before a tag can be added. The
performance considerations for creating categories are similar to those of creating tags,
so we discuss only tag creation in this section. For a simple example of creating a
category using Java, please see “Example J2: Create Category” in the appendix.

The Java API for vSphere 7.0 U1 is documented here [5]. The complete documentation
set is here [6].

4.1 Create tag (assuming the category is already created)

Sample code for creating a category and creating a tag within that category is given in the
appendix (please see “Example J2: Create Category” and “Example J3: Create Tag”).

Tag creation requires a name and a description. The list of associable types (that is, what
types of objects, like VMs or hosts, can be associated with this tag is optional): if it is not
supplied, then a tag can be associated with any object. The category for a tag must

specify the cardinality of the category. A description of cardinality is given in

the performance team tagging blog [1]. Briefly, multiple cardinality means that multiple

tags (say, “Alice” and “Bob”) from a given category (say, “Owners”) can be assigned to a

given object (like a VM). If the cardinality is one, then only one tag within a category may

be applied to a given entity. For example, if the category is OS, then only one tag from

that category (say, Ubuntu Linux or Windows Server 2016) may be applied to the VM.

The tag creation API allows a user to specify a single tag to be created—in this API, only

one tag can be created at a time. The time to create a tag varies with the number of tags

per category. For example, creating many tags under a single category is slower than
creating a smaller number of tags in multiple categories.

Figure 1 shows the latency of creating 8,000 tag definitions under a single category. For
example, if the category name were “Application,” the tag definitions might be “SQL
Server,” “SAP Hana,” “Oracle,” “Kafka Messaging,” and so on. Creating 8,000 tags under
one category increases slightly from the first tag to the last tag and takes, on average,
about 9ms. This is a performance improvement over 6.7, which showed a much more
dramatic linear increase in latency as the number of tags increased. This improvement is
partly due to caching tag information and database query optimizations.

https://vdc-download.vmware.com/vmwb-repository/dcr-public/2fa085a7-3ff5-477e-9cf9-5a03eff7549a/68a01bae-01c6-4d48-84b5-e7678d1921dc/vsphere-automation-sdk-701-programming-guide.pdf
https://techpartnerhub.vmware.com/sdks/vsphere-automation-java/7.0
https://blogs.vmware.com/performance/2019/06/writing-performant-tagging-code-tips-and-tricks-for-powercli.html
bookmark://taggingblog/

VMware vSphere 7.0 U1 Tagging Best Practices | Page 6

Figure 1: Creating 8,000 tags under one category. In 7.0 U1, the time to create a tag stays roughly constant
with the number of tags.

Figure 2 shows the latency in creating 8,000 tag definitions under 200 categories. In each
case, there are 40 tag definitions per category. As the graph indicates, the latency to
create tags is roughly constant: the time to create the 40 tags per category is around eight
milliseconds per tag. This number is on par with creating all tags within a single category.
As described in our 6.7 whitepaper [7], one option to speed up tag creation is to use
multiple clients to create tags concurrently. In our labs, we have tested up to 8 clients with
promising speedups: up to 7x for eight clients. [5] Although performance in 7.0 U1 is
similar with one category vs. many categories, multiple categories allow for better
parallelism when using multiple clients. Thus, in 7.0 U1, as with 6.7, if practical, we
recommend multiple categories with fewer tags per category vs. a small number of
categories with many tags in them.

https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/tagging-vsphere67-perf.pdf

VMware vSphere 7.0 U1 Tagging Best Practices | Page 7

Figure 2: Creating 8,000 tags under 200 categories. Spreading tags among categories speeds up tag
creation. This makes it roughly constant for small numbers of tags per category.

4.2 Associate tag(s) with VM(s)

There are three ways to attach a tag to a VM:

1. attach(tagID, VM_ID)

2. attachTagToMultipleObjects(tagID, list of VM_IDs)

3. attachMultipleTagsToObject(list of tagIDs, VMID)

Each of these calls is useful in different scenarios. The main difference is how many calls to
the tagging service are required.

4.2.1 Single tag to single VM

When attaching a single tag to a single VM, it is easiest to use a simple attach() call

(option 1 above). Please see Example J4: Associating a tag with a VM (attach()) in the
appendix, where we assign a tag “Windows 10” from the category “GuestOS” to a VM.
We recommend keeping a map of tag ID to tag name and VM ID to VM name, if possible,
to avoid calling vCenter or the tagging service each time such a mapping is needed.
Pseudocode for using attach() is given here:

VMware vSphere 7.0 U1 Tagging Best Practices | Page 8

1. Get the tag ID (tagID) from the tag name.
2. Get the VM ID (VM_ID) from the VM name.
3. attach(tagID, VM_ID).

Attaching a single tag to a single VM typically takes around 25 milliseconds. Unlike in 6.7,
where the time varies as the number of tag associations increases, with 7.0 U1, the time is
roughly constant. Figure 3 shows the latency to attach a tag to a VM as we increase the
number of VMs from 1 to 10,000. The latency varies, but most attach() calls take around

25 milliseconds. The total end-to-end time is 4.2 minutes.

Figure 3: Using attach() to associate 1 tag with each of 10,000 VMs. The time for an individual attach() is
roughly constant even as we increase the number of VMs.

4.2.2 Single tag to multiple VMs

When attaching a single tag to multiple VMs, it is easiest to use option 2,
attachTagToMultipleObjects(). This call amortizes the cost of attaching the tag over

multiple VMs. For attaching the same tag to 10 VMs (VMID_ 0-VMID_ 9), only one call to
the tagging service is required, as opposed to 10 if we had used an
attach(tagID,VMID_N) call in a loop over each VM. See “Example J5: Associating a tag

with multiple VMs (attachTagToMultipleObjects())” in the appendix for an example of
attaching a single tag to multiple VMs using attachTagToMultipleObjects().

VMware vSphere 7.0 U1 Tagging Best Practices | Page 9

Pseudocode is given here:

1. Get tag ID (String tagID)
2. Get list of VM Dynamic IDs (List<DynamicID> VM_IDs)
3. attachTagToMultipleObjects(tagID,VM_IDs)

Attaching a single tag to multiple VMs using attachTagToMultipleObjects() is more

efficient than looping over every VM and calling attach(). Table 1 compares the latency of

attaching a single tag to multiple VMs using attachTagToMultipleObjects() vs. using

attach(). As noted in the caveat above, in the case of attachTagToMultipleObjects(),

we simultaneously attach the tag to 2,000 VMs. In the case of attach(), we sequentially

attach the tag to each VM. The numbers are slightly worse than in 6.7 U1 due to caching
introduced after an association is created, but the creation and list APIs are faster overall,
as indicated in other sections of this paper. In fact, in 6.7, a 5ms sleep is required between
iterations to avoid hitting a throttle within the vapi-endpoint process. In 7.0 U1, no such
sleep is required. If we include the 5ms sleep in the end-to-end time for 6.7, then its time
is the same as 7.0 U1. So even though the individual attach time in 7.0 U1 is slower than in
6.7, due to improvements in other parts of the system, we can match the throughput of
6.7.

Operation Number of iterations Latency for 1 tag, 20,000
VMs

attach() 20,000 (1 per VM) 482 seconds

attachTagToMultipleObjects() 10 (2,000 VMs at a time) 265 seconds

Table 1: attach() vs. attachTagToMultipleObjects()

4.2.2.1 Chunking VMs in calls to attachTagToMultipleObjects()

We suggest putting no more than 2,000 VMs per attachTagToMultipleObjects().

Exceeding this number may cause errors since the tagging service has some limits
regarding the number of items in a request. To see if this issue is occurring in your system,
look for this sort of error in the log file for the vapi-endpoint service (that is,
/var/log/vmware/vapi/endpoint/endpoint.log):

Received request (910,429 bytes) is bigger than the allowed request size (204,800
bytes) - request blocked!

VMware vSphere 7.0 U1 Tagging Best Practices | Page 10

4.2.3 Multiple tags to a single VM

When attaching multiple tags to a single VM, it is best to use option 3,
attachMultipleTagsToObject(). We can attach 10 tags (tag_ 0-tag_ 9) to a single VM

with one tagging service call instead of the 10 that would be required if we used attach
(tag_ N,VMID) in a loop over each tag. We give an example of attaching multiple tags to
VMs in the appendix in “Example J6: Associating multiple tags with multiple VMs
(attachMultipleTagsToObject())”. Here is pseudocode to accomplish this:

1. Get tag IDs and put them into a list (List<String> tagIDs)
2. Get VM ID (VM_ID)
3. attachMultipleTagsToObject(VM_ID,tagIDs)

We recommend using no more than 2,000 tags in a single call for best performance.

Figure 4 shows the latency of attaching 1 through 200 tags to a single VM using
attachMultipleTagsToObject(). The latency initially drops, rises to 80ms, and then is

nearly constant. After 150 tags, the overhead increases to 200 tags: caching keeps
overheads low, so the incremental overhead of attaching more tags is small.

Figure 4: attachMultipleTagsToObject() for 1-200 tags and 1 VM.

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

La
te

nc
y

(m
s)

Number of Tags

AttachMultipleTagsToObject:
1 VM to 1 through 200 Tags

VMware vSphere 7.0 U1 Tagging Best Practices | Page 11

In figure 5, we compare the latency of attaching multiple tags (1 up to 2,000) to a single
VM using attachMultipleTagsToObject() vs. using serial attach() calls vs.

attachTagToMultipleObject(). As the figure shows, each method works well with a small

number of tags, but attachMultipleTagsToObject() works best as the number of tags

grows. For a small number of tags (< 50), the latency of attachMultipleTagsToObject()

is around 200 ms. For 2,000 tags, the latency is around 500 ms. The attach() and

attachTagToMultipleObjects() calls are both slightly slower per-iteration in 7.0 U1 vs.

6.7, as described earlier. When attaching 2,000 tags to 1 VM, both attach() and

attachTagToMultipleObjects() must be called 2,000 times, paying this extra cost on

each iteration. In contrast, attachMultipleTagsToObject() is significantly faster in 7.0 U1

vs. 6.7, primarily due to caching tag information in vCenter, and it is the preferred API for
this use case.

Figure 5: Attaching 1 through 2,000 tags to 1 VM. attachMultipleTagsToObject() is well-suited for this
use case.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

La
te

nc
y

(m
s)

Tags

ALL AttachMethods - Associate 1 through 2000 tags with 1 VM

Attach Attach_ multiple_ tags_ to_ object Attach_ tag_ to_ multiple_ objects

VMware vSphere 7.0 U1 Tagging Best Practices | Page 12

4.2.4 Multiple tags to multiple VMs

The previous cases considered assigning one tag to multiple VMs or multiple tags to one
VM. In this section, we discuss assigning multiple tags to multiple VMs.

4.2.4.1 10 tags associated with 1,000 VMs (10,000 tag associations)

Suppose we had a group of 10 tags (for example, “Windows 2019 Server,” “DB app,”
etc.), and we wanted to attach them to a group of 1,000 VMs (for example, VM_ 0, VM_ 1,
…, VM_ 999). As the preceding discussion suggests, there are two ways to accomplish
this:

1. attachTagToMultipleObjects() Pseudocode

Get tag IDs  List<String> tagIDs
Get VM IDs  List<DynamicId> VM_IDs
for (String tagID : tagIDs) {
 attachTagToMultipleObjects(tagID, VM_IDs)
}

2. attachMultipleTagsToObject() Pseudocode

Get tag IDs  List<String> tagIDs
Get VM IDs  List<DynamicId> VM_IDs
for (DynamicID VM_ID : VM_IDs) {
 attachMultipleTagsToObject(VM_ID, tagIDs)
}

We give more complete code snippets in the appendix.

Table 2 below shows the relative performance of these two calls for assigning 10 tags to
1,000 VMs from our internal testing labs.

API Call Number of
iterations

End-to-end
latency

Time per
iteration

attachTagToMultipleObjects() 10 136 seconds 14 seconds

attachMultipleTagsToObject() 1,000 19 seconds 19 milliseconds

Table 2: Latency for assigning 10 tags to 1,000 VMs (a total of 10,000 associations). The end-to-end latency
depends on the per-iteration cost.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 13

As the table indicates, for this modest number of tags and VMs,
attachMultipleTagsToObject() is faster than attachTagToMultipleObjects(), even

though attachMultipleTagsToObject()executes more iterations. In the first case, each

iteration is creating 1,000 tag associations (that is, 1 tag is being associated with 1,000
VMs). In the second case, each iteration is creating 10 associations (that is, associating 10
tags to 1 VM).

4.2.4.2 15 tags associated with 5,000 VMs (75,000 tag associations)

In the previous example, the number of associations (10,000) was small enough that the
latency to create each association was constant. However, the latency to attach tags to
VMs increases as the number of associations increases.

4.2.4.2.1 attachTagToMultipleObjects()

Figure 6 shows the latency of attaching multiple (1, 5, 10, 15) tags to up to 5,000 VMs
using attachTagToMultipleObjects(). This creates up to 75,000 tag associations. To

conform to the limit of 2,000 objects per call, for this example, we divided the 5,000 VMs
into 2 batches of 2,000 VMs and 1 batch of 1,000 VMs. We then looped through the tags
and attached the tag to each batch. Here is some pseudocode to illustrate this:

// (not shown): Get tag IDs into List<String> tagIDs
// (not shown): Get VM IDs into List<DynamicId> VM_IDs
int chunkSize = 2000
int numChunks = ((VM_IDs.size()/2000) + 1)
for (String tagID : tagIDs) {
 for (int j = 0; j < numChunks; j++) {
 int index = j * chunkSize
 // Make sure we don’t exceed the bounds of the VM ID list
 end = max(VM_IDs.size(),index+chunkSize);
 attachTagToMultipleObjects(tag, VM_IDs.sublist(index, end));
 }
}

In the graph below, the time taken to attach the first tag to all VMs is around 68 seconds,
while the time to attach the 15th tag to all VMs is about 60 seconds. In contrast, in 6.7, the

time to attach the 15th tag is about 200 seconds, nearly 3x the time taken by 7.0 U1. The

end-to-end time to attach all 15 tags is the sum of the time for each iteration, around 1,023

seconds for 7.0 U1. In 6.7, the end-to-end time was around 3,000 seconds. This

experiment creates 75,000 associations. It is important to note that this is above the out-
of-the-box suggestion of 25,000 associations (see "Scale Numbers for Good
Performance” in section 8), but we can exceed the out-of-the-box limits of the API by
using batches of VMs. It is important to note that while the API works properly, the UI may
be slow in this case.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 14

Figure 6: attachTagToMultipleObjects(): 15 tags to 5,000 VMs.

4.2.4.2.2 attachMultipleTagsToObject()

We can attach 15 tags to 5,000 VMs using attachMultipleTagsToObject() instead. The

results are in figure 7. To use attachMultipleTagsToObject(), we loop over VMs one at a

time and attach 15 tags at once:

// (not shown) Get tagIDs into List<String> tagIDs
// (not shown) Get VM IDs into List<DynamicId> VM_IDs
for (DynamicID VM_ID : VM_IDs) {
 attachMultipleTagsToObject(VM_ID, tagIDs)
}

As figure 7 indicates, the time to attach 15 tags to the first few VMs is between 16 and 40
milliseconds, and the time to attach 15 tags to the five thousandth VM is also between 16
and 40 milliseconds. The total time to attach 15 tags to 5,000 VMs is the sum of the
latency of each iteration, around 103 seconds.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

La
te

nc
y

(s
ec

on
d

s)

Number of Tags

AttachTagToMultipleObjects: 15 tags to 5,000 VMs

VMware vSphere 7.0 U1 Tagging Best Practices | Page 15

Figure 7: attachMultipleTagsToObject(). This call is roughly constant with the number of objects.

A caveat about the number of objects or tags in a single call: As mentioned earlier, while it
is faster to use these batched attachTagToMultipleObjects() and

attachMultipleTagsToObject() calls, there is a limit to the size of a request that the

tagging service can process. When this limit is exceeded, the request cannot be
processed. For attachTagToMultipleObjects(), to avoid hitting this limit, we recommend

using no more than 2,000 VMs within a single call. For attachMultipleTagsToObject(),

we recommend no more than 20 tags per call. If you want to associate a single tag with
20,000 VMs, you should do it using 10 iterations with 2,000 VMs per iteration.

In table 3, we summarize the performance of these API calls when attaching 15 tags to
5,000 VMs (75,000 tag associations):

API Call Number of Iterations End-to-End Latency

attachTagToMultipleObjects() 45 (15 tags * 3
batches)

17 minutes

attachMultipleTagsToObject() 5,000 (one per VM) 1.7 minutes

Table 3: Latency for assigning 15 tags to 5,000 VMs (a total of 75,000 associations). The end-to-end latency
depends on the per-association cost for attachTagToMultipleObjects() and the per-iteration cost for

attachMultipleTagsToObject().

When attaching multiple tags to multiple objects, we recommend
attachMultipleTagsToObject(). In addition, we observed that 7.0 U1 outperforms 6.7

(that is, the end-to-end latencies in 7.0 U1 are lower than in 6.7). As the table indicates,

0

20

40

60

80

100

120

140

1
10

8
21

5
32

2
42

9
53

6
64

3
75

0
85

7
96

4
10

71
11

78
12

85
13

92
14

99
16

0
6

17
13

18
20

19
27

20
34

21
41

22
48

23
55

24
62

25
69

26
76

27
83

28
90

29
97

31
0

4
32

11
33

18
34

25
35

32
36

39
37

46
38

53
39

60
40

67
41

74
42

81
43

88
44

95
46

0
2

47
0

9
48

16
49

23

La
te

nc
y

(m
s)

VM

AttachMultipleTagsToObject (15 tags and 5,000 VMs)

VMware vSphere 7.0 U1 Tagging Best Practices | Page 16

attachMultipleTagsToObject() is faster with a large number of VMs, and overall, the

APIs are nearly twice as fast as 6.7. Table 4 shows a few more data points: 10 tags
associated with 1,000 VMs, and 1, 10, 15, and 20 (hereafter referred to as {1,10,15, 20}) tags
associated with 5,000 VMs. We also added a data point for 20 tags associated with
10,000 VMs (200,000 associations). For large numbers of VMs and more than one tag,
attachMultipleTagsToObject() scales the best. With one tag and many VMs,

attachTagToMultipleObjects() scales the best.

Operation 10 tags to
1000
VMs (10k
associatio
ns)

1 tag to
5,000
VMs (5K
associatio
ns)

10 tags to
5,000
VMs (50K
associatio
ns)

15 tags to
5,000
VMs (75K
associatio
ns)

20 tags
to 5,000
VMs
(100K
associatio
ns)

20 tags
to 10,000
VMs
(200K
associatio
ns)

attach() 3.5
minutes

1.8
minutes

18.1
minutes

27.1
minutes

44
minutes

76.5
minutes

attachTagToMultipleOb

jects()

2.2
minutes

1.1
minutes

11.3
minutes

17
minutes

24.3
minutes

47.7
minutes

attachMultipleTagsToO

bject()

0.31
minutes

1.5
minutes

1.6
minutes

1.6
minutes

2.6
minutes

5.3
minutes

Table 4: End-to-end latency to attach tags to VMs. We show 10 tags associated with 1,000 VMs, and
{1,10,15,20} tags associated with 5,000 VMs. We also show 20 tags associated with 10,000 VMs. Each API
scales roughly linearly with the number of associations. attachMultipleTagsToObject() scales the best

when the number of VMs is large.

The takeaway points from the table above are as follows:

1. The time to perform a single association increases as more tag associations are added.
In general, the latency to attach tags to VMs is roughly linear with the number of
associations. That is, as the number of tag associations increases, the latency to attach
tags to VMs grows proportionately.

2. Batching APIs (attachTagToMultipleObjects() or attachMultipleTagsToObject())

are preferable to looping over every tag and every VM and using an attach() on each

tag/VM pair.
3. When performing an operation on more than 2,000 VMs or 2,000 tags, break down

tags or VMs into batches of less than 2,000. If you don’t, you’ll see an error like this:
Hitting vapi endpoint limit during AttachTagToMultipleObjects().

VMware vSphere 7.0 U1 Tagging Best Practices | Page 17

4. As an additional consideration, to avoid denial-of-service attacks on the tagging
service, there is a limit of 1500 tagging-related operations per second, increased from
360 in vSphere 6.7 U3. To detect if you are hitting this limit, look for messages like
“Request rejected due to high request rate. Try again later.” in the vapi-endpoint log
file (/var/log/vmware/vapi/endpoint/endpoint.log). If your creation code exceeds

this limit, we recommend inserting a pause of 2ms or more between tag-creation calls.

4.3 Associate tag(s) with other objects

Associating tags with other objects (for example, hosts, datastores, or content library
items) has the same tradeoffs as associating tags with VMs, so the preceding discussion
applies. As with the discussion on VMs, we have 4 cases to consider:

1. To associate 1 tag with 1 object (for example, host), we recommend using
attach(tagID, HostID).

2. To associate 1 tag with multiple hosts, we recommend using
attachTagToMultipleObjects(tagID, HostID []).

3. To associate multiple tags with 1 host, we recommend using
attachMultipleTagsToObject(tagID[], HostID).

4. To associate multiple tags with multiple hosts, we recommend looping over hosts and
calling attachMultipleTagsToObject(tagID[], HostID) for each host.

The tagging APIs have been optimized for VM and host associations. Thus, most
operations may be slower with datastores or other objects vs. VMs and hosts. For
example, attaching a single datastore to a single tag may take up to 40 ms, while
attaching a single VM to a single tag is typically around 15 ms. The performance difference
depends on inventory size and the number of tags, and for most customer setups, the
difference will be much lower than what we have indicated above.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 18

4.3.1 Query VMs associated with tags

 To find the VMs associated with a tag, there are five APIs:

1. List<TagAssociation.objectToTags> listAttachedObjectsOnTags(List<String>

tagIDs): Given a list of tagIDs, this call returns the list of objects that are associated

with these tags. The return value is a tuple that shows object id (as a DynamicID) and
tag id. A DynamicID is an object that contains an identifier and a type. We give an
example in the appendix.

2. List<DynamicId> listAttachedObjects(tagID): Given a single tagID, this call returns

a list of all objects (as Dynamic IDs) associated with this tag ID.
3. List<TagAssocation.tagToObjects> listAttachedTagsOnObjects(List<DynamicID>

objectIDs): Given a list of VM_ IDs, this function returns all tags associated with those

VMs. The return value is a tuple that shows the VM ID and its associated tag IDs.
4. List<String> listAttachedTags(objectID): Given a VM, this call lists all tags

associated with the VM.
5. List<ListResult> list(iterationSpec): (Pagination API, new in 7.0) This call will

list all the tag associations that are present in vCenter, provided a page at a time, with a

maximum of “limit” per page (default: 5,000). In addition to returning a page of

data, this call also returns a marker, which is used to get the next page of data. Please

note that this new pagination-based API is accessed via https://{api-

host}/api/vcenter/tagging/associations, while the other APIs are accessed

via https://{api-host}/rest/com/vmware/cis/tagging.

Figure 8 below shows the latency to retrieve associated tags or associated objects for 1, 5,
10, or 15 ({1,5,10,15}) tags associated with 20,000 VMs for 4 APIs: listAttachedObjects(),

listAttachedObjectsOnTags(), listAttachedTagsOnObjects(), and list using

pagination, which is list(). In figure 9, we do the same experiment using the

listAttachedTags() API. We list it separately because its performance is much worse

than the other approaches.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 19

Figure 8: End-to-end time to retrieve associations for {1,5,10,15} tags attached to 20,000 VMs using various
List APIs.

From figure 8 above, we see the following:

• The listAttachedObjects() call takes a single tag as an input. When we have 15 tags,

we loop over the 15 tags. Each call returns 20,000 VMs. We have at most 15 iterations
(one for each tag). The latency goes from 1.7 seconds to 17 seconds.

• In contrast, the listAttachedObjectsOnTags() call takes a list of tags and returns the

objects attached to them. Each call again returns 20,000 VMs. In our experiments, we
used 1 tag per call rather than providing a list of tags because when we provided 3 or
more tags, the call failed due to internal buffer sizes. We have at most 15 iterations.
Because we request tags using the same technique as listAttachedObjects(), the

latencies are very similar.

• The listAttachedTagsOnObjects() call allows us to specify a list of objects. Because

of this, we do not have to retrieve the tags for all 20,000 VMs at once. Instead, we
break down the list of 20,000 VMs into batches of 2,000 VMs. For 1 tag, we provide 1
tag and iterate over the VMs in batches of 2,000, for a total of 10 iterations. For 15
tags, we provide an array of 15 tags, and again iterate over VMs in groups of 2,000,
again for a total of 10 iterations to get associations for 20,000 VMs. This method
scales the best, finishing more than 2x faster than the other approaches. The results
are also faster than in 6.7.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 20

• The list()(pagination API) call returns associations in a paged manner (for example, if

we have 50,000 tag associations in vCenter, the pagination API will get all the tag
associations in batches of 5,000 per iteration). There will be 10 iterations to get all
50,000 tag associations in this case. Using this API, a client does not have to manually
break down the objects into chunks.

Figure 9: End-to-end time to retrieve associations for {1,5,10,15} tags attached to 20,000 VMs using
listAttachedTags() API. listAttachedTags() is much slower than the other list calls, and we do not

recommend using it in environments with more than 2,000 VMs.

From figure 9 above, we see that listAttachedTags() is much slower than the other

approaches. This call only takes 1 object as an input and returns the appropriate number
of attached tags. For 20,000 VMs, we need 20,000 iterations, which is substantially
higher than for the other approaches.

9.4 9.4 9.6 9.7

0

2

4

6

8

10

1 Tag 5 Tags 10 Tags 15 Tags

La
te

nc
y

(m
in

ut
es

)

Tags

ListAttachedTags() API

VMware vSphere 7.0 U1 Tagging Best Practices | Page 21

We summarize the results in table 5 below.

Operation 1 tag
associated
with 20K VMs

5 tags
associated
with 20K VMs

10 tags
associated
with 20K VMs

15 tags
associated
with 20K VMs

listAttachedObjects 1.7 seconds 6.6 seconds 12.6 seconds 19.2 seconds

listAttachedObjectsOnTags 1.1 seconds 5.5 seconds 10.9 seconds 16.7 seconds

listAttachedTagsOnObjects 3.2 seconds 6.2 seconds 10.3 seconds 14.4 seconds

listAttachedTags 9.4 minutes 9.4 minutes 9.6 minutes 9.7 minutes

List (Pagination) 1.6 seconds 7.2 seconds 14.4 seconds 22.2 seconds

Table 5: Latency for various list APIs.

Because listAttachedObjectsOnTags() and listAttachedObjects() can return every

object in the system, their performance is very sensitive to inventory size. Instead, if it is
an option, we recommend using listAttachedTagsOnObjects()since it allows you to

break down the number of objects into smaller chunks and give more predictable
performance per call. One caveat is that when using listAttachedTagsOnObjects() if any

of the input objects have been deleted, the call will return errors for that object, so a client
must be prepared to handle those errors. Alternatively, you can use pagination-based
list() API, which also gives predictable performance so you do not have to manually

break the object list into chunks of 2,000 entities. In addition, the pagination API will only
return valid associations rather than returning an error if an object is no longer present in
the inventory.

It is important to point out that the list APIs above return IDs. Most client applications
require names. To retrieve tag names from these IDs, you must use get() calls. For

example, Tag.get() returns a TagModel object that has name, id, category_ id,

description, and used_ by fields. For performance reasons, if practical, we recommend
keeping a map of IDs to names on the client-side. Tag names are scoped to categories, so
when storing a tag name, be sure to store the category name as well.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 22

As a final example of batching, consider getting the mapping of all VMs associated with
each tag. One way to do this is using listAttachedObjects():

Get all categories
Get tags for each category
Get VMs associated with Tag using listAttachedObjects()

Because the number of objects associated with a tag may exceed 2,000, we recommend
using listAttachedTagsOnObjects() instead. Because we do not know a priori how many

tags will be associated with each object, to avoid overflowing internal vapi-endpoint
buffers, one option is to loop over each object individually:

Get all objects using vSphere API for retrieving objects (List <DynamicId> objectList)
for (DynamicId object : objectList) {
 List<Tag.objectToTags> result = listAttachedTagsOnObjects(object)
}

We could have used listAttachedTagsOnObjects(), listAttachedTags(), or list(), but

we chose listAttachedTagsOnObjects() (iterating over each object individually), because

the return value of listAttachedTagsOnObjects() is a mapping of tag to object. If we had

used listAttachedTags() or list(), we would have had to manually create such a

mapping.

Here is an example of retrieving all associations using the pagination API.

This example also appears in the appendix: “Example J12: Retrieving all associations

using the pagination API”).
// Get all tag associations a page at a time.
// Construct the tag association IDs.
// Store these IDs in a set.
AssociationsTypes.ListResult page;
AssociationsTypes.IterationSpec iter = new AssociationsTypes.IterationSpec();
static Set<String> associationIds = new HashSet<String>();

iter.setMarker("");
do {
 page = associationsProvider.list(iter);
 iter.setMarker(page.getMarker());

 // Store association IDs for this page
 for (AssociationsTypes.Summary summary : page.getAssociations()) {
 String tagId = summary.getTag();
 String objectId = summary.getObject().getId();
 String associationId = tagId + objectId;
 associationIds.add(associationId);
 }
} while (page.getStatus() != AssociationsTypes.LastIterationStatus.END_OF_DATA);

// Print out the total number of associations
System.out.println("Total number of Tag Associations: " + associationIds.size());

VMware vSphere 7.0 U1 Tagging Best Practices | Page 23

The key takeaway from the discussion of the list APIs is that two APIs offer predictable
performance and are the recommended ways to retrieve associations:

1. listAttachedTagsOnObjects()

2. Pagination list()

The pagination list() API offers robust, predictable performance since it returns a fixed

number of associations per iteration without requiring the client to shard the data into
chunks. The pagination list() API also retrieves associations only for objects that are

currently present in the inventory, so it does not return errors in case an object has been
deleted after list() has been called but before associations have been retrieved. The
listAttachedTagsOnObjects() also offers predictable performance but requires the user

to properly chunk the list of objects into groups of less than 2,000 objects. In addition, if
the list of objects includes deleted objects, then listAttachedTagsOnObjects()will return

errors for those objects, so a client must handle those errors.

5 Tagging APIs: PowerShell

The previous examples all used Java. In this section, we discuss using PowerShell. As
described in Writing Performant Tagging Code: Tips and Tricks for PowerCLI [1], there are
typically two ways to write PowerShell scripts for vSphere tags: either using cmdlets or
using direct tagging APIs. For performance reasons, we recommend using direct tagging
APIs instead of cmdlets, as indicated in the blog above.

The direct tagging service calls in PowerShell use the same vCenter server and tagging
service resources as Java. Thus, the performance results are the same as the Java results
above. In this section, we just focus on the difference in the API calls. The API calls differ
slightly from Java to PowerShell. Java uses camelCase, while PowerShell puts
underscores in the method name.

https://blogs.vmware.com/performance/2019/06/writing-performant-tagging-code-tips-and-tricks-for-powercli.html

VMware vSphere 7.0 U1 Tagging Best Practices | Page 24

We give some examples below in table 6.

Description Java PowerShell (CIS service)

Attach one tag
to one VM

Attach() Attach()

Attach one tag
to multiple
objects

attachTagToMultipleObjects() Attach_tag_to_multiple_objects()

Attach multiple
tags to one
object

attachMultipleTagsToObject() Attach_multiple_tags_to_object()

List objects
attached to a tag

listAttachedObjectsOnTags() List_attached_objects_on_tags()

List associations
(pagination)

List() List() (instead of

com.vmware.cis, please use

com.vmware.vcenter)

Table 6: Examples of differences between Java and PowerShell method names. Note that the pagination API
for PowerShell is at a different location from the other association-based APIs, using ‘com.vmware.vcenter’

instead of ‘com.vmware.cis.’

There are also some minor differences in how arrays and objects are created between
PowerShell and Java. Please see the examples in the appendix for details.

PowerCLI version 11.5.0 is compatible with vCenter 6.0 through 7.0 U1. The
documentation for the various versions of VMware PowerCLI is here [6].

6 Linked Mode

In Enhanced Linked Mode (ELM) [7], vCenter servers replicate tag and category
information between peer nodes periodically. Each node replicates data with its peer
every 30 seconds, so changes to categories and tag definitions on one node may take
some time before they propagate to the other nodes in the ELM setup. The choice of
topology can impact this replication time. For example, consider figure 10, which shows a
simple ring topology [9] for vCenter servers.

https://code.vmware.com/tool/vmware-powercli
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vcenter.install.doc/GUID-7A90361C-E95B-4C53-A328-3DB9EE20536D.html
https://emadyounis.com/vcenter-server-architecture-part-1-the-basics/

VMware vSphere 7.0 U1 Tagging Best Practices | Page 25

Figure 10: Ring topology for linked mode

In the figure above, the replication partners are as follows:

• VC 1: VC 2 and VC 6

• VC 2: VC 1 and VC 3

• VC 3: VC 2 and VC 4

• VC 4: VC 3 and VC 5

• VC 5: VC 4 and VC 6

• VC 6: VC 1 and VC 5

When a new tag is added on VC 1, here is a rough timeline of replication:

1. Time 0: tag added to VC 1
2. Up to 30 seconds later, VC 1 replicates to VC 2 and VC 6
3. Up to 30 seconds later, VC 2 replicates to VC 3; VC 6 replicates to VC 5
4. Up to 30 seconds later, VC 3 replicates to VC 4; VC 5 also replicates to VC 4, but ELM

performs conflict resolution to ensure only one new tag definition is created on VC 4.

As the timeline above suggests, in this 6-node ring topology, a tag may take up to 90
seconds to replicate throughout the system. Because each node pushes changes at 30-
second intervals, this is the worst-case latency. The nodes do not push changes
simultaneously, so in the best case, a tag change may occur right before that node has
been scheduled to push changes. In this case, the changes would be reflected more
quickly.

Different topologies will have different delays. For example, suppose VC 1 was NOT
connected to VC 6, as shown below in figure 11.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 26

Figure 11: Linear topology for linked mode. We do not recommend this approach due to tag/category
replication latency.

1. Time 0: tag added to VC 1
2. Up to 30 seconds later: VC 1 replicates to VC 2
3. Up to 30 seconds later: VC 2 replicates to VC 3
4. Up to 30 seconds later: VC 3 replicates to VC 4
5. Up to 30 seconds later: VC 4 replicates to VC 5
6. Up to 30 seconds later: VC 5 replicates to VC 6.

As the timeline suggests, the worst-case latency for the last node to receive a tag update
is 30 seconds * 5 = 150 seconds after the tag has been added. The best case is nearly
instantaneous if the changes occur right before a node is scheduled to push tag updates.

7 Tags vs. Custom Attributes

There are some situations in which tags might not be the right fit. For example, suppose a
user has 4,000 VMs in their vSphere environment and wishes to assign an assetID to each
VM. One option is to create a category called “assetID” and then have each tag within that
category be a different assetID. However, this approach would generate numerous tags,
which may cause performance issues. Another example might be assigning a “last power-
off time” to each VM. One could have a category named “last power-off time” and have
each tag be a different time, but this can again cause scalability issues. For situations like
these two cases, it might be better to use vSphere custom fields and custom attributes. A
discussion of custom fields and attributes is beyond this paper’s scope: please refer to
official VMware documentation [9] or William Lam’s blog on this topic [11].

8 Scale Numbers for Good Performance

As mentioned in the “Introduction,” there are no hardcoded limits to the number of
categories, tags, or tag associations that the tagging service can support. However, as we
have shown in this paper, the performance of the UI and APIs depends on the number of
associations. Table 7 lists the scale numbers that will work well out of the box for vSphere
7.0 U1. For these numbers of tags, categories, and associations, we expect acceptable

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.vcenterhost.doc/GUID-73606C4C-763C-4E27-A1DA-032E4C46219D.html
https://www.virtuallyghetto.com/2015/01/custom-attributes-vsphere-tags.html

VMware vSphere 7.0 U1 Tagging Best Practices | Page 27

out-of-the-box performance for the UI, second- and third-party applications, and custom
scripts written by customers, as long as the scripts adhere to our best practices, the
system has appropriate hardware, and the vCenter Server Appliance (VCSA) is properly
sized. With numerous code changes between 6.7 and 7.0 U1 and with increased testing,
we have determined that we can support a larger number of tag associations in 7.0 U1 vs.
6.7: 150,000 in 7.0 U1 vs. 25,000 in 6.7. To achieve the maximum scale numbers listed in
the table, we used the X-Large configuration of the VCSA; smaller configurations may
encounter issues due to memory limitations in the VCSA.

As mentioned earlier, tag definitions and category definitions are shared among all nodes
in a Linked-mode domain, while associations are scoped to a single vCenter. Thus, the
associations below are for a single vCenter Server in a Linked-mode domain, and the
number of tag and category definitions are the cumulative number of definitions across all
nodes in the Linked-mode domain. The number of associations scales with the number of
nodes in Linked mode, so if you have 10 nodes in Linked mode, you can support up to
250,000 total associations across those nodes, with no more than 25,000 per vCenter.

Target of Limit Limit

Category definitions 6,000

Tag definitions 8,000

Tag Associations 150,000

Table 7: vSphere 7.0 U1 tag limits for acceptable out-of-the-box performance. The number of associations is
for a single vCenter in a Linked Mode configuration.

The limits above are based on response latency and hardcoded limits within vSphere
processes to prevent denial-of-service (DoS) attacks and out-of-memory exceptions for
large response bodies. While the numbers above are the same as for 6.7, performance is
vastly improved in 7.0 U1, and we have shown in this paper how careful coding can allow a
user to exceed these limits.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 28

9 Concluding Remarks

In this paper, we have provided information about the proper use of tagging APIs for
performance. We have discussed the following considerations:

Coding tips:

• For faster tag or category creation time, consider using multiple threads.

• It is faster to create tags spread across many categories rather than putting all tags in a
few categories.

• For faster assignment of tags to objects, consider using
attachMultipleTagsToObject() or attachTagToMultipleObjects() instead of

attach().

• For faster listing of tag associations, consider listAttachedObjectsOnTags(),

listAttachedTagsOnObjects(), or pagination list() API, rather than

listAttachedObjects() or listAttachedTags(). The first two calls allow the user to

specify a concrete list of tags or objects and to chunk the requests to avoid
overwhelming the tagging service. The list() API is especially helpful if you prefer

not to manually chunk the objects on the client-side. It is also easier from an error
handling perspective, as described earlier in the text.

• Linked-mode topology can impact the latency to replicate tags. We recommend a ring
topology. For more details, please see this blog [9].

• Keep a local map of IDs (tag IDs, category IDs, VM_ IDs) to names so that you don’t
have to make a call to vCenter or the tagging service every time you need an ID from a
name.

Important caveats:

• For attach() calls, the maximum request and response size we recommend is 2,000

VMs or 2,000 tags. If possible, consider these limits when choosing which API calls to
use.

• For listing associations, if using listAttachedTagsOnObjects(), make sure to break

down the list of objects into groups of 2,000. If you have a relatively large number of
tags per entity (for example, 50 tags attached to each of 1,000 datastores), then break
down the query so that no more than 20,000 associations are retrieved at once. For
example, with 50 tags attached to 1,000 datastores, you might want to break down
datastores into groups of 400 instead of 2,000.

https://www.virtuallyghetto.com/2015/01/custom-attributes-vsphere-tags.html

VMware vSphere 7.0 U1 Tagging Best Practices | Page 29

• Consider using shorter tag names if you need to exceed 2,000 tags per attach call.
The limit of 2,000 is based on the number of bytes in the response, not the sheer
number of tags, so smaller tag names may allow you to retrieve more items in a single
call.

• The maximum response size that can be returned by tagging APIs is approximately
1.8GB. In practice, for 256B tags, this limit represents a response size of approximately
30,000 tag associations: this is, for example, 2,000 objects and 15 tags per object, or
200 objects and 150 tags per object, or 1,000 tags and 30 tags per object. When using
listAttachedTagsOnObjects() or listAttachedObjectsOnTags() to return tag

associations, be careful to avoid reaching this limit by chunking the request sizes by
tags or by objects. The error you receive if exceeding this limit is shown in section
4.2.2.1, “Chunking VMs in calls to attachTagToMultipleObjects().” Note that the
pagination list() API automatically breaks down responses to avoid this limit.

• Creating and deleting tags creates tombstones (entries that have been marked for
deletion but haven’t been purged by the system) in the tagging service database.
These tombstones are needed for proper replication in linked mode, but excessive
numbers of tombstones can impact performance. Please see KB 52387.

• There are internal vCenter limits to avoid DoS attacks. The vCenter appliance allows no
more than 1,500 requests per second to tagging and other RESTful vAPI-based
services within the VCSA (for example, content library). If you are exceeding this limit
in your environment, we recommend inserting a pause periodically to slow down the
rate of requests. To know if you are hitting this limit, please check the vAPI-endpoint
log file in /var/log/vmware/vapi/endpoint/endpoint.log.

• In certain rare cases, you may need to increase the heap size of the vAPI-endpoint
service to accommodate high amounts of tagging traffic. When the vAPI-endpoint
approaches its heap size, it triggers an alert within vCenter, so please be careful to
check for this alert periodically.

• The latency to perform a tag association depends on the number of pre-existing
associations. If many associations exist, it may be necessary to perform maintenance
on the tag association table. The tag association table is a table within the main
vCenter database.

• Performance depends on the sizing of the VCSA. To achieve the maximum limits
indicated in this paper, we used the X-Large configuration of the VCSA.

https://kb.vmware.com/s/article/52387

VMware vSphere 7.0 U1 Tagging Best Practices | Page 30

• To perform such cleanup, please run the following vacuum job to clean up the
database engine statistics:

1. Connect to your VCSA VM via SSH as the root user.
2. Log in to Postgres:

/opt/vmware/vpostgres/current/bin/psql -U postgres -d VCDB

3. Run vacuum analyze in this order:
vacuum analyze cis_kv_keyvalue;
vacuum analyze cis_kv_providers;

10 References

[1] VMware. (2020) VMware vSphere Automation SDKs Programming Guide.
https://vdc-download.vmware.com/vmwb-repository/dcr-public/2fa085a7-3ff5-
477e-9cf9-5a03eff7549a/68a01bae-01c6-4d48-84b5-e7678d1921dc/vsphere-
automation-sdk-701-programming-guide.pdf

[2] VMware. (2020) vSphere Automation SDK for Java.
https://techpartnerhub.vmware.com/sdks/vsphere-automation-java/7.0

[3] Ravi Soundararajan and Joseph Zuk. (2019, June) Writing Performant Tagging
Code: Tips and Tricks for PowerCLI.
https://blogs.vmware.com/performance/2019/06/writing-performant-tagging-
code-tips-and-tricks-for-powercli.html

[4] Raju Angani, Ravi Soundararajan, and Maarten Wiggers. (2020, August) VMware
vSphere 6.7 Tagging Best Practices.
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpape
r/performance/tagging-vsphere67-perf.pdf

[5] VMware. (2018, November) Troubleshooting and addressing the accumulation of
tombstones in a Platform Services Controller (52387).
https://kb.vmware.com/s/article/52387

[6] VMware. PowerCLI SDK. https://code.vmware.com/tool/vmware-powercli

[7] VMware. (2019, May) vCenter Enhanced Linked Mode for a vCenter Server
Appliance with Embedded Platform Services Controller.
https://docs.vmware.com/en/VMware-

https://vdc-download.vmware.com/vmwb-repository/dcr-public/2fa085a7-3ff5-477e-9cf9-5a03eff7549a/68a01bae-01c6-4d48-84b5-e7678d1921dc/vsphere-automation-sdk-701-programming-guide.pdf
https://vdc-download.vmware.com/vmwb-repository/dcr-public/2fa085a7-3ff5-477e-9cf9-5a03eff7549a/68a01bae-01c6-4d48-84b5-e7678d1921dc/vsphere-automation-sdk-701-programming-guide.pdf
https://vdc-download.vmware.com/vmwb-repository/dcr-public/2fa085a7-3ff5-477e-9cf9-5a03eff7549a/68a01bae-01c6-4d48-84b5-e7678d1921dc/vsphere-automation-sdk-701-programming-guide.pdf
https://techpartnerhub.vmware.com/sdks/vsphere-automation-java/7.0
https://blogs.vmware.com/performance/2019/06/writing-performant-tagging-code-tips-and-tricks-for-powercli.html
https://blogs.vmware.com/performance/2019/06/writing-performant-tagging-code-tips-and-tricks-for-powercli.html
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/tagging-vsphere67-perf.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/performance/tagging-vsphere67-perf.pdf
https://kb.vmware.com/s/article/52387
https://code.vmware.com/tool/vmware-powercli
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vcenter.install.doc/GUID-7A90361C-E95B-4C53-A328-3DB9EE20536D.html

VMware vSphere 7.0 U1 Tagging Best Practices | Page 31

vSphere/7.0/com.vmware.vcenter.install.doc/GUID-7A90361C-E95B-4C53-A328-
3DB9EE20536D.html

[8] Emad Younis. (2018, May) vCenter Server Architecture Part 1 – The Basics. [Online].
https://emadyounis.com/vcenter-server-architecture-part-1-the-basics/

[9] VMware. (2019, May) Custom Attributes in the vSphere Web Client.
https://docs.vmware.com/en/VMware-
vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-73606C4C-763C-4E27-
A1DA-032E4C46219D.html

[10] William Lam. (2015, January) Custom Attributes != vSphere Tags.
https://www.virtuallyghetto.com/2015/01/custom-attributes-vsphere-tags.html

[11] VMware. VMware vSphere Automation SDK for Java.
https://github.com/vmware/vsphere-automation-sdk-java

[12] VMware. Package com.vmware.cis.tagging.
https://vmware.github.io/vsphere-automation-sdk-
java/vsphere/6.7.1/vsphereautomation-client-
sdk/com/vmware/cis/tagging/package-summary.html

[13] VMware. Tagging Service SDK (PowerCLI).
https://code.vmware.com/docs/7335/powercli-11-0-0-user-s-guide/doc/GUID-
F0088D49-CCFC-4F26-9C8C-845DE5AA951A.html?h= tags

[14] VMware. vSphere Java APIs.
https://github.com/vmware/vsphere-automation-sdk-java

[15] VMware. Java API for vSphere 7.0.
https://code.vmware.com/web/sdk/7.0/vsphere-automation-java

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vcenter.install.doc/GUID-7A90361C-E95B-4C53-A328-3DB9EE20536D.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vcenter.install.doc/GUID-7A90361C-E95B-4C53-A328-3DB9EE20536D.html
https://emadyounis.com/vcenter-server-architecture-part-1-the-basics/
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-73606C4C-763C-4E27-A1DA-032E4C46219D.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-73606C4C-763C-4E27-A1DA-032E4C46219D.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-73606C4C-763C-4E27-A1DA-032E4C46219D.html
https://www.virtuallyghetto.com/2015/01/custom-attributes-vsphere-tags.html
https://github.com/vmware/vsphere-automation-sdk-java
https://code.vmware.com/docs/7335/powercli-11-0-0-user-s-guide/doc/GUID-F0088D49-CCFC-4F26-9C8C-845DE5AA951A.html?h=tags
https://code.vmware.com/docs/7335/powercli-11-0-0-user-s-guide/doc/GUID-F0088D49-CCFC-4F26-9C8C-845DE5AA951A.html?h=tags
https://github.com/vmware/vsphere-automation-sdk-java
https://code.vmware.com/web/sdk/7.0/vsphere-automation-java

VMware vSphere 7.0 U1 Tagging Best Practices | Page 32

About the Authors

Raju Angani is a staff performance engineer in the Performance team at VMware. His
main areas of focus are vSphere tagging performance and vCenter database
performance.

Ravi Soundararajan is a principal engineer in the Performance team at VMware,
specializing in vCenter performance and scalability. He has presented numerous times
about vCenter at VMworld. His Twitter handle is @vCenterPerfGuy. Ravi received his SB
from MIT and his MS and PhD degrees from Stanford, all in Electrical Engineering.

Maarten Wiggers is a senior staff engineer and works on vCenter with a focus on tagging,
policies, and resource management. He has been with VMware for 6 years and has a PhD
from the University of Twente, The Netherlands.

Acknowledgments

We gratefully acknowledge Joseph Zuk, Oleg Zaydman, Sangeeta Jogeklar, Abhijith
Marulaiah Prabhudev, Kyle Ruddy, Jake Robinson, Chung-Yen Chang, Yong Li, Udaya
Ganiga, and Vishwa Srikaanth for their assistance with the content of this paper.

VMware vSphere 7.0 U1 Tagging Best Practices | Page 33

11 Appendix

11.1 Experimental setup and software versions

We used VMware PowerCLI 10.1.0 build 8346946. Note that newer versions may
demonstrate better performance.

We used Java 1.8 (“1.8.0_ 231”).

Our vCenter was vCenter 7.0 U1 running on ESXi 6.5 U2. Our inventory was composed of
2,000 hosts and 25,000 VMs (simulated using a proprietary VMware-internal tool).
Because of the large number of VMs, we used the “Extra Large” size for the VCSA.

11.2 Java code examples

Some of these examples come from the following Github repository:
https://github.com/vmware/vsphere-automation-sdk-java [12].

For each of the Java examples below, we need a set of imports. Here are the imports we
used in our code snippets:

import vim25
import com.vmware.cis.tagging.Category;
import com.vmware.cis.tagging.CategoryTypes;
import com.vmware.cis.tagging.Tag;
import com.vmware.cis.tagging.TagAssociation;
import com.vmware.cis.tagging.TagModel;
import com.vmware.cis.tagging.TagTypes;
import com.vmware.cis.tagging.CategoryModel.Cardinality;

11.2.1 Example J0: VM DynamicID and Tag TagID

Many code samples involve the use of VM DynamicID objects. A DynamicID object is like a
Managed Object Reference (MoRef, described in [10]), but the identifier and type are
stored in separate fields. Here is a simple code snippet for constructing a DynamicID from
a VM MoRef. We first retrieve the VM by name, and then get its MoRef. Finally, we
construct a DynamicID from this MoRef.

// Retrieve the VM MoRef from its name
this.VMMoRef = VimUtil.getVM(this.vimAuthHelper.getVimPort(),
 this.vimAuthHelper.getServiceContent(),
 “VM_NAME”);
assert this.VMMoRef != null;
// convert the MoRef to vAPI DynamicID
this.vmDynamicId = new DynamicID(this.VMMoRef.getType(),this.VMMoRef.getValue());

https://github.com/vmware/vsphere-automation-sdk-java

VMware vSphere 7.0 U1 Tagging Best Practices | Page 34

11.2.2 Example J1: Retrieving category/tag IDs from category/tag names

Most tagging APIs require tag IDs. A tag ID is globally unique, while a tag name is unique
within a category. To find a tag ID given a tag name, you must also specify the category
ID.

The following code finds a category ID given a category name:

Category _categoryService = vapiAuthHelper.getStubFactory().createStub(Category.class,
 sessionStubConfig);

// Get CategoryId
public String getCategoryId(String catName) {
 List<String> catIds = _categoryService.list();
 String retCatId = NULL;
 if (catIds.size() > 0) {
 for (String cat : catIds){
 if (_categoryService.get(cat).getName().equals(catName)) {
 retCatId = _categoryService.get(cat).getId();
 break;
 }
 }
 }
 return retCatId;
}

The following code gets a tag ID given a tag name and a category name, using the routine
above to map the category name to an ID.

Tag _taggingClient = vapiAuthHelper.getStubFactory().createStub(Tag.class,
 sessionStubConfig);

// Get TagId for a given tagName and CategoryName
public String getTagId(String tagName, String catName) {
 List<String> tagIds = _tagProvider.list();
 String catId = getCategoryId(catName);
 String retTagId = "";
 if (tagIds.size() > 0) {
 for (String tag : tagIds) {
 if (_tagProvider.get(tag).getName().equals(tagName)
&&_tagProvider.get(tag).getCategoryId().equals(catId)) {
 retTagId = _tagProvider.get(tag).getId();
 break;
 }
 }
 }
 return retTagId;
}

VMware vSphere 7.0 U1 Tagging Best Practices | Page 35

11.2.3 Example J2: Create Category

/**
 * Creates a tag category
 *
 */
private String createTagCategory(String name, String description,
 Cardinality cardinality, Set<String> AssociableTypes)
{
 CategoryTypes.CreateSpec createSpec = new CategoryTypes.CreateSpec();
 createSpec.setName(name);
 createSpec.setDescription(description);
 createSpec.setCardinality(cardinality);
 createSpec.setAssociableTypes(associableTypes);
 return this.categoryService.create(createSpec);
}
// Sample invocation: create category named “GuestOS”
Set<String> associableTypes = new HashSet<String>(); // empty hash set
associableTypes.add(“VirtualMachine”);
String categoryId = createTagCategory(“GuestOS”,

 “Guest OS”,
 CategoryModel.Cardinality.SINGLE,
 associableTypes);

11.2.4 Example J3: Create Tag

We use the categoryId from “Example J2: Create Category” above in this example.

/**
 * Creates a tag
 *
 */
private String createTag(String name, String description,
 String categoryId) {
 TagTypes.CreateSpec spec = new TagTypes.CreateSpec();
 spec.setName(name);
 spec.setDescription(description);
 spec.setCategoryId(categoryId);

 return this.taggingService.create(spec);
}

// Sample invocation: create tag named “Windows 10” in categoryId from above
String tagID = createTag(“Windows 10”,“DB Operating System”,categoryId);

VMware vSphere 7.0 U1 Tagging Best Practices | Page 36

11.2.5 Example J4: Associating a tag with a VM (attach())

In this example, we use the VM DynamicID (vmDynamicId) from “Example J0: VM
DynamicID and Tag TagID“ above and the tagID from “Example J3: Create Tag” above.

/**
 * Associates tagId from Example J3 to VM whose DynamicID is vmDynamicId (Example J0)
 * We assume vmDynamicId is retrieved as shown in Example J0 above.
 *
 */

// Get a handle to the tagAssociation Methods
tagAssociation = vapiAuthHelper.getStubFactory().createStub(TagAssociation.class,
 sessionStubConfig);

tagAssociation.attach(tagId,vmDynamicId);

11.2.6 Example J5: Associating a tag with multiple VMs (attachTagToMultipleObjects())

Attach 1 tag to 1,000 objects

// Attach 1 tag to first 1,000 VMs
// Assume we have a list of VM DynamicIDs  List<DynamicID> vmDynamicIds

int totalVMs = 1000;
List<DynamicID> vmDynamicIdsNeeded = new LinkedList<>();
for (int k = 0; k < totalVMs; k++) {
 vmDynamicIdsNeeded.add(vmDynamicIdsNeeded.add(vmDynamicIds.get(k));
}

// Get a handle to the tagAssociation Methods
tagAssociation = vapiAuthHelper.getStubFactory().createStub(TagAssociation.class,
 sessionStubConfig);
tagAssociation.attachTagToMultipleObjects(tagId,vmDynamicIdsNeeded);

VMware vSphere 7.0 U1 Tagging Best Practices | Page 37

11.2.7 Example J6: Associating multiple tags with multiple VMs
(attachMultipleTagsToObject())

Attach 10 tags to 1,000 objects

// Attach 10 tags to 1,000 VMs
// Assumes we have a list of all tagIDs  List<String> tagIds
// Assumes we have a list of all VM_IDs  List<DynamicId> vmDynamicIds
// We will assign the first 10 of these tags to 1,000 VMs

int totalVMs = 1000;
int totalTags = 10;

// Get first 10 tags from the total tagIds
List<String> associableTags = new LinkedList<>();
for (int k = 0; k < totalTags; k++) {
 associableTags.add(tagIds.get(k));
}

// Get first 1,000 VMs from the total VM_IDs
List<DynamicID> vmDynamicIdsNeeded = new LinkedList<>();
for (int k = 0; k < totalVMs; k++) {
 vmDynamicIdsNeeded.add(vmDynamicIds.get(k));
}

tagAssociation = vapiAuthHelper.getStubFactory().createStub(TagAssociation.class,
 sessionStubConfig);
for (int i = 0; i < totalVMs; i++) {
 tagAssociation.attachMultipleTagsToObject(vmDynamicIdsNeeded.get(i), TagIds);
}

11.2.8 Example J7: List tags associated with a VM

// List tags associated with vm vmDynamicId from above.
// Assumes tagAssociation object from above
List<String> retTagIds = tagAssociation.listAttachedTags(vmDynamicId);

VMware vSphere 7.0 U1 Tagging Best Practices | Page 38

11.2.9 Example J8: List VMs associated with a tag

// List tags associated with tagId from above
// Assumes tagAssociation object from above
List<DynamicID> retDynamicIds = tagAssociation.listAttachedObjects(tagId);

11.2.10 Example J9: List tags associated with a group of VMs

// Helper object for storing results
ObjectToTags {
 DynamicID objectId;
 List<String> tagId;
}

// List tags associated with 10 VMs from vmDynamicIdsUsed list above
// Assumes tagAssociation object from above
List<TagAssociationTypes.ObjectToTags> retObjectToTags =
 tagAssociation.listAttachedTagsOnObjects(vmDynamicIdsUsed.subList(0,10));

11.2.11 Example J10: List VMs associated with a group of tags

// Helper object for storing results
TagToObjects {
 String tagId;
 List<DynamicID> objectIds;
}
// Assumes we have a list of all tagIDs  List<String> tagIds
List<TagAssociationTypes.TagToObjects> retTagToObjects =
 tagAssociation.listAttachedObjectsOnTags(tagIds);

11.2.12 Example J11: Retrieving tag information (e.g., name, description) from the tag ID

// TagModel contains name, description, tag ID, category ID, and usedBy fields
TagModel retTagModel = _tagProvider.get(tagID);

VMware vSphere 7.0 U1 Tagging Best Practices | Page 39

11.2.13 Example J12: Retrieving all associations using the pagination API

Here is an example of retrieving all associations using the pagination API.

// Get all tag associations a page at a time.
// Construct the tag association IDs.
// Store these IDs in a set.
AssociationsTypes.ListResult page;
AssociationsTypes.IterationSpec iter = new AssociationsTypes.IterationSpec();
static Set<String> associationIds = new HashSet<String>();

iter.setMarker("");
do {
 page = associationsProvider.list(iter);
 iter.setMarker(page.getMarker());

 // Store association IDs for this page
 for (AssociationsTypes.Summary summary : page.getAssociations()) {
 String tagId = summary.getTag();
 String objectId = summary.getObject().getId();
 String associationId = tagId + objectId;
 associationIds.add(associationId);
 }
} while (page.getStatus() != AssociationsTypes.LastIterationStatus.END_OF_DATA);

// Print out the total number of associations
System.out.println("Total number of Tag Associations: " + associationIds.size());

11.3 PowerShell code examples

In this section, we give select examples of PowerShell. Examples of creating a category,
creating a tag, attach(), attach_tag_to_multiple_objects(), and

attach_multiple_tags_to_object() are given in the Performance Team blog on tagging

[1] and are therefore not repeated here.

https://blogs.vmware.com/performance/2019/06/writing-performant-tagging-code-tips-and-tricks-for-powercli.html

VMware vSphere 7.0 U1 Tagging Best Practices | Page 40

11.3.1 Example P0: Creating VMID Objects and retrieving Tag IDs

Retrieving a tag ID from its name
function Get-TagIdFromName {
 Param ($a)
 $allTagMethodSvc = Get-CisService com.vmware.cis.tagging.tag
 $allTags = @()
 $allTags = $allTagMethodSvc.list()
 foreach ($tag in $allTags) {
 if (($allTagMethodSvc.get($tag.value)).name -eq $a) {
 return $tag.value
 }
 }
 return $null
}

Creating a single VM ID Object
$testVM = Get-VM -Name “myVM”

$VMInfo = $testVM.ExtensionData.MoRef
$vmid = New-Object PSObject -Property @{
 id = $VMInfo.value
 type = $VMInfo.Type
}

Create an array of VM IDs
$allVMs = Get-VM
$useTheseVMIDs = @()

Create VM objects for all VMs.
This should be done once for all VMs, not every time
you want to do an association.
for ($i = 0; $i -lt 1000; $i++) {
 $VMInfo = $allVMs[$i].extensiondata.moref
 $useTheseVMIDs += New-Object PSObject -Property @{
 id = $VMInfo.value
 type = $VMInfo.type
 }
}

VMware vSphere 7.0 U1 Tagging Best Practices | Page 41

11.3.2 Example P1: List tags associated with a VM

$allCategoryMethodSVC = Get-CisService com.vmware.cis.tagging.category
$alltagMethodSVC = Get-CisService com.vmware.cis.tagging.tag
$allTagAssociationMethodSVC = Get-CisService com.vmware.cis.tagging.tag_association

Use first VM from above list
$useThisVMID = $useTheseVMIDs[0]
$tagList = $allTagAssociationMethodSVC.list_attached_tags($useThisVMID)

11.3.3 Example P2: List VMs associated with a tag

$allTagMethodSvc = Get-CisService com.vmware.cis.tagging.tag

Use method above to get tag ID from tag name
$tagId = Get-TagIdFromName “myTag”
$vmList = $allTagAssociationMethodSVC.list_attached_objects($tagId)

11.3.4 Example P3: List tags associated with a group of VMs

$assocSVC = Get-CisService com.vmware.cis.tagging.tag_association

Pass in VMs in groups of 2,000
$sampleSize = 2000

Assume a list of VMs: $useTheseVMIDs
$index = 0
$tagList = @()
for ($i = 0; $i -le ($useTheseVMIDs.Count/$sampleSize); $i++) {
 $tagList += $assocSVC.list_attached_tags_on_objects($useTheseVMIDS[$index..($index +
$sampleSize)])
}

11.3.5 Example P4: List VMs associated with a group of tags

$assocSVC = Get-CisService com.vmware.cis.tagging.tag_associations

Loop over 15 tags and get the result.
If there are too many VMs and you pass in all 15 tags in one go, you may get a RESPONSE error
$tagIdList = $tagList[0 .. 15]
$VMAssocList = @()
foreach ($tag in $tagIdList){
 # Must use a list because list_attached_objects_on_tags assumes a list of tags as an input
 # We are doing this one at a time, but you can use multiple at a time as long
 # as you do not get a RESPONSE error
 $useTheseTags = @()
 $useTheseTags += $tag
 $VMAssocList += $assocSVC.list_attached_objects_on_tags($useTheseTags)
}

VMware vSphere 7.0 U1 Tagging Best Practices | Page 42

11.3.6 Example P5: Retrieve associations using Pagination API

Get a connection to the new tagging API (not: com.vmware.vcenter, not com.vmware.cis)
$assocSVC = Get-CisService com.vmware.vcenter.tagging.associations

Create an object to help us iterate through the list of associations
$iterator = $assocSVC.Help.list.iterate.Create()

Loop over pages until we have received all associations
When the result status is END_OF_DATA, we have received all pages
do {
 $result = $assocSVC.list($iterator)

 # display associations
 $result.associations

 # set the iteration marker to the next page
 $iterator.marker = $result.marker
} while ($result.status -ne “END_OF_DATA”)

	1 Executive Summary
	2 Introduction
	3 Terminology and Scope of Paper
	4 Tagging APIs: Java
	4.1 Create tag (assuming the category is already created)
	4.2 Associate tag(s) with VM(s)
	4.2.1 Single tag to single VM
	4.2.2 Single tag to multiple VMs
	4.2.2.1 Chunking VMs in calls to attachTagToMultipleObjects()

	4.2.3 Multiple tags to a single VM
	4.2.4 Multiple tags to multiple VMs
	4.2.4.1 10 tags associated with 1,000 VMs (10,000 tag associations)
	4.2.4.2 15 tags associated with 5,000 VMs (75,000 tag associations)
	4.2.4.2.1 attachTagToMultipleObjects()
	4.2.4.2.2 attachMultipleTagsToObject()

	4.3 Associate tag(s) with other objects
	4.3.1 Query VMs associated with tags

	5 Tagging APIs: PowerShell
	6 Linked Mode
	7 Tags vs. Custom Attributes
	8 Scale Numbers for Good Performance
	9 Concluding Remarks
	10 References
	11 Appendix
	11.1 Experimental setup and software versions
	11.2 Java code examples
	11.2.1 Example J0: VM DynamicID and Tag TagID
	11.2.2 Example J1: Retrieving category/tag IDs from category/tag names
	11.2.3 Example J2: Create Category
	11.2.4 Example J3: Create Tag
	11.2.5 Example J4: Associating a tag with a VM (attach())
	11.2.6 Example J5: Associating a tag with multiple VMs (attachTagToMultipleObjects())
	11.2.7 Example J6: Associating multiple tags with multiple VMs (attachMultipleTagsToObject())
	11.2.8 Example J7: List tags associated with a VM
	11.2.9 Example J8: List VMs associated with a tag
	11.2.10 Example J9: List tags associated with a group of VMs
	11.2.11 Example J10: List VMs associated with a group of tags
	11.2.12 Example J11: Retrieving tag information (e.g., name, description) from the tag ID
	11.2.13 Example J12: Retrieving all associations using the pagination API

	11.3 PowerShell code examples
	11.3.1 Example P0: Creating VMID Objects and retrieving Tag IDs
	11.3.2 Example P1: List tags associated with a VM
	11.3.3 Example P2: List VMs associated with a tag
	11.3.4 Example P3: List tags associated with a group of VMs
	11.3.5 Example P4: List VMs associated with a group of tags
	11.3.6 Example P5: Retrieve associations using Pagination API

